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1. Introduction

This paper is an attempt to provide an analytical frame-

work for studying the interaction between corporate invest-

ment and financial policy. Almost all of the huge literature

on investment has been concerned with the optimal level of

investment or capital stock taking the firmts financial

policy as given and independent of the level of investment.

The theory which posits that investment is a function of

Tobin's(l969) q assumes either that investment is financed

entirely with retentions (Hayashi(l982)) or that a constant

fraction of investment is financed with debt (Summers(1981)

and Poterba and Sumrners(l992)). The theory which posits that

the optimal capital stock (as opposed to optimal investment)

is determined at the equality of the "cost of capital" and

the marginal product of capital makes similar assumptions to

derive the expression for the cost of capital (see, e.g.,

Chirinko and Kinq(1982)]. On the other hand, much of the

equally large literature on corporate finance (with possible

exceptions of Gordon(1981) and Auerbach(l982)) has been

concerned with corporate financial structure taking the

firm's investment and other real decisions as given.

Those who are accustomed to the tradition of Modigliani

and Miller might think that investment is independent of how

it is financed. This is indeed true if there are no taxes

(Modigliani and Miller(l958) and Stiglitz(l969)] or if there



are no bankruptcies and the corporate tax rate is equal to

the individual marginal tax rate (with the dividend tax and

the capital gains tax rates being zero) tMiller(1977fl. But

if both taxes and bankruptcies are present, the value of the

firm is not independent of its financial structure and the

firm's investment and financial decisions are interrelated.

Using the Capital Asset Pricing Model with taxes, Cordon

(1981) has analyzed the interaction between the optimal

capital stock and the optimal debt—capital ratio. However,

he appears to assume that profits are proportional the stock

of capital without allowing for adjustment costs associated

with investment, so the optimal capital stock is actually

indeterminate in his model. He also appears to assume the

fraction of new investment financed by debt is independent of

the capital stock. Auerbach(1982) has considered a determin-

istic model of a value maximizing firm where profits are a

additively separable function of the stream of past invest-

ments and where the corporate bond rate increases with the

debt—capital ratio. He derived a few results on the inter-

action between the level of investment and the way it is

financed for special cases.

The stochastic model of a corporation to be developed in

this paper explicitly incorporates bankruptcy and default

while allowing a rich menu of tax rates. The model assumes

that the firm detemirjes investment and financial policies so
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as to maximize its share price. The model is very general

with respect to how the firm's uncertain future dividends are

priced; no assumptions like certainty equivalence, constant

risk premium, or the capital asset pricing model w111 be

made. with a minimal set of assumptions on the pricing

mechanism, we will derive fairly sharp results concerning how

the firm finances investment and how the level of investment

is affected by the way it is financed. The main results can

be summarized as follows. If the firm's after—tax profits

are small relative to the level of investment, the firm

finances investment by retentions and debt. If they are

large relative to the level of investment, addtional invest-

ment projects are financed with new shares and debt. In the

intermediate case, additional finance comes entirely through

debt. Somewhat surprizingly, these results are broadly

consistent with Auerbach(l982) 's results which were derived

for a model different from ours.

The organization of the paper is as follows. Section 2

presents a very general pricing formula for the shares of the

firm under uncertainty with bankruptcy and default. The

pricing formula is a considerable generalization of that in

Auerbach(l979). Section 3 formulates the firm's problem of

maximizing its share price and derives the associated dynamic

programing algorithm. Section 4 makes a brief detour to the

taxless world and verifies the Modigliani—Miller theorem.
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Sections 5 and 6 consider what we call the homogeneous case

where production and adjustment costs associated with invest-

ment exibit constant returns to scale and where the firm is

competitive. It is shown in section 5 that the value of the

firm is proportional to its debt and capital stock. The

results in section 6 on the interaction between investment

and financial policy are sharp: the ratio of debt to the

end—of—period capital stock is independent of investment or

else the fraction of additional investment financed by debt

is 100%. In section 7, we derive similar but less sharp

results for the case without adjustment costs. We will also

show in section 7 that the notion of "cost of capital" loses

its usefulness in a model such as ours where bankruptcy is

explicitly incorporated. We will not consider the case with

adjustment costs and without constant returns to scale, since

it is a straightforward combination of the two cases analyzed

in sections 5, 6 and 7. Section 8 lists qualifications.
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2. Pricing Formula with Bankruptcy and Default

