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ABSTRACT

Many argue that crises – such as currency attacks, bank runs and riots – can be described as times

of non-fundamental volatility. We argue that crises are also times when endogenous sources of

information are closely monitored and thus an important part of the phenomena. We study the role

of endogenous information in generating volatility by introducing a financial market in a

coordination game where agents have heterogeneous information about the fundamentals. The

equilibrium price aggregates information without restoring common knowledge. In contrast to the

case with exogenous information, we find that uniqueness may not be obtained as a perturbation

from common knowledge: multiplicity is ensured when individuals observe fundamentals with small

idiosyncratic noise. Multiplicity may emerge also in the financial price. When the equilibrium is

unique, it becomes more sensitive to non-fundamental shocks as private noise is reduced.

George -Marios Angeletos
Department of Economics
MIT
50 Memorial Drive, E51-251
Cambridge, MA 02142
and NBER
angelet@mit.edu

Ivan Werning
Department of Economics
MIT
50 Memorial Drive, E51-251a
Cambridge, MA 02142-1347
and NBER
iwerning@mit.edu



1 Introduction

It’s a love-hate relationship, economists are at once fascinated and uncomfortable with mul-

tiple equilibria. On the one hand, economic and political crises involve large and abrupt

changes in outcomes, but often lack obvious comparable changes in fundamentals. Com-

mentators attribute an important role to more or less arbitrary shifts in ‘market sentiments’

or ‘animal spirits’, and models with multiple equilibria formalize these ideas. On the other

hand, models with multiple equilibria can also be viewed as incomplete theories that should

ultimately be extended along some dimension to resolve the indeterminacy.

The first view is represented by a large empirical and theoretical literature. On the

empirical side, Kaminsky (1999), for example, documents that the likelihood of economic

crises is affected by observable fundamentals, but that a significant amount of volatility

remains unexplained. On the theoretical side, models featuring multiple equilibria attempt to

address such non-fundamental volatility. Bank runs, currency attacks, debt crises, financial

crashes, riots and political regime changes are modeled as a coordination game: attacking a

regime — such as a currency peg or the banking system — is worthwhile if and only if enough

agents are also expected to attack.1

Morris and Shin (1998, 2000, 2001) contribute to the second view by showing that a

unique equilibrium survives in such coordination games when individuals observe fundamen-

tals with small enough private noise.2 The result is most striking when seen as a perturbation

around the original common-knowledge model, which is ridden with equilibria. Most impor-

tantly, their contribution highlights the role of the information structure in determining and

characterizing the equilibrium set.

The aim of this paper is to understand the role of information in crises. We focus on

two distinct forms of non-fundamental volatility: the existence of multiple equilibria and

the sensitivity of a unique equilibrium to non-fundamental disturbances. We argue that

considering endogenous information is crucial for these questions.

Information is typically treated exogenously in coordination models, but is largely en-

dogenous in most situations of interest. Financial prices and macroeconomic indicators

convey information regarding others actions and their information. During times of crises

such indicators are monitored intensely and appear to be an important part of the phenom-

ena. As an example, consider the Argentine 2001-2002 crisis, which included devaluation

of the peso, sovereign-debt default, and suspension of bank payments. Leading up to the

crisis throughout 2001, bank deposits and the peso-forward rate deteriorated steadily. Such

1See, for example, Diamond and Dybvig (1983), Obstfeld (1986, 1996), Velasco (1996), Calvo (1988),
Cooper and John (1988), Cole and Kehoe (1996).

2See also Carlson and van Damme (1993) for the pioneering contribution to global games.
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variables were widely reported by news media and investor reports, and were closely watched

by people making crucial economic decisions.

These observations lead us to introduce endogenous sources of public information in a

coordination game. In our baseline model, individuals observe their private signals and the

price of a financial asset. The rational-expectations equilibrium price aggregates disperse

private information, but avoids perfect revelation by introducing enough noise in the aggre-

gation process, as in Grossman and Stiglitz (1976). Thus, none of our results are driven by

restoring common-knowledge.3

The main insight to emerge is that the precision of the endogenous public information

increases with the precision of the exogenous private information. When private information

is more precise, individuals’ asset demands are more sensitive to their information. As a

result, the equilibrium price reacts more sensitively to fundamental variables, thus conveying

more precise information.

This result has important implications for the determinacy of equilibria, as a horse-race

between private and public information emerges. An increase in the precision of private

information makes coordination more difficult as individuals rely more on their own dis-

tinct information. However, the consequent increase in the precision of endogenous public

information facilitates coordination. This indirect effect typically dominates, reversing the

limiting result: multiplicity is ensured when individuals observe fundamentals with small

enough private noise.

Uniqueness therefore can not be attained as a small perturbation around common-

knowledge. To illustrate this point Figure 1 displays the regions of uniqueness and multi-

plicity in the space of exogenous levels of public and private noise (σε and σx, respectively).

Multiplicity is ensured when either noise is sufficiently small. In this sense, public and pri-

vate noise act symmetrically. In contrast, when information is exogenous, less public noise

facilitates multiplicity, but less private noise contributes towards uniqueness. Moreover,

with endogenous information, equilibria outcomes are continuous with respect to informa-

tion parameters. In contrast, with exogenous information, the limiting result discussed above

illustrates a sharp discontinuity.

Interestingly, multiplicity may emerge, not only with respect to the probability of regime

change, but also in the asset price. This occurs when the asset’s dividend depends on the

endogenous aggregate actions in the coordination game. Different equilibrium prices are

then sustained by different self-fulfilling expectations about the others actions, and therefore

about the dividend; and multiple such expectations are in turn possible only thanks to the

coordinating role prices play in the first place.

3Atkeson (2000) has already pointed out that perfectly revealing asset markets could restore multiplicity.
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Figure 1: σx measures the exogenous noise in private information and σε the exogenous
public noise in the aggregation of information.

In regions where the equilibrium is unique, we are able to perform comparative statics.

We find that a reduction in exogenous noise increases the sensitivity of the regime outcome

to non-fundamental disturbances. When the asset’s dividend is endogenous, a reduction in

noise may also increase the non-fundamental volatility in the financial price. Since these

results parallel the determinants of equilibrium multiplicity, we conclude that lower noise

increases volatility for both forms of volatility.

We also study a separate model motivated by the bank run and riots applications. In this

model there is no financial market. However, information is endogenous because individuals

observe a public noisy signal of others actions. A virtue of this model is that it allows us

to study endogenous information with minimal modifications to the original Morris-Shin

framework. The model shares the main insights and results for equilibrium multiplicity

obtained with financial prices.

Related Literature. The paper contributes to the literature on financial crises4 by
examining the role of information and coordination in generating high-non fundamental

volatility, either by introducing multiple equilibria, or with a unique equilibrium. Chari and

Kehoe (2003) also study the role of information for non-fundmental volatility, but within the

context of a herding model. Our paper can be viewed as bringing coordination games and

herding models closer together: by allowing endogenous public signals about others actions,

we incorporate an aspect of social learning into a coordination game.

4See the references in footnote 1.
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Our analysis builds on the work of Morris and Shin and underscores their general theme

that the information structure is crucial in coordination games. Within such a framework, our

aim is to understand the effect of endogenous sources of public information, such as financial

prices and other indicators of aggregate activity. Angeletos, Hellwig and Pavan (2003, 2004)

also endogenize the information structure, but not through information aggregation as here.

Instead, they examine, respectively, the signaling effects of policy interventions in a static

global game and the role of information in a dynamic global game.

Related is Hellwig, Mukherji and Tsyvinski (2004), who consider a currency-crises model

in which financial prices directly affect the coordination outcome. In particular, they focus

on how multiplicity or uniqueness depends on whether the central bank’s decision to devalue

is triggered by large reserve losses or high interest rates. Like in our case, they find multiple

equilibria for small levels of noise.

Tarashev (2003) also endogenizes interest rates in a currency-crises model, but does not

investigate the possibility of equilibrium multiplicity. Dasgupta (2002), on the other hand,

introduces signals about past activity in an investment game, but assumes that these signals

are purely private, thus also bypassing the possibility of multiple equilibria.

Finally, the paper contributes to the rational-expectations literature by examining the

coordinating role of financial prices and its implications for volatility. In Grossman and

Stiglitz (1981), the payoff of an agent is independent of the actions of other agents for

any given price, and the equilibrium price only aggregates information about the exogenous

dividend of the asset. In our environment, instead, the price serves also a coordinating role:

agents use the price to predict each others’ actions in the coordination game. It is this

coordinating role that explains why multiple equilibria and high volatility may emerge in

financial prices when the dividend is endogenous.5

The rest of the paper is organized as follows. We describe the basic model in Section 2

and review the exogenous information benchmark. Section 3 incorporates the financial asset

and examines multiplicity of equilibria. Section 4 examines the determinants of volatility as

a comparative static along a unique equilibrium. Section 5 studies the model with a direct

signal of aggregate activity. Section 6 concludes.

5Barlevy and Veronessi (2004) consider a Grossman-Stiglitz-like economy which admits multiple rational-
expectations equilibria, but where the source of multiplicity is very different. In their model, the dividend
is exogenous and the price does not play any coordinating role. Multiplicity instead originates from the
non-linearity of the inference problem faced by uninformed traders when they interact with informed and
less risk-averse agents.
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2 The Basic Model: Exogenous Information

Before introducing financial prices or other endogenous signals, we review the basic model

with exogenous information, as in Morris-Shin.

