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Ex ante, it might seem that a default should not matter if agents believe it is arbitrarily

chosen and if opting out of the default is easy. In practice, defaults–even bad defaults–tend

to be sticky; individuals often fail to opt out.1 This perverse property of defaults has been

documented in a wide range of settings: participation in employer-sponsored savings plans

(Madrian and Shea, 2001; Choi, Laibson, Madrian and Metrick, 2004), organ donation rates

(Johnson and Goldstein, 2003; Abadie and Gay, 2004), car insurance plan choices (Johnson

et al., 1993), car option purchases (Park, Yun and MacInnis, 2000), and consent to receive

e-mail marketing (Johnson, Bellman, and Lohse, 2002).

In light of this inertia, defaults may be socially optimal when agents have a shared

optimum and the default leads them to it. But even a well-chosen default may be undesirable

if agents have heterogeneous needs. For example, in a firm whose workforce includes young,

cash-strapped single parents and older employees who need to quickly build a retirement

nest egg, one 401(k) savings rate isn’t right for everyone.

Given that defaults can exert a tremendous impact on observed outcomes, an important

question is, “which default is optimal?” We consider the answer to this question in a specific

context: participation in employer-sponsored 401(k) savings plans. Economists have studied

two diferent savings plan enrollment regimes. Under “standard enrollment,” employees are

by default not enrolled and can choose to opt into the plan. Under “automatic enrollment,”

employees are by default enrolled at a pre-determined contribution rate and can choose to

opt out of the plan or out of the default contribution rate. There is also a third, overlooked

alternative: require individuals to make an explicit choice for themselves. In this “active-

decision” regime, there is no default to fall back on.

Active decisions are an intriguing, though imperfect, alternative to defaults. On the pos-

itive side, an active-decision mechanism avoids the biases introduced by defaults because it

does not corral agents into a single default choice. The active-decision mechanism encourages

agents to think about an important decision and thereby avoid procrastinating. On the neg-

ative side, an active decision compels agents to struggle with a potentially time-consuming

1For example, about three-quarters of 401(k) participants in firms with automatic enrollment retain both
the default contribution rate and the default asset allocation (Madrian and Shea, 2001; Choi et al. 2002,
2004). These “choices” are puzzling because most companies with automatic enrollment have had very
conservative defaults; a typical firm might have a default contribution rate of 3% of income, even though
contributions up to 6% of income garner matching contributions from the employer.
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decision–which they may not feel qualified to make. Some individuals would welcome a

benign third party who is willing to make that decision for them. And some social engineers

might prefer a default that aggressively encourages some social goal, like organ donation or

retirement saving.2

The current paper lays the groundwork for a debate about active decisions by describing

how an active-decision 401(k) enrollment regime worked at one large firm. In addition, we

present a model that provides a formal framework for evaluating the relative efficacy of

different enrollment mechanisms, including defaults and active decisions.

Our empirical analysis exploits a natural experiment in the 401(k) enrollment regime

of a large firm that switched from using active decisions to a standard-enrollment regime.

This change in 401(k) enrollment procedures occurred unintentionally as a by-product of the

transition from a paper-and-pencil administrative system to a phone-based administrative

system. The firm did not anticipate that the transition to a phone-based system with a

default of non-enrollment would transform the psychology of 401(k) participation. Rather,

the change in administrative systems was motivated solely by the convenience and efficiency

of phone-based enrollment. The loss of active-decision effects was a collateral consequence

of that transition.

We find that active decisions raise the initial fraction of employees enrolled by 28 percent-

age points relative to what is obtained with a standard default of non-enrollment. Active

decisions raise average savings rates and accumulated balances by accelerating decision-

making. We show that conditional on demographics, employees under an active-decision

regime will on average immediately choose a savings rate similar to what would otherwise

take up to 30 months to attain under standard enrollment. Because the typical worker

will change jobs several times before retirement, accelerating the 401(k) savings decision by

more than two years at the beginning of each job transition can have a large impact on

accumulated wealth at retirement.

We also present a model of the enrollment process. In this model, defaults matter for

two key reasons. First, the opportunity cost of time is stochastic, creating an option value to

waiting for a low-cost time to take action. Second, employees with present-biased preferences

2See Hurst (2006) and Warshawsky and Ameriks (2000) for evidence that many U.S. households are
undersaving. However, this is an open question with research on both sides of the debate. See Aguiar
and Hurst (2005) and Engen, Gale, and Uccello (1999) for evidence that the lifecycle model with liquidity
constraints matches U.S. data.
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(Phelps and Pollak, 1968; Laibson, 1997; O’Donoghue and Rabin 1999b) may procrastinate

in their decision to opt out of the default. We derive conditions for the optimal enrollment

regime. Active decisions are socially optimal when consumers have highly heterogeneous

savings preferences and a strong propensity to procrastinate.

The rest of this paper proceeds as follows. Section 1 describes the details of the two

401(k) enrollment regimes at the company we study. Section 2 describes our data. Section

3 compares the 401(k) savings decisions of employees hired under the active-decision regime

to those hired under the standard-enrollment regime. Section 4 presents a model of procras-

tination for time-inconsistent agents with rational expectations, uses this model to derive

the socially optimal enrollment mechanism for such agents, and briefly considers the case of

agents with naive expectations about their future time-inconsistency. We also discuss the

optimal amount of time agents should be given before a decision deadline binds. Section 5

discusses the key implications of the model. Section 6 concludes and briefly discusses the

implementation of active-decision mechanisms.

1 The Natural Experiment

We use employee-level data from a publicly traded Fortune 500 company in the financial

services industry. In December 1999, this firm had offices in all 50 states, as well as the

District of Columbia and Puerto Rico. This paper considers the 401(k) savings decisions of

employees at the firm from January 1997 through December 2001.

Until November 1997, all newly hired full-time employees at the firm were required to

submit a form within 30 days of their hire date stating their 401(k) participation preferences,

regardless of whether they wished to enroll or not. Although there was no tangible penalty

for non-compliance, human-resource officers at this firm report that only 5% of employees

did not return the form.3 We believe that this high compliance rate arose because the form

was part of a packet that included other forms that are legally required to be completed (e.g.,

employment-eligibility verification forms, tax-withholding forms). Moreover, employees who

did not return the form were reminded to do so by the human-resources department.

Employees who declined to participate in the 401(k) plan during this initial enrollment

period could not subsequently enroll in the plan until the beginning (January 1) of succeeding

3A failure to return the form was ultimately treated as a decision not to enroll in the 401(k).
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calendar years. Later in the paper, we will show that this delay did not drive the active-

decision effects that we document.

At the beginning of November 1997, the company switched from a paper-based 401(k)

enrollment system to a telephone-based system. Employees hired after this change no longer

received a 401(k) enrollment form when hired. Instead, they were given a toll-free phone

number to call if and when they wished to enroll in the 401(k) plan. We call this new system

the “standard-enrollment” regime because its default of non-participation is what has been

adopted by most companies. The telephone-based system also allowed employees to enroll

on a daily basis, rather than only at the beginning of each calendar year as had previously

been the case. This change applied not only to employees hired after November 1997, but

to all employees working at the company.

A number of other 401(k) plan features also changed at the same time (November, 1997).

We believe that these additional changes made 401(k) participation more attractive, so

our estimates of the active-decision effect are a lower bound on the true effect. These other

changes include a switch from monthly to daily account valuation, the introduction of 401(k)

loans, the addition of two new funds as well as employer stock to the 401(k) investment

portfolio,4 and a switch from annual to quarterly 401(k) statements. Table 1 summarizes

the 401(k) plan rules before and after the November 1997 plan changes.

2 The Data

We have two types of employee data. The first dataset is a series of cross-sections at year-

ends 1998, 1999, 2000, and 2001. Each cross-section contains demographic information for

everybody employed by the company at the time, including birth date, hire date, gender,

marital status, state of residence, and salary. For 401(k) plan participants, each cross-section

also contains the date of enrollment and year-end information on balances, asset allocation,

and the terms of any outstanding 401(k) loans. The second dataset is a longitudinal history

of every individual transaction in the plan from September 1997 through April 2002: savings-

rate elections, asset-allocation elections for contributions, trades among funds, loan-based

withdrawals and repayments, financial-hardship withdrawals, retirement withdrawals, and

4Prior to November 1997, employer stock was available as an investment option only for match balances
and contributions made with after-tax money.
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rollovers.

To analyze the impact of active decisions on savings outcomes, we compare the behavior

of two employee groups: employees hired between January 1, 1997 and July 31, 1997 under

the active-decision regime,5 and employees hired between January 1, 1998 and July 31, 1998

under the standard-enrollment regime. We refer to the first group as the “active-decision

cohort” and the second group as the “standard-enrollment cohort.”

The active-decision cohort is first observed in our cross-sectional data in December 1998,

18 to 24 months after hire, and in the longitudinal data starting in September 1997, 3 to 9

months after hire. The longitudinal data only contain 401(k) participants. The standard-

enrollment cohort is also observed in our cross-sectional data starting in December 1998, but

this is only 6 to 12 months after their hire date. In the longitudinal data, 401(k) participants

from this cohort are observed as soon as they enroll.

Since 401(k) participants are less likely to subsequently leave their employer,6 our data

structure introduces selection effects that are stronger for the active-decision cohort than

the standard-enrollment cohort. To equalize the sample selectivity of the active-decision

and standard-enrollment cohorts, we restrict both cohorts to employees who were still at the

company in December of the year after their hire year. We have no reason to believe that the

turnover rates of employees from these two cohorts were different over these time horizons.

The economic environment faced by these two groups of employees was similar until the start

of the 2001 recession. In addition, company officials reported no material changes in hiring

or employment practices during this period.

Table 2 presents demographic statistics on the active-decision and standard-enrollment

cohorts at the end of December in the year after they were hired. The cohorts are similar in

age, gender composition, income, and geographical distribution. The dimension along which

they differ most is marital status, and even here the differences are not large: 56.0% of the

active-decision cohort is married, while this is true for only 49.7% of the standard-enrollment

cohort. The third column of Table 2 shows that the new-hire cohorts are different from
5We exclude employees hired prior to January 1, 1997 because the company made two plan changes that

took effect on January 1, 1997. First, the company eliminated a one-year service requirement for 401(k)
eligibility. Second, the company changed the structure of its 401(k) match. Although active decisions were
used until the end of October 1997, we do not include employees hired from August through October to avoid
any confounds produced by the transition to standard enrollment. For example, an enrollment blackout was
implemented for several weeks during the transition.

6See Even and MacPherson (2005).
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employees at the company overall. As expected, the new-hire cohorts are younger, less likely

to be married, and paid less on average. The last column reports statistics from the Current

Population Survey, providing a comparison between the company’s employees and the total

U.S. workforce. The company has a relatively high fraction of female employees, probably

because it is in the service sector. Employees at the company also have relatively high

salaries. This is partially due to the fact that the company does not employ a representative

fraction of very young employees, who are more likely to work part-time and at lower wages.

3 Empirical Results

3.1 401(k) Enrollment

We first examine the impact of the active-decision regime on enrollment in the 401(k). Figure

1 plots the fraction enrolled in the 401(k) after three months of tenure for employees who were

hired in the first seven months of 1997 (the active-decision cohort) and the first seven months

of 1998 (the standard-enrollment cohort). We use the third month of tenure because it could

take up to three months for enrollments to be processed in the active-decision regime.7 The

average three-month enrollment rate is 69% for the active-decision cohort, versus 41% for

the standard-enrollment cohort, and this difference is statistically significant at the 1% level

for every hire month.

Figure 2 plots the fraction of employees who have enrolled in the 401(k) plan against

tenure. The participation rate of the active-decision cohort is a sizeable 28 percentage

points higher than that of the standard-enrollment cohort at 3 months of tenure. Over

time, the participation rate of the active-decision cohort grows more slowly than that of

the standard-enrollment cohort, so the enrollment gap decreases with tenure. Nonetheless,

the participation rate of the active-decision cohort exceeds that of the standard-enrollment

cohort by 17 percentage points at 24 months of tenure, and by 5 percentage points at 42

months. The participation difference between the two cohorts are statistically significant at

the 1% level for every tenure level after the first month.