We consider the behavior of a firm in a discrete time,

Stochastic model. The firm is assumed to act so as to maximi-

ze its shareholders' wealth. At the beginning of the period,

the firm decides whether or not to go bankrupt. If it decides

not to go bankrupt (i.e., if the bankruptcy dummy Mt = 1),
the (cum—dividend) share price at the beginning of the period

Let stand for the number of pre—existing shares.

At the beginning of the period, the firm issues units of

new shares at the ex—thvidend price p, issues new debt
Bt

(which, for the sake of simplicity we take to have a maturity

of one period), pays interest and principal (l+it,)sti on

corporate debt, and distributes total dividends dtot to

pre—existing shareholders. After all this happens, new

information hits the stock market and the ex—dividend price

p becomes Mt+lptl at the end of period t (i.e., the begin-

ning of period t+l). If the firm decides to go bankrupt

(i.e., if Mt = 0), shareholders receive nothing and bond-

holders take over the firm.' Dividends are taxed at rate 0

at the personal level. Capital gains are taxed at a lower

rate c. All stockholders face the same tax rates, 0 and c.2

The equilibrium condition that links the cum—dividend

price Pt and the ex—dividend price p is the following:3

Pt = (l_et)d + p — c(pL —
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i.e.,

(2.1) Pt = mtdt + p, where rn = (l—et)/1_ct.

The ratio mt is less than one Since < 8• Dividends per

share, dt, can be written as

(2.2) dt = Xt/Qt +

where

(2.3) = (i_ut) TTt (l_kt)vtFt +

— Cl+(l_ut)iti)Bti

= cash flow + new debt issue

interest and principal on pre—existing debt4

fl = before—tax profits where variabie factor inputs

are already maximized out,

F = investment,
k = rate of investment tax credit,

v = price of investment goods,

u = corporate tax rate,

B = new issues of debt,

i = corporate bond rate.

Using (2.i) and (2.2) we can easily derive

(2.4) Pt = mx/Q + (1 +

Associated with before—tax profits ' in (2.3) is the



—7—

production function Gt(Kt,Nt,Ft,et), where N is a vector of

variable factor inputs and e is the shock to technology. Here

we follow Lucas(1967) and allow output to depend negatively

on investment F: aG/aF .s o. This is how we introduce adjust-

ment costs associated with investment. The firm's investment

activity of volting down investment goods within the firm is

a resource—using activity; as F increases, more and more

fraction of K and N must be directed to the investment activi-

ty and as a result output goes down. We assume convex adjust-

ment costs, i.e., GFF < 0. Therefore the first and second

partial derivatives of l1 with respect to Ft is nonpositive:

(2.5) = lTt(Ft,Kt), TIF
c 0, and 9TFF < 0.

The profit function should also involve the technology shock

and the parameters that characterize the demand and supply

functions (for output and factor inpits) that the firm faces.

If, in particular, the firm is competitive in the markets for

output and factors of production, the profit function will

involve output and factor prices as well as F and K. The

dependence of profits on those variables is left implicit in

the profit function.

Let L(xt+.) be the price that would be given by the

asset market as of t for an asset which pays (possibly sto-

chastic) tax—free dollars at t+j. Thus L is a mapping
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from the space of random variables to real numbers.5 By def-

inition, L(Xt) = Xt, and L(l) = l/(l+r.) where r is the

nominal rate on a tax—free i—period default—free bond. Ross

(1978) has proved that if there are no arbitrage opportuni-

ties left, the operator Lt satisfies

(1) linearity: L(p1x + p2y) = p1L(X) + u2L(y) for any

nonstochastic and

(2) iterative property: L(L+j(xt+. k3 =

j , k>O.