Actions and Payoffs. There is a status quo and a measure-one continuum of agents,

indexed by i ∈ [0, 1]. Each agent i can choose between two actions, either attack the status
quo (ai = 1) or not attack (ai = 1). The payoff from not attacking is normalized to zero. The

payoff from attacking is 1− c > 0 if the status quo is abandoned and −c otherwise, where
c ∈ (0, 1) parametrizes the cost of attacking. The status quo is in turn abandoned if and
only if A > θ, where A denotes the mass of agents attacking and θ represents the exogenous

fundamentals, namely the strength of the status quo. It follows that the payoff of agent i is

U(ai, A, θ) = ai(R (A, θ)− c) (1)

where R (A, θ) denotes the regime outcome, with R = 1 if A > θ and R = 0 otherwise.

Interpretations. In models of self-fulfilling currency crises (e.g., Obstfeld, 1986, 1996;
Morris and Shin, 1998), a “regime change” occurs when a sufficiently large mass of specula-

tors attacks the currency, forcing the central bank to abandon the peg; θ then parametrizes

the amount of foreign reserves or more generally the ability and willingness of the central

bank to maintain the peg. In models of self-fulling bank runs, on the other hand, a “regime

change” occurs once a sufficiently large number of depositors decide to withdraw their de-

posits, forcing the bank to suspend its payments; θ then parametrizes the liquid resources

available to the banking system.6

Throughout the paper, we focus on crises as the main interpretation of the model. Other

applications, however, are also possible. For example, one could interpret the model as

an economy with investment complementarities, in which ai = 1 represents undertake an

investment, A the aggregate level of investment, and θ the exogenous productivity.

In short, the key property of the payoff structure we consider is that it introduces a

coordination motive: U (1, A, θ)− U (0, A, θ) increases with A, meaning that the individual

incentive to take one action increases with the mass of other agents taking the same action.

Indeed, when θ is common knowledge, both A = 1 and A = 0 is an equilibrium whenever

θ ∈ (θ, θ] ≡ (0, 1]. The interval (θ, θ] thus represents the set of “critical fundamentals” for
which agents can coordinate on multiple courses of action under common knowledge.

Information. Following Morris-Shin, we assume θ is not common knowledge. In the
6Other related interpretations include debt crises and financial crashes (Morris and Shin, 2003, 2004;

Goldstein and Pauzner; 2000; Corsetti, Guimaraes, and Roubini; 2004; Rochet and Vives 2004). Atkeson
(2000), on the other hand, interprets the model as describing riots.
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beginning of the game, nature draws θ from a given distribution, which constitutes the

agents’ common prior about θ. For simplicity, this prior is assumed to be an (improper)

uniform over the entire real line.7 Agent i then receives a private signal xi = θ + σxξi,

where σx is a positive scalar and ξi ∼ N (0, 1) is idiosyncratic noise, i.i.d. across agents and
independent of θ. Agents also observe an exogenous public signal z = θ+ σzv, where σz is a

positive scalar and v ∼ N (0, 1) is common noise, distributed independently of both θ and ξ.
The information structure is thus parametrized parsimoniously by σx and σz, the standard

deviations of the two noises; or equivalently by αx = σ−2x and αz = σ−2z , the precisions of

private and public information.

Equilibrium Analysis. We focus on monotone equilibria, that is, equilibria in which
an agent attacks if and only if his private signal is sufficiently low.8 Thus suppose that,

given a realization z of the public signal, an agent attacks if and only if the realization x

of his private signal is less than a threshold x∗(z). The size of the attack is then A(θ, z) =

Φ
¡√

αx (x
∗(z)− θ)

¢
and is decreasing in θ. It follows that regime change occurs if and only

if θ ≤ θ∗(z), where θ∗(z) is the unique solution to A(θ, z) = θ, or equivalently

x∗(z) = θ∗(z) + 1√
αx
Φ−1(θ∗(z)). (2)

The posterior of the agent about θ is Normal with mean αx
αx+αz

x + αz
αx+αz

z and precision

αx + αz, where αx = σ−2x and αz = σ−2z denote, respectively, the precision of private and

public information. It follows that the agent finds it optimal to attack if and only if x ≤ x∗(z),

where x∗(z) solve the indifference condition Pr [θ ≤ θ∗(z)|x, z] = c, or equivalently

Φ
³√

αx + αz

³
θ∗(z)− αx

αx+αz
x∗(z)− αz

αx+αz
z
´´
= c. (3)

Substituting (2) into (3) gives a single equation in θ∗(z) :

Φ−1 (θ∗ (z))− αz√
αx
θ∗ (z) =

q
1 + αz

αx
Φ−1 (1− c)− αz√

αx
z (4)

Hence, an equilibrium is simply identified with a solution to (4).

A solution to (4) always exist and is unique for all z if and only if αz/
√
αx ≤

√
2π, or

equivalently σx ≤ σ2z
√
2π. (See Appendix for a detailed derivation.) We conclude that the

7This assumption is without any serious loss of generality: by letting the common prior be uninformative,
we bias the results against multiplicity.

8This is without serious loss of generality for two reasons. First, when the monotone equilibrium is
unique and the information is exogenous, a standard argument of iterrated deletion of strongly dominated
strategies can be used to show that there are no other non-monotone equilibria either. Second, to prove the
existence of multiple equilibria and the convergence to common-knowledge outcomes with either exogenous
or endogenous information, it suffices to look at monotone equilibria.
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Figure 2: σx and σz parametrize the noise in private and public information; uniqueness is
ensured for σx small enough.

equilibrium is unique if and only if the private noise is sufficiently small.

Proposition 1 (Morris-Shin) In the game with exogenous information, the equilibrium is
unique if and only if σx ≤ σ2z

√
2π.

This result is illustrated in Figure 2, which depicts the regions of (σx, σz) for which

the equilibrium is unique. For any σz > 0, uniqueness in ensured by letting σx > 0 suf-

ficiently small. In the limit as σx → 0, the incomplete-information game approaches the

common-knowledge game, in which there are multiple equilibria; yet, the equilibrium of the

incomplete-information game remains unique and actually asymptotes to a situation where

the regime outcome becomes independent of ε. In other words, not only sunspots cease

to matter, but all non-fundamental volatility — the volatility of A or R conditional on θ —

vanishes.

Corollary 1 In the limit as σx → 0, there is a unique equilibrium in which A (θ, z) → 1 if

θ < θ̂ and A (θ, z)→ 0 if θ > θ̂, where θ̂ = 1− c.

This result is intriguing, as it manifests a sharp discontinuity of the equilibrium set around

σx = 0 : a tiny perturbation away from perfect information obtains a unique equilibrium.

The key intuition is that disperse private information serves as an anchor for individual

behavior: it limits the ability to forecast each others’ actions and thereby to coordinate on

multiple equilibria.
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Indeed, when all agents share the same information about the underlying fundamentals,

they can perfectly forecast each others’ actions in equilibrium and can therefore perfectly

coordinate on either everybody or nobody attacking when θ ∈ (θ, θ]. But when agents have
heterogeneous information about the fundamentals, each agent faces uncertainty regarding

other agents’ beliefs about θ and their actions. For any given precision of public information,

the higher the precision of the agents’ private information, the more heavily agents condition

their actions on their own private information, and thus the harder it is for other agents to

predict their actions. When σx is sufficiently small relative to σz, this anchoring effect of

private information is strong enough that the ability to coordinate on multiple courses of

action totally brakes down and a unique equilibrium survives. Finally, as σx → 0, the private

signal become infinitely precise relative to the public signal, in which case agents cease to

condition on the public signal and by implication the sensitivity of equilibrium outcomes to

the shock ε vanishes.

3 Endogenous Information I: Financial Prices

The results reviewed above presume that the precision of public information remains invari-

ant while changing the precision of private information. This, however, may not be possible

when the public information consists of financial prices that endogenously aggregate the

disperse private information in the population.

To capture the role of prices as a channel of information aggregation, we modify the

environment as follows. There are now two stages. In stage 1, agents trade a financial asset

whose dividend depends on the underlying exogenous fundamentals and/or the endogenous

outcome of Stage 2. Stage 2 in turn is like the benchmark regime-change game of the previous

section, except for that the public signal is now the price that cleared the asset market in

stage 1.

This framework opens up new modeling choices regarding the specification of the asset’s

dividend and the preferences over risky payoffs. We guide our choices with an eye towards

tractability: to isolate the effects of information aggregation from any direct payoff linkages

between the two stages, we assume that preferences are separable between the first-stage

portfolio choice and the second-stage attacking decision;9 and to preserve normality of the

information structure, we model stage 1 along the CARA-normal framework of Grossman

and Stiglitz (1976, 1980) and Hellwig (1980).

9However, we do allow the payoff of the asset to depend on the aggregate activity of stage 2.
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3.1 Model Setup

The game starts again with nature drawing θ from an improper uniform over R. Each agent
i has a given endowment of wealth wi and receives an exogenous private signal xi = θ+σxξi.

The distribution of wi is arbitrary and the noise ξi is N (0, 1) , i.i.d. across agents, and
independent of θ.

In stage 1, agents can invest their wealth either in a risk-less asset or a risky asset. The

riskless asset is in infinitely elastic supply, it costs 1 in the first stage, and it delivers 1 in

the second stage. The risky asset, on the other hand, costs p in the first stage and delivers

f in the second.

