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ABSTRACT

Quantification of operational risk has received increased attention with the inclusion of an explicit

capital charge for operational risk under the new Basle proposal. The proposal provides significant

flexibility for banks to use internal models to estimate their operational risk, and the associated

capital needed for unexpected losses. Most banks have used variants of value at risk models that

estimate frequency, severity, and loss distributions. This paper examines the empirical regularities

in operational loss data. Using loss data from six large internationally active banking institutions,

we find that loss data by event types are quite similar across institutions. Furthermore, our results

are consistent with economic capital numbers disclosed by some large banks, and also with the

results of studies modeling losses using publicly available "external" loss data.
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1.  Introduction 

 Large operational losses as a result of accounting scandals, insider fraud, and rogue 

trading, to name just a few,  have received increasing attention from the press, the public, and 

from policymakers.  The frequency of severe losses, with more than 100 instances of losses at 

financial institutions exceeding $100 million, has caused many financial institutions to try to 

explicitly model operational risk to determine their own economic capital.  As financial 

institutions have begun to comprehensively collect loss data and use it to manage operational 

risk, bank regulators have increased their expectations for measuring and modeling operational 

risk.  Under the current US rules proposal for implementing the Basle Accord, large 

internationally active banks will be expected to use internal models to estimate capital for 

unexpected operational losses.  A criticism of this proposal has been that the tools for modeling 

operational risk are in their infancy, making estimating capital problematic. 

 This paper uses data supplied by six large internationally active banks to determine if the 

regularities in the loss data will make consistent modeling of operational losses possible.  We 

find that there are similarities in the results of models of operational loss across institutions, and 

that our results are consistent with publicly reported operational risk capital estimates produced 

by banks’ internal economic capital models. 

 We begin the analysis by considering tail plots of each bank’s loss data by business line 

and event type.  Three findings clearly emerge from this descriptive analysis.  First, loss data for 

most business lines and event types may be well modeled by a Pareto-type distribution, as most 

of the tail plots are linear when viewed on a log-log scale.  Second, the severity ranking of event 

types is consistent across institutions.  Clients, Products and Business Practices is the highest 

severity event type, while External Fraud and Employment Practices are the lowest severity 
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event types.  Third, the tail plots suggest that losses for certain business lines and event types are 

very heavy-tailed.  This last finding highlights that while basic measurement approaches such as 

the tail plot are easy to implement and intuitively appealing, overly simplistic approaches may 

yield implausible estimates of economic capital.   A main contribution of this paper is to show 

how quantitative modeling can result in more reasonable conclusions regarding tail thickness and 

economic capital. 

 We next attempt to model the distribution of loss amounts using a “full-data” approach, 

whereby one fits all of the available loss data with a parametric severity distribution.  We 

consider nine commonly-used distributions, four of which are light-tailed and five of which are 

heavy-tailed.  We fit each of these distributions by business line and event type at each of the six 

institutions considered.  The heavy-tailed distributions provide consistently good fits to the loss 

data, which confirms our findings based on visual inspection of the tail plots.  The light-tailed 

distributions do not generally provide good fits.  However, we find that some parameter 

estimates for the heavy-tailed distributions can have implausible implications for both tail 

thickness and economic capital.   

 Extreme Value Theory (EVT) is an alternative to the full-data approach that is 

increasingly being explored by researchers, by financial institutions, and by their regulators.  

However, it is well-known that EVT techniques yield upward-biased tail estimates in small 

samples.  Huisman, Koedijk, Kool and Palm (2001) have proposed a regression-based EVT 

technique that corrects for small-sample bias in the tail parameter estimate.  Applying their 

technique (hereafter HKKP) to the six banks in our sample, we obtain estimates that are both 

reasonable and consistent with earlier estimates using purely external data (de Fontnouvelle et. 

al., 2003). 
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 It is important to stress that the statistical analysis of operational loss data is a new field, 

and that this paper’s results should be viewed as preliminary.  This is particularly true since we 

only have data for one year from each bank.  The paper also raises several technical issues that 

should be addressed in future research as a longer time series becomes available.  The most 

significant such issue is that even though the data appear to be heavy-tailed, we cannot formally 

reject the hypotheses that they are drawn from a light-tailed distribution such as the lognormal.  

To investigate this possibility, we propose a threshold analysis of the lognormal distribution that 

to our knowledge is new to this paper.  This technique also provides a reasonable 

characterization of the tail behavior of operational losses. 

 We also examine the frequency of operational losses.  We consider both the Poisson 

distribution and the Negative Binomial distribution as potential models for the number of losses 

that a bank could incur over the course of one year.  Using Monte Carlo Simulation to combine 

the frequency and severity distributions, we obtain an estimate for the distribution of total annual 

operational losses.  The quantiles of this aggregate loss distribution are interpreted as economic 

capital estimates for operational risk.  These estimates should be viewed with several significant 

cautions.  First, we are assuming that the data are complete, however, banks have moved to more 

comprehensive data collection platforms which may improve the loss capture.  Second, we are 

only using internal data for one year, and banks will be required to have three years of 

comprehensive data.  Third, analysis of internal loss data will not be the sole determinant of 

capital for operational risk; banks will be also required to demonstrate that their risk estimates 



 

 5

reflect exposures that are not captured in internal loss data.1  Given these qualifications, the 

estimates should be viewed as a preliminary indication of the amount of capital needed. 

 Despite these caveats, the estimates implied by the modeling of the internal loss data are 

consistent with capital estimates using purely external data (de Fontnouvelle et. al., 2003).  The 

results imply that for a variety of plausible assumptions regarding the frequency and severity of 

operational losses, the level of capital needed for operational risk for the typical (median) bank in 

our sample would be equivalent to 5-9 percent of the bank’s current minimum regulatory capital 

requirement.  This range also seems consistent with the 12-15  percent of minimum regulatory 

capital that most banks are currently allocating to operational risk, given that the banks’ models 

tend to have a broader set of model inputs than those used in this analysis, including, external 

data, scenarios and qualitative risk assessments. 

 The remainder of the paper is organized as follows. The next section provides a 

description of the data.  Section three reviews related literature on the measurement of 

operational risk in financial institutions.  Section four discusses some commonly used continuous 

distributions, and discusses their potential relevance to modeling the severity of operational 

losses.  Section five presents visual analyses of the loss data, and draws preliminary conclusions 

regarding which distributions may be appropriate for modeling loss severity.  Section six 

explores full-data approaches to modeling operational losses, and formally compares the 

alternative severity distributions.  Section seven explores EVT-based approaches to modeling the 

loss data.  Section eight compares alternative frequency distributions.  Section nine provides the 

                                                           
1 The proposed Basel accord requires banks to measure losses to which they are exposed, but that 

have not actually occurred (via analysis of “scenarios” and “external” data).  Banks would also 

be required to measure exposures that have arisen since the data collection period (via analysis of 

“business environment and control factors”). 
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implied capital numbers from estimating different loss distributions using Monte Carlo 

simulations.  The final section provides conclusions on using these techniques for quantifying 

operational risk. 

 

2. Data 

 The 2002 Operational Risk Loss Data Collection Exercise (LDCE) was initiated by the 

Risk Management Group (RMG) of the Basel Committee on Banking Supervision in June 2002.  

The LDCE asked participating banks to provide information on individual operational losses 

exceeding €10,000 during 2001, among various other data items.  Banks were also asked to 

indicate whether their loss data were complete.  The LDCE data include 47,269 operational loss 

events reported by 89 banks from 19 countries in Europe, North and South America, Asia, and 

Australasia.  For additional information and summary statistics regarding the LDCE, readers can 

refer to RMG (2003).   