Using this pricing operator, the relationship between p. and

t+l is given by

L(Mt÷ipti — Ct+i(Mt+ipt+1_pP) =

i.e.,
(2.6) p = L(at+ipt÷i),
where

(2.7) =

By doing recursion on (2.4) and (2.6) and using the above

properties of Lt. we can derive (see Appendix 1):

(2.8) =

io L(vt. rn. Xt÷.),
where



—9—

(2.9) = kl at÷k_lat÷kl with 1t,o =

(2.10) t+j = (1 + +

We note that Tt,j = 0 if Mt+k = 0 for some k such that j>k>l.

One simple way to allow for defaults is the following.

Bondholders can receive full amount (l+it)Bt if the firm is

not bankrupt at t+l. In the event of bankruptcy in period

t+l, bondholders take over the firm and attempt to sell the

firm to the highest bidders. The market value of the firm at

t+l without obligation to pay interest and principal (l+it)Bt

is clearly equal to:

(2.11) t+1t+l + tl+(l_ut÷i)it)Bt.

This is what the bondholders can receive in period t+l in the

event of bankruptcy. Letting 8' stand for the tax rate on

interest income, the corporate bond rate i must satisfy

(2.12) 1 = L(Mti(1+iLi) +

where

= (le+1)it,
=
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3. The Firm's Optimization Problem

With the pricing formula (2.8) at hand, we can now formal-

ize the firm's optimization behavior. Our formulation will

closely parallel Lucas and Sargent(lgl)• We begin with a

few definitions. The exogenous variables are the variables

that the firm cannot influence their values. They include;

tax rates (u,e,e',c,k), the technology shock (e), and the

parameters characterizing the demand and supply functions

(for output, factor inputs and investment goods) that the

firm faces.6 We assume that these exogenous variables are

part of a larger set of variables z which follow a Markov

process.7 The Vector Z will be referred to as the state of

nature, because it determines not only the stochastic proper-

ties of the exogenous variables that the firm will face in

the future but also the functional form of the pricing opera-

tor L (j>0).8 The current return mx in (2.8) depends on:

the current value of the
exogenous variables, Et, Ft, itl,

Bti, and The last three variables are called the firm's

state variables as they are historically given to the firm at

the beginning of the period. The information set in period

t, I, consists of the state of nature and the firm's

state variables itl,Bti,Tc. We assume that is known to

both the stock market and the firm at the beginning of period

t. The firm's action is a vector and the

associated variable factor inputs. The firm determines its
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current action as a function of This function is called

the firm's decision rule and is denoted by Since the

number of pre—existing shares, is historically given,

maximizing Pt is equivalent to maximizing the value of the

firm, Vt = whose expression is given by (2.8). Since

the current information set and a sequence of decision

rules completely determine the nature of the

stochastic process for (j0), the value of the

firm depends only on I and t't+l'•--• We assume the

firm knows the pricing operator Lt, so that it can correctly

evaluate how the stock market would react to any hypothetical

action contemplated by the firm.

Let Vt(It) be the value of Vt that is maximized over

) conditional on Mt = 1. shareholders' wealth is

Vt(It) if the firm stays in business in period t, and zero if

it goes broke. Thus the firm's bankruptcy decision is simply

the following:

1 if Vt(It) ) 0

(3.1) Mt =

0 otherwise.

This and (2.11) imply that the amount that bondholders can

receive in the event of bankruptcy in period t is always less

than the full amount (1÷it1)3t1 that they can receive if
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the firm is in operation. Clearly, the probability of bank-

ruptcy in period t increases with Bt,. It is for this

reasorf that the corporate bond rate i increases with Et.