The agent enjoys utility from final-stage consumption and has constant absolute risk

aversion (CARA). The payoff from the portfolio choice is thus V (c) = − exp(−γc)/γ, where
c = w − pk + fk is consumption, k denotes investment in the risky asset, and γ > 0

is the coefficient of absolute risk aversion. The net supply of the risky asset is given by

an unobserved random variable Ks (ε) = σεε,where ε ∼ N (0, 1) is independent of both
the fundamentals and the private noise and σε parametrizes the exogenous noise in the

aggregation process. The unobserved shock ε can also be interpreted as the demand of

‘noise traders’ and its role is to introduce noise in the information revealed by financial

prices about fundamentals.

In stage 2, agents chose whether to attack or not. The the status quo is abandoned

(R = 1) if and only ifA > θ and the agent’s payoff from stage 2 is U(a,A, θ) = a (R (A, θ)− c) ,

as in the benchmark model. The regime outcome, the asset’s dividend, and the agents’ pay-

offs are realized at the end of stage 2.10

For the specification of the asset’s dividend f, we consider two alternatives: the case that

f is determined merely by the underlying economic fundamentals θ; and the case that f is

a function of the endogenous activity A of the coordination stage.

Because of the CARA-normal specification, the demand for the risky asset is independent

of wealth. The individual’s demand k in stage 1 and action a in stage 2 are thus functions

of (x, p) alone, the realizations of the private signal and the equilibrium price. Since there is

a continuum of agents, the corresponding aggregates are functions of (θ, p) , the underlying

fundamental and the price. The equilibrium price, on the other hand, is a function of the

exogenous state (θ, ε). We thus define

Definition 1 A rational-expectations equilibrium is a price function P (θ, ε), individual strate-
gies k(x, p) and a(x, p) for investment and attacking, and corresponding aggregates K(θ, p)

10Given the separability of payoff between the two stages, one could reinterpret the model as if the agents
who move in stage 1 were different than the agents who move in stage 2, provided of course that the latter
observe the price that cleared the asset market in stage 1.
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and A(θ, p), such that: (i) in stage 1,

k(x, p) = argmax
k∈R

E [ V ((f − p) k) | x, p ] (5)

K(θ, p) =

Z
x

k(x, p)dΦ

µ
x− θ

σx

¶
(6)

K (θ, P (θ, ε)) = Ks (ε) (7)

(ii) in stage 2,

a(x, p) = arg max
a∈[0,1]

E [ U(a,A(θ, p), θ) | x, p ] (8)

A(θ, p) =

Z
x

a(x, p)dΦ

µ
x− θ

σx

¶
(9)

The interpretation of these conditions is straightforward. Condition (5) requires that an

agent’s investment take into account the information contained in their private information

and prices, whereas condition (7) imposes market clearing in the asset market. Note that

(5)-(7) define a standard rational-expectations equilibrium for stage 1, whereas (8)-(9) define

a standard Perfect Bayesian equilibrium in stage 2. Finally, with some abuse of notation,

we let R (θ, ε) = R (θ,A (θ, P (θ, ε))) denote the equilibrium regime outcome as a function of

the exogenous state (θ, ε) .

3.2 Exogenous dividend

We consider first the case that the dividend f depends only on the exogenous economic

fundamentals θ. To preserve Normality, we let f = f (θ) = θ.

We start the characterization of the equilibrium with stage 1 (the financial market).

Thanks to the CARA-Normal specification, the expected utility of the agent reduces to

E [V (c) |x, p] = V
¡
(E [f |x, p]− p) k − γ

2
Var[f |x, p]k2

¢
The FOC, which is both necessary and sufficient, implies that the optimal demand for the

asset is

k(x, p) =
E[f |x, p]− p

γVar[f |x, p] , (10)

where f = θ. We propose that the posterior of θ conditional on x, p has mean δx+ (1− δ)p

and precision α, for some δ ∈ (0, 1) and α > 0. It follows that k(x, p) = (δα/γ) (x − p)

and therefore K(θ, p) = (δα/γ) (θ − p). In equilibrium, K(θ, p) = Ks (ε) , which gives the

10



market-clearing price as p = θ − (δα/γ)−1 σεε, or equivalently

P (θ, ε) = θ − σpε (11)

where σp = (δα/γ)−1σε is the standard deviation of the price conditional on θ. The observa-

tion of p is therefore equivalent to the observation of a Normal signal about θ with precision

αp = σ−2p . Moreover, x and p are independent and therefore θ|x, p ∼ N (δx+ (1− δ) p, α) ,

δ = αx/α, and α = αx + αp, which verifies our initial guess. Solving for α, δ, and αp, we get

α = αx(1 + αxαε/γ
2), δ = 1/(1 + αxαε/γ

2), and αp = αεα
2
x/γ

2. That is, the precision of the

public information revealed by the price is an increasing function of both the precision the

aggregation process and the agents’ primitive private information. Equivalently,

σp = γσεσ
2
x, (12)

which together with (11) completes the characterization of stage 1.

Next, consider stage 2 (the coordination stage). Given (11), the continuation game in

stage 2 is isomorphic to the benchmark game of Section 2, except for the fact that the public

signal is z = p = P (θ, ε) and hence αz = αp. The following are thus immediate implications

of our earlier analysis in Section 2: first, the agent’s strategy is a (x, p) = 1 if and only

if x < x∗ (p) , the aggregate attack is A (θ, p) = Φ
¡√

αx (x
∗ (p)− θ)

¢
, and the regime is

abandoned if and only if θ < θ∗(p); second, the thresholds x∗ (p) and θ∗ (p) are given by the

solution to (2) and (4) once we replace z with p and αz with αp; third, the solution is unique

if and only if and only if σx ≤ σ2p
√
2π. Using then (11), we conclude that the equilibrium is

unique if and only if σ2εσ
3
x ≥ γ2(2π)−1/2.

Proposition 2 In the economy with f = f (θ), there are multiple equilibria if and only if

σ2εσ
3
x < γ2(2π)−1/2. There are then multiple strategies, a (x, p) , attacks A (θ, p) and regime

outcomes, R (θ, p) , for the coordination stage, but the asset demands, k (x, p) and K (θ, p) ,

and the price function, P (θ, ε), are always uniquely determined.

Note how this result contrasts with Proposition 1: when public information is exogenous,

a sufficiently low σx ensures uniqueness; but when the public information is endogenous as

in the present model, a sufficiently low σx ensures multiplicity. This is because more precise

private information now implies more precise public information, indeed at a rate high enough

that the agents’ ability to predict each others’ actions increases as their information improves.

Figure 3 illustrates the result in the (σx, σz) space: unlike Figure 2, as σx decreases, σz also

decreases and fast enough that the economy necessarily enters the region of multiplicity.

11
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Figure 3: With endogenous public information, as σx decreases, σz also decreases; multiplic-
ity is therefore ensured for sufficiently small σx.

Uniqueness can therefore not be seen as a small perturbation away from common knowl-

edge. As it was earlier illustrated in Figure 1, when either σx or σε is small enough, the

precision of the endogenous public information is sufficiently high that multiple courses of ac-

tion can be sustained in the coordination stage. Moreover, the common-knowledge outcomes

can actually be recovered as as either type of noise vanishes.

Corollary 2 Consider the limit as σx → 0 for given σε, or the limit as σε → 0 for given

σx. There exists an equilibrium in which R (θ, ε) → 0 whenever θ ∈ (θ, θ), as well as an
equilibrium in which R (θ, ε)→ 1 whenever θ ∈ (θ, θ). In every equilibrium, P (θ, ε)→ θ for

all (θ, ε).

3.3 Endogenous dividend

We now consider the case that the payoff of the asset is determined by the outcome of the

coordination stage. To preserve Normality, we now let f = f (A) = −Φ−1(A). The asset
thus pays more the lower the size of the attack, which we could interpret as a situation where

“attack” means refraining from some short of investment.

We start again the equilibrium analysis with stage 1. Guessing (and later verifying) that

agents use monotone strategies in stage 2 such that a (x, p) = 1 if and only if x < x∗ (p)

for some threshold x∗ (p) , we have that A (θ, p) = Φ
¡√

αx[x
∗ (p)− θ]

¢
and therefore f =

√
αx[θ − x∗ (p)]. Hence, if the agents posterior about θ is Normal (which we verify later),

12



so is f . It follows that the individual optimal demand for the asset is again as in (10).

Substituting f =
√
αx[θ − x∗ (p)] into the latter and letting eγ = γ

√
αx and

ep = 1√
αx

p+ x∗(p) (13)

we can rewrite the optimal demand as k = (E[θ|x, p]− ep) / (eγVar[θ|x, p]). Like in the previous
section, we then propose E[θ|x, p] = δx + (1− δ) ep and Var[θ|x, p] = α. It follows that

K (θ, p) = (δα/eγ) (θ − ep) and therefore market clearing implies
ep = θ − eγ

δα
√
αε

ε. (14)

Hence, provided that there is a one-to-one mapping between p and ep, the observation of p
is equivalent to the observation of a Normal signal about θ with precision αp = (δα/eγ)2αε

and therefore θ|x, p˜N (δx+ (1− δ) ep, α) with δ = αx/ (αx + αp) and α = αx + αp. Solving

for δ, α, and αp gives αp = αεα
2
x/eγ2 = αεα

3
x/γ

2, or equivalently

σp = γσεσ
3
x. (15)

Next, consider stage 2. The threshold θ∗(p) solves θ = A (θ, p) ; equivalently,

x∗(p) = θ∗(p) + 1√
αx
Φ−1(θ∗(p)). (16)

The threshold x∗ (p), on the other hand, solves Pr [θ ≤ θ∗(p)|x, p] = c; equivalently,

Φ
³p

αx + αp

³
θ∗(p)− αx

αx+αp
x∗(p)− αx

αx+αp
ep´´ = c. (17)

These equations are the analogues of (2) and (4) in the benchmark game. However, once we

substitute (13) and (16) into (17), we get a unique solution for θ∗(p) :

θ∗(p) = Φ
³q

αx
αx+αp

Φ−1 (1− c)− αp
αx+αp

p
´
, (18)

in which case (16) implies also a unique x∗ (p) . Hence, unlike either the benchmark game or

the case of the previous section, the strategy of the agents in the coordination game and the

regime outcome are always uniquely determined as functions of the realized price.