 Based on the information provided in the LDCE, and on our knowledge of the banks 

involved, we identified a list of institutions whose data submissions seem relatively complete.  

Due to practical considerations, we limit our sample to loss data from six of these banks.  This 

paper presents results for these six banks on a bank-by-bank basis (with the exception of the 

operational risk exposure figures reported in Table 5).  However, the results are presented in a 

way that makes it impossible to identify the individual banks. Focusing on a cross-sectional 

study of banks enables us to determine whether the same statistical techniques and distributions 

apply across institutions that may have very different business mixes and risk exposures. 

 The LDCE categorizes losses into eight business lines and seven event types.  To protect 

the confidentiality of banks participating in the LDCE, we present results only for those Business 
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Lines and Event Types where three or more banks reported sufficient data to support analysis.  

The business lines presented are:  Trading and Sales; Retail Banking; Payment and Settlement; 

and Asset Management.  The loss types presented are: Internal Fraud; External Fraud; 

Employment Practices and Workplace Safety; Clients, Products and Business Practices; and 

Execution, Delivery and Process Management.2 

 

3. Related literature 

 Moscadelli (2003) also analyzes data from the 2002 LDCE, and performs a thorough 

comparison of traditional full-data analyses and extreme value methods for estimating the 

operational loss severity distribution.  He finds that extreme value theory outperforms the 

traditional methods in all eight Basel Business Lines.  He also finds that the severity distribution 

is very heavy-tailed, and that there is a substantial difference in loss severity across Business 

Lines. 

 There are several differences between the current paper and Moscadelli (2003).  First, 

Moscadelli (2003) aggregates the data across all banks in the LDCE sample.  In this paper, we 

analyze data at the individual bank level in order to determine whether the same quantitative 

techniques “work” for a variety of banks with different business mixes, control infrastructures, 

and geographic exposures. We believe that doing so provides a useful test of the techniques 

under consideration, and also yields an indication of their ultimate applicability at individual 

banks.  Second, the current paper explores the newly-developed technique of Huisman et. al. 

                                                           
2 The following Business Lines were omitted:  Corporate Finance; Commercial Banking; Agency 

Services; and Retail Brokerage.  The following Event Types were omitted:  Damage to Physical 

Assets; Business Disruption and System Failure.  To preserve confidentiality, we do not report 

the cutoff that was used for inclusion of Business Lines and Event Types. 
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(2001) to correct for potential bias in the tail parameter estimate.  Third, we explore several 

models of the loss frequency distribution, which allows us to obtain indicative estimates of 

economic capital for operational risk. 

  

4. Distributions for operational loss data. 

 We begin our empirical analysis by exploring which of various empirical approaches best 

fits the data.  In principle, we are willing to consider any distribution with positive support as an 

acceptable candidate for modeling operational loss severity.  To keep the size of our tables 

within reason, however, we will focus on nine commonly used distributions.  This section 

discusses the salient features of each.  In section six, we consider how well these distributions 

describe the statistical behavior of losses in our database.   

TABLE 1 HERE 

 Table 1 lists each distribution we consider, together with its density function and its 

maximal moment (discussed at the end of this section).  We begin our discussion with the 

exponential distribution, which is one of the simplest statistical distributions – both analytically 

and computationally.  The exponential distribution is frequently used to analyze duration data 

(e.g., time to failure of a machine part), and is the only continuous distribution characterized by a 

“lack of memory.”  In the duration context, lack of memory means that the time until the 

occurrence of an event (failure) does not depend on the length of time that has already elapsed 

(time since installation).  In the operational loss context, lack of memory implies that the 

distribution of excess losses over a threshold does not depend on the value of the threshold.  So if 

half of all losses exceeding $1 are less then $10, then half of all losses exceeding $1 Million will 

be less than $1,00,010 ($1,000,000 + $10).  Such a result does not seem plausible.  However, the 



 

 9

exponential distribution arises in the context of Extreme Value Theory (EVT) as a possible 

limiting distribution for excess losses above high thresholds.  For this reason (and also because it 

can be transformed into other interesting distributions), we include it in our analysis. 

 The Weibull distribution is a two-parameter generalization of the exponential that allows 

the time until event occurrence to depend on the amount of time that has already elapsed.  Thus, 

the Weibull can capture phenomena such as “burn in,” in which the failure rate is high initially 

but decreases over time.  In the context of operational risk, the Weibull may be appropriate for 

modeling a business line exposed to many small losses but only a few large losses.  The Gamma 

distribution is another two-parameter generalization of the exponential.  A Gamma distributed 

random variable arises as the sum of n exponentially distributed random variables.  Thus, a 

machine’s failure time is Gamma distributed if the machine fails whenever n components fail, 

and if each component’s failure time is exponentially distributed.  Like the Weibull distribution, 

the Gamma also allows the time until event occurrence to depend on the amount of time that has 

already elapsed. 

 Another generalization of the exponential distribution can be obtained by exponentiating 

an exponentially distributed random variable.  The resulting distribution is called a Type I 

Pareto, and can also be referred to as a log-exponential or power-law distribution.  The lack of 

memory of the exponential distribution manifests itself as scale invariance in the Pareto 

distribution.  Roughly speaking, scale invariance means that data “look the same” no matter what 

the unit of measure (e.g., hundreds of dollars vs. millions of dollars).  So in the earlier example 

where half of all losses exceeding $1 were less than $10, half of all losses over $1 Million would 

be less than $10 Million.  Power law behavior has been observed in phenomena as disparate as 

city sizes, income distributions and insurance claim amounts, and has been an important research 
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topic for those interested in the behavior of complex systems (i.e., systems consisting of  agents 

linked via a decentralized network rather than via a market or social planner).  A variation of the 

Pareto distribution can be obtained by exponentiating a Gamma distributed random variable 

instead of an exponentially distributed random variable.  The result is referred to as the 

Loggamma distribution. 

 The Pareto distribution also arises in Extreme Value Theory as another limiting 

distribution of excesses over a high threshold.  In this case, the limiting distribution is given by a 

two parameter variant of the Pareto, which is known as the Generalized Pareto Distribution 

(GPD).  One commonly-used transformation of the GPD is obtained by raising a GPD-

distributed variable to a power.  The result is called the Burr distribution. 

 Another distribution that we consider is the Lognormal, which is so widely used that little 

discussion is required here.  However, it is worth noting that as the normal distribution is 

appropriate for modeling variables that arise as the sum of many different components.  It is also 

a worthwhile exercise to consider which types of operational losses may be characterized in this 

manner.  Consider, for example, losses arising from workplace safety lapses.  One could argue 

that the severity of these losses may be approximated by the lognormal distribution, as it is 

influenced by many factors, including weather, overall health of the injured party, physical 

layout of the workplace, and the type of activity involved.  The final distribution that we consider 

is the loglogistic, which is obtained by exponentiating a logistic distributed random variable.  

The Loglogistic is similar to the Lognormal, but may be more appropriate for modeling 

operational loss data because it has a slightly heavier tail. 