If the firm stays in business, the firm's optimization

problem is to find a sequance
(uut+i....) (with Mt = 1) of

optimal decision rules that maximizes
v.. But there are a

few constraints that the firm is subject to. The first is

that (per share) dividends dt must be greater than or equal

to some lower bound U. (if = 0, this constraint simply

says dividends must be nonnegative. ) In some countries

(e.g., Japan and the United Kingdom) repurchase of equity is

illegal. The second constraint, therefore, is that g be

nonnegative.'0 The third constraint is, of course, the

capital accumulation constraint. Thus the (currently operat-

ing) firm's problem is

(3.2) max
Vt subject to dt÷ a

ut+, Jao
> 0,

and Kt+.÷, =
(l—o)Kt+ +

(j=O,l,2,..j,

where V is given by (2.8), ó is the exponential rate of

phisical depreciation of capital, and constrained such

that Mt = 1. The value of Vt evaluated at the sequence of

optimal decision rules (p,p11..) (with Mt = 1) is, of

course, v /ti'
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Now, it immediately follows from (2.8) that

(3.3) Vt = mX + tL(at+iVt+i).

We note here that L(at+iVt+1(It1)), which is the value of

L(at+iVt+1) evaluated at the optimal future decision rules

), is a function of Bt, Kt÷l and We

submerge the dependence of on in the functional form

and write

(3.4) Wt(Bt,Kt÷i) = L(at+1Vt+1(I+1)).

It is clear from (2.6) and (2.8) that this W is equal to

tt+l Although it is a function of the future optimal

decision rules, the value of W is independent of current

decision rule as long as the values St and Kt+l are

given. Furthermore, the current return mx is not influen-

ced by the firm's future actionj2 Therefore, the firm's

current action implied by the optimal decision

rule u (with Mt = 1) solves the familiar DP (dynamic program-

ming) algorithm:

(3.) Vt(It) = max (mX +
g,B,F

subject to dt

g > 0,

=
(l—o)xt + F.
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What restrictions can we place on An increase in Bt

(with held constant) affects in four ways. The first

is its direct effect on X1: x1 decreases as interest and

principal payments increases. Second, it increases the

probability of bankruptcy in t+l, which lowers the discount-

ing factor Tt+lj (j>l) for any realization of (j>O).

Third, it follows from (2.12) that the increased likelihood

of bankruptcy raises the corporate bond rate, Fourth, it

becomes more likely that the constraint a > is binding in

period t+1. An increase in Kt+l affects in exactly the

opposite directions. Therefore, Wt(Bt,Kt+1) decreases with

Bt and increases with Kt÷1. If Bt is sufficiently small, the

probability of bankruptcy will be zero. The corporate bond

will then be default—free, so (l_e)i must be equal to

the nominal interest rate on a safe, tax—free one—period

bond. Furthermore, the constraint d > a will not be binding.

So the only effect of
Bt W. is its direct effect on

It then follows that W(Bic+1) has the following separable

form (at least asymptotically) when is sufficiently small:

(3.6) Wt(B,ic+1) = w(Kt+i) —

(3.7) w = L(at+lmt+i(l+(l_ut1)it)).

Since Mti = 1 with probability one when is sufficiently
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small, at+l is independent of Bt and Kt÷i. Thus w is exoge-

nous to the firm, implying that Wt(Bt;Kt+i) is a linear

function of B when is sufficiently small. These informa-

tion on the functional form of Wt(Bt,Kt+i) will turn out to

be useful in later sections.

The DP algorithm (3.5) can be simplified somewhat if we

notice

(3.8) dtQt = +

+ YtWt(BtRt+1

where

=

Thus (3.5) reduces to

(3.10) max (mtX(B,F) + (l_Y+mty)wt(s,(l_o)xc-s-F))
y,B,F

subject to Xt(B,F) + ywtLB,(l6)Kt+F) >

y a

where

(3.11) Xt(B1F) = (l_u) lTtFxt
— (l_kt)vtF + B + Rti

(3.12) Rt = —
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4. The Taxless Case

It is useful at this stage to pause briefly and see what

happens if there are no taxes while bankruptcy and default

are possible. We prove here that the Modigliani—Miller(lg5)

theorem holds for this case by following the arguments in

Stiglitz(1969) and Ross(1978). This exercise will put the

results in the following sections in a proper perspective.