Figures 1 and 2 could be misleading if enrollees under the active-decision regime are

7Enrollments were only processed on the first of each month under the active-decision regime. Since
employees had 30 days to turn in their form, an employee who was hired late in a month and turned in her
form just before the deadline could be enrolled in the third month after her hire.
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subsequently more likely to stop contributing to the 401(k) plan. However, attrition rates

from the 401(k) plan are indistinguishable under the active-decision regime and the standard-

enrollment regime. Indeed, 401(k) participation is a nearly absorbing state under either

enrollment regime.8

We ascribe the active-decision effect to the fact that active-decision employees had to

express their 401(k) participation decision during their first month of employment, rather

than being able to delay taking action indefinitely. However, there is another distinction be-

tween the active-decision and standard-enrollment regimes as implemented at the company.

Under the standard-enrollment regime, employees could enroll in the 401(k) plan at any

time. Under the active-decision regime, if employees did not enroll in the plan in their first

30 days at the company, their next enrollment opportunity did not come until January 1 of

the following calendar year.9 Therefore, in addition to the required affirmative or negative

enrollment decision, the active-decision cohort faced a narrower enrollment window than the

standard-enrollment cohort. In theory, this limited enrollment window could cause higher

initial 401(k) enrollment rates by accelerating the enrollment of employees who would have

otherwise enrolled between the third month of their tenure and the following January.

However, the enrollment differences between the cohorts are too large to be explained

by a window effect. If only a window effect were operative, enrollment fractions for the two

groups should be equal after twelve months of tenure. In fact, the enrollment fraction of the

active-decision cohort at three months of tenure is not matched by the standard-enrollment

cohort until 30 months of tenure.

3.2 401(k) Contribution Rate

Although active decisions induce earlier 401(k) enrollment, this may come at the cost of

more careful and deliberate thinking about how much to save for retirement. We now turn

our focus to the impact of active decisions on the 401(k) contribution rate.

Figure 3 plots the relationship between tenure and the average 401(k) contribution rate for

the active-decision and standard-enrollment cohorts. The averages include both participants

8These calculations are available from the authors.
9In fact, the active-decision cohort we analyze (January to June 1997 hires) was able to enroll in the

401(k) plan any time after November 1997, when the company switched to the phone-based daily enrollment
system. At hire, however, the active-decision employees were not aware of this impending change and would
have believed January 1, 1998 to be their next enrollment opportunity.
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(who have a non-zero contribution rate) and non-participants (who have a zero contribution

rate). Because our longitudinal data do not start until September 1997, the contribution-rate

profile cannot be computed for the entire active-decision cohort until 9 months of tenure.

The active-decision cohort contributes 4.8% of income on average at month 9, and this

slowly increases to 5.5% of income by the fourth year of employment. In contrast, the

standard-enrollment cohort contributes only 3.6% of income on average at month 9, and

it takes more than 33 months for it to match the active-decision cohort’s nine-month sav-

ings rate. At each tenure level in the graph, the difference between the groups’ average

contribution rates is statistically significant at the 1% level.

Figure 4 plots the average contribution rate of employees who have a non-zero contribu-

tion rate (i.e., 401(k) participants). In contrast to Figure 3, active-decision participants have

a lower average contribution rate than standard-enrollment participants until the fourth year

of tenure.10 To gain insight into this pattern, we plot the 25th, 50th, 75th, and 90th per-

centile contribution rates for the standard-enrollment and active-decision cohorts in Figure

5. Non-participants are assigned a zero contribution rate and are included in these distrib-

utions. We see that at each of these points in the distribution, the active-decision cohort’s

contribution rate matches or exceeds the standard-enrollment cohort’s contribution rate at

virtually every tenure level. There is nearly no gap between the two cohorts’ contribution

rates at the 90th percentile, where enrollment in the 401(k) occurs immediately for both

groups. As we move down the savings distribution, the difference between the two cohorts

tends to increase, and most of this difference is due to active-decision cohort employees sign-

ing up for the 401(k) plan earlier in their tenure. Overall, it seems that employees save at

roughly the same rate under both regimes once they have enrolled. Therefore, the lower

average contribution rate among active-decision participants is not due to active decisions

lowering the savings rates of those who would have otherwise contributed more under stan-

dard enrollment. Rather, active decisions bring employees with weaker savings motives into

the participant pool earlier in their tenure — a selection effect.

Table 3 presents the results of a tobit regression of the two regimes’ contribution rates on

demographic variables. The contribution rate is censored below at 0% and above at 17% of

pay. Both active-decision and standard-enrollment employees are included in the regression,

10These differences are statistically different at the 1% level through the 29th month of tenure, and at the
5% level through the 30th month of tenure.
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regardless of participation status. If the employee was hired under the standard-enrollment

regime, the dependent variable is equal to the contribution rate at 30 months after hire. If

the employee was hired under the active-decision regime, the dependent variable is equal

to an estimate11 of the contribution rate at 3 months after hire. The explanatory variables

are a constant, gender, marital status, log of salary, and age dummies. The effect of these

variables is allowed to vary between the active-decision and standard-enrollment cohorts. To

test the hypothesis that savings rates are more haphazard under active decisions, we also

allow the variance of the error term to vary across the two cohorts.12

The regression coefficients suggest that in expectation, there is little difference between

the savings rate an employee chooses immediately after hire under active decisions and the

rate she would have in effect 30 months after hire under standard enrollment. The only

variable we can statistically reject having the same effect under both regimes is gender; at

our company, women save somewhat less than men under active decisions but not under

standard enrollment. The variance of the error term in the regression is significantly smaller

for the active-decision cohort than for the standard-enrollment cohort, suggesting that the

rush of the active-decision deadline does not cause people to make more haphazard savings-

rate decisions.13

In sum, active decisions cause employees to immediately choose a savings rate that on

average they would take up to 30 months to attain under standard enrollment.

3.3 401(k) Asset Allocation

The effect of active decisions on asset allocation cannot be cleanly inferred from the natural

experiment that we study because the menu of investment fund options changed in November

1997, the same time that the company switched from active decisions to the standard-

enrollment regime. Prior to the change, employer stock was only available as an investment

11This estimate is constructed by taking the earliest-available contribution rate (which may be as late as
9 months after hire) for the active-decision employee. Naturally, we set that contribution rate to zero if the
employee had not enrolled in the plan within 3 months of hire.
12To equalize sample selectivity for the two cohorts, we restricted both samples to employees who remain

in our data for 30 months. This is why the number of data points in the regression is less than the total
number of employees in the two cohorts.
13On the other hand, if idiosyncratic variation in the savings rate is primarily due to employees optimally

utilizing private information that is not available to the researchers, then a lower error-term variance could
be consistent with a less well-considered savings decision.
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option for the 14% of participants who made contributions with after-tax money; such after-

tax contributions are infrequent because they do not garner matching contributions at this

company and are generally less tax-efficient than contributions made with pre-tax money.14

During the transition to standard enrollment, employer stock was added as an investment

option for pre-tax 401(k) contributions. Subsequently, the average allocation to employer

stock more than doubled and the average allocation to all other asset classes decreased. It

is impossible to determine how much of this increase was caused by the standard-enrollment

regime, and how much was caused by the roughly seven-fold increase in the fraction of

employees for whom employer stock was a viable investment option.

The impact of active decisions on asset allocation is an important open question, since

employees have low levels of financial knowledge about different asset classes (John Han-

cock, 2002) and many tend to make poor asset-allocation choices (Benartzi and Thaler,

2001; Cronqvist and Thaler, 2004). We discuss later in the paper why active decisions are

potentially better suited for contribution-rate choices than for asset-allocation choices.15

3.4 401(k) Asset Accumulation

We next consider the impact of active decisions on asset accumulation. Unfortunately, any

asset-accumulation analysis of cohorts who began savings at different points in time will be

confounded by time effects, since asset returns are highly volatile. Moreover, as explained

above, the fund menu changed over time, further confounding this analysis. Nonetheless, it is

the level of asset accumulation that will ultimately drive retirement timing and consumption

levels. Studying asset accumulation also gives us insight into whether increased contribution

rates under active decisions are offset by increased 401(k)-loan activity and withdrawals.16

To measure asset accumulation, we divide 401(k) balances by annual base pay. Our mea-

sure of 401(k) balances excludes outstanding principal from 401(k) loans and any balances

an employee rolled over from a previous employer.

Figure 6 reports balance-to-pay ratios at the 25th, 50th, 75th, and 90th percentiles of

14Pre-tax contributions are more tax-efficient unless the contributor has a short investment horizon and
expects tax rates to rise sharply in the future.
15We believe that defaults are usually optimal for asset allocation decisions.
16The active-decision cohort did not have 401(k) loans available to them at the time they made their initial

contribution-rate decision. However, after November 1997, they were able to borrow against their 401(k)
balances.
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the balance-to-pay distribution for the active-decision and standard-enrollment cohorts. The

impact of the market downturn in 2001 appears around the 48th month of tenure for the

active-decision cohort and the 36th month of tenure for the standard-enrollment cohort.

It is apparent that the balance-to-pay ratio paths are nearly identical for the two cohorts

at both the 75th and 90th percentiles. In contrast, the 25th percentile active-decision em-

ployee has a much higher balance-to-pay ratio because participation begins two years earlier

in her tenure than it does for the 25th percentile standard-enrollment employee. The 50th

percentile active-decision employee has a slightly higher balance-to-pay ratio, but the effects

of the 2001 stock market downturn muddy the picture. Overall, it appears that active-

decision enrollment only affects asset accumulation in the bottom half of the accumulation

distribution. This is consistent with the results of the contribution rate analysis.

4 A Model of 401(k) Enrollment

The empirical analysis in Section 3 shows that requiring an active decision accelerates 401(k)

enrollment. But these results do not enable us to evaluate the welfare consequences of active

decisions. Active decisions may be harmful if enrolling is a costly action, and there is option

value associated with waiting for a more convenient time to enroll. We now present a

structural model that provides a framework for thinking about socially optimal enrollment

regimes. Each regime is expressed as a default contribution rate in our model. The possible

optimal regimes are standard enrollment (a default contribution rate of 0%), automatic

enrollment (a positive default contribution rate), or active decision (which is conceptually

equivalent to a default so extreme that all employees will choose to opt out immediately).

Our theoretical analysis consists of two parts. The first part is a model of procrastination

by the individual employee. There are two key features to this model: a stochastically time-

varying transactions cost for opting out of the default, which creates an option value to

waiting; and present bias, which leads to procrastination, so that the employee may fail

to maximize her expected utility. Although we focus on 401(k) enrollment, this model can

be applied to any situation in which an action that generates a positive net utility flow is

delayed by procrastination. The key prediction is that procrastination can generate more

inefficiency when the utility flow from acting is small than when the utility flow is large,

since a large utility-flow benefit will motivate an agent to overcome procrastination and act

13



immediately.

We then solve the benchmark problem of optimal default-setting by a social planner —

for instance, a regulator that is trying to maximize social surplus).17 We assume that op-

timal savings rates are heterogeneous across employees and only privately observed. These

assumptions are crucial for our welfare results. If the planner knows each employee’s opti-

mum, then the planner can simply set that optimum as the default, sparing the worker the

time and effort of making the choice herself. There is a growing body of evidence that plan-

ners make better asset-allocation choices than workers (Benartzi and Thaler, 2001; Cronqvist

and Thaler, 2004). However, survey evidence suggests that workers have idiosyncratic sav-

ings needs, and that workers understand this individual variation (Choi et al, 2002). Hence,

the model that follows is best applied to savings-rate choices, where individuals have superior

information about their optimum, and not to asset-allocation choices, where outside experts

might have superior information (Benartzi and Thaler, 2001; Cronqvist and Thaler, 2004).

4.1 The Sophisticated Employee’s Problem

We model the employee as an agent who suffers a potential utility loss of L ≥ 0 at the

beginning of each period until she takes some action. In our particular application, the

relevant action is opting out of the 401(k) default contribution rate and moving to a (per-

sonally) preferred contribution rate. This action entails an immediate transactions cost

which is a random variable whose density function f(c) is continuous with support [c, c̄]

(where 0 < c < c̄).18

In every period, the agent first experiences a flow loss of L, and then she draws a cost c

from the transaction cost distribution. (We assume costs are independent across periods.)