To complete the analysis, we need to determine the mapping between p and ep, that is,
the equilibrium price mapping p = P (θ, ε). Using (13), the aggregate demand for the asset
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is

K (θ, p) =
δαeγ
µ
θ − 1√

αx
p− x∗ (p)

¶
. (19)

Since x∗ (p) is uniquely determined, K (θ, p) is also uniquely determined (and similarly for

k (x, p)). Moreover, for any θ, K(θ, p) is continuous in p, K(θ, p) → ∞ as p → −∞, and

K(θ, p)→ −∞ as p→ +∞. It follows that K (θ, p) = ε, or equivalently (13), always admits

a solution; that is, a market-clearing price p = P (θ, ε) exists for any θ and ε. However, the

market-clearing price need not always be unique. Note that θ∗(p) and x∗ (p) are decreasing

in p, which in turn implies the asset’s dividend, f =
√
αx[θ− x∗ (p)], is itself increasing in p.

As a result, the demand for the asset can be non-monotonic. Indeed, (16) and (19) imply

sign

½
∂K (θ, p)

∂p

¾
= −sign

½√
αx

αp
− φ

¡
Φ−1(θ∗)

¢¾
and thereforeK (θ, p) is globally decreasing in p if and only if

√
αx/αp ≥

√
2π, or equivalently

σ2εσ
3
x ≥ γ2/

√
2π. If instead σ2εσ

3
x < γ2/

√
2π, the aggregate demand for the asset is non-

monotonic and there is a non-empty interval (ep1, ep2) such that (13) admits a single solution
whenever ep /∈ (ep1, ep2) but three solutions whenever ep ∈ (ep1, ep2).Different selections from these
solutions then sustain different mappings between ep and p, that is, different equilibrium price
functions P (θ, ε) .

Proposition 3 In the economy with f = f (A), there are multiple equilibria if and only if

σ2εσ
5
x < γ2(2π)−1/2. There are then multiple price functions P (θ, ε), but the asset demands

k (x, p) , K (θ, p) , the strategy a (x, p) , and the attack A (θ, p) are always uniquely determined.

In the model of the previous section, the dividend was a function of θ alone and therefore

the price played the role of a signal about the exogenous fundamental. As a result, indeter-

minacy emerged for the strategies and the size of the attack in the coordination stage, but

not for the price clearing the asset market. Here, instead, the dividend depends on A and

therefore the price plays the role of an anticipatory signal about the endogenous size of the

attack. A particular price realization coupled with an agent’s private information then pins

down a unique posterior about the size of the attack, in which case the agent’s best response

is of course unique. This explains why the strategies in stage 2 are uniquely determined.

In stage 1, on the other hand, different levels of the price are associated with different

expectations about the size of the attack and therefore about the dividend of the asset: in

equilibrium, a higher price signals a higher dividend. When this effect is strong enough, it can

offset the usual negative payoff effect of the price — namely that a higher price means a higher

cost of obtaining the asset — and may therefore induce the demand for the asset to increase
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with the price. This non-monotonicity of the asset demand introduces the possibility for

multiple market-clearing prices. Finally, the positive effect of the price is stronger when αp

is higher, for a higher αp increases the sensitivity of the agents’ actions in stage 2 to the price

and therefore of the dividend to the price. This explains why multiple equilibrium prices

exist for for small levels of noise.

To further understand why multiplicity emerges in the price and not in the strategy

of the agents, it helps to consider for a moment the no-noise game (σx = σε = 0). The

exogenous signal is then x = θ and the equilibrium price is p = −Φ−1(A) and therefore an
agent learns perfectly θ by observing x and A by observing p. Clearly, the agent then finds

it optimal to attack if and only if A ≥ θ, or equivalently x ≤ Φ(−p), which means that his
strategy is uniquely determined as a function of x and p. However, the equilibrium values of

p and A are not uniquely determined. Instead, for every θ ∈ (θ, θ], both (p,A) = (∞, 0) and

(p,A) = (−∞, 1) can be sustained in equilibrium.

In conclusion, small noise now ensures multiplicity in both the asset price and the co-

ordination outcome: different equilibrium price functions result to different realizations of

the price and the size of the attack for the same θ and ε and therefore to different regime

outcomes as well. What is more, the no-noise (or common-knowledge) outcomes are once

again obtained as the noise vanishes.

Corollary 3 Consider the limit as σx → 0 for given σε, or the limit as σε → 0 for given

σx. There is an equilibrium in which R(θ, ε)→ 1 and P (θ, ε)→ −∞ whenever θ ∈ (θ, θ), as
well as an equilibrium in which R(θ, ε)→ 1 and P (θ, ε)→ −∞ whenever θ ∈ (θ, θ).

3.4 Discussion

Although the property that the precision of endogenous public information increases with

the precision of exogenous private information is likely to be very robust, how strong this

effect is and whether it can overturn the direct effect of private information may depend

on the details of the channel through which private information is aggregated. Indeed, the

result that multiplicity is ensured for small σx relies on the precision of public information

increasing at a rate higher than the square root of the precision of public information. That

was the case in the two specifications we consider above (as evident in (12) and (15)) but

need not be true in general. We now provide an example which illustrates this possibility.

To this aim, we modify stage 1 as follows. The agent is assumed to be risk neutral

and face a quadratic liquidity/transaction cost for investing in the risky asset. The indirect
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utility from the portfolio choice is thus given by

V (c) = c = w − pk − κ

2
k2 + fk (20)

where the scalar κ > 0 parametrizes the liquidity/transaction cost. We consider again two

cases for the dividend, exogenous and endogenous.

Proposition 4 Suppose V is given by (20).

(i) When f = θ, the equilibrium price function P is always unique, whereas the equilib-

rium regime outcome R is unique if and only if σx is either sufficiently small or sufficiently

high relative to σε.

(ii) When f = −Φ−1(A), there are multiple equilibria if and only if σx and/or σε are
sufficiently small. Multiplicity then emerges in both the regime outcome R and the price

function P.

Here, unlike the earlier CARA-normal cases, the increase in the precision of public infor-

mation generated by an increase in the precision of private information is not always strong

enough to offset the direct effect of the private information when the payoff of the asset is

exogenous. This is because the slope of individual demand on the expected dividend is in-

dependent of the risk in the dividend, which implies that the precision of public information

increase less with private information than when the slope itself increases with more precise

information (less risk). When the dividend depends only on θ, the anchoring effect of private

information dominates, thus ensuring uniqueness for σx small enough.

When, however, the dividend of the asset depends on the size of the attack, the fact that

the sensitivity of the size of the attack and therefore of the dividend itself to the fundamental

increases as the agents’ information improves compensates for the lack of such a sensitivity

in the demand for the asset. As a result, coordination once again becomes easier as private

information becomes more precise and multiplicity reemerges for small enough noise.

These two examples highlight that the details of the channel through which information

is aggregated matters: whether it takes a small or a large perturbation away from common

knowledge for uniqueness to prevail — or, more gererally, what is the region of σx and σε for

which there are multiple equilibria — may depend on the set of financial assets traded, the

preferences of the agents, and other institutional details of the particular application one

examines.

In Section 5, we consider a different model where there is no financial market to aggregate

information, but agents observe a direct signal about others’ activity when they decide

whether to attack. We find that the coordinating effect of this endogenous signal is once

again strong to deliver multiplicity when σx or σz are small enough.
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Hellwig, Mukherji, and Tsyvinski (2004), on the other hand, consider a currency-crises

model in which the coordination game is embedded in the financial market: they assume

that the dividend of the asset (i.e., a peso bond in their model) is itself low when the price

of the asset is low (i.e., when interest rates are high). They also find that multiple equilibria

exist when the private noise is small enough.

In the next section, which examines the implications of our analysis for non-fundamental

volatility, we continue to focus on cases in which the coordinating effect of prices is sufficiently

strong. Although, as we have just shown, this is not always true, we beleive this is an

interesting benchmark.

4 Noise and Volatility

We now investigate the role of the information structure for non-fundamental volatility, that

is, the volatility of equilibrium outcomes conditional on θ. We consider in turn two sources

of non-fundamental volatility: volatility generated by payoff-irrelevant variables (sunspots)

when there are multiple equilibria and agents use these sunspots to coordinate their behavior;

and volatility generated by the shock ε when the equilibrium is unique.

With exogenous information, multiplicity disappears when agents observe the fundamen-

tals with small idiosyncratic noise. By implication, there is no sunspot volatility when σx

is small enough. What is more, as σx → 0, the size of the attack and by implication the

regime outcome become independent of ε. Hence, all non-fundamental volatility vanishes as

σx → 0. On the other hand, non-fundamental volatility is maximized when σz → 0 for given

σx, as in this case the common-knowledge outcomes are obtained.