We first note from (3.10) that corporate equity policy is

irrelevant in the taxless world as m = 1, so the constraint

xt + yW > is irrelevant. Proving the Modigliani—Miller

proposition that the value of the firm is independent of

leverage in the taxless world amounts to showing that

Wt(Bt,Kt+1) can be written in a separable form (for any value

of and Kt+lf not just for small

(4.1) Wt(Bt,Kt÷1) = W(Kt+i) —

for it follows from this that Vt = + Wt is independent of

Bt. To prove (4.1), we note that Ct+l = Mt+i in the taxiess

world, so

(4.2) Wt(BtKt+1) = L[Mt+1Vt1(It1))
= L(Ytj) —

L((l_Mt+i)Yt÷1) — (l+it)BtL(Mt1),
where



—17—

(4.3) = vt+i(xt÷i) + (l+it)Bt

t+i — (1_kt÷i)vt+iFt+i + Bt÷l +

Since in the taxiess world (2.12) becomes

(4.4) Bt = (1+i)BI4(M1) + L((1_Mt+1)Yt+i),

(4.2) reduces to (4.1) with W(Kt+i) = L(Yt+1)J This

completes the proof of the Modigliani—Miller theorem.
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5. The Homogeneity Assumption

Properties of the solution to (3.10) depend1 of course,

on the functional form of the value function wt(Btxt÷1). In
this section and the next, we focus on the case where the

firm is a price—taker and the production function G(K,N,F,e)

is linearly homogeneous in K,N,F for any given e)4 The

immediate implication of this is that the associated profit

function is linearly homogeneous in F,K and satisfies

(5.1) UtFt;Kt) = t(ft)Kt, Wt' 1 o, S 0,

where = Ft/1ct)5 It then seems clear that the value

function, too, is linearly homogeneous in
BtIKti:

(5.2) Wt(Bt,Kt+1) =

where At = Bt/1<t÷i = Bt/((l_6+ft)xt) w-ll be referred to as

the debt—capital ratio. The intuition for (5.2) is quite
simplej6 When the initial condition is (2Bt,2Kt1) it is
feasible for the firm to double the future level of invest-

ment, employment and corporate debt that are optimal if the

initial condition is
(BtiIct1). Since the probability of

bankruptcy remains unchanged if the same corporate equity

policy is followed, the value of the firm under this decision

rule with (2Bl2ic) is at least twice wt(BtKt1), i.e., it
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must be that Wt(2Bt,2Kt+i) > 2w(B9ic÷1). Apply the same

argument in the opposite direction to obtain

wt(BttKt÷i)/2. Thus we have Wt(2Bti2lct+i) = 2Wt(BtKt÷1).
This result, which is a generalization of Lucas and Prescott

(1971) and Hayashi(1982), is proved in Appendix 2. We note

from (2.6), (2.8) and (3.4) that ht as defined by (5.2) is

equal to the ex—dividend value of the firm divided by

namely PQt+i/Kt+i. So the result states that Tobin's(l969)

"marginal g", awt/(vtaKt+i), is equal to the "average q",

Wt/(vt}(t+i).

This assumption of homogeneity has been popular but often

implicit in the corporate finance literature. For example

Nodigliani and Miller(1963) stated in their footnote 15:

"...we are referring in principle only to investments which

increase the scale of the firm. That is, the new assets must

be in the same 'class' as the old." (Italics original) Since

the "return" of new assets is the same as that of the exist-

ing assets, an increase in the value of the firm due to

investment, aW/a}(+1, must be equal to the average value of

the firm, wt/Kt+1. In Gordon and Malkiel(1981), the marginal

return on real investment is represented by s. But the same

symbol represents the return from investing a dollar in

equity. Their footnote 33 states: "Assume that the firm pays

out as dividends p percent of its after—tax profits and

reinvests the rest. Also assume that the investor with a
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marginal tax rate of m on interest payments has a marginal

tax rate of n on dividends..., When investing a dollar in

equity, the investor receives as dividends ps(1—t)(l—n) after

tax." (t is the corporate tax rate.) Unless all assets in

the firm share the same return, this would not happen.