She then decides whether to take action. If she takes action, she incurs an immediate cost

of c but incurs no further flow losses. If she does not take action, she faces another loss of

L at the beginning of the next period, and the game continues. In the 401(k) enrollment

context, L represents the net disutility per period due to either oversaving or undersaving at

17In reality, any institution with default-setting power may have complex motives that extend beyond
maximizing social welfare.
18When c̄ = ∞, much of the same analysis goes through with technical adjustments. If the distribution

of c has a finite mean, the results are very similar, but active decisions (discussed in Section 4.3) must be
treated as a separate option rather than an extreme default. If the distribution is sufficiently fat-tailed that
the mean of the cost distribution is infinite, then active decisions are no longer a candidate for the optimum,
since they impose an infinite average cost.
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the default contribution rate (relative to her personal optimal contribution rate). We assume

for simplicity that L is constant over time.

The agent has quasi-hyperbolic preferences (Phelps and Pollak 1968, Laibson 1997): she

has a long-term discount factor δ and an additional short-term discount factor β, where

β, δ ∈ (0, 1]. Thus, if her utility in periods 0, 1, 2, . . . is u0, u1, u2, . . ., then her intertemporal
utility from the point of view of self t is Ut = ut+ β(δut+1+ δ2ut+2+ δ3ut+3+ · · · ). If β < 1,

this gives rise to dynamic inconsistency. The agent’s behavior is modeled as an extensive-

form game among the various period-t selves, for all t ≥ 0. The period-t self’s payoff is Ut.

We assume for now that the agent is a sophisticated quasi-hyperbolic discounter, meaning

that the values of β and δ are common knowledge among the various selves.

In any strategy profile, we can define the payoff of the period-t self if she chooses not to

take action.19 It is then clear that she will take action if and only if she draws a cost c less

than this payoff. That is, the strategy in each period is to determine a cutoff cost c∗, and

take action if and only if c < c∗. We confine our analysis to stationary equilibria, where the

cutoff c∗ is the same in each period. In the exposition below, we defer most proofs to the

appendix.

Proposition 1 The agent’s game has a unique stationary equilibrium:

• if L ≤ c(1− δ)/βδ, then c∗ = c (the agent never acts);

• if L ≥ c̄/βδ −E(c), then c∗ = c̄ (the agent acts immediately no matter what the cost);

• otherwise, c∗ is the unique solution to the equation

c∗ = βδ (L+E(c | c < c∗)P (c < c∗) + (c∗/β)P (c > c∗)) . (1)

In fact, one can show that if β is not too low, this is the only equilibrium of the game;

there are no non-stationary equilibria. The appendix contains some further discussion.

We are interested not only in the agent’s behavior but also in the resulting welfare

consequences. We take as our normative welfare measure the expression u0+δu1+δ
2u2+· · · ,

the stream of losses as discounted with the exponential discount factor δ. Let φ denote the

19We only study Markov strategies–in other words, strategies that depend only on payoff-relevant infor-
mation. In particular, this excludes equilibria in which the agent’s period t strategy depends on the costs
drawn in earlier periods.

15



expectation of this value.20 If the worker’s first cost draw is less than c∗, then her total

realized loss is c; otherwise, she incurs an expected loss of L + φ starting from the next

period. So her expected total loss satisfies

φ = E(c | c < c∗)P (c < c∗) + δ(L+ φ)P (c > c∗),

implying that

φ =
E(c | c < c∗)P (c < c∗) + δL · P (c > c∗)

1− δP (c > c∗)
. (2)

When c∗ = c, we have φ = Lδ/(1− δ); when c∗ = c̄, we have φ = E(c). The intermediate

region is of most interest.

We summarize some simple comparative statics on c∗ and φ. We assume that δ and the

distribution of c are given, and consider variation in β and L.

Proposition 2 1. In the region where c < c∗ < c̄, c∗ is strictly increasing in L and β.

2. φ is weakly decreasing in β.

3. If β = 1, then φ is weakly increasing in L. However, if β < 1, then there exist values

of L for which φ > E(c).

4. If δ = 1 and β is sufficiently low, then φ ≥ E(c) for all L 6= 0.

For time-consistent agents (β = 1), a higher flow loss L always implies a weakly higher

expected total loss φ. However, agents with β < 1 will set a lower action threshold c∗ than

agents with β = 1, and thus will take longer to act on average. We think of this incremental

delay as procrastination. Part 2 of the preceding proposition shows that procrastination

leads to lower welfare. In particular, Part 3 shows that there exist some values of L such

that the agent’s expected losses are larger than the average transactions cost. This implies

that an agent facing such an L would actually be better off if L were increased to the point

that she would be motivated to take action immediately. Part 4 gives a stronger result:

when δ = 1 and time-inconsistency is sufficiently strong, the agent is always better off being

forced to act immediately if he is not already at his optimum.

20To motivate this long-run perspective, it is enough to assume that regulations established by the planner
in period t take effect in period t+1. Then every worker at every point in time will want the planner to set
the policy that minimizes φ.
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For “reasonable” shapes of the transactions cost distribution, the total expected loss φ is

a single-peaked function of L when β < 1, rising for low L and then falling, but this is not

always true.21

To illustrate Proposition 2, Figure 7 graphs the expected total loss φ as a function of L

for various parameter sets in the case where c is uniformly distributed. When L is close to

zero, the expected loss is always increasing in L. When L is sufficiently large, the worker

will always immediately opt out of the default at any cost (c∗ = c̄) and never incur any flow

losses. Thus for large L, the total loss is E(c), which is independent of L; this is why the

graphs flatten out on the right.

When β = 1 (the left graph in Figure 7), φ is always weakly increasing as L moves away

from zero; time-consistent workers are always weakly better off with a smaller flow loss.

But when β < 1 (the middle graph in Figure 7), there is an intermediate region in which

φ(L) > E(c) (part 3 of Proposition 2). Workers in the “hump” of the loss function would be

better off if L were much larger. A larger flow loss is a kick in the pants that causes workers

to overcome procrastination.

When L is sufficiently close to (but not equal to) 0, never opting out of the default will

be the efficient choice when δ < 1. For these employees, even if they were perfectly time-

consistent, the perpetual stream of losses would not be serious enough to warrant incurring

the opt-out cost. In this region, φ increases linearly with L. The region vanishes as δ → 1

or c → 0. In the case δ = 1, if β is sufficiently low (the right graph in Figure 7), then

all employees except those at L = 0 are made weakly better off by being forced to act

immediately; this is part 4 of Proposition 2.

4.2 The Planner’s Optimization Problem

We now describe the problem of a social planner. Suppose that each worker has a private

optimal savings rate s. Over the population of workers, s has some distribution with density

g(s) and compact support [s, s̄]. Workers who prefer not to be enrolled in the 401(k) have

s close to 0, or s < 0 if they would like to dissave. The planner sets a default savings rate

21A necessary and sufficient condition for φ to have this shape is that β < 1 and either the equation
c∗f(c∗) = P (c > c∗)/(1 − β) has exactly one solution in (c, c̄), or else it has no solution and δ < 1. This
can be verified using the computation of dφ/dc∗ given in the proof of Lemma 7 in the appendix, and by the
observation that when δ < 1, φ is always increasing for sufficiently small values of L where the agent never
opts out. In particular, the condition is satisfied when c is uniformly distributed and β is not too low.
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d. Each worker would like to be at her optimal savings rate s and suffers a utility loss L for

each period in which she remains at the default d if s 6= d. Workers probabilisticly opt out

of the default and set their savings rate to their personal optimum s, according to the model

described in the previous section.

We assume that L depends only on the difference ∆ = s− d. Let L = l(∆), and assume

• l is continuous;

• l(∆) is decreasing on (−∞, 0) and increasing on (0,∞);

• l(0) = 0, and l→∞ as ∆→ ±∞.

We assume for simplicity that all workers have the same (β, δ) and distribution of trans-

actions costs; only s varies across workers. We can unambiguously write the individual

worker’s expected total loss as φ(l(s − d)), which we more succinctly call Φ(s − d). If the

default is sufficiently far outside of [s, s̄], then all workers are guaranteed to opt out of the

default immediately. Such a default is equivalent to an active-decision regime, where workers

are required to choose their optimal savings rate immediately.

These additional assumptions on L make the model of the individual employee opera-

tional enough that we can check if it fits the data reasonably well. We had assumed that

each individual’s L is time-invariant. If L = l(∆) and the default d is fixed, then the opti-

mal savings rate s must also be fixed. This is consistent with Figure 5 and Table 3, which

showed that the contribution rate employees choose when forced to immediately state their

preference is similar to the contribution rate they would have eventually chosen under stan-

dard enrollment–implying that the optimal savings rate shortly after hire is similar to the

optimum at higher tenures.

The individual employee model also predicts that as L increases, the average time to

opting out decreases. Figure 8 shows that the data support this prediction. In the standard-

enrollment cohort — i.e. the case d = 0 — the mean days between hire and enrollment

decreases with s (the contribution rate chosen by the worker when they enroll), and hence

with s− d.

The planner’s problem is to choose d to minimizeZ s̄

s

g(s)Φ(s− d) ds. (3)
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Compactness ensures an optimum exists. Importantly, we are assuming that the planner

cannot observe individuals’ optimal savings rates and only knows the density function g(s).

Otherwise, the planner could simply default each employee into her own optimal savings rate

s.

In the simple case where the optimal savings rate s is uniformly distributed, the planner’s

optimization problem is to minimize the integral of Φ from s− d to s̄− d – that is, to pick

out the “window” of width s̄ − s in which the integral of Φ is lowest. The position of the

window is determined by d. For more general distributions of s, the problem is similar, but

now different parts of the window may be weighted differently.

As with the first part of our model (the employee’s decision), we have described the prob-

lem of optimal defaults in the context of 401(k) plans, but a similar setup could be applied

to any context in which a planner must choose a default. It is also worth mentioning that

the default-setting problem interacts with the employee’s problem only through the function

φ, whose relevant qualitative features are summarized in Proposition 2. In particular, we

will study how the value of β affects the optimal choice of default, but our results will not

depend on the details of how the employee’s behavior is modeled. For example, if β were

a parameter describing status quo bias (Kahneman, Knetsch, and Thaler, 1994; Samuelson

and Zeckhauser, 1988) rather than discounting, similar results would obtain.

4.3 Optimality of Active Decisions

Our analysis can be used to determine the optimality of an active-decision regime. Since the

aggregate welfare loss from such a regime is E(c), the question boils down to whether there

exists d so that (3) is less than E(c).

There are five parameters in our model: the discounting parameters β, δ; the loss func-

tion l; and the distributions of transactions costs and optimal savings rates (f and g, re-

spectively). The following two propositions state that regions of the parameter space where

active decisions are optimal tend to be regions where time-inconsistency is stronger.

Proposition 3 If active decisions are optimal at some value of the parameters, then if β is

lowered (and everything else remains the same), active decisions are still optimal.
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Proof. The statement that active decisions are optimal means that, for every choice of d,Z s̄

s

g(s)Φ(s− d) ds ≥ E(c). (4)

By Proposition 2, when β decreases, Φ(s − d) can only increase, so the left side of (4) can

only increase, and the inequality stays true.

Proposition 4 Hold δ, f,and l fixed. If β is sufficiently close to 1, then for any distribution

of optimal savings rates, active decisions are never optimal.

An intuitive companion result would be that whenever β is low enough, active decisions

are always optimal. This is true if δ = 1. However, if δ < 1, never opting out may be

optimal for agents if the default is already very close to their s. Hence, if the population is

highly concentrated near one point, it may be optimal to make that point the default rather

than forcing everybody to opt out immediately. The next proposition states these results

formally.

Proposition 5 Fix f, l, and δ.

1. Suppose δ = 1. If β is sufficiently low, then active decisions are always optimal.

2. Suppose δ < 1. If s̄ − s is sufficiently small, then the optimal default will always lie

between s and s̄ (so the optimum is not active decisions).

We will sometimes refer to defaults d ∈ [s, s̄] as internal defaults.
In the case where δ < 1, it is difficult to be more precise about whether or not active

decisions are optimal; we need some parameter that measures, in the relevant way, how

homogeneous the population’s optimal savings rates s are. If we impose the structural

restriction that s is uniformly distributed–an assumption we will maintain in the next

section–then we can be more specific:

Proposition 6 Fix f , l, and δ < 1. If s is uniformly distributed, then there exists a bound

w∗ with the following property: when β is sufficiently low, active decisions are optimal when

s̄− s > w∗, and an internal default is optimal when s̄− s < w∗.
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The message of these last two propositions is that when β is low, active decisions will

typically be optimal, except when preferences are concentrated.