With endogenous information, the impact of private noise on volatility is quite different.

A sufficiently large reduction in either σx or σε can increase volatility by ensuring multiplicity

and therefore introducing more sunspot volatility. Corollaries 2 and 3 indeed imply that

sunspot volatility is maximized when either noise vanishes: as σx → 0 or σε → 0, the

regime can either collapse or survive for any given θ ∈ (θ, θ], purely as a function of the
sunspot. What is more, sunspot volatility can show up in prices as well: when the dividend

is endogenous, the equilibrium price can be arbitrarily low or arbitrarily high for any given

θ ∈ (θ, θ].
The property that, with endogenous information, less noise may increase volatility does

not rely on the existence of multiple equilibria. As we show next, when the equilibrium is

unique, a reduction in either σx or σε may increase the sensitivity of the regime outcome and

the asset price to the exogenous shock ε and may therefore result to higher non-fundamental

volatility.
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4.1 Regime Volatility

In equilibrium, the regime is abandoned (R = 1) if and only if θ ≤ θ∗ (p) , but p in turn

depends on θ, since p = P (θ, ε) . To express the equilibrium regime outcome as a function

of the exogenous variables θ and ε, note that, as long as the equilibrium is unique, θ∗ (p)

is continuously decreasing in p and P (θ, ε) is continuously increasing in θ. It follows that

R (θ, ε) = 1 if and only if θ ≤ θ̂ (ε) , where θ̂ (ε) is the unique solution to

θ̂ = θ∗(P (θ̂, ε)).

We can thus examine the non-fundamental volatility of the regime outcome by examining

the sensitivity of θ̂ (ε) to ε.

Consider first the case the dividend is exogenous (f = f (θ)). Using the results of Section

3.2, we get

θ̂ (ε) = Φ

µ
ψ +

1

γσεσ2x
ε

¶
(21)

where ψ =
p
1 + 1/ (γ2σ2εσ

4
x)Φ

−1 (1− c). It follows that

∂θ̂

∂ε
=

φ(Φ−1(θ̂))

γσεσ2x
(22)

and therefore, for any given θ̂, a reduction in σε or σx increases the slope of θ̂ (ε) with

respect to ε. By implication, θ̂ satisfies a single-crossing property with respect to σx or

σε: let ε0 be the unique value of ε for which ∂θ̂/∂σε = 0 or equivalently ∂θ̂/∂σx = 0;

for any ε1 and ε2 such that ε1 < ε0 < ε2, we still have that ∂|θ̂(ε2) − θ̂(ε1)|/σε < 0 and

similarly ∂|θ̂(ε2)− θ̂(ε1)|/σε < 0. In this sense, a reduction in either type of noise increases
non-fundamental volatility.

The result is illustrated in Figure 4. The solid line depicts the threshold θ̂ (ε) as a function

of ε for a relatively high σx, whereas the dashed line corresponds to a relatively low σx. A

similar single-crossing property holds when the dividend is endogenous (f = f (A)). Indeed,

(21) and (22) continue to hold if we replace γ with eγ = γσx. We conclude that

Proposition 5 Less noise implies more non-fundamental volatility even when the equilib-
rium is unique: for any given θ̂, a reduction in σε or σx increases the slope of θ̂ (ε) with

respect to ε.

Our earlier results regarding equilibrium multiplicity can thus be viewed as an extreme

reincarnation of the above result. When the noise is sufficiently small, volatility can be high,
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Figure 4: The regime-change threshold θ̂(ε) as a function of the shock ε.

not only because the outcome is very sensitive to the exogenous noise, but also because the

outcome can depend on arbitrary sunspots.

4.2 Price Volatility

We next examine the comparative statics of the volatility of prices. To emphasize the

implications for volatility that do not derive from multiplicity, we first focus again on case

that the equilibrium is unique or that there are no sunspots.

When the dividend is exogenous, we have f = θ, p = f − σpε, and σp = γσεσ
2
x. When

instead the dividend is endogenous, we have f = Φ−1 (A) = (θ − x∗)/σx, p = f − (σp/σx) ε,
and σp = γσεσ

3
x. In either case, we can write the equilibrium price as the sum of the dividend

and the supply shock appropriately weighted:

p = f −
¡
γσεσ

2
x

¢
ε (23)

Keeping f constant, the volatility of the price clearly decreases with a reduction in either σx
or σε. But what about the volatility of the dividend itself?

When the dividend is exogenous, f is independent of ε. The impact of noise is then

exactly like in Grossman-Stiglitz: a reduction in either σx or σε implies lower volatility in

equilibrium prices.

When instead the dividend is endogenous, f depends on ε, because agents’ actions in

the second stage depend on the price, which in turn depends on the shock ε. Moreover, for

essentially the same reason that a reduction in noise increases the sensitivity of the regime

outcome to the shock ε, a reduction in noise increases the sensitivity of f on ε. As a result,
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Figure 5: The equilibrium price P (θ, ε) as a function of the shock ε.

the overall impact of noise on the volatility of prices is now ambiguous: on the one hand,

less noise reduces the volatility of the price for any given volatility of the dividend; on the

other hand, less noise increases the volatility of the dividend itself.

The second effect indeed dominates in some cases. An example is illustrated in Figure 5,

which depicts P (θ, ε) for different values of ε and a given θ. The solid line corresponds to a

relatively high σx, the dotted one to an intermediate σx, and the dashed one to a relatively

low σx. (In all cases, however, σx is high enough that the equilibrium in unique.) The effect

of σx on the sensitivity of P (θ, ε) to ε is non-monotonic: it is highest when σx is either high

or low. A similar picture emerges if we consider the impact of σε. We thus conclude:

Proposition 6 When the dividend is exogenous, the volatility of the price conditional on θ

necessarily decreases with a reduction in either σx or σε. But when the dividend depends on

the coordination outcome, a reduction in either noise can increase price volatility.

5 Endogenous Information II: Observable Actions

In the analysis so far, we have assumed that agents observe a signal generated by a different

stage of economic interactions than the coordination game. We now examine the case that

the information originates in the coordination game itself. In particular, we assume away

the financial market and let agents observe a noisy public signal about the activity of other

agents in the coordination game.

We first consider a model where the signal is about others’ contemporaneous actions. In

this case, our equilibrium concept is novel and unavoidably at the crossroads of rational-

expectations and game theory. We later show that the same results can be obtained in a
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dynamic variant of this model, in which the population is divided into two groups: ‘early’

movers, who have only private information about the fundamentals, and ‘late’ movers, who

can also observe a public signal about the early movers’ activity. In the latter case, the

equilibrium concept is standard game-theoretic.

5.1 Model set-up

There is no asset market and, except for the endogenous public signal, the game is identical to

the benchmark model analyzed in Section 2. All agents move simultaneously after observing

private signals about the fundamentals and a public signal about the size of the attack. The

private signals are again x = θ + σxξ, whereas the public signal is

y = s(A, ε)

where s : [0, 1] × R→ R and ε is noise, independent of θ and ξ. To preserve Normality of

the information structure and obtain closed-form solution, we let s(A, ε) = Φ−1(A) + σεε

and ε ∼ N (0, 1) .11 The exogenous information structure is then parameterized by the pair
of standard deviations (σx, σε).

Since the information of each agent includes a signal about other agents’ actions, the

equilibrium concept we define is a hybrid of a perfect Bayesian equilibrium and a rational-

expectations equilibrium.

Definition 2 A rational-expectations equilibrium consists of an endogenous signal y = Y (θ, ε),

an individual attack strategy a(x, y), and an aggregate attack A(θ, y), that satisfy:

a(x, y) = arg max
a∈[0,1]

E [ U(a,R(θ, y)) | x, y ] (24)

A(θ, y) =

Z
x

a(x, y)dΦ

µ
x− θ

σx

¶
(25)

y = s(A(θ, y), ε) (26)

for all (θ, ε, x, y) ∈ R4, where R(θ, y) = 1 if A(θ, y) ≥ θ and R(θ, y) = 0 otherwise.

Condition (24) means that a(x, y) is the optimal strategy for the agent, whereas condition

(25) means that A(θ, y) is simply the aggregate across agents. The fixed-point relation

introduced by (26) is the rational-expectations feature of our context: the signal y must be

generated by individual actions, which in turn are contingent on y.
11This convenient specification was introduced by Dasgupta (2002).
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5.2 Equilibrium analysis

We focus again on monotone equilibria, in which an agent attacks if and only if x ≤ x∗(y)

and the status quo is abandoned if and only if θ ≤ θ∗(y). A monotone equilibrium is thus

identifies with a triplet of functions x∗, θ∗, and Y.

Given that an agent attacks if and only if x ≤ x∗(y), the aggregate attack is A(θ, y) =

Φ
¡√

αx(x
∗(y)− θ)

¢
. It follows that the regime is abandoned if and only if θ ≤ θ∗(y), where

θ∗(y) solves A(θ, y) = θ, or equivalently

x∗(y) = θ∗(y) + 1√
αx
Φ−1(θ∗(y)). (27)

Condition (26), on the other hand, implies that the signal must satisfy y =
√
αx [x

∗(y)− θ]+

σεε, or equivalently

x∗(y)− σxy = θ − σxσεε. (28)

Note that (28) is a mapping between y and z = θ − σxσεε. Define the correspondence

Y(z) = { y ∈ R | x∗(y)− σxy = z } . (29)

We will later show that Y(z) is non-empty and examine when it is single- or multi-valued.
Now take any function Ỹ (z) that is a selection from this correspondence — that is, such

that Ỹ (z) ∈ Y(z) for all z — and let Y (θ, ε) = Ỹ (θ − σxσεε). Any such selection preserves

normality of the information structure.