 We conclude this section by classifying the distributions discussed above according to 

their tail thickness.  This will facilitate interpretation of the estimation results, as the relevance of 
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a particular distribution to modeling operational losses will be suggestive of the relevance of 

other distributions with similar tail thickness.  There is no commonly agreed-upon definition of 

what constitutes a heavy-tailed distribution.  However, one such definition can be based upon a 

distribution’s maximal moment, which is defined as sup{r : E(xr) < ∞}.  Maximal moments for 

the distributions under consideration are reported in Table 1.  In this paper, we will call a 

distribution light-tailed if it has finite moments of all orders, and heavy-tailed otherwise.  Under 

this definition four of the distributions being considered are light-tailed (Exponential, Weibull, 

Gamma and Lognormal), and the remaining five distributions are heavy-tailed (Loggamma, 

Pareto, GPD, Burr and Loglogistic). 

 

5.  Descriptive analysis. 

 This section considers several tools that provide a visual characterization of the loss data.  

Suppose one has a series of observations {xi} with a cumulative empirical distribution function 

denoted by F(x).  A tail plot is obtained by plotting log(1-F(xi)) on the vertical axis against log(xi) 

on the horizontal axis.  Figures 1 and 2 present tail plots of the six banks’ loss data by Basel 

event type and Basel business line, respectively. 

FIGURES 1 and 2 HERE 

Many of the tail plots show linear behavior.  This is quite interesting, as a linear tail plot implies 

that the data are drawn from a power-law distribution.  Furthermore, the slope of the plot 

provides a heuristic estimate of the tail parameter, as log(1-F(xi)) = -a log(xi) + c, where c 

denotes a constant. 

 Another feature of these plots is that the slopes associated with the seven Basel event 

types preserve roughly the same ordering across banks.  For example, Clients Products and 
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Business Practices is one of the heaviest-tailed event types for all of the banks where it is plotted 

separately.  Employment practices and workplace safety is always one of the thinnest-tailed 

event types.  While the tail plots by business line also suggest power-law tail behavior, there is 

no evident consistent cross-bank ordering of business lines.  We interpret this as initial evidence 

that risk may be better ordered by event type, but will revisit this issue later in the paper. 

 Each of the tail plots also indicates a reference line with slope of -1.  Many of the plots lie 

near or above this line, thus implying heuristic tail parameter estimates of one or higher.  These 

estimates highlight the shortcomings of using an overly simplistic approach to measuring 

operational risk:  tail parameters exceeding one suggest that the expected loss is infinite for many 

business lines and event types, and that the capital required for operational risk alone could 

exceed the amount of capital that large banks are currently allocating to all risks.3  We will argue 

in this paper that the distribution of operational losses is not as heavy tailed as it first appears, 

and that it is possible to obtain reasonable estimates of regulatory capital for operational risk. 

 Another useful diagnostic tool is the mean excess plot.  The mean excess for a given 

threshold is defined as the average of all losses exceeding the threshold, minus the threshold 

value.  The mean excess plot reports the mean excess as a function of the threshold value.  The 

shape of the mean excess plot varies according to the type of distribution underlying the data.  

For example, a Pareto distribution implies a  linear, upward-sloping mean excess plot; an 

                                                           
3 The LDCE data suggest that a $100 Billion bank could experience 500 operational losses 

(exceeding $10,000) per year.  If these follow a Pareto distribution with a tail parameter equal to 

one, then Monte Carlo simulation of the aggregate loss distribution indicates capital of $5 Billion 

at the 99.9% soundness level.  Tail parameters of greater than one would imply capital levels 

several times larger than this figure.  
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exponential distribution implies a horizontal linear mean excess plot; and a lognormal 

distribution implies a concave upward sloping mean excess plot. 

FIGURES 3 AND 4 HERE 

Figures 3 and 4 present mean excess plots for loss data by event type and business line, 

respectively.  (Each curve has been rescaled in order to display the different business lines and 

event types together on one plot.  Thus, these plots cannot be used to risk-rank business lines or 

event types.)  Nearly all of the plots slope upwards, which indicates tails that are heavier than 

exponential.  Some of the plots are linear (e.g., event type 7 for bank B), which suggests a 

Pareto-like distribution.  Some are concave, which suggests a lognormal or Weibull-like 

distribution.  It is also difficult to establish a consistent pattern across either business line or 

event type.  Potentially, this issue would be less severe with more data. 

 

6.  Fitting the distributions. 

 In this section, we fit each of the distributions listed in Table 1 to the LDCE data via 

Maximum Likelihood.  Results are reported separately for each bank under consideration, and 

are also broken down by  business line and event type. 

TABLE 2 HERE 

Table 2 reports probability values for Pearson’s χ2 goodness of fit statistic.4  In general, the 

heavy-tailed distributions (Burr, LogGamma, LogLogistic, Pareto) seem to fit the data quite well.  

The reported probability values exceed 5% for many business lines and event types, which 

suggests that we cannot reject the null that data are in fact drawn from the distribution under 

                                                           
4 We calculated χ2 goodness of fit tests because EDF-based tests can be sensitive to data 

rounding, which is prevalent in the LDCE data.  One can accommodate rounding within the χ2 

test by choosing bin values appropriately. 
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consideration.  Conversely, most of the light-tailed distributions rarely provide an adequate fit to 

the data.  This is not surprising, as the tail plots suggested that most of the data are heavy-tailed.  

What is somewhat surprising is the degree to which the Lognormal distribution fits the data.  In 

fact, this light-tailed distribution fits the loss data for roughly as many business lines and event 

types as many of the heavier-tailed distributions. 

TABLE 3 HERE 

 Tables 3 presents parameter estimation results for the GPD and Lognormal distributions.  

To preserve bank confidentiality, we present only the estimate of the tail parameter ξ for the 

GPD and only the value of µ+σ2/2 for the Lognormal distribution.  While the χ2 statistics 

presented in Table 2 suggested that these two distributions provide a reasonable fit to the data, 

the parameter estimates generally suggest the opposite.  Panel A reports estimates of the GPD 

tail parameter ξ.  The parameter estimates are at or above one for many business lines and event 

types, and also above one when data is pooled across business lines and event types.  Note that a 

tail parameter of one or higher has implausible implications for both expected losses and 

regulatory capital.  Panel b of Table 3 reports the estimated value of µ+σ2/2 for the lognormal 

distribution, which enables one to calculate the average loss severity via the formula 

exp(µ+σ2/2).  While estimates of the average loss vary by business line and event type, one can 

see that it is less than exp(0) dollars for multiple business lines and event types.  Thus, neither 

the Pareto nor the Lognormal distribution consistently yields plausible parameter estimates. 

 Because of space considerations, we do not provide parameter estimates for the other 

distributions that were estimated.  However, the GPD is of special interest because of its role in 

Extreme Value theory, and the Lognormal is of special interest because it is the only light-tailed 

distribution that seems to fit the data (according to the χ2 test.).  Parameter estimates for other 
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heavy-tailed distributions were qualitatively similar to those of the GPD, in that they had 

unreasonable implications for tail-thickness of the aggregate loss distribution. 

a. For which business lines and event types can full data be fit? 

 In this subsection, we ask whether there seem to be particular event types for which the 

full-data approach might work.  Losses due to Employment Practices and Workplace Safety 

(Event Type 3) are well fit by most of the heavy-tailed distributions as well as the lognormal.  

Furthermore, the parameter estimates for both the GPD and Lognormal are reasonable.  There 

are two event types (Internal Fraud; Clients, Products and Business Practices) where several 

banks’ data are well-fit by multiple distributions, but where the resulting parameter estimates are 

not reasonable.  External Fraud losses are not consistently well fit by any distribution on a cross-

bank basis.  Results for Execution, Delivery and Process Management are less consistent across 

banks, with two institutions failing the goodness of fit tests, but the others having good fits and 

(perhaps) reasonable parameter estimates.   