When active decisions are not optimal, there typically is a range of different optimal

default regimes. In order to give an explicit description of these regimes that maps intuitively

into 401(k) enrollment mechanisms used in practice, we need to impose more structure on

the model. We do this in the next subsection.

4.4 Characterizing Optimal Default Policies

We now assume that transactions costs are uniformly distributed on the interval [c, c̄], and

optimal savings rates are uniformly distributed on [s, s̄]. This puts parametric structure on

f and g. For the loss function l, we assume l(∆) = κ ·∆2, where κ > 0 is some constant.22

Finally, we assume for the remainder of this section that δ = 1.23

In this case, we can describe the shape of the expected total loss function Φ. The function

is symmetric around ∆ = 0 because of the functional form assumption on l(∆). Two other

properties are stated in the following lemma.

Lemma 7 Under the assumptions of this section,

• If 2− c̄/c < β < 1, there exist 0 < ∆m < ∆̄ such that Φ(∆) is increasing on [0,∆m],

decreasing on [∆m, ∆̄], and constant at E(c) = (c+ c̄)/2 on [∆̄,∞].

• If β ≤ 2− c̄/c, then there exists ∆̄ such that Φ(∆) is decreasing on (0, ∆̄] and constant

at E(c) on [∆̄,∞].

The explicit values are given in the appendix. Figure 9 graphs Φ for three sets of para-

meter values. (Ignore the shading in the figure for now.) When β = 1 (the left panel), Φ

is (weakly) monotonically increasing in |∆|; this is immediately given by Proposition 2. For
“typical” parameter values when β < 1, Φ has the two humps shown in the middle and right

22In firms that match employee 401(k) contributions up to a threshold, the utility-loss function may be
kinked at this threshold (which may or may not coincide with the worker’s optimum). In this case, our
analytically convenient loss function is unrealistic.
23When δ < 1, the results are similar, but for certain parameter values there may exist a fourth type of

default aside from the three mentioned in Proposition 8. We avoid this case because it makes the algebra
significantly more complex without offering new economic insights.
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panels. If the range of transactions costs is small and β is low, then Φ is strictly decreasing

as ∆ moves away from 0, and there is only one hump. (This case is not shown in Figure 9.)

It follows by continuity that there will be at most one value ∆e ∈ (0, ∆̄) such that
Φ(∆e) = E(c). (The value of ∆e is given in the appendix.) The middle panel of Figure 9

is an example where such a ∆e value does exist in the inner region of the right hump (with

a symmetric −∆e value in the inner region of the left hump). If β is sufficiently low, then

lim∆→0Φ(∆) ≥ E(c), and no such ∆e will exist, as in the right panel of Figure 9.

The following proposition shows that when β < 1, we can classify the planner’s solution

into one of three cases.

Proposition 8 If β < 1, then the optimal default is one of the following three types:

• the center default d = (s+ s̄)/2;

• an offset default, such that s− d = −∆e while s̄− d > ∆̄ (or its symmetric equivalent,

s̄− d = ∆e and s− d < −∆̄);

• active decisions, which correspond to any d with s− d ≥ ∆̄ or s̄− d ≤ −∆̄.

A detailed proof is in the appendix, but a sketch is as follows. We first show that if

0 < a < b and Φ(a) = Φ(b), then |Φ0(b)| > |Φ0(a)|; that is, the outer portion of the
humps is steeper than the inner portion. Next, the first-order condition for d is simply that

Φ(s−d) = Φ(s̄−d), leading to a finite number of candidate optima. Finally, using the above
fact about the slope of Φ on the humps, we show that any d outside the three classes cited

would fail to satisfy the second-order condition.

The possible optimal defaults correspond to the different panels of Figure 9. The area

of the shaded regions equals the total population welfare loss from the chosen default, and

their width equals s̄− s. The left panel shows the center default, which sets the default at

the mean of the population s distribution. The middle panel shows the offset default, which

in this case is to the left of the mean s (there is a symmetric offset default to the right of the

mean s). The offset default is placed so that workers with the lowest optimal savings rate,

s, opt out with some probability less than 1 in the first period, but procrastination causes

their expected welfare loss to exactly equal the expected welfare loss if they were forced to

opt out with certainty in the first period. The offset default also causes workers with the
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highest optimal savings rate, s̄, to opt out with certainty in the first period because the

default is far away from their optimum. If s̄ − s is not large enough for the two extremes

of the population to act in this manner, then the offset default is not a candidate for the

optimal default. Finally, the right panel of Figure 9 shows an active-decision regime, where

the default is set so far outside of the support of s that all individuals opt out of the default

immediately and incur expected welfare losses of E(c).

Figure 10 shows how the optimal default depends on two parameters in our model: β

(the time-inconsistency factor) and s̄ − s (the heterogeneity of optimal savings rates). We

discuss each region in turn.

First consider the southeast region of Figure 10. In this region, employees have weak

dynamic inconsistency problems and relatively homogeneous savings rates. The socially

optimal solution here is a center default. This puts all employees in the middle of the graph

of the function Φ, where the resulting losses are low.

As β falls, the humps in the graph of Φ grow, and eventually, a center default puts so

many workers in the humps that it is no longer optimal. Once β is low enough, the losses

from procrastination are large relative to the option value of waiting for a low cost, and

employees are better on average if they are forced to opt out of the default immediately.

Thus, active decisions are optimal in this region.

When β is high–so that the humps are not too large–and employees are very hetero-

geneous, the best solution is an offset default, which puts employees into the valley between

the humps, one hump, and a plateau, rather than in both humps, the valley, and possibly the

plateaus, as would be the case with a center default. Under an offset default, some employees

(but not all) are so far from their optimal savings rate that they are compelled to opt out of

the default immediately. The offset default is thus a compromise between the active-decision

and center solutions. By using an offset default, the planner beneficially moves population

mass from one of the humps to a plateau, while still letting those with optimal rates near

the new default exploit the option value of waiting.

The following proposition shows that the regions of Figure 10 generically have the shape

shown.

Proposition 9 Fix κ, c, and c̄. Then there exist values 0 < βac < βoc < 1, and a function

w : (βac, 1]→ (0,∞], with the following properties:

1. for β ≤ βac, active decisions are always optimal;
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2. for βac < β < βoc, active decisions are optimal when s̄− s > w(β) and a center default

is optimal when s̄− s < w(β);

3. for βoc < β < 1, an offset default is optimal when s̄− s > w(β) and a center default is

optimal when s̄− s < w(β);

4. w is increasing on (βac, βoc].

The boundaries of the regions in Figure 10 are, in general, difficult to describe explicitly.

Notice however that the boundary between the active-decision and offset default region is

a vertical line. This is because, for both of these policies, some of the workers are in the

plateaus of the function Φ. If the range of s widens slightly, the marginal employees (at the

boundary of the support of ∆) will be in the plateau under either regime, so increasing the

range of s cannot make one regime more attractive than the other.

The case β = 1 is an exception. In this case, the function Φ has no humps. When the

range of savings rates is low, a center default is optimal. When savings rates are wide enough

to cover the whole valley in the graph of Φ, then any default that is sufficiently far inside

the interval [s, s̄] to take full advantage of the valley will be optimal. More precisely:

Proposition 10 Fix κ, c, and c̄, and assume β = 1. Let ∆̄ be the smallest positive value

with Φ(∆̄) = E(c). Then

• if s̄− s ≤ 2∆̄, then the center default d = (s̄+ s)/2 is the unique optimum;

• otherwise, the set of optimal defaults consists of all d ∈ [s+ ∆̄, s̄− ∆̄].

We should also mention that although we have focused on β and s̄− s as the parameters

of interest, we also get information about the effect of κ, the flow loss coefficient, for free. It

is easy to check that scaling κ by some positive factor λ has exactly the same effect on the

planner’s optimization problem as scaling s, s̄, and d all by
√
λ.

4.5 The Case of Naive Workers

We briefly return to our more general problem, without the distributional assumptions of the

Section 4.4, to discuss an extension. Our analysis to this point has assumed that workers are

sophisticated and understand their own time-inconsistency. O’Donoghue and Rabin (1999a,
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b) have considered naive and partially naive agents. Such agents believe their future selves

will act with some short-term discount factor bβ > β.24 In the case of total naiveté, bβ = 1,
agents simply plan a strategy for all future periods that maximizes their current self’s utility

and then best-respond to this strategy in the current period, ignoring the fact that future

selves will not want to follow the strategy that was naively forecast for them.

As one would expect, for a fixed β, naive agents do worse than sophisticated agents. The

more naive the agent is, the less she expects to lose in the future, and the lower she sets

her cutoff cost threshold c∗, which in turn makes her actual losses even higher. The next

proposition states this formally.

Proposition 11 In the employee model, if f, β, δ, and L are held fixed, then c∗ is (weakly)

decreasing in bβ, and φ is (weakly) increasing in bβ.
This leads immediately to the following corollary for the social planner:

Corollary 12 If active decisions are optimal at given parameter values, then they remain

optimal when bβ is increased.
Proof. Exactly the same argument as for Proposition 3.

In the extreme case δ = 1, naiveté has some perverse consequences. In particular,

sophisticated agents will always set c∗ > c (unless their flow loss L is zero). However, naive

agents with L sufficiently close to 0 will never bother taking action. They expect themselves

to take action at some point in the future, and they therefore see no need to act now even

if the cost is low.

Proposition 13 Fix f, β, bβ. Assume δ = 1. For all sufficiently small L, the agent will set
c∗ = c.25

Since δ = 1, the total loss φ incurred will be infinite. (This phenomenon is also discussed

in O’Donoghue and Rabin 1999b.)

This implies that the analysis of our special case (c and s uniformly distributed) is

quite different when employees are naive. In this case, an internal default is never optimal

24More precisely, for the equilibrium problem to be well-defined, we must assume that for each t, the
period-t self believes all future selves are sophisticated (bβ, δ)-discounters. We also continue to assume that
the agent expects her future selves to follow a stationary equilibrium.
25Since f is a continuous density function, setting c∗ = c implies that the agent never acts.
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because it causes infinite losses for some agents (unlike active decisions). This result may

seem artificial since δ = 1 is an extreme case in our model. But even if we assume δ < 1,

so that the losses are finite, similar reasoning will show that internal defaults are still not

efficient when δ is close enough to 1. In some cases, the optimal default is neither internal

nor active decisions, but a default outside the support of s which does not induce everybody

to opt out immediately.

4.6 Delayed Active-Decision Regimes

One more variation we have considered, and which we will discuss only briefly, is that of

delayed active decisions. In such a regime, the agent knows in period 0 that she must act

(and incur the corresponding cost E(c) on average) in period T if she has not already acted

before period T . This deadline, T, may be infinite or some finite, nonnegative integer. T = 0

is simply the active decision regime that we have already analyzed (the employee must act in

the initial period). The employee’s problem in the finite-T case is analogous to the infinite-T

case.

From the social planner’s point of view, a delayed active-decision regime means that the

planner sets both a default savings rate d and a deadline T . The active-decision regime at

our study company might be described as such a regime, since employees were given 30 days

to turn in their forms, rather than being required to turn them in immediately upon joining

the company. Intuitively, these regimes have the appeal that they offer some of the option

value of waiting without allowing procrastinators to incur excessively large losses.

We do not have a general theory of the planner’s solution in situations where T can be

positive but finite. However, we do have one result which is surprising in light of the intuition

described in the last paragraph:

Theorem 14 If costs are uniformly distributed, and (β, δ) is homogeneous over the popula-

tion, then delayed active-decision regimes with finite positive T are never better than T =∞
regimes.

This holds for any distribution of optimal savings rates. In fact, this holds even if the

default d is held fixed; that is, for any distribution of L over the employees (where each

individual’s L is held fixed), the socially optimal value of T is either ∞ or 0.
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The proof is fairly involved, so we omit it here. The key step is that, for each individual,

φT (L), the agent’s loss under a T -period regime, converges to φ(L) as T → ∞, but the
convergence is faster for individuals with φ(L) > E(c) than for those with φ(L) < E(c).