We have seen in section 3 that Wt(Bt,Kt+1) decreases with

and increases with and that W. is linear in Bt at

least asymptotically when Et is small. So ht(At) must be a

decreasing function of the debt—capital ratio A and (at

least asymptoical1y) linear when A. is small. We assume

that ht(At) comes down to zero as A reaches I. If ht does

not come down to zero or if it does so only asymptotically,

the firm's optimization problem wIll have no finite solution.

When At is greater than or equal to this I, the firm is bound

to be bankrupt. Then nobody buys the corporate bond issued

by the firm, because the rate of return on such bonds is

dominated by that on a safe, tax—free bond. So the feasible

debt—capital ratio must be less than X, i.e., A c I. The

graph of ht(At) is illustrated in Figure 1.

With these restrictions on ht, we are now ready to solve

the DI' algorithm (3.10). without loss of generality we can
set = and convert the DP algorithm into the following
"per—capital" form:
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(5.3) max mx(b,f) +
b,y, f

subject to x(b,f)+y(l—o+f)i-i(b/(l_f)) >

y - 0,

where the time subscripts are dropped for notational simplici-

ty and

(5.4) x(b,f) = (l_ut).Jrt(f) — (l_kt)vtf + b + Rt/Kt =

with b = Bt/Xt, f = Ft/Mt.
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6. Financing Decisions and the Investment Equation

Probably the most instructive way to solve the DP algori-

thm (53) is first calculate as functions of f the optimal

financing package b(f),y(f) that maximizes the objective

function for a given value of f and then change f to find the

optimum of the objective function that is maximized out over

b and y, although the optimization problem can alternatively

be solved by choosing b,y,f simultaneously. For the most

part, we will assume that m = (l—e)/(l—c) is less than one.

The following three cases can arise. Case 1: y > 0 is bind-

ing but d > a is not. Case 2: both constraints are binding.

Case 3; d > a is binding but y > 0 is not. At least one

constraint must be binding because otherwise the firm always

gets better off by reducing new share issues.

Case 1: If d > a and y = 0, (5.3) reduces

(6.1) max mx(b,f) + (l—o+f)h(b/(l.o+f))
b, f

The first order condition with respect to b is

(6.2) m + h'(X) = 0,

where A is the debt—capital ratio
Bt/Kt1. So the optimal

debt given f is -
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(6.3) b1(f) = (1—o+f)x1,
where

(6.4) h'(X1) = —in.

The first order condition with respect to f with b = b1(f) is

(6.5) h(X1)/m + A1
= (1—k)v — (l—uulT'(f),

i.e.,

(6.6) £ =

PQt+i/mt + Bt (1_kt)vt
'1

—
1

where u is the inverse function of —ir'(f). This is the

investment equation derived by Poterba and Summers(1g82) for

the capitalizatjon hypothesis" which assumes that the firm

never issues new shares. In their derivation, the constant

debt—capital ratio A1 is exogenous].y given; here, the ratio

turns out to be constant as a result of optimization.

We note that w also depends on current output and factor

prices and the technology shock, since ir' is a function of

them as well as f. If the production function G takes the

separable form G(K,N,F,e) = G1(K,N,e) — G2(K,F,e), then w

does not involve output and factor prices.
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Case 2. If both constraints are binding, (5.3) reduces to

(6.7) max (1—o+f)h(b/(1_o+f)) subject to x(b,f) = a.b,f

The optimal debt given f is determined by the binding const-

raint = a. Thus

(6.8) b2(f) = a - Rt/xt — (l—u)ir(f) + (1—k)vf.

This is a convex function of f since 71" 1 0. The first order

condition with respect to f with b = b2(