 The results are broadly similar in the case of estimation by business line. There are two 

business lines (Agency Services; Asset Management) that pass the goodness of fit tests, and 

yield reasonable parameter estimates for several banks.  Another business line (Retail Banking) 

fails the fit tests at most banks, and the final business line (Payment and Settlement) yields 

implausible parameter estimates. 

b. What might individual banks do? 

 Our discussion to this point has searched for features of operational loss data that hold 

across all of the six banks in our sample.  However, the measurement of operational risk will 

ultimately take place at individual banks, who may not have the luxury of seeing whether their 

choices and assumptions are also valid at other institutions.  We begin our discussion by focusing 
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on bank F.  Bank staff might begin by fitting one statistical distribution across all business lines 

and event types, but poor goodness of fit statistics would quickly lead them to alternate 

approaches.  They might consider fitting a separate loss severity distribution to each of the seven 

event types.  However, they would find that losses from the most frequent event type (External 

Fraud) were not well-modeled by any of the distributions.  The next most frequent event type 

(Clients, Products and Business Practices) is modeled quite well by several heavy-tailed 

distributions.  However, they would be quite surprised to find tail parameter estimates exceeding 

one, and might conclude that this was not a reasonable way to model operational risk.  If they 

next attempted to fit separate loss severity distributions for each business line, they would 

discover that loss data for the most common business line (Retail Banking) were not well-

modeled by any of the distributions considered. 

 Bank F was chosen at random for discussion.  If presented with their bank’s results from 

Tables 2 and 3, risk management staff from the other five institutions might reach similar 

conclusions.  They would discover that for many of the important business lines and event types, 

none of the statistical distributions considered adequately captured the behavior of operational 

losses.  They would also discover that some Business Lines and Event Types were well-modeled 

by heavy-tailed distributions, but that the resulting parameter estimates had implausible 

implications for their overall operational risk exposure. 

 

7.  Threshold analysis of loss data. 

 The previous section’s results suggest that it may be difficult to fit parametric loss 

severity distributions over the entire range of loss amounts, even if separate analyses are 

conducted for each business line and event type.  In this section, we focus on the largest losses, 
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as these are most relevant for determining a bank’s operational risk exposure.  The main 

theoretical result underlying this “Peaks Over Threshold” (POT) approach is that if the 

distribution of excess losses converges to a limiting distribution as the threshold increases, then 

this limiting distribution is either the Exponential distribution or the Generalized Pareto 

distribution. 

 Implementation of the peaks over threshold approach begins with choosing an estimator 

for the tail index parameter ξ, the most common being the Hill estimator.  The appeal of this 

estimator derives from its conceptual and computational simplicity.  For a set of losses exceeding 

a given threshold, the Hill estimator equals the average of the log of the losses minus the log of 

the threshold.  If the underlying loss distribution is a Type I Pareto, then the Hill estimator is the 

maximum likelihood estimate of the tail thickness parameter.  This property is quite useful, as it 

enables one to conduct likelihood ratio tests of various hypotheses.   

FIGURE 5 HERE 

 Let k denote the number of observations exceeding a given threshold value.  The quantity 

k is often referred to as the number of exceedances.  Figure 5 presents plots of the Hill estimator 

for the six banks under consideration.  The solid black line represents the Hill estimator 

calculated across all business lines and all event types for various values of k between 1 and 200.  

Traditionally, the final estimate of the tail index parameter has depended heavily on the choice of 

k.  However, Huisman, Koedijk, Kool and Palm (2001) [hereafter HKKP] have recently 

proposed a regression-based enhancement to the Hill estimator that minimizes the role of 

threshold selection.  HKKP note that the Hill estimator is biased in small samples, and that the 

bias is approximately linear in k, so that 

  E[γ(k)] = ξ + c k, (1) 
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where γ(k) denotes the Hill estimator calculated using k exceedances, and ξ denotes the true 

value of the tail index parameter.  HKKP use (1) to motivate the following regression 

  γ(k) = β0 + β1k + ε(k), (2) 

which is estimated for k in {1, ... , K}.  The estimate of β0 is interpreted as a bias-corrected 

estimate of ξ.  This method also requires the researcher to choose the number of exceedances to 

include in the analysis.  However, HKKP conclude that the estimate of β0 is robust to the choice 

of K. 

 We apply the HKKP technique to the six Hill plots presented in Figure 5.  The results are 

presented in Table 4. 

TABLE 4 HERE 

The second column reports the number of exceedances (K) that were used to estimate the above 

regression.  HKKP suggest setting K equal to half the sample size N, and also note that the 

function γ(k) should be approximately linear over the range k = {1, ... , K}.  In results not 

reported, we found that setting K = N/2 would not be appropriate, as none of the six Hill plots 

were linear over such a wide range.5  However, each of the plots in Figure 5 does indicate a 

range of k over which γ(k) is approximately linear.  We have chosen K accordingly. 

 The third column of Table 4 reports the estimate of β0 that was obtained using the 

“optimal” K.  The estimates vary between 0.50 and 0.86, which implies that the maximal 

moment α = 1/ξ varies between 1.16 and 2.00.  These findings confirm the intuition that 

operational losses have a heavy-tailed severity distribution.  The last row of the table reports 

results obtained for a sample consisting of all six banks.  Interestingly, the resulting parameter 

                                                           
5 To preserve the banks’ confidentiality, we do not report Hill plots using either N or N/2 

exceedances, as doing so would reveal the number of losses at each bank. 
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estimate of 0.68 is consistent with the results of de Fontnouvelle et. al. (2003), who reported tail 

parameter estimates of about 0.65.  This consistency is remarkable, given that de Fontnouvelle 

et. al. (2003) used external publicly reported loss data (rather than internal data), as well as 

substantially different empirical techniques than the current paper. 

 The final three columns of Table 4 report tail index estimates obtained using different 

numbers of exceedances in the regression procedure of HKKP.  For all six banks, the results do 

not change materially when the number of exceedances is reduced from K to 0.75K or 0.5K.  

The results change more when 0.25K exceedances are used.  Overall, Table 4 confirms that the 

estimation results are not highly sensitive to the choice of K. 

Estimation by business line and event type. 

 Our Hill plot analyses have thus far taken place at the “top of the house” level, where 

data are aggregated across both business line and event type.  It is reasonable to ask whether this 

approach is appropriate, or whether the tail behavior of the loss severity distribution might vary 

by business line and event type.  To investigate this issue, we calculated for each value of k (the 

number of exceedances) separate Hill estimators for each business line and event type.  For each 

k, we then calculated likelihood ratio test statistics for the hypotheses that the tail index is 

constant across business lines, and that it is constant across event types.  The probability values 

for these statistics are reported graphically in Figure 5.  The results indicate that both hypotheses 

can sometimes be rejected at the 10% level when k is near 200.  However, neither hypothesis can 

be rejected at the 10% level for values of k where the Hill estimator is constant (banks A, C and 

E) or decreasing (banks B, D and F).  Because choosing a small k provides a less biased value of 

the Hill estimator, segregating the analysis by business line or event type does not seem to be 

called for.  This finding does not mean that tail behavior of operational losses is constant across 
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business lines and event types.  Rather, the ability of statistical estimation techniques to 

meaningfully differentiate tail behavior across business lines is hindered by a lack of data on 

large losses using only internal data for one year, and by the concentration of these data in one or 

two business lines and event types. 

On the possibility of thin-tailed severity distributions. 