That is, those individuals who benefit from active decisions (“inefficient” types) converge

faster than those who are better off being left to act on their own (“efficient” types). So

suppose that T = 0 is better than T =∞ for aggregate welfare, so that the inefficient types

outweigh the efficient types. Then, for any positive T , the differential rates of convergence

imply that the losses to the inefficient types (relative to T = 0) exceed the gains to the

efficient types, and no such T can be better than T = 0. On the other hand, suppose T =∞
is better than T = 0 for welfare, so that the efficient types outweigh the inefficient types.

Then, for any finite T , the losses to the efficient types (relative to T = ∞) outweigh the
gains to the inefficient types, and no such T can be better than T =∞.

5 Model Discussion

We now link our theoretical results to actual institutions. We classify actual 401(k) en-

rollment regimes into three types: a standard enrollment 401(k), an automatic enrollment

401(k), and an active decision 401(k).26

Under a standard enrollment 401(k), employees have a default savings rate of zero and are

given the option to raise this savings rate. Under an automatic enrollment 401(k), employees

have a default savings rate that is strictly positive and are given the option to change that

savings rate (including opting out of the plan altogether). Under an active decision 401(k),

employees face no default and instead must affirmatively pick a savings rate (which includes

the option of saving nothing at all).

In the analysis of our model–see Section 4.4–we found three types of optimal regimes:

an offset default, a center default, and active decision. The standard-enrollment 401(k) is an

example of an offset default, since a 0% savings rate lies at one end of the optimal savings-

rate distribution.27 The automatic enrollment 401(k) may either be an offset default or a

26Contribution escalation (see Thaler and Benartzi, 2004), in which the savings rate increases automatically
with some periodicity, is another way in which automatic enrollment is sometimes implemented, and is also
included as an opt-in feature in some standard-enrollment 401(k) plans; we do not incorporate the additional
complexity of a potentially increasing savings rate here.
27The standard-enrollment default savings rate is on the boundary of the action space, but this location

is consistent with the concept of an offset default if savings preferences cross the boundary because some
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center default, depending on where the default is set.28 Finally, the active decision 401(k)

of the firm studied in the first half of this paper translates directly into the active decision

regime derived in our model.

When we calibrate our stylized model we find that active decision regimes are optimal

for β values below 0.6 in the sophisticated case and for β values below 0.9 in the naive case.

These are plausible values for β,29 so the calibrations imply that active decisions might be

socially optimal institutions.

However, such calibrations are only suggestive. To make a compelling quantitative argu-

ment we would need a model that was less stylized and more closely tied to deep preference

parameters. Hence, a quantitatively meaningful calibration exercise is beyond the scope of

the current paper. For such a calibration, we would need a way of estimating the flow losses

from sticking to the default. We also need to estimate the density of optimal savings rates,

g(s).

Qualitatively, however, we can conclude that three factors robustly strengthen the case

for active decision enrollment: greater present bias (lower β), greater naivite, and greater

heterogeneity in savings preferences

6 Conclusion

This paper analyzes the active-decision alternative to default-based 401(k) enrollment processes.

The active-decision approach forces employees to explicitly choose between the options of

enrollment and non-enrollment in the 401(k) plan without advantaging either outcome.

We find that the fraction of employees who enroll in the 401(k) three months after hire is

28 percentage points greater under an active-decision regime than under a standard opt-in en-

rollment regime. The active-decision regime also raises average saving rates and accumulated

401(k) balances. The distribution of new employees’ savings rates under active decisions is

similar to the distribution it takes 30 months to achieve under standard enrollment.

households would like to dissave.
28Profit Sharing/401(k) Council of America (2001) reports that three-quarters of companies with automatic

enrollment set their default contribution rate at 2% or 3% of pay, which is much lower than the 7% average
401(k) savings rate selected by employees when they make an affirmative choice (Holden and VanDerhei,
2001). However, over the next few years the distribution of default savings rates under automatic enrollment
will rise as a result of the passage of the Pension Protection Act.
29See Angeletos et al (2001), and Laibson, Repetto, and Tobacman (2007) for estimates of β.
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We also present a general model of procrastination which describes the employee’s choice

of a 401(k) contribution rate. Using this framework, we characterize the socially optimal

401(k) regime. The active-decision regime is optimal when workers have relatively heteroge-

neous savings preferences and a relatively strong tendency to procrastinate.

An active-decision regime has both pros and cons. On the plus side, it is inexpensive

to implement, it eliminates costly procrastination, and it pushes heterogeneous workers to

choose personally optimal contribution rates. Requiring individuals to make an active de-

cision represents an alternative to the paternalism associated with a planner’s choice of a

default. Active-decision interventions are designed principally to force a decision-maker to

think about a problem. This is still a type of paternalism, but it does not presuppose a

leading answer to the decision problem.30

On the con side, active decisions force workers to engage in a costly decision/implementation

process that might be inefficient if a single default would have done a good job for most

workers. Likewise, active decisions may force financially unsophisticated workers to make

uninformed decisions.

Active-decision interventions will be useful in situations where consumer heterogeneity

implies that one choice isn’t ideal for everyone (e.g., the selection of a health plan or au-

tomobile insurance31) and firms or governments feel uncomfortable implementing employee-

specific defaults (e.g., if such employee-specific defaults are viewed as “advice” with fiduciary

consequences).32 In contrast, defaults will have a natural role to play in cases where a large

degree of homogeneity is appropriate and/or household decision-makers have limited exper-

tise (e.g., portfolio allocation).33 Future research should explore active-decision experiments

in other domains and compare the relative efficacy of active-decision and default-based sys-

tems, as well as hybrid systems which integrate their features.34

30We view active decisions as an example of libertarian paternalism (Sunstein and Thaler, 2003).
31The active-decision approach to purchasing automobile insurance is widely used. Drivers cannot, in

general, register their cars without obtaining insurance. But the government does not specify a default
insurance contract for drivers; rather, it requires drivers to obtain their own insurance–to make an active
decision. The model in the paper suggests that there is a good justification for this approach: there is likely
to be substantial heterogeneity in individual preferences over insurance policy types and companies.
32An example of an intriguing employee-specific default is a default savings rate that increases with the

employee’s age.
33See Benartzi and Thaler (2003) and Cronqvist and Thaler (2004) for evidence on poor asset allocation

choices.
34For instance, the contribution rate in a 401(k) could be an active decision and the asset allocation could

be a default.
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7 Appendix

7.1 The Sophisticated Employee’s Problem

We are concerned mainly with identifying all stationary equilibria of the game, where a fixed

cutoff c∗ is used in all periods. As in the main text, we let φ be the expected total utility

loss over all periods, discounted using the exponential factor δ only. Thus φ is given by the

solution to the Bellman equation, namely expression (2), which we repeat here:

φ = (E(c|c < c∗)P (c < c∗) + δL · P (c > c∗))/(1− δP (c > c∗)).

(If c∗ = c and δ = 1, then we set φ =∞ for L > 0 and φ = 0 for L = 0.) The cutoff c∗ will

be chosen so that that the agent is indifferent between incurring transactions cost c∗ and

continuing to wait, except that c∗ is constrained to lie in the interval [c, c̄]. That is:

c∗ =

⎧⎪⎪⎨⎪⎪⎩
c if βδ(L+ φ) < c

βδ(L+ φ) if c ≤ βδ(L+ φ) ≤ c̄

c̄ if βδ(L+ φ) > c̄.

Now we can prove the proposition identifying the stationary equilibrium, which we restate

here.

Proposition 1 The agent’s game has a unique stationary equilibrium:

• if L ≤ c(1− δ)/βδ, then c∗ = c (the agent never acts);

• if L ≥ c̄/βδ−E(c), then c∗ = c̄ (the agent acts immediately no matter what the cost);

• otherwise, c∗ is the unique solution to the equation

c∗ = βδ (L+E(c|c < c∗)P (c < c∗) + (c∗/β)P (c > c∗)) . (5)

Proof. The cases of the proposition do not overlap, since c(1− δ)/βδ < c̄/βδ − E(c). (To

see this, note that c(1− δ)/βδ < E(c)(1− δ)/βδ ≤ E(c)/βδ −E(c) < c̄/βδ −E(c).)

When is c∗ = c an equilibrium? This cutoff produces losses of φ = δL/(1 − δ). This

is an equilibrium if and only if this value of φ gives βδ(L + φ) ≤ c, which is equivalent to

L ≤ c(1− δ)/βδ.
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Likewise, a cutoff of c∗ = c̄ yields φ = E(c). This cutoff is an equilibrium if and only if

βδ(L+ φ) ≥ c̄, which is equivalent to L ≥ c̄/βδ −E(c).

Finally, any given value of c∗ in the middle is an equilibrium if and only if c∗ = βδ(L+φ),

where φ is given by (2). This equation expands to c∗ = βδ(L+ E(c|c < c∗)P (c < c∗))/(1−
δP (c > c∗)). Clearing the denominator and rearranging gives (5).

For each c∗ ∈ [c, c̄], let

g(c∗) = βδ(L+E(c|c < c∗)P (c < c∗) + (c∗/β)P (c > c∗)).

To complete the existence-uniqueness proof, we need to check that equation (5), which states

that c∗ = g(c∗), has exactly one solution on (c, c̄) if c(1 − δ)/βδ < L < c̄/βδ − E(c), and

none otherwise.

The function g is differentiable:

g0(c∗) = βδc∗f(c∗)(1− 1/β) + δP (c > c∗).

In particular, g0(c∗) ≤ δP (c > c∗) ≤ 1, with equality possible only if c∗ = c and δ = 1. This

implies that g(c∗) = c∗ has one root in (c, c̄) if g(c) > c and g(c̄) < c̄, and no root otherwise.

Since g(c) = βδL+ δc and g(c̄) = βδ(L+E(c)), the result follows.

What happens if we no longer limit ourselves to stationary equilibria? There is now a

separate cutoff c∗t in each period t, and a separate total loss φt obtained by δ-discounting all

subsequent losses and viewing period t as the present. The value function then becomes

φt = E(c|c < c∗t )P (c < c∗t ) + δ(L+ φt+1)P (c > c∗t ),

and the indifference condition is c∗t = βδ(L + φt+1) (with the same truncation as before at

c and c̄). Combining these, we get c∗t = g(c∗t+1) (truncated to [c, c̄]), where g is the same

function as above. (There is some extra subtlety when c∗t+1 = c, which we omit here.)

If |g0(c∗)| < 1 for all c∗, except possibly at the endpoints c and c̄, then contraction

mapping theory tells us that the intersection of the images of the iterates g, g2, g3, ... consists

of a single point. All the c∗t lie in all of these images, so they are all equal to this point.

Hence, if g0 satisfies this condition, the only possible equilibrium is the stationary one.
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One can check that if

β > 1− min
c∗∈[c,c̄]

δP (c > c∗) + 1

δc∗f(c∗)
,

then the condition on g0 is met, and so the stationary equilibrium is the only equilib-

rium. On the other hand, if β is too low, then there may be cyclical equilibria. The

no-cyclical-equilibria condition may or may not be met for “most” values of β, depending

on the distribution of c. For example, if c is uniformly distributed, the condition reduces to

β > 1 − 1/[δ(1 − c/c̄)], which holds for typical β if the range of transactions costs is wide

and δ is high.

We derive an important corollary to Proposition 1:

Corollary 15 The cutoff c∗ of the stationary equilibrium is a continuous function of β, δ,

and L, and it is differentiable except at the boundaries L = c(1−δ)/βδ and L = c̄/βδ−E(c).
The same holds for φ, except that it is discontinuous when δ = 1 and L = 0.

Proof. Continuity of c∗ at the boundary points is straightforward to check. Differentia-

bility of c∗ away from the boundary points is easily checked by writing out c∗ = g(c∗) and

differentiating implicitly with respect to each of the parameters (on which the value of g

depends). Continuity and differentiability of φ then follow from equation (2), except that

the denominator becomes zero when δ = 1 and c∗ = c (which occurs if and only if L = 0),

so we cannot infer anything there. Indeed, if δ = 1, we have a discontinuity at L = 0: we

have set φ = 0 for L = 0, but for any nonzero L, c∗ > c, so the agent will eventually act and

incur expected costs ≥ c.

Next, we prove our comparative statics on c∗ and φ.