Indeed, the observation of y = Y (θ, ε) is then equivalent to the observation of z =

θ − σxσεε = Z (y) , where Z (y) = x∗(y) − σxy. Therefore, it is as if the agents observe a

Normal public signal about θ with precision αz = αxαε, or equivalently

σz = σxσε. (30)

The precision of endogenous public information is thus once again increasing in the precision

of exogenous private information.

For the individual agent in turn to find it optimal to attack if and only if x ≤ x∗ (y), it

must be that x∗ (y) solves the indifference condition Pr (θ ≤ θ∗ (y) |x, y) = c, or equivalently

Φ
³√

αx + αz

³
θ∗(y)− αx

αx+αz
x∗ (y)− αz

αx+αz
Z (y)

´´
= c. (31)

22



Using Z (y) = x∗(y)− σxy and substituting x∗ (y) from (27), we get

θ∗(y) = Φ

µ
αz

αx + αz
y +

r
αx

αx + αz
Φ−1 (1− c)

¶
, (32)

which together with (27) determines unique θ∗(y) and x∗ (y). Hence, the strategy of the

agents a (x, y) and the aggregate attack A (θ, y) are uniquely determined.

We finally need to examine the equilibrium correspondence Y(z). Recall that this is given
by the set of solutions to x∗(y)− σxy = z. Using (27) and (32), this reduces to

F (y) ≡ Φ

µ
αz

αx + αz
y + Λ

¶
+

1√
αx

µ
− αx

αx + αz
y + Λ

¶
= z, (33)

where Λ ≡
p
αx/ (αx + αz)Φ

−1(1− c). Note that F (y) is continuous in y, and F (y)→ −∞
as y → +∞, and F (y) → +∞ as y → −∞, which ensures that Y(z) is non-empty and
therefore that an equilibrium always exist. Next, note that

sign {F 0(y)} = −sign
½
1− αz√

αx
φ
³

αz
αx+αz

y + Λ
´¾

and therefore F (y) is globally monotonic if and only if αz/
√
αx ≤

√
2π, in which case Y(z) is

single valued. If instead αz/
√
αx >

√
2π, there is a non-empty interval (z, z) such that Y(z)

takes three values whenever z ∈ (z, z) . Different selections then sustain different equilibrium
signal Y .

Using αz = αεαx, we conclude that multiple equilibria survive as long as either source of

noise is sufficiently small.

Proposition 7 A monotone rational-expectations equilibrium exists for all (σx, σε) and

is unique if and only if σ2εσx ≥ 1/
√
2π. If σ2εσx < 1/

√
2π, the equilibrium strategy a and

aggregate attack A remain unique, but there are multiple signal functions Y .

Interestingly, when multiplicity arises, it is with respect to aggregate outcomes but not

with respect to individual behavior. To understand this result, consider the no-noise limit

(σx = σε = 0), in which case x = θ and y = Φ−1(A). Clearly, the agent finds it optimal to

attack if and only if x ≤ Φ(y), which uniquely determines the equilibrium strategy a(x, y) for

the agent. However, for every θ ∈ (θ, θ], both (y,A) = (−∞, 0) and (y,A) = (+∞, 1) can

be sustained as equilibria. When σx and σε are non-zero, the same nature of indeterminacy

remains: the behavior of the agent is uniquely determined for any given x and y, but there

can be multiple equilibrium value for y and A for any given realization of θ and ε. In this
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sense, the multiplicity here is similar to the one we encountered in Section 3.3, when agents

traded a financial asset whose dividend depended on the size of the attack.

Finally, the common-knowledge outcomes are once again obtained as either source of

information becomes infinitely precise, and therefore sunspot volatility is maximized when

the noise vanishes. On the other, the Morris-Shin limit can be obtained if the endogenous

public signal becomes infinitely imprecise, in which case it is as if the endogenous signal were

not available.

Corollary 4 (i) Consider the limit as either σx → 0 or σε → 0. There exists an equilibrium

in which R (θ, ε) → 0 whenever θ ∈ (θ, θ], as well as an equilibrium in which R (θ, ε) → 1

whenever θ ∈ (θ, θ].
(ii) Consider the limit as σε → ∞. There is a unique equilibrium in which R (θ, ε) → 1

whenever θ < θ̂ and R (θ, ε)→ 0 whenever θ > θ̂, where θ̂ ≡ 1− c.

5.3 Non-simultaneous signal

The analysis above has assumed that agents can condition their decision to attack on a noisy

indicator of contemporaneous aggregate behavior. We now show that our results extend to

a simple dynamic model in which no agent has information about contemporaneous actions

of other agents and therefore a standard game-theoretic equilibrium concept (namely PBE)

can be used.

The population is divided into two groups, ‘early’ and ‘late’ agents. Early agents move

first, on the basis of their private information alone. Late agents move second, on the basis

of their private information as well as a noisy public signal about the aggregate activity

of early agents. Neither group can observe contemporaneous activity, but late agents can

condition their behavior on the activity of early agents.

Let µ ∈ (0, 1) denote the fraction of early agents, A1 the aggregate activity of early
agents, and A2 the aggregate activity of late agents. The signal generated by early agents

and observed only by late agents is given by

y1 = Φ−1(A1) + ε, (34)

where ε ∼ N (0, σ2ε) is independent of θ and ξ. Early agents can condition their actions

only on their private information, whereas late agents can condition their actions also on y1.

Finally, the regime changes if and only if µA1 + (1− µ)A2 ≥ θ.

We look for perfect Bayesian equilibria in which the strategy of the agents in monotonic

in their private information. Since late agents can condition their behavior on y1 but early
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agents not, a monotone equilibrium is a scalar x∗1 ∈ R and a pair of functions x∗2 : R→ R
and θ∗ : R → (0, 1) such that: an early agent attacks if and only if x ≤ x∗1; a late agent

attacks if and only if x ≤ x∗2(y1); and the regime is abandoned if and only if θ ≤ θ∗(y1).

In such an equilibrium, the aggregate attack of early agents is A1 (θ) = Φ
¡√

αx [x
∗
1 − θ]

¢
.

It follows that y1 = Φ−1 (A1 (θ))+ε =
√
αx [x

∗
1 − θ]+ε. Hence, in equilibrium, the observation

of y1 is equivalent to the observation of

z = x∗1 −
1√
αx

y1 = θ − σxε,

which is a public signal with precision αz = αεαx (equivalently, with standard deviation

σz = σεσx), like in the simultaneous-signal model.

Since y1 and z have the same informational content, we can equivalently express the

strategy of a late agent as a function of z instead of y1 and replace the functions x∗2(y1)

and θ∗(y1) with x∗2(z) and θ∗(z). The aggregate attack of late agents is then A2 (θ, z) =

Φ
¡√

αx [x
∗
2(z)− θ]

¢
and the overall attack from both groups is A (θ, z) = µA1 (θ) + (1 −

µ)A2 (θ, z) . It follows that the regime changes if and only if θ ≤ θ∗(z), where θ∗(z) solves

A (θ∗(z), z) = θ∗(z), or equivalently

µΦ (
√
αx [x

∗
1 − θ∗(z)]) + (1− µ)Φ (

√
αx [x

∗
2(z)− θ∗(z)]) = θ∗(z). (35)

Next, consider the optimal behavior of the agents. Since the realization of z is known

to late agents, their decision problem is like in the benchmark model: the threshold x∗2(z)

solves Pr [θ ≤ θ∗(z)|x∗2(z), z] = c, or equivalently

Φ
¡√

α (δx∗2(z) + (1− δ) z − θ∗(z))
¢
= 1− c, (36)

where δ = αx/(αx+αz) and α = αx+αz. Early agents, on the other hand, do not observe z

and therefore face a double forecast problem: they are uncertain about both the fundamental

and the signal upon which late agents will condition their behavior. The threshold x∗1 solves

Pr [θ ≤ θ∗(y)|x∗1] = c, or equivalentlyZ
Φ (
√
αx [x

∗
1 − θ∗(z)])

√
α1φ (

√
α1 [x

∗
1 − z]) dz = 1− c, (37)

where α1 = αxαε/(1 + αε).
12

A monotone equilibrium is therefore a joint solution to (35)-(37). We can reduce the

12To see this, note that z = θ − σxε = x− ξ − σxε, so that z|x ∼ N
¡
0, σ2x + σ2xσ

2
ε

¢
. That is, conditional

on x, z is distributed normal with precision α1 = αxαε/(1 + αε).
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dimensionality of the system by solving (35) for x∗2(z) :

x∗2(z) = θ∗(z) +
1√
αx

Φ−1
µ
θ∗(z) +

µ

1− µ
{θ∗(z)− Φ (

√
αx [x

∗
1 − θ∗(z)])}

¶
.

Substituting the above into (36) and using δ = αx/(αx + αz) and α = αx + αz, we obtain:

Γ(θ∗(z), x∗1) = g (z) , (38)

where

Γ(θ, x1) = −
αz√
αx

θ + Φ−1
µ
θ +

µ

1− µ
{θ − Φ (

√
αx [x

∗
1 − θ])}

¶
,

g (z) =
p
1 + αz/αxΦ

−1 (1− c)−
¡
αz/
√
αx

¢
z, and αz = αεαx.We conclude that an equilib-

rium is a joint solution of (37) and (38) for a threshold x∗1 ∈ R and a function θ∗ : R→ (0, 1).