 The results presented in Table 4 suggest that loss severity distributions at the six banks 

under consideration have tail indices ranging between 0.5 and 0.86.  The reported standard errors 

also seem to exclude the possibility that ξ = 0, which would indicate a thin-tailed loss 

distribution.  However, the Hill estimator is designed for situations where ξ > 0.  Thus, it cannot 

be used to reject the hypothesis of a thin-tailed loss distribution.  This is an interesting 

hypothesis, because thin-tailed distributions such as the lognormal could have significantly 

different implications for capital than fatter-tailed distributions such as the Pareto. 

FIGURE 6 HERE 

 Dekkers, Einmahl and de Haan (1989) show how to extend the Hill estimator so that it is 

valid for any ξ in ℜ.  The graph of this estimator as k varies is commonly referred to as a DEdH 

plot.  Figure 6 reports DEdH plots for the six banks under consideration.  These plots indicate 

that for the low values of k for which the Hill estimator was constant or decreasing, we cannot 

reject the null of a thin-tailed severity distribution at any of the six banks.  This is problematic.  

The choice of fat versus thin tailed loss severity distribution will have significant impact on the 

capital calculation, yet based on limited data for only one year, available statistical techniques 

provide little guidance on which choice is more appropriate.  We expect that as banks 

accumulate more data on large losses, the DEdH plots will either be able to reject the null of  
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ξ = 0 or will indicate tail estimates close enough to zero that the choice does not matter so much.  

For now, we explore the empirical consequences of assuming a thin-tailed loss severity 

distribution. 

 Extreme value theory suggests that the exponential distribution is an appropriate choice 

for modeling loss severity under the thin-tailed assumption.  Thus, we wish to construct a 

threshold plot showing how the exponential parameter varies as the threshold increases (k 

decreases).  Because the maximum likelihood estimate of this parameter is given by the mean 

excess, these threshold plots would be identical to the mean excess plots already presented in 

Figures 3 and 4.  As was discussed earlier, the mean excess plots suggest that the exponential 

distribution does not provide an accurate description of the tail behavior of operational losses.  

All six banks’ excess plots are concave and increasing, whereas exponentially distributed data 

imply a linear and horizontal excess plot. 

 Since the DEdH plots do suggest that tail behavior of operational losses might be 

modeled with a light-tailed distribution, we consider whether some other such distribution 

provides a better fit to the data than the exponential.  Because the log-normal was the one light-

tailed distribution investigated in section six that provided a good fit across multiple banks, 

business lines and event types,  we investigate whether it might also provide a useful description 

of the tail behavior of operational losses. 

FIGURE 7 HERE 

 Figure 7 presents threshold plots for the six banks, under the assumption that losses 

above high thresholds follow a lognormal distribution.  For each value of k (the number of 

exceedances), estimates of the lognormal parameters were obtained via maximum likelihood.  

(Vertical axis scales have been omitted to protect data confidentiality.  However, a reference line 
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in Figure 7a indicates the location of µ=0.)  One can discern a common pattern in the estimates 

of µ and σ across all six banks.  For example, consider the plots for bank B.  Both suggest that 

the Lognormal is not a good fit for more than 100 exceedances, in that the estimates are unstable 

as k varies and the point estimate for µ is less than zero.  We have already argued that this is not 

a reasonable characterization of operational loss data.  However, parameter estimates are both 

stable and reasonable when 30 to 70 exceedances are used for estimation.  The µ estimate lies 

between 4 and 8, while the σ estimate lies between 0 and 2.6  Three of the other banks display a 

similar pattern, with stable (and reasonable) parameter estimates emerging over high thresholds.  

The two remaining banks’ (C and E) POT plots become unstable for small numbers of 

exceedances.  This finding could indicate a small sample problem, but it could also indicate that 

the distribution of large losses at these banks does not follow a Lognormal distribution. 

 

8.  The operational loss frequency distribution. 

 We have thus far focused on the loss severity distribution, which describes the potential 

size of an operational loss, given that the loss has occurred.  Operational risk capital will also 

depend on the loss frequency distribution, which describes how many losses might actually occur 

over a given time period.  The Poisson distribution is a reasonable starting point for modeling 

loss frequency,  because it arises whenever the loss occurrence rate is constant over time.  We 

thus begin by modeling frequency at bank i by the following: 

  ni ~ Po(λi) (3) 

                                                           
6 The actual range of variation is significantly narrower, but has not been reported to protect data 

confidentiality. 
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That the Poisson distribution has only one parameter makes it particularly attractive in the 

current context.  The LDCE does not provide information regarding the date of an event, beyond 

the knowledge that all losses occurred sometime during the year 2001.  Thus, we have enough 

information to estimate the Poisson parameter, but not enough to estimate multi-parameter 

frequency distributions.  Maximum Likelihood estimates of the parameter λ are given by the 

annual number of loss events.7 

 An interesting property of a Poisson variable is that the mean and variance are equal.  So 

if a LDCE bank were to report 10,000 loss events for the year 2001, we would expect (with 95% 

probability) it to report between 9,800 and 10,200 events the following year.  On an intuitive 

level, this seems like a very narrow range, and one might ask whether frequency should be 

modeled via a distribution permitting more variability than the Poisson.  One such distribution is 

the Negative Binomial, which is a commonly-used generalization of the Poisson. 

 As was discussed earlier, the LDCE data do not support estimation of two-parameter 

frequency distributions at the individual bank level.  In order to model excess dispersion in the 

loss frequency distribution, we take a cross-sectional approach.  That is, we estimate the 

following regression: 

 ni ~ F(Xi , b), (4) 

where F(·) is a discrete non-negative valued distribution, Xi is an observable characteristic of 

bank i (e.g., asset size), and b is a parameter vector.  Because our data set is purely cross-

sectional (i.e., there is no time series element), we cannot estimate any fixed effects. Fixed 

effects represent bank-specific variation in the frequency of operational losses, which could arise 

from factors such as the quality of an individual bank’s risk control environment.  However, it is 

                                                           
7 To preserve confidentiality, we have not reported the number of loss events. 
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worth noting that (3) can be interpreted as a fixed effects model.  Seen in this light, (3) and (4) 

are different but complementary ways of treating the fixed effects issue.  Under the latter, the 

expected number of events is purely a function of  a bank’s observable characteristics; whereas 

under the former, the expected number of events is purely bank-specific. 

 We begin by estimating (4) under the assumption that F(·) is the Poisson distribution, so 

that ni ~ Po(mean = bXi).  Setting each Xi as bank i’s asset size as of year-end 2001, we obtain an 

estimate of 8.2 for the parameter b.  This indicates that banks in our sample reported on average 

8.2 operational events for every billion dollars in assets.  Next, we estimate (4) under the 

assumption that F(·) is the Negative Binomial distribution, so that ni ~ NB(mean = b1Xi, 

dispersion = b2). We obtain an estimate of 7.4 for b1 and 0.43 for b2.   

 

9. The aggregate loss distribution.  

 In this section, we combine the severity results of section seven with the frequency 

results of section eight in order to estimate economic capital for operational risk, which is 

specified as the 99.9th percentile of the aggregate loss distribution.  We explore two alternate 

assumptions regarding loss frequency (Poisson and Negative Binomial), and three different 

assumptions regarding loss severity (Pareto, Lognormal, and EDF).   