Proposition 2

1. On the region where c < c∗ < c̄, c∗ is strictly increasing in L and β.

2. φ is weakly decreasing in β.

3. If β = 1, then φ is weakly increasing in L. However, if β < 1, then there exist values

of L for which φ > E(c).

4. If δ = 1 and β is sufficiently low, then φ ≥ E(c) for all L 6= 0.
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Proof. For part 1, use c∗ = g(c∗). If we hold c∗ constant but increase either L or β, then

g(c∗) increases. Since g(c∗) − c∗ is a decreasing function of c∗, the new value c∗∗ such that

g(c∗∗) = c∗∗ must be greater than c∗.

For part 2, first take equation (5) and differentiate implicitly with respect to β. This

gives us

∂c∗

∂β
=

δ(L+E(c|c < c∗)P (c < c∗))

1 + (1− β)δc∗f(c∗)− δP (c > c∗)
=

c∗(1− δP (c > c∗))/β

1− δP (c > c∗) + (1− β)δc∗f(c∗)
≤ c∗/β,

where the second equality comes from rearranging (5) and substituting into the numerator.

Now rearrange the indifference condition for c∗ to get φ = c∗/βδ − L, and differentiate

with respect to β:
∂φ

∂β
=

∂c∗/∂β

βδ
− c∗

β2δ
≤ 0.

Note that equality holds if and only if f(c∗) = 0. If f is zero on an interval within the

support of c, then φ will not be strictly decreasing in β.

For part 3, note that ∂φ/∂L = (∂c∗/∂L) /βδ − 1. If β = 1, then we can differentiate (5)
implicitly with respect to L to get ∂c∗/∂L = δ/(1− δP (c > c∗)) > 0. Therefore, ∂φ/∂L > 0.

However, if β < 1, then consider L = c̄/δ−E(c). For this L, at β = 1 we have φ = E(c).

As β falls, by part 2, φ will increase (and at least initially will strictly increase, since f(c∗) > 0

near c̄).

Finally, for part 4, pick β < minc∗(c
∗/E(c|c > c∗)). Since δ = 1, c∗ > c if L 6= 0 because

never acting leads to an infinite present value of losses. If c∗ = c̄ then φ = E(c). Otherwise,

the indifference condition gives

c∗ = β(L+ φ) ≤ c∗(L+ φ)/E(c|c > c∗),

or E(c|c > c∗) ≤ L+ φ; hence

φ = E(c|c < c∗)P (c < c∗) + (L+ φ)P (c > c∗)

≥ E(c|c < c∗)P (c < c∗) +E(c|c > c∗)P (c > c∗) = E(c).

(Incidentally, the sufficient condition β < minc∗(c
∗/E(c|c > c∗)) is interesting. It implies

that if the range c̄−c of possible transactions costs is small compared to the overall magnitude
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of the costs, then even very slightly present-biased agents will do worse on their own than

under a regime where they are forced to act immediately.)

We will use the following couple of facts later:

Corollary 16 If L > c̄/δ −E(c), then φ(L) ≥ E(c).

Proof. Exactly as for part 3 of Proposition 2.

Proposition 17 As β → 0 (and all other parameters stay constant), c∗ → c. As L → 0,

c∗ → c also.

Proof. Both statements are obvious if δ < 1, since then L < c(1− δ)/βδ if β or L becomes

low enough. So assume δ = 1. For the first statement, rewrite (5) as

c∗ = g(c∗) = β(L+E(c|c < c∗)P (c < c∗)) + c∗P (c > c∗)

When c∗ is close to c, this equation can be uniquely solved for β with 0 < β < 1, so c∗ is the

cutoff used for this β. As c∗ → c, β → 0. For the second statement, rewrite (5) again as

(c∗ − βE(c|c < c∗))P (c < c∗) = βL

As L → 0, we must have either c∗ − βE(c|c < c∗) → 0 or P (c < c∗) → 0. Either of these

implies c∗ → c.

7.2 Optimality of Active Decisions

In this section we prove three propositions describing whether or not active decisions are

optimal in limiting cases.

Proposition 4 Hold δ, f, and l fixed. If β is sufficiently close to 1, then for any distribution

of optimal savings rates, active decisions are never optimal.

Proof. First, let∆, ∆̄ be points in the “flat” parts of the graph of Φ(∆), so that Φ(∆) = E(c)

whenever ∆ < ∆ or ∆ > ∆̄. When β = 1, we knowZ ∆̄

∆

(Φ(∆)−E(c)) d∆ < 0,
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since Φ(∆) = φ(l(∆)) is always ≤ E(c), with strict inequality when ∆ is near zero. Using

Corollary 15, this integral is continuous in β. So for all sufficiently large β, the integral

remains less than 0. Focus attention on these β, and fix ∆, ∆̄ sufficiently far out to work for

all such β.

Take any such β, and consider an arbitrary distribution of optimal savings rates with

density function g. Consider the integralZ s̄−∆

s−∆̄

µZ s̄

s

g(s)[Φ(s− d)−E(c)] ds

¶
dd. (6)

By using the fact that the integrand is 0 below ∆ and above ∆̄, and changing variables from

(d, s) to (∆, s), we can rewrite the integral as

Z ∆̄

∆

Z s̄

s

g(s)[Φ(∆)− E(c)] ds d∆ =

Z s̄

s

g(s)

ÃZ ∆̄

∆

[Φ(∆)−E(c)] d∆

!
ds.

By choice of β, the value of the inner integral is negative.

Therefore, the value of the integral (6) is negative. So there must exist some value of d

for which the inner integral,
R s̄
s
g(s)[Φ(s− d)− E(c)] ds, is negative, which means precisely

that this value of d is better than active decisions.

Proposition 5 Fix f, l, and δ.

1. Suppose δ = 1. If β is sufficiently low, then active decisions are always optimal.

2. Suppose δ < 1. If s̄ − s is sufficiently small, then the optimal default will always lie

between s and s̄ (so the optimum is not active decisions).

Proof. The first item is immediate from part 4 of Proposition 2: that proposition says

active decision is best for each individual employee, so it is also socially optimal.

The second part essentially follows from the fact that the dip to Φ(∆) = 0 at ∆ = 0

is the lowest valley in the graph of Φ(∆). We state this more precisely as follows. For

L > 0, we easily see that φ(L) > 0. Continuity of φ means that it has a minimum on

the interval [c(1 − δ)/βδ, c̄/βδ − E(c)], which necessarily is positive; call it φ. Let L =

min{φ(1− δ)/δ, c(1− δ)/βδ}. The first quantity is the L that would generate losses φ if the
agent never opted out. The second quantity is the L above which the agent opts out with

some positive probability.
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L is in the region where the agent never opts out; φ is strictly increasing in L in this

region. Hence, for each L < L, and for all L0 > L, we have φ(L0) > φ(L). (If L0 starts at L

and increases, initially it lies in the region where c∗ = c and φ is increasing; then it is in the

region where the agent opts out with positive probability, but φ has a minimum of φ in this

region, which is greater than φ(L)).

Now, the assumptions on l imply we can choose ∆∗ such that l(∆) < L whenever |∆| <
∆∗. We claim that if s̄− s < ∆∗, then the optimal default lies inside [s, s̄].

Consider any default d < s. For each s, we have l(s − s) < L and l(s − d) > l(s − s).

Applying φ, we get Φ(s− d) > Φ(s− s). So the default d is strictly worse than a default of

s for any given s in our range; hence it is socially worse than a default of s. Likewise, any

default d > s̄ is strictly worse than a default of s̄. This completes the proof.

Proposition 6 Fix f, l, and δ < 1. If s is uniformly distributed, then there exists a bound

w∗ with the following property: when β is sufficiently low, active decisions are optimal when

s̄− s > w∗, and an internal default is optimal when s̄− s < w∗.

Proof. Define Λ(∆) = l(∆)δ/(1− δ). The function Λ is the “limit” of Φ as β → 0. (Indeed,

for any fixed∆, Φ(∆) = Λ(∆) when β is close enough to 0.) Consider all w with the following

property: there exists d such that
R w
0
Λ(s− d) ds ≤ wE(c). (That is, active decisions are not

optimal when s̄−s = w in the “β = 0” case.) Let w∗ be the supremum of all such w. Clearly

w∗ is finite. For example, choose ∆̃ such that Λ(∆) > 2E(c) when |∆| > ∆̃; then the average

of Λ on any interval of width greater than 4∆ is greater than E(c) (since Λ > 2E(c) on at

least half the interval), showing that w∗ < 4∆. On the other hand, the fact that Λ(∆)→ 0

as ∆→ 0 implies that w∗ > 0.

For each w < w∗, let d(w) be a value that minimizes
R w
0
Λ(s − d) ds. Continuity and

compactness arguments show that we can define d∗ = d(w∗) so that
R w∗
0

Λ(s − d∗) ds ≤
w∗E(c). Thus the average value of Λ on [−d∗, w∗ − d∗] is ≤ E(c). In fact, it must equal

E(c), or else we could widen the interval slightly, violating the definition of w∗. Similarly,

Λ ≥ E(c) at each endpoint of the interval, or else we could widen the interval and have the

average still be < E(c). It is clear from the shape of Λ that for any w < w∗, we can push

the ends of our interval inward to get an interval of width w where the average value of Λ is

< E(c).

Now let β be any value low enough that

• l(∆) < c(1− δ)/βδ when |∆| < w∗;
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• c̄/δ − E(c) < c(1− δ)/βδ.

Then Φ agrees with Λ on [−w∗, w∗], and has value ≥ E(c) outside this interval. (This

latter follows from the fact that φ is increasing on [0, c(1− δ)/βδ], and remains ≥ E(c) for

higher L by Corollary 16.)

So if w > w∗, there is no interval of width w on which the average of Φ is less than E(c).

(If there were such an interval, trim away the part of the interval outside [−w∗, w∗] and
expand the interval if necessary so that it includes 0. The average of Φ in the expansion is

less than its average in the trimmed region. This gives us a subinterval of [−w∗, w∗] having
width ≥ w∗ on which the average of Φ is less than E(c), which is impossible.)

And if w < w∗, then we have seen that there is a subinterval of [−d∗, w∗−d∗] ⊂ [−w∗, w∗]
on which Λ has average less than E(c). Since Φ agrees with Λ here, the result follows.

7.3 Characterizing Optimal Default Policies

As stated in the main text, we now study the special case in which c and s are both uniformly

distributed, l(∆) = κ∆2, and δ = 1. We first need a careful characterization of the shape of

the function Φ(∆).

Lemma 7 With the assumptions of the previous paragraph,

• If 2− c̄/c < β < 1, there exist 0 < ∆m < ∆̄ such that Φ(∆) is increasing on [0,∆m],

decreasing on [∆m, ∆̄], and constant at E(c) = (c+ c̄)/2 on [∆̄,∞].

• If β ≤ 2− c̄/c, then there exists ∆̄ such that Φ(∆) is decreasing on (0, ∆̄] and constant

at E(c) on [∆̄,∞].

Proof. It suffices to show the analogous statement for φ(L): if 2− c̄/c < β < 1, there exist

0 < Lm < L̄ such that φ(L) is increasing on [0, Lm], decreasing on [Lm, L̄], and constant at

E(c) on [L̄,∞]; if β < 2− c̄/c then there exists L̄ such that φ(L) is decreasing on (0, L̄] and

constant at E(c) on [L̄,∞]. Then ∆m =
p
Lm/κ and ∆̄ =

p
L̄/κ. Clearly we should set

L̄ = c̄/β −E(c), since φ is constant above this L̄.

We wish to compute dφ/dL for L < L̄. To do this, first rewrite equation (2) using the

indifference condition (5) for c∗, getting

φ = E(c|c < c∗)P (c < c∗) + (c∗/β)P (c > c∗). (7)
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Incidentally, (7) holds when δ < 1 as well. We can treat this as an expression for φ in terms

of c∗ only. The derivative is

dφ

dc∗
= c∗f(c∗)(1− 1/β) + P (c > c∗)/β =

c∗(1− 2/β) + c̄/β

c̄− c
.

This is decreasing in c∗, zero at c∗ = c̄/(2− β) < c̄ (hence negative at c∗ = c̄), and positive

at c∗ = c if and only if c < c̄/(2− β), which is equivalent to β > 2− c̄/c.