Let C denote the set of piecewise continuous real functions with range a subset of [0, 1].
For any given function θ∗ ∈ C, (37) always defines a unique x∗1 ∈ R. For given x∗1 ∈ R, on
the other hand, (38) may admit a unique or multiple solutions in θ∗ ∈ C, depending on
(αx, αε, µ) . Different solutions to (38) for given x∗1 represent different continuation equilibria

for the game between late agents defined by a fixed strategy for the early agents. The

question of interest, however, is the determinacy of equilibrium in the entire game.

In the appendix we show that, when (38) admits a unique solution for every x∗1 ∈ R,
the fixed point of (37)-(38) is also unique. On the other hand, when (38) admits multiple

solutions for every x∗1 ∈ R, we prove that (37)-(38) also admits multiple fixed points. This
provides us with the following sufficient (but not necessary) conditions for uniqueness and

multiplicity:

Proposition 8 (i) There exists a unique equilibrium if

σ2εσx ≥
1√
2π
(1− µ)

(ii) There exist multiple equilibria if

σ2εσx <
1√
2π

¡
1− µ− µσ2ε

¢
For any σε and σx such that σ2εσx < 1/

√
2π, multiplicity in ensured for µ low enough.

In this sense, the multiplicity result of the simultaneous-move game survives as long as the

fraction of informed (late) agents is high enough. Indeed, the dependence of (38) on x∗1
vanishes as µ → 0 and therefore it can be shown that the equilibria of the simultaneous-

26



signal model can be approximated by equilibria of this dynamic model as µ → 0. What is

more, for any µ < 1, multiple equilibria exist as long as σε and σx are sufficiently low. On

the other hand, for any σx and any σε, uniqueness is ensured by taking µ→ 1, which is also

intuitive, since in this case the role of the informed agents vanishes.

We conclude that the insights we derived in the simultaneous-signal model extend to

the present framework and do not hinge on the fixed-point nature of the hybrid equilibrium

concept we used there.

6 Final Remarks

We view the main theme in Morris-Shin as emphasizing the importance of the details of

the information structures for understanding the determinacy of equilibria and the volatility

of outcomes. This paper contributes to this same theme by studying the importance of

endogenous information aggregation. We model public information by either (i) a financial

asset’s price that reveals information in equilibrium, or (ii) a direct noisy signal of aggregate

activity. An important feature of the equilibrium in all cases is that the precision of public

information is endogenous and rises with the precision of private information.

We showed that this effect is typically strong enough to reverse the limiting uniqueness

result obtained with exogenous information: multiplicity is now ensured when either the

idiosyncratic noise in the individuals’ observation of fundamentals or the common noise in

the aggregation process is small enough; conversely, a unique equilibrium survives when the

noise is large enough.

We also showed that less noise may have a destabilizing effect even when the equilibrium

is unique: a reduction in either source of noise may increase the sensitivity of the coordination

outcome and the price to exogenous shocks, thus leading to an increase in non-fundamental

volatility. Our multiplicity result can thus be interpreted as an extreme version of this

negative effect of on volatility.

Our results on volatility may help understand crises phenomena such as currency attacks,

bank runs, or debt crises. However, we have abstracted from the institutional details of

each specific application, which may also be important for the questions of multiplicity and

volatility. Extending our analysis to particular applications is thus a promising direction for

future research.
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7 Appendix

Proof of Proposition 1. Rewrite (4) as

G (θ∗(z)) = g (z) , (39)

where G(θ) ≡ −
¡
αz/
√
αx

¢
θ + Φ−1 (θ) and g (z) =

p
1 + αz/αxΦ

−1 (1− c) −
¡
αz/
√
αx

¢
z.

For every z ∈ R, G(θ) is continuous in θ, with G(0, z) = −∞ and G(1, z) =∞, which implies

that there necessarily exists a solution and any solution satisfies θ∗(z) ∈ (0, 1). Next, note
that

G0 (θ) = − αz√
αx
+

1

φ(Φ−1 (θ))

and maxw∈R φ(w) = 1/
√
2π. If αz/

√
αx ≤

√
2π we have that G is strictly increasing in θ,

which implies a unique solution to (39). If instead αz/
√
αx >

√
2π, then G is non-monotonic

in θ and there is an interval (z, z) such that (39) admits multiple solutions θ∗(z) whenever

z ∈ (z, z) and a unique solution otherwise. We conclude that monotone equilibrium is unique
if and only if αz/

√
αx ≤

√
2π. QED

Proof of Corollary 1. Consider the limits as σx → 0 for given σz, or σz →∞ for given

σx. In either case, αz/
√
αx → 0 and

p
(αx + αz) /αx → 1. Condition (39) then implies that

θ∗(z)→ θ̂ = 1− c for any z, so that the regime-change threshold is unique and independent

of z. Similarly, x∗(z)→ x̂, where x̂ = θ̂ if we consider the limit σx → 0, and x̂ = θ̂+σxΦ
−1(θ̂)

if we instead consider the limit σz →∞. QED.

Proof of Propositions 3 and 4. See main text.

Proof of Proposition 4. Part (i). Consider an agent who receives a private signal x and

observes a price p. His optimal investment k solves

u01(w − k) = E [ (f − p)u02 ((f − p)k) | x, p ] . (40)

We assume that u1(c) is quadratic and u2(c) is linear, in which case (40) reduces to a simple

linear relation, ki = κ {E [f |x, p]− p}+ λ, for some constants κ > 0, λ ∈ R. With out any
loss of generality, we normalize λ = 0. Finally, we let f = f(θ) = θ. That is, the return of

the asset depends only on the exogenous fundamental.

The analysis here is similar to that in the first example. The optimal individual demand

for the asset is

k = κ {E [ f | x, p ]− p} = κ {E [ θ | x, p ]− p} .
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We conjecture

E [ θ | x, p ] = δx+ (1− δ)p

for some δ ∈ (0, 1) to be determined. It follows that k = k(x, p) = κδ(x− p) and therefore

K(θ, p) = κδ (θ − p) . In equilibrium, K = ε. Hence, the equilibrium price is

p = P (θ, ε) = θ − 1

κδ
ε.

By implication, p is a public signal about θ with precision κ2δ2αε. That is, in this example

Z(p) = p and v = − 1
κδ
ε. It remains to pin down δ and the function Q.

Note that αp is bounded above by κ2αε and therefore we immediately have that unique-

ness is ensured for αx high enough. To complete the analysis, note that

δ =
αx

αx + αp
=

αx

αx + αεδ
2κ2

.

The above uniquely determines δ ∈ (0, 1) as an increasing function of αu and a decreasing

function of αε. To see this, let α = αx/ (αεκ
2) and rewrite the above as α = δ3/(1 − δ).

Obviously, this gives a monotonic relation between α and δ, with δ → 0 as α→ 0 and δ → 1

as α→∞. Using these results, we find

αp√
αx

=
κ2δ2αε√

αx
= (κ
√
αε)

δ2√
αx

= (κ
√
αε)

p
δ (1− δ).

The fact that δ (1− δ) → 0 as either αx → 0 or αx → ∞ then implies that, given αε,

we have that αp/
√
αx <

√
2π and therefore the equilibrium in unique if and only if αx

is either sufficiently small or sufficiently high. On the other hand, for given αx, we have

δ (1− δ) ≤ 1/4 necessarily and therefore αε < 8π/κ
2 is sufficient for uniqueness, whereas αε

sufficiently high is sufficient for multiplicity.

Part (ii). Let x∗(p) denote the threshold agents use in stage 2 in deciding whether to

attack. In equilibrium,

A = A(θ, p) = Φ−1
µ
x∗(p)− θ

σx

¶
,

so that the asset return is f =
√
αx[θ − x∗ (p)]. The demand for the asset is thus

k = κ {E [ f | x, p ]− p} = κ {√αxE [ θ | x, p ]− p−√αxx
∗(p)} .

29



Let ep = 1√
αx

p+ x∗(p) (41)

and note that, for every p, the above defines a unique ep. We can thus write the demand as
k = eκ {E [ θ | x, p ]− ep}

where eκ = κ
√
αx. We now conjecture

E [ θ | x, p ] = δx+ (1− δ)ep.
It follows that K = eκδ(θ − ep) and therefore

ep = θ − 1eκδε. (42)

Hence, the observation of p is equivalent to the observation of ep, which is a public signal for
θ with precision αp = eκ2δ2αε. It follows that

E [ θ | x, p ] = E [ θ | x, ep ] = δx+ (1− δ)ep,
where

δ =
αx

αx + αp
=

αx

αx + αεδ
2eκ2 .

This is the same as in the previous example, with eκ replacing κ. Using eκ = κ
√
αx, we infer

δ =
1

1 + αεδ
2κ2

,

so that δ is decreasing in αε but independent of αx. This means that αp is proportional to

αx, like in the benchmark model. Indeed, the critical ratio is now given by

αp√
αx
=
eκ2δ2αε√

αx
=
¡
κ2δ2αε

¢√
αx, (43)

and is increasing in both αε and αx.