 We use Monte Carlo simulation to derive an estimate of the aggregate loss distribution as 

follows.  In the case of the empirical severity distribution, the number of loss events in year i is 

drawn at random from the frequency distribution, and is denoted Ni.  Then, Ni individual losses 

{l(1), ... , l(Ni)} are drawn from the empirical distribution.  The Ni losses are summed to obtain 

the aggregate loss for year i.  This process is repeated for one million simulated years in order to 

obtain the aggregate loss distribution.   
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 Monte Carlo simulation for the Pareto (Lognormal) severity distribution proceeds 

similarly, except that Losses in {l(1), ... , l(Ni)} greater than or equal to the relevant threshold 

value are replaced with random draws from the Pareto (Lognormal) distribution estimated in 

section six.8  The Ni losses are then summed to obtain the aggregate loss for year i, and the 

process is repeated for one million simulated years in order to obtain the aggregate loss 

distribution.  The use of  Monte Carlo techniques in the current context has already been 

extensively documented, and we refer readers interested in further details to Klugman, Panjer 

and Wilmot (1998) and Embrechts, Kaufmann and Samorodnitsky (2002), and to their 

references.   

a.  Simulations based on a Poisson frequency distribution. 

 In this subsection, we assume that the frequency of operational losses follows a Poisson 

distribution with a fixed effects specification as in equation (3).  We make three different 

assumptions for loss severity: the Pareto, the Lognormal, and the empirical distribution.  Results 

are presented in panel a of Table 5.  To preserve the confidentiality of the banks in the sample, 

we scaled each percentile for each bank by that bank’s assets.  The cross-bank median for each 

percentile is then reported.   

TABLE 5 HERE 

 The Basel Committee has stated that “a reasonable level of the overall operational risk 

capital charge would be about 12 percent of minimum regulatory capital.”9  If one estimates 

                                                           
8 For the Lognormal distribution, the relevant threshold is the same as that used for estimation of 

the tail parameter.  For the Pareto distribution, the relevant threshold is the largest observed loss 

value.  This is because by construction, the HKKP tail parameter estimate β0 corresponds to zero 

exceedances. 
9 See Basel Committee on Banking Supervision (2001). 
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minimum regulatory capital to be five percent of a bank’s assets, then a “reasonable” value for 

operational risk capital would be 0.6% of assets.  According to this criterion, the median value of 

0.468% reported in Panel a (for the 99.9th percentile) seems reasonable.  It is also worth noting 

that our estimation is based solely on internal loss data for one year, providing limited data to 

estimate high severity losses.  Banks are also using external loss data and scenario analysis to 

provide additional information on the tail where they have insufficient high severity losses in a 

particular business line.  Thus, we would view the figure of 0.468% as somewhat of a lower 

bound on the banks’ true operational risk exposure. 

 The next set of simulations is conducted under the assumption that the severity of 

operational losses follows a lognormal distribution.  The results suggest that cross-bank median 

of the 99.9th percentile is 0.07% of assets.  This figure seems small in comparison with both that 

obtained in the Pareto-based simulations, and with the 0.6% reasonableness criterion discussed 

above.   

 We conducted the final set of simulations by drawing the number of loss events from a 

Poisson distribution, and the loss amounts from the empirical severity distribution.  One may 

think of the resulting 99.9th percentiles as a lower bound on the true capital requirement.  

Alternatively, one may think of these percentiles as representing the portion of capital that 

derives from banks’ actual loss experience, rather than from their exposure – as measured by a 

fitted distribution function which would also include information from external data and scenario 

analysis.  Because the lognormal is a thin-tailed distribution, the 99.9th percentile based on the 

lognormal severity distribution exceeds that based on the empirical distribution by about 20%.  

Because the Pareto is a heavy-tailed distribution, the 99.9th percentile based on the Pareto 

severity distribution exceeds that based on the empirical distribution by a factor of eight. 



 

 27

b.  Simulations based on a Negative Binomial frequency distribution. 

 In the previous section, we assumed that the frequency of operational losses followed a 

Poisson distribution.  We found that assuming a Pareto severity distribution yielded capital 

estimates that were mostly reasonable when judged against the Basel Committee’s expectation 

that operational risk account for 12% of minimum regulatory capital.  Assuming a lognormal 

severity distribution yielded markedly lower capital estimates.  In this section, we  investigate 

how these results change under the assumption that the frequency of operational losses follows a 

Negative Binomial distribution, as was discussed in section eight. 

 Panels b and c of Table 5 report quantiles of aggregate loss distributions that were 

simulated using cross-sectional frequency models based on the Poisson and Negative Binomial 

distributions, respectively.  (Note that the cross-sectional Poisson model is included because it is 

not informative to directly compare the cross-sectional Negative Binomial results with the fixed 

effects Poisson results, as differences could be due to either differences in the handling of effects 

or to differences in the assumed frequency distribution.)  The Negative Binomial specification 

implies significantly more variability in the number of operational losses than does the Poisson 

specification.  Thus, intuition suggests that the aggregate loss distribution should have a heavier 

tail under the Negative Binomial specification.  This intuition proves correct in the case of the 

lognormal severity distribution.  The median 99.9th percentile is about twice as large under the 

Negative Binomial as under the Cross-Sectional Poisson specification.  However, intuition 

proves incorrect in the case of the Pareto distribution, for which the median 99.9th percentile is 

not materially different under the Negative Binomial than under the Poisson.10   

                                                           
10 It has been argued that intuition can be misleading if risks follow very heavy-tailed Pareto-type 
distributions (e.g., Embrechts et. al. (2002), Rootzen and Kluppelberg (1999)). 
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 Under the Negative Binomial specification of loss frequency, it is difficult to decide 

whether the Pareto or the Lognormal provides the more useful characterization of the loss 

severity distribution.  The difference between the two sets of results is within an order of 

magnitude, which may be considered close given the preliminary nature of the data and 

techniques.   

Conclusion 

 This paper examines operational risk modeling using only internal operational loss data.  

By focusing on internal data, it captures the potential modeling issues faced by banking 

organizations that have only recently started to collect comprehensive loss data.  The analysis 

indicates that the data do show statistical regularities, and that the severity ranking of event types 

is similar across banks.  The analysis also shows that the data is reasonably fit by heavy-tailed 

distributions (such as the Pareto), and illustrates that certain statistical methods yield plausible 

tail parameter estimates for these heavy-tailed distributions.  In fact, the tail parameter estimates 

for the severity distribution are quite close to the estimates based on publicly available time 

series of high severity losses (de Fontnouvelle et. al., 2003).   

 It is important to qualify our results by noting that they are based on only one year of loss 

data.  This limited data makes it difficult to distinguish between different distributional 

assumptions, though some thin-tailed distributions do appear inconsistent with the data.  At this 

point, we would conclude that a variety of threshold-based techniques seem to yield results that 

are consistently plausible across banks.  However, we may need to await the arrival of better data 

before making more definitive conclusions.  As banks have three or more years of good 

operational loss data, the ability to differentiate across alternative distributional assumptions 

should improve. 
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Table 1.  Parametric distributions used for modeling operational loss severity.