Now
dφ

dL
=

dφ

dc∗
· dc

∗

dL
,

and c∗ is increasing in L (for L < L̄) by Proposition 2. So dφ/dL has the same sign as

dφ/dc∗, which was computed in the previous paragraph. It follows that if β > 2− c̄/c then

φ is increasing in L up until the (unique) value for which c∗ = c̄/(2 − β) (this value exists

by Corollary 15 and Proposition 17), and decreasing for higher values of L; if β ≤ 2 − c̄/c

then φ is always decreasing in L.

From this proof we can directly calculate the values of ∆̄ and ∆m. First, from L̄, we have

∆̄ =

r
c̄/β − (c̄+ c)/2

κ
.

Next, Lm is the value for which c∗ = c̄/(2− β) (if it exists). We can invert equation (5) to

get

L = (c∗/β −E(c|c < c∗))P (c < c∗). (8)

Plugging in c̄/(2−β) for c∗, and using E(c|c < c∗) = (c+c∗)/2 and P (c < c∗) = (c∗−c)/(c̄−c)
for the uniform distribution, we get

Lm =
(c̄− βc)(c̄− (2− β)c)

2β(2− β)(c̄− c)
⇒ ∆m =

s
(c̄− βc)(c̄− (2− β)c)

2β(2− β)(c̄− c)κ
.

We can also calculate the value of ∆e, the value below ∆̄ for which Φ(∆e) = E(c), if it

exists. We do this by finding Le such that φ(Le) = E(c). Note that at this Le, (7) implies
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c∗/β = E(c|c > c∗). Using E(c|c > c∗) = (c̄+ c∗)/2 gives c∗ = βc̄/(2− β). Then (8) gives

Le =
βc̄− (2− β)c

2(2− β)
⇒ ∆e =

s
βc̄− (2− β)c

2(2− β)κ
.

Now, as mentioned in the main text, we need to prove that when β > 2 − c̄/c, so that

the function Φ has humps, the outer portion of the humps is steeper than the inner portion.

Lemma 18 For 0 < ∆ < ∆̄, d3Φ/d∆3 < 0.

Proof. Write out the condition (5) for c∗ explicitly, using the uniform distribution. This

condition is a quadratic equation for c∗, whose constant term is a linear function of L and

whose other coefficients are independent of L. So c∗ can be written in the form
√
A+BL+C,

where A, B, and C are constants.35 Next, φ = c∗/β − L (the indifference condition for c∗

rearranged) can be written in the form
¡√

A+BL+ C
¢
/β − L, where A+BL ≥ 0 on the

relevant range.

Finally, using L = κ∆2, we see we can write Φ(∆) in the form
¡√

A+Bκ∆2 + C
¢
/β −

κ∆2. By taking ∆→ 0, we see A ≥ 0. It is straightforward to check that the third derivative
of this function is

−3AB2κ2∆

β(A+Bκ∆2)5/2
< 0.

(We can check that A is strictly greater than zero because differentiating (5) shows that

dc∗/dL 6→∞ as L→ 0, whereas A = 0 implies dc∗/dL→∞ as L→ 0. )

Proposition 19 If 0 < ∆1 < ∆2 < ∆̄ and Φ(∆1) = Φ(∆2), then Φ0(∆1)+Φ0(∆2) < 0.(Note

that ∆1 is on the inside of the hump and ∆2 is on the outside.)

Proof. Let Ψ(∆) = dΦ/d∆. By Lemma 18, Ψ is concave. Jensen’s inequality implies that

the average value of Ψ on the interval [∆1,∆2] is greater than the average of its value at the

two endpoints. But
R ∆2

∆1
Ψ(∆) d∆ = Φ(∆2) − Φ(∆1) = 0, so the average value of Ψ on the

interval is zero. Hence, the average of the values of Ψ at ∆1 and ∆2 must be negative.

Now we are finally prepared to prove the classification of possible optimal defaults.

Proposition 8 If β < 1, then the optimal default is one of the following three types:

35The explicit expression is c∗ = (c+
p
(1− β)2c2 + 2β(2− β)(c̄− c)L)/(2− β). One can check that the

lower root of the quadratic is less than c.
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• the center default d = (s+ s̄)/2;

• an offset default, such that s− d = −∆e while s̄− d > ∆̄ (or its symmetric equivalent,

s̄− d = ∆e and s− d < −∆̄);

• active decisions, which correspond to any d with s− d ≥ ∆̄ or s̄− d ≤ −∆̄.

Proof. For the purposes of this proof, we redefine Φ(0) to equal lim∆→0Φ(∆). This makes

Φ continuous everywhere and (by Corollary 15) differentiable except at ∆ = 0,±∆̄.
The optimal default is the d that minimizes the average value of Φ on [s− d, s̄− d], i.e.

that minimizes
R s̄
s
Φ(s− d) ds. As observed in the main text, a minimum always exists. By

differentiating with respect to d, we get the first-order condition

Φ(s− d)− Φ(s̄− d) = 0

that any optimum must satisfy. The second-order condition is

−Φ0(s− d) + Φ0(s̄− d) ≥ 0,

which must hold if both derivatives are defined.

Consider now the common value Φ(s̄− d) = Φ(s − d) that emerges from the first-order

condition. We use Lemma 7 to draw conclusions about where s̄ − d and s − d are located

for a given common value:

• If the common value is < E(c), then there are only two points ±∆ where Φ takes on

this value. So s̄− d = −(s− d), and we have a center default.

• If the common value is > E(c), then we may (if β < 2 − c̄/c) again have just two

points where Φ takes on this value. At most, there are four such points, of the form

±∆1,±∆2, where 0 < ∆1 < ∆m < ∆2 < ∆̄. If s− d, s̄− d are equal to ±∆1 then we

have a center default. Otherwise, assume s̄ − d = ∆2. (By symetry, the argument is

equivalent when s− d = −∆2.)

If s− d = −∆2 we have a center default. If s− d = −∆1, then

−Φ0(s− d) + Φ0(s̄− d) = Φ0(∆1) + Φ0(∆2) < 0
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by Proposition 19. This violates the second-order condition. And if s − d = ∆1 then

the entire interval [s− d, s̄− d] lies within the hump, so that Φ(s) > E(c) for each s,

and this default is strictly worse than active decision.

• If the common value is equal to E(c), then the possible values for the two endpoints
are ±∆e and ±∆ for any ∆ ≥ ∆̄. If the endpoints are ±∆e then we have a center

default. Otherwise, without loss of generality, assume s̄− d ≥ ∆̄.

If s−d ≤ −∆̄ then the interval [s−d, s̄−d] contains both humps and the valley between
them. We can increase d until the upper endpoint s̄− d hits ∆e, thus eliminating one

hump and replacing it with a plateau. This changes the integral of Φ by
R ∆̄

∆e
(E(c) −

Φ(∆)) d∆ < 0. Thus, total social loss is decreased, so the original d was not optimal.

If s − d = −∆e then we have an offset default. And if s − d = ∆e then the interval

contains one hump and a plateau, which is again strictly inferior to active decisions.

Now we have shown that the optimal default types shown in Figure 8 are indeed the only

types that can occur, and we are ready to describe the regions where each of them occurs.

Proposition 9 Fix κ, c, and c̄. Then there exist values 0 < βac < βoc < 1, and a function

w : (βac, 1]→ (0,∞], with the following properties:

1. for β ≤ βac, active decisions are always optimal;

2. for βac < β < βoc, active decisions are optimal when s̄−s > w(β) and a center default

is optimal when s̄− s < w(β);

3. for βoc < β < 1, an offset default is optimal when s̄− s > w(β) and a center default

is optimal when s̄− s < w(β);

4. w is increasing on (βac, βoc].

Proof. First, fix any β < 1. Define w(β) to be the supremum of values s̄ − s for which a

center default is optimal, or 0 if a center default is never optimal. This supremum is finite;

for example, if s̄ − s > 2∆̄, then a center default implies that the interval [s − d, s̄ − d]

contains both humps of the function Φ, and this is strictly worse than the offset default,

which contains only one of the humps.
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Now suppose a center default is optimal for some width s̄−s. We claim it is also optimal
for all narrower widths. First we check that a center default remains better than active

decisions. We are given Z r

−r
Φ(∆) d∆ ≤ 2rE(c) (9)

for r = (s̄− s)/2, and we want to show it remains true for all lower r. The derivative of the

left side with respect to r is 2Φ(r), which is ≥ 2E(c) if r ≥ ∆e. Thus, as we lower r but

keep r ≥ ∆e, the left side of (9) decreases faster than the right side, so (9) stays true. And

if r < ∆e, then (9) holds because Φ(∆) < E(c) for −r < ∆ < r.

Next we check that a center default remains better than an offset default (if the offset

default is defined): if s̄− s ≥ ∆e + ∆̄ andZ r

−r
Φ(∆) d∆ ≤

Z 2r−∆e

−∆e

Φ(∆) d∆ (10)

for r = (s̄−s)/2, then it also holds for all lower r ≥ (∆e+∆̄)/2. This is completely analogous

to (9): for all r in the relevant range, the derivative of the left side of (10) is 2Φ(r) ≥ 2E(c),
while the derivative of the right side is 2Φ(2r−∆e) = 2E(c). So as r decreases, the left side

decreases faster than the right side, and (10) remains true.

This shows that if a center default is optimal, it remains optimal when the range of s is

narrowed. Therefore, a center default is optimal whenever s̄ − s < w(β). By definition, a

center default is not optimal for s̄− s > w(β), so the optimal default here is either offset or

active decisions.

A similar argument to the above shows that if active decisions are better than an offset

default, then this remains the case when the range s̄− s is increased, and similarly if offset

defaults are preferred to active decisions. (As explained in the main text, the marginal

employee is in the plateau of the function Φ(∆) in both cases.) So for fixed β, either active

decision is best for all s̄− s > w(β), or offset defaults are best for all s̄− s > w(β). Call β

an “active value” or an “offset value” accordingly. Proposition 3 implies that if some β is an

active value, then all lower β are also active values.

By Proposition 5, for all sufficiently low β, active decisions are optimal for all possible

distributions of s. Define βac to be the supremum of all β for which this is true when

s is uniformly distributed. Part 1 of Proposition 9 immediately holds. Conversely, by
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Proposition 4, when β is high enough, active decisions are never optimal. Define βoc to be

the supremum of all β such that active decisions are optimal for some width s̄− s. Thus we

have 0 < βac ≤ βoc < 1; moreover, all β < βoc are active values, and all β > βoc are offset

values. We will check that βac < βoc strictly. When β = βoc and s̄− s > w(β), the planner

must be indifferent between offset defaults and active decisions; that is,Z ∆̄

−∆e

Φ(∆) d∆ = (∆̄+∆e)E(c). (11)

Indeed, if the left side is less than the right side (so that offset defaults are preferred), then

by continuity this remains true when β is lowered slightly, and active decisions are never

optimal for any s̄− s at this lower β. This violates the definition of βoc. A similar argument

applies if the left side is greater than the right side. But (11) implies that Φ(∆) < E(c) for

some ∆, since the integral includes a hump where Φ(∆) > E(c). This implies that active

decisions are not optimal when s̄ − s is sufficiently small, and this remains true when β is

decreased slightly. Hence, β can be decreased slightly from βoc and still be ≥ βac, proving

βac < βoc.

Now, parts 2 and 3 of Proposition 9 were effectively proven two paragraphs ago. Finally,

Proposition 3 implies that inf{s̄− s : active decisions are optimal} can never decrease when
β increases. This proves part 4.

The last bit of our analysis is the case β = 1. This result is more general; it does not

depend on the distribution of transactions costs. The point is simply that the function Φ(∆)

consists of a valley with no humps; the optimal default always takes as much advantage as

possible of this valley.

Proposition 10 Fix κ, c, and c̄, and assume β = 1. Let ∆̄ be the smallest value with

Φ(∆̄) = E(c). Then

• if s̄− s ≤ 2∆̄, then a center default d = (s̄+ s)/2 is the unique optimum;

• otherwise, the set of optimal defaults consists of all d ∈ [s+ ∆̄, s̄− ∆̄].

(The value of ∆̄ is the same as before, and it simplifies to
p
(c̄− c)/2κ when β = 1.)

Proof. First, we carry out the same analysis as in Proposition 8. When β = 1, Proposition

2 tells us that Φ is increasing in |∆| for |∆| ≤ ∆̄, and then becomes flat at E(c) for |∆| ≥ ∆̄.
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We want to identify the d that minimizesZ s̄

s

Φ(s− d) ds.

The first-order condition is

Φ(s− d) = Φ(s̄− d).

If this common value is < E(c), then by monotonicity, there are only two values ±∆ at

which Φ takes on this value. Hence, s− d = −(s̄− d), and we have a center default.

Otherwise, the common value is E(c), which is Φ(∆) for all ∆ ≤ −∆̄ or ∆ ≥ ∆̄. By

symmetry we may assume s̄− d ≥ ∆̄. If s− d ≥ ∆̄ then we have an active-decision regime,

which cannot be optimal (by Proposition 4). Hence s − d ≤ −∆̄. Then the social welfare
integral is equal to Z ∆̄

−∆̄
Φ(∆) d∆+ (s̄− s− 2∆̄)E(c),

and this value is independent of the choice of default d as long as s−d ≤ −∆̄ and s̄−d ≥ ∆̄;

that is, d ∈ [s+ ∆̄, s̄− ∆̄]. So if one such d is optimal, all of them are.

All possible optima are of one of these two types. The first type of optimum only exists

for s̄ − s < 2∆̄, while the second type only exists for s̄ − s ≥ 2∆̄. The proposition follows
immediately.

7.4 The Case of Naive Workers

In the employee’s problem, analysis of naive agents is a mild extension of analysis of so-

phisticated agents. The naive agent expects all future selves to have short-term discount

factor bβ > β instead of β, with all other parameters unchanged (and believes that this is

common knowledge among all future selves). Therefore, she expects that all future selves

will use the cutoff c∗ and incur the total loss φ that she would have if she were a sophisticated

(bβ, δ)-discounter. We refer to these values as bc∗, bφ, respectively, and continue to use c∗, φ to
refer to the values that actually hold for the naive agent.

Proposition 11 In the employee model, if f, β, δ, and L are held fixed, then c∗ is (weakly)

decreasing in bβ, and φ is (weakly) increasing in bβ.
Proof. From Proposition 2, φ is decreasing in β for sophisticated agents. This implies that,
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for fixed β, bφ is decreasing in bβ. Now bφ is the total loss that the period-t self expects to
experience beginning in period t+1 if she doesn’t act in period t. So her total loss from not

acting immediately (she believes) is βδ(L+bφ). The usual indifference condition applies, and
c∗ = βδ(L+ bφ) (truncated as usual to [c, c̄]). Hence, c∗ is decreasing in bβ.
Now, holding β fixed, let c∗β be the cutoff used by a sophisticated (β, δ)-discounter. If the

agent is naive, she will use some c∗ ≤ c∗β. Her total loss φ is given in terms of c
∗ by equation

(2), which does not involve β or bβ. So we just need to check that φ, given as a function of
c∗ by (2), is decreasing on [c, c∗β].

Corollary 15 and Proposition 17 tell us that c∗ covers [c, c∗β] as β falls to 0 (for sophisti-

cates), and Proposition 2 tells us that as β decreases, c∗ decreases and φ increases. Since φ

is given by (2) in the naive case too, φ is decreasing in c∗, as needed.

Proposition 13 Fix f, β, bβ. Assume δ = 1. For all sufficiently small L, the agent will set

c∗ = c.

Proof. Proposition 17 tells us that for a sophisticated agent, c∗ → c as L → 0. So for the

naive agent, bc∗ → c as L→ 0. For low enough L, we have βδ(L+ bφ) = bc∗(β/bβ) < c, and the

naive agent will set c∗ = c.
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Table 1. 401(k) plan features by effective date 

 Effective January 1, 1997 Effective November 23, 1997 

Eligibility   

Eligible employees U.S. employees, age 18+ U.S. employees, age 18+ 

First eligible Full-time employees eligible 

upon hire; part-time employees 

must accrue 1,000 hours in 1 

year 

Full-time employees eligible 

upon hire; part-time employees 

must accrue 1,000 hours in 1 

year  

Employer match eligible Immediately upon plan 

eligibility 

Immediately upon plan 

eligibility 

Enrollment First 30 days of employment or 

January 1 of succeeding 

calendar years 

Daily 

Contributions   

Employee contributions a Up to 17% of compensation Up to 17% of compensation 

Non-discretionary employer 

match rate 

50% of employee contribution 50% of employee contribution 

Discretionary employer 

match rate 

Up to 100% (50% for bonus-

eligible employees); rate 

depended on company 

profitability 

Up to 100% (50% for bonus-

eligible employees); rate 

depended on company 

profitabilityb 

Employer match 

restrictions 

Match on the lesser of before-

tax employee contribution or 

5% of compensation; match 

invested in employer stock 

Match on the lesser of before-

tax employee contribution or 

5% of compensation; match 

invested in employer stock 

Employer match vesting Immediate Immediate 

Other   

Loans Not available Available; 2 maximum 

Hardship withdrawals Available Available 

Investment choices 4 options; employer stock also 

available, but only for after-tax 

contributions and employer 

match 

6 options + employer stock 

(available for before- and after-

tax contributions) 

aTotal employee contributions within each year were capped by federal law at $9,500 (1997), 

$10,000 (1998-99), and $10,500 (2000-01). 

bActual discretionary match rates were 20% (1995), 20% (1996), 100% (1997), 100% (1998), 27% 

(1999), 33% (2000), 0% (2001). 



 

Table II. Comparison of worker characteristics 

 Study company 

 Active decision 

cohort  

on 12/31/98 

Standard  

enroll. cohort 

on 12/31/99 

All  

workers 

on 12/31/99 

 

U.S.  

workforce 

(3/98 CPS) 

Average age (years) 34.7 34.1 40.8 38.8 

Gender     

 Male 47.6% 42.0% 44.7% 53.1% 

 Female 52.4% 58.0% 55.3% 46.9% 

Marital Status     

 Single 41.4% 49.3% 32.2% 39.0% 

 Married 56.0% 49.7% 66.8% 61.0% 

Compensation     

 Avg. monthly base pay $3,043 $2,869 $4,367 -- 

 Median monthly base pay $2,666 $2,513 $3,664 -- 

 Avg. annual incomea $35,381 $33,197 $50,414 $32,414 

 Median annual incomea $31,013 $29,239 $40,965 $24,108 

Geography     

 East 13.2% 11.1% 15.0% 18.9% 

 Midwest 34.3% 37.6% 32.2% 24.1% 

 South 37.7% 38.9% 37.7% 34.7% 

 West 14.7% 12.3% 15.0% 22.4% 

Number of Employees 2,231 2,349 46,944 -- 

The samples in the first three columns are taken from individuals employed at the study company 

as of the dates indicated in the column title. The sample in the last column is all individuals 

(weighted) in the March 1998 Current Population Survey who worked in the previous year. 

Compensation is in 1998 dollars.  Figures may not add up to 100% because of missing data and 

employees located in Puerto Rico. 
aThe annual income measure that is reported to us for the study company is the employee’s 

annual taxable (W2) income. Annual income for the U.S. workforce calculated from the CPS is 

total annual labor earnings in the previous calendar year, some of which may be non-taxable.  

 



 
Table 3. Tobit regression of contribution rates under two 401(k) enrollment regimes 

Intercept 2.915** 

 (0.191) 

Female 0.545 

 (0.403) 

Married 1.335** 

 (0.383) 

Log(Base pay) 4.898** 

 (0.666) 

0 ≤ Age < 30 -6.829* 

 (2.681) 

30 ≤ Age < 40 -5.144 

 (2.683) 

40 ≤ Age < 50 -5.133 

 (2.703) 

50 ≤ Age < 60 -3.182 

 (2.753) 

Active-decision cohort 0.086 

 (0.247) 

Active decision cohort × Female -1.989** 

 (0.547) 

Active-decision cohort × Married -0.528 

 (0.503) 

Active-decision cohort × Log(Base pay) -1.930 

 (1.053) 

Active-decision cohort × (0 ≤ Age < 30) -0.584 

 (3.553) 

Active-decision cohort × (30 ≤ Age < 40) -0.577 

 (3.552) 

Active-decision cohort × (40 ≤ Age < 50) 0.004 

 (3.578) 

Active-decision cohort × (50 ≤ Age < 60) -0.103 

 (3.659) 

ln (σAD/σSE) -0.137** 

 (0.042) 

N 3,488 

If the employee is in the active-decision cohort, the dependent variable is the 401(k) contribution rate (in 

percentage points) 3 months after hire; if the employee is in the standard-enrollment cohort, the dependent 

variable is the contribution rate 30 months after hire. Independent variables are log of base pay, a dummy 

for being in the active-decision cohort, and gender, marital status, and age range dummies, calculated as of 

the contribution-rate date. Demographic variables are de-meaned. Both cohorts are restricted to employees 

who remain in the data for at least 30 months. The tobit regression assumes that errors are normal and 

homoskedastic within each cohort but possibly heteroskedastic across cohorts.  Robust standard errors are 

reported in parentheses under the point estimates. 

*Significant the 5% level   **Significant at the 1% level 
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Figure 1. Fraction of employees enrolled in the 401(k), by hire month. The fraction displayed is 

as of the third month of tenure at the company. The active-decision cohort was hired between 

January and July 1997. The standard-enrollment cohort was hired between January and July 

1998. 
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Figure 2. Fraction of employees enrolled in the 401(k) plan, by tenure at company. An employee 

is counted enrolled in the 401(k) even if he or she has stopped contributing to the plan. The series 

are not monotonically rising because they are constructed from multiple cross-sections, so the 

samples are not fixed over time. 
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Figure 3. Average 401(k) contribution rate by tenure at company. At each point, the averages 

include employees not currently contributing to the 401(k) plan; their contribution rate is zero. 
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Figure 4. Average 401(k) contribution rate among 401(k) participants by tenure at company. At 

each point, the averages exclude employees not currently contributing a positive amount to the 

401(k) plan. 
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Figure 5. 401(k) contribution rates at different contribution-rate percentiles. The percentile breakpoints are calculated separately for each cohort at each point 

in time. 
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Figure 6. 401(k) balance-to-base pay ratios at different balance-to-base pay percentiles. The balances exclude outstanding loan principal and any money rolled 

into the account from a former employer. The percentile breakpoints are calculated separately for each cohort at each point in time. 
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Figure 7. Employee’s total expected loss φ as a function of per-period flow loss L from not opting out. The parameters specific to each panel, the quasi-

hyperbolic discount factor β and the exponential discount factor δ, are shown beneath each graph. In all panels, opt-out costs are assumed to be uniformly 

distributed between 0.75 and 1.25. The left and center panels have the same y-axis scale, but the right panel has a different y-axis scale. 
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Figure 8. Mean time between hire date and enrollment by contribution rate in the standard-enrollment 

cohort. The area of each bubble is proportional to the number of employees it represents. The sample consists 

of all employees in the standard-enrollment cohort who worked at the company for at least 30 months and 

enrolled within 30 months of hire. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Possible optimal default regimes when opt-out costs and optimal savings rates are uniformly distributed and δ = 1. The panels illustrate 

parameter values that support the three classes of optimal defaults: the center default, the offset default, and active decisions. The shaded area in 

each panel represents the social welfare losses generated by the corresponding default regime. The parameters specific to each panel, the quasi-

hyperbolic discount factor β and the range of optimal savings rates s s− , appear below each figure. In all three panels, the opt-out cost is 

uniformly distributed between 0.25 and 1.75, and the loss function scaling factor 100κ = . The left and center panels have the same y-axis scale, 

but the right panel has a different y-axis scale. 

Center default Offset default Active decisions

1, 0.1s sβ = − = 0.75, 0.25s sβ = − = 0.1, 0.15s sβ = − =

Δ Δ

Φ Φ Φ

Δ
s d−s d− s d−s d− s d−s d−



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Characterization of optimal default regimes when opt-out costs and optimal savings rates are uniformly distributed and δ = 1. This 

figure shows the boundaries of the optimal default regimes as a function of the quasi-hyperbolic discount factor β and the range of optimal savings 

rates s s−  when the opt-out cost is uniformly distributed between 2/3 and 4/3, and the loss function scaling factor 100κ = . 
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