The rest of the analysis is similar to the second example. In particular, the thresholds
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θ∗(p) and x∗(p) are uniquely determined and are given by

θ∗(p) = Φ

µ √
αx√

αx + αp
Φ−1 (1− c/b)− αp

αx + αp
p

¶
,

x∗(p) = θ∗(p) +
1√
αx

Φ−1(θ∗(p)),

with αp as in (43). Next, combining (41) and (42), we infer that the equilibrium price solves

p =
√
αxθ −

1

κδ
ε−√αxx

∗(p).

If αp/
√
αx < 2π, the above has a unique solution. If instead αp/

√
αx > 2π, the above has

multiple solutions. QED

Proof of Corollary 4. Part (i). From conditions (31) and (32) we have that, for every y,

θ∗(y)→ 1− c = θ̂ and x∗(y)→ θ̂ + σxΦ
−1(θ̂) = x̂ as σε →∞. Condition (28) then implies

θ − σxε = x∗(y) − σxy → x̂ − σxy and therefore the unique signal function in the limit is

Y (θ, ε)→ (x̂− θ)/σx + ε.

Part (ii). First, note that y → −∞ and y → +∞ as σx → 0. Next, note that both

|σ2εσx − φ(y)| and |σ2εσx − φ(y)| vanish. Since limy→−∞ φ(y)y = limy→+∞ φ(y)y = 0, the

latter implies σxy → 0 and σxy → 0. Hence, z → Φ(−∞) = θ and z → Φ(+∞) = θ as

σx → 0. Moreover, for every θ and ε, θ − σxε→ θ as σx → 0. It follows that

Pr
£
θ − σxε ∈ (z, z) | θ ∈ (θ, θ)

¤
→ 1 as σx → 0.

Next, let Y (θ, ε) ≡ minY(θ − σxε) and Y (θ, ε) ≡ maxY(θ − σxε) and consider (θ, ε) such

that θ − σxε ∈ (z, z). Note that Y (θ, ε) < y < y < Y (θ, ε) and therefore

Y (θ, ε)→−∞ and Y (θ, ε)→ +∞ as σx → 0.

From (32), θ∗(y) is independent of σx, θ
∗(y) → Φ(−∞) = θ as y → −∞, and θ∗(y) →

Φ(+∞) = θ as y → +∞. It follows that, as long as θ ∈ (θ, θ),

Pr [ θ ≤ θ∗ (Y (θ, ε)) ]→ 0 and Pr
£
θ ≤ θ∗

¡
Y (θ, ε)

¢ ¤
→ 1 as σx → 0,

which establishes the result. QED

Proof of Propositions 6, 7 and 8. See main text.

Proof of Proposition 8. For any µ ∈ (0, 1) and any x∗1 ∈ R, Γ(θ, x∗1) is continuous in
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θ, with Γ(θ, x∗1, µ) = −∞ and Γ(θ, x∗1, µ) = ∞, where θ = θ (x∗1, αx, µ) and θ = θ (x∗1, αx, µ)

solves, respectively, θ + µ
1−µ

©
θ − Φ

¡√
αx [x

∗
1 − θ]

¢ª
= 0 and = 1, and therefore satisfy 0 <

θ < θ < 1. It follows that (38) always admits a solution θ∗ (z) ∈
¡
θ, θ
¢
. That is, for any

given x∗1 ∈ R, (38) defines at least one function θ∗ : R→
¡
θ, θ
¢
.

We next examine under what conditions the function that solves (38) is unique. Note

that
∂Γ

∂θ
= − αz√

αx
+ Λ (θ;x∗1, αx, µ)

where

Λ (θ;x∗1, αx, µ) ≡ 1

φ(Φ−1(θ+ µ
1−µ{θ−Φ(√αx[x∗1−θ])}))

½
1 +

µ

1− µ
[1 +
√
αxφ (

√
αx [x

∗
1 − θ])]

¾
As θ → θ or θ (equivalently, z → ±∞), Λ (θ;x∗1, αx, µ)→ +∞. Let

K (x∗1, αx, µ) ≡ inf
θ∈R

Λ (θ;x∗1, αx, µ)

and note that, since φ takes values in (0, 1/
√
2π],

K (x∗1, αx, µ) ≥
1

1/
√
2π

½
1 +

µ

1− µ
[1 +
√
αx0]

¾
=

√
2π

1− µ
.

Moreover, letting θ̂ = θ̂ (x∗1, αx, µ) ∈
¡
θ, θ
¢
be the solution to φ

³
Φ−1

³
θ + µ

1−µ
©
θ − Φ

¡√
αx [x

∗
1 − θ]

¢ª´´
=

1/
√
2π, or equivalently the solution to θ+ µ

1−µ
©
θ − Φ

¡√
αx [x

∗
1 − θ]

¢ª
= 1/2, and using again

the fact that the maximal value of φ is 1/
√
2π, we have

K (x∗1, αx, µ) ≤ Λ
³
θ̂;x∗1, αx, µ

´
=

1

1/
√
2π

½
1 +

µ

1− µ

h
1 +
√
αxφ

³√
αx

h
x∗1 − θ̂

i´i¾
≤
√
2π

½
1 +

µ

1− µ

∙
1 +

√
αx√
2π

¸¾
Combining, we conclude that, for all (x∗1, αx, µ) ,

K (αx, µ) ≥ K (x∗1, αx, µ) ≥ K (µ)

where

K (αx, µ) ≡
√
2π

½
1 +

µ

1− µ

∙
1 +

√
αx√
2π

¸¾
and K (µ) ≡

√
2π

1− µ
.

Note that, importantly, neither bound is a function of x∗1.
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Case (i): αz√
αx
≤ K (µ).

In this case, αz√
αx
≤ K (µ) ≤ infx∗1 K (x

∗
1, αx, µ) and therefore Γ is strictly increasing in

θ for all θ and all x∗1. It follows that (38) defines a unique function θ∗ : R →
¡
θ, θ
¢
for any

given x∗1. Moreover, since Γ is decreasing in x∗1 and g is decreasing in z, the function θ∗ is

decreasing in z and increasing in x∗1. Finally, θ
∗ is continuous in both z and x∗1.

Next, consider (37). For any given θ∗ : R→
¡
θ, θ
¢
, (37) admits a unique solution x∗1 ∈ R.

Moreover, this solution is continuous and increasing in θ∗.

Let C be the set of continuous (and bounded) functions θ∗ : R →
¡
θ, θ
¢
. Then, (38) is

a mapping R → C and (37) is a mapping C → R. Together, they define a continuous and
increasing mapping T : R→ R.
It is easy to check that T (−∞) > −∞ and T (+∞) < ∞. Hence, a fixed point always

exists. Moreover, for arbitrary x∗1 and a > 0, let x∗∗1 = x∗1 + a and let θ∗ and θ∗∗ be the

solutions to (38) for x∗1 and x∗∗1 , respectively. Then, (38) and (37) give

− αz√
αx

θ∗ + Φ−1
µ

1

1− µ
θ∗ − Φ (

√
αx [x

∗
1 − θ∗])

¶
= g

− αz√
αx

θ∗∗ + Φ−1
µ

1

1− µ
θ∗∗ − Φ (

√
αx [x

∗
1 + a− θ∗∗])

¶
= g

Z
Φ (
√
αx [Tx

∗
1 − θ∗(z)])

√
α1φ (

√
α1 [Tx

∗
1 − z]) dz = 1− cZ

Φ (
√
αx [Tx

∗∗
1 − θ∗∗(z)])

√
α1φ (

√
α1 [Tx

∗∗
1 − z]) dz = 1− c

Since αz√
αx

<
√
2π

1−µ , we clearly have θ
∗∗ < θ̃ = θ∗ + a and, by implication, Tx∗∗1 < x̃1, where x̃1

solves Z
Φ (
√
αx [x̃1 − θ∗(z)− a])

√
α1φ (

√
α1 [x̃1 − z]) dz = 1− c

If x̃1 = Tx∗1+a (> Tx∗1), the above would have been positive, so it must be that x̃1 < Tx∗1+a.

Therefore, Tx∗∗1 < Tx∗1 + a, which proves that the slope of the mapping T is less than one

for every x∗1. It follows that T has a unique fixed point.

Case (ii): σ2εσx <
1√
2π
(1− µ− µσ2ε) , or equivalently

αz√
αx

> K (µ).
In this case, αz√

αx
> K (µ) ≥ supx∗1 K (x

∗
1, αx, µ) and therefore Γ necessarily has a non-

empty region of non-monotonicity in θ for all x∗1. It follows that, for any x
∗
1, there is a non-

empty interval Z = (z, z) = Z (x∗1) such that (38) admits three distinct solutions whenever

z ∈ Z and a unique one otherwise. Let θ∗L (θ
∗
H) be the function defined by selecting the

lowest (highest) solution whenever z ∈ Z and the unique one whenever z /∈ Z. Let TL
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(TH) be the associated mappings. Each of the mappings TL and TH are continuous and

satisfy T (−∞) > −∞ and T (+∞) < ∞. Hence, there is a fixed point (at least one) for

each mapping. Moreover, for any given x∗1, θ
∗
L (z) < θ∗H (z) for all z ∈ Z, which in turn

implies (because of the monotonicity in (37) and the fact that Z has positive measure) that

TL (x
∗
1) < TH (x

∗
1) for any x∗1. It follows that the fixed point of TL is lower than the fixed

point of TH , which together with the fact that θ∗L < θ∗H for any given x∗1 implies that the

associated x∗2 and θ∗ satisfy the same ordering.
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