Distribution Name Density, f(x) Maximal Moment
Exponential (1/b )exp(-x /b ) ∞
Weibull (βx β-1 /η β ) exp(-(x /η )β ) ∞
Gamma (x /b )c -1[exp(-x /b )] / [b Γ(c )] ∞
Loggamma [log(x )/b ]c -1x -1 /b -1 / [b Γ(c )] 1/b
Pareto ξ-1x-1/ξ-1 1/ξ
GPD β-1(1+ξx/β)-1/ξ-1 1/ξ
Burr (τ /β )x τ -1(1+ξx τ /β )-1/ξ -1 τ /ξ
Lognormal (2πx 2σ 2)-1/2 exp[-(log(x )-µ )2/(2σ 2)] ∞
Loglogistic αx 1/b -1 / [b (1+αx 1/b )2] 1/b



Table 2. Goodness of fit across Basel Business Lines and Event Types

All observations
Distribution Bank A Bank B Bank C Bank D Bank E Bank F
Burr 0.0% 6.4% 72.0% 23.3% 13.6% 0.1%
Exponential 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Gamma 0.0% 0.0% 0.0% 0.0% 1.5% 0.0%
LogGamma 0.0% 1.5% 64.1% 33.9% 1.4% 0.7%
LogLogistic 0.0% 6.4% 79.4% 23.8% 2.1% 0.7%
Lognormal 0.0% 0.2% 51.8% 0.0% 3.5% 0.2%
GPD 0.0% 4.5% 75.8% 25.7% 1.6% 0.8%
Weibull 0.0% 0.0% 0.0% 0.0% 54.7% 0.0%

Event Type 1 - Internal Fraud
Distribution Bank A Bank B Bank C Bank D Bank E Bank F
Burr 31.7% 86.1% 99.1% 13.0%
Exponential 0.0% 0.0% 0.1% 0.0%
Gamma 12.2% 0.0% 73.4% 0.0%
LogGamma 32.7% 85.6% 98.1% 18.9%
LogLogistic 31.8% 87.4% 98.1% 13.6%
Lognormal 35.0% 86.4% 98.4% 13.7%
GPD 33.1% 87.6% 95.1% 13.3%
Weibull 74.9% 0.4% 40.9% 0.0%

Event Type 2 - External Fraud
Distribution Bank A Bank B Bank C Bank D Bank E Bank F
Burr 0.0% 10.8% 6.4% 13.2% 1.7% 0.0%
Exponential 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%
Gamma 0.0% 0.0% 0.7% 0.0% 1.8% 0.0%
LogGamma 0.3% 6.5% 7.6% 7.3% 2.8% 0.0%
LogLogistic 0.0% 5.1% 5.8% 9.3% 2.7% 0.0%
Lognormal 0.0% 0.0% 6.6% 4.8% 3.0% 0.0%
GPD 0.0% 10.5% 6.1% 13.9% 1.7% 0.1%
Weibull 0.0% 0.0% 5.9% 0.1% 9.9% 0.0%

The following table reports goodness of fit for each of the distributions under consideration.  The 
test was based on a standard Chisquare procedure, except for the rounding adjustment discussed 
in section six.  The reported figures are Probability values, so that a value of 5% or less indicates 
a poor fit.



Table 2. Goodness of fit across Basel Business Lines and Event Types

Event Type 3 - Employment Practices and Workplace Safety
Distribution Bank A Bank B Bank C Bank D Bank E Bank F
Burr 87.2% 36.7% 85.0% 23.0%
Exponential 1.0% 0.0% 29.0% 0.0%
Gamma 66.5% 0.0% 86.9% 0.2%
LogGamma 88.1% 7.8% 74.7% 0.2%
LogLogistic 91.7% 59.5% 92.0% 24.5%
Lognormal 95.5% 57.1% 86.7% 24.8%
GPD 92.9% 64.4% 82.0% 35.2%
Weibull 87.0% 0.2% 85.8% 7.6%

Event Type 4 - Clients, Products and Business Practices
Distribution Bank A Bank B Bank C Bank D Bank E Bank F
Burr 98.9% 58.0% 37.0%
Exponential 0.0% 0.0% 0.0%
Gamma 0.6% 0.0% 0.0%
LogGamma 80.1% 77.2% 42.2%
LogLogistic 80.8% 58.6% 39.0%
Lognormal 81.4% 36.5% 40.3%
GPD 76.7% 57.4% 34.7%
Weibull 50.1% 0.0% 0.0%

Event Type 7 - Execution, Delivery and Process Management
Distribution Bank A Bank B Bank C Bank D Bank E Bank F
Burr 3.0% 1.1% 78.9% 24.7% 78.1% 72.6%
Exponential 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Gamma 0.2% 0.0% 0.0% 0.0% 19.8% 0.0%
LogGamma 0.8% 0.4% 54.7% 22.3% 26.6% 61.7%
LogLogistic 0.1% 0.0% 76.8% 47.7% 89.4% 77.3%
Lognormal 0.1% 0.0% 51.7% 52.1% 68.7% 0.0%
GPD 2.6% 0.0% 77.6% 39.8% 83.6% 89.6%
Weibull 12.0% 0.0% 0.0% 0.6% 47.1% 7.1%



Table 2. Goodness of fit across Basel Business Lines and Event Types

Business Line 2 - Trading and Sales
Distribution Bank A Bank B Bank C Bank D Bank E Bank F
Burr 1.6% 68.6% 88.1% 58.4%
Exponential 0.0% 0.0% 1.7% 12.4%
Gamma 0.0% 0.0% 1.1% 27.4%
LogGamma 0.0% 65.1% 70.6% 42.1%
LogLogistic 0.0% 69.7% 65.3% 91.8%
Lognormal 0.0% 67.0% 18.8% 86.9%
GPD 0.0% 70.6% 25.1% 58.0%
Weibull 0.0% 0.0% 2.3% 18.3%

Business Line 3 - Retail Banking
Distribution Bank A Bank B Bank C Bank D Bank E Bank F
Burr 0.1% 12.5% 32.3% 8.5% 0.9% 1.7%
Exponential 0.0% 0.0% 0.3% 0.0% 0.0% 0.0%
Gamma 0.0% 0.0% 8.1% 0.0% 0.1% 0.0%
LogGamma 0.0% 0.2% 43.0% 1.3% 5.8% 2.4%
LogLogistic 0.0% 0.0% 35.2% 0.2% 5.6% 3.7%
Lognormal 0.0% 0.0% 46.9% 0.0% 5.5% 3.8%
GPD 0.1% 12.5% 32.2% 9.0% 2.4% 4.7%
Weibull 0.0% 0.0% 15.5% 0.0% 14.7% 0.0%

Business Line 5 - Payment and Settlement
Distribution Bank A Bank B Bank C Bank D Bank E Bank F
Burr 48.5% 11.0% 69.2%
Exponential 0.0% 0.0% 0.0%
Gamma 0.0% 7.2% 1.7%
LogGamma 66.7% 40.2% 62.0%
LogLogistic 49.4% 22.7%
Lognormal 63.0% 38.5% 63.4%
GPD 45.3% 11.1% 66.8%
Weibull 0.3% 13.3% 52.4%

Business Line 7 - Asset Management
Distribution Bank A Bank B Bank C Bank D Bank E Bank F
Burr 64.9% 84.4% 30.1% 20.2%
Exponential 6.4% 0.0% 3.6% 0.0%
Gamma 32.3% 0.0% 43.4% 0.0%
LogGamma 31.3% 79.9% 15.9% 17.6%
LogLogistic 63.1% 63.6% 44.9% 17.4%
Lognormal 45.9% 62.6% 69.8% 18.2%
GPD 67.5% 64.2% 61.1% 20.8%
Weibull 25.7% 4.5% 44.8% 2.3%



Table 3. Parameter estimates for the Generalized Pareto and Lognormal distributions.

Panel a. Estimates of the tail parameter ξ for the GPD.

All BL & ET 1.28 (0.08) 0.87 (0.03) 0.99 (0.08) 0.92 (0.07) 0.97 (0.11) 1.01 (0.03)
ET1 - IntFrd 1.24 (0.36) 1.31 (0.18) 1.10 (0.38) 1.02 (0.14)
ET2 - ExtFrd 1.17 (0.12) 0.79 (0.05) 0.63 (0.19) 0.69 (0.07) 0.86 (0.14) 0.93 (0.03)
ET3 - EP&WS 0.50 (0.16) 0.42 (0.05) -0.15 (0.22) 0.50 (0.06)
ET4 - CPBP 1.36 (0.21) 1.25 (0.15) 1.46 (0.13)
ET7 - EDPM 1.42 (0.16) 0.71 (0.05) 0.94 (0.08) 1.00 (0.18) 0.96 (0.17) 0.93 (0.09)
BL2 - T&S 0.68 (0.06) 1.18 (0.13) 0.49 (0.18) 0.42 (0.28)
BL3 - RetBnk 1.15 (0.10) 1.09 (0.05) 0.55 (0.17) 0.94 (0.07) 0.99 (0.14) 0.93 (0.03)
BL5 - P&S 1.06 (0.23) 1.07 (0.35) 1.03 (0.29)
BL7 - AsstMgt 0.49 (0.20) 0.96 (0.21) 0.37 (0.18) 1.64 (0.40)

Panel b. Estimates of µ+ σ 2 /2 for the Lognormal distribution.

All BL & ET
ET1 - IntFrd
ET2 - ExtFrd
ET3 - EP&WS
ET4 - CPBP
ET7 - EDPM
BL2 - T&S
BL3 - RetBnk
BL5 - P&S
BL7 - AsstMgt

-2.01       
-2.12       

> 0        
> 0        

-9.23       
-6.49       

-22.31       
> 0        

> 0        

> 0        

> 0        

-11.77       

> 0        

-21.27       
> 0        

-5.84       
> 0        

> 0        
> 0        

-5.24       
-12.09       

> 0        

> 0        

> 0        

> 0        
-3.73       
> 0        

> 0        
> 0        
> 0        

-7.45       

> 0        
> 0        

-22.68       
> 0        

-13.32       

-8.35       
> 0        
> 0        

-9.64       

Bank A Bank B Bank C Bank D Bank E Bank F
-6.08       
-9.85       

Bank E Bank F

-5.85       
-21.51       

> 0        
-9.61       

Bank A Bank B Bank C Bank D



Bank ID "Optimal" K K 0.75K 0.5K 0.25K
A 180 0.823 0.794 0.817 0.717

(0.016) (0.020) (0.030) (0.042)

B 80 0.628 0.591 0.565 0.313
(0.020) (0.022) (0.029) (0.016)

C 30 0.859 0.824 0.952 1.032
(0.085) (0.097) (0.182) (0.353)

D 50 0.498 0.405 0.456 0.415
(0.019) (0.015) (0.028) (0.039)

E 200 0.552 0.534 0.558 0.488
(0.003) (0.008) (0.013) (0.018)

F 50 0.633 0.538 0.536 0.342
(0.030) (0.019) (0.038) (0.026)

All 140 0.681 0.554 0.419 0.305
(0.014) (0.012) (0.008) (0.015)

Table 4.  Tail parameter estimates based on the HKKP method.
The following table reports tail index estimates calculated under the HKKP regression 
algorithm.  The "Optimal" number of exceedances (K) is chosen to correspond to the linear 
portion of the Hill plot.  Standard errors are reported in parentheses.

# of exceedances used in estimation



Table 5.  Quantiles of the simulated aggregate loss distribution.

Panel a. Poisson frequency distribution - fixed effects model.

Severity Distribution 95 99 99.9
Pareto 0.066% 0.117% 0.468%
Lognormal 0.047% 0.056% 0.070%
Empirical 0.047% 0.053% 0.058%

Panel b. Poisson frequency distribution - cross-sectional model.

Severity Distribution 95 99 99.9
Pareto 0.106% 0.148% 0.362%
Lognormal 0.089% 0.101% 0.121%
Empirical 0.086% 0.093% 0.102%

Panel c. Negative Binomial frequency distribution - cross-sectional model.

Severity Distribution 95 99 99.9
Pareto 0.166% 0.237% 0.400%
Lognormal 0.143% 0.198% 0.273%
Empirical 0.146% 0.202% 0.273%

The following table reports quantiles of the simulated aggregate loss distribution.  To 
preserve the confidentiality of the banks in the sample, we scale each percentile for each 
bank by that bank’s assets. The cross-bank median for each percentile is then reported.  
Panel a presents results under the assumption that loss frequency follows a Poisson 
distribution whose parameter is estimated separately for each bank (fixed effects model). 
Panel b presents results under the assumption that loss frequency follows a Poisson 
distribution whose parameter is a linear function of each bank's asset size (sross-sectional 
model).  Panel c presents results under the assumption that loss frequency follows a 
Negative Binomial distribution whose parameter is a linear function of each bank's asset 
size. (Cross-sectional model.) 

Percentiles of the Aggregate Loss Distribution

Percentiles of the Aggregate Loss Distribution

Percentiles of the Aggregate Loss Distribution



Figure 1.  Tail plots of loss data by Basel Event Type.
Event Types are labeled as follows.  1 - Internal Fraud.  2 - External Fraud.  3 - Employment Practices and Workplace 
Safety.  4 - Clients, Products and Business Practices.  7 - Execution, Delivery and Process Management.
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Figure 2.  Tail plots of loss data by Basel Business Line.
Business Lines are labeled as follows.  2 - Trading and Sales.  3 - Retail Banking.  5 - Payment and Settlement.  
7 - Asset Management.
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Figure 3.  Mean excess plots by Basel Event Type.
Event Types are labeled as follows.  1 - Internal Fraud.  2 - External Fraud.  3 - Employment Practices and Workplace 
Safety.  4 - Clients, Products and Business Practices.  7 - Execution, Delivery and Process Management.
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Figure 4.  Mean excess plots by Basel Business Line.
Business Lines are labeled as follows.  2 - Trading and Sales.  3 - Retail Banking.  5 - Payment and Settlement.  
7 - Asset Management.
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Figure 5. Hill plots of the tail index parameter.
The following are Hill plots of the tail index parameter for the six banks under consideration.  The thick dark line 
indicates the point estimates of the tail parameter as the number of exceedances varies between 1 and 200.  The thin dark 
lines indicate 95% confidence intervals for the point estimates.  The thick, medium gray (light gray) line indicates P-
values for the Likelihood Ratio test of the hypothesis that the tail parameter is constant across business lines (event 
types).
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Figure 6. DEdH plots of the tail index parameter.
The following are DEdH plots of the tail index parameter for the six banks under consideration.  The solid line 
indicates the point estimates of the tail parameter as the number of exceedances varies between 1 and 500.
The dotted lines indicate 95% confidence intervals for the point estimates.
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Figure 7a.  Threshold plots of the lognormal parameter µ.
The following are threshold plots of the lognormal parameter µ for the six banks under consideration.  The solid 
line indicates the point estimates of µ as the number of exceedances varies between 10 and 200.  The dotted lines 
indicate 95% confidence intervals for the point estimates.  Labels are omitted from the vertical axis to preserve 
confidentiality.
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Figure 7b.  Threshold plots of the lognormal parameter σ.
The following are threshold plots of the lognormal parameter σ for the six banks under consideration.  The solid 
line indicates the point estimates of σ as the number of exceedances varies between 10 and 200.  The dotted lines 
indicate 95% confidence intervals for the point estimates.  Labels are omitted from the vertical axis to preserve 
confidentiality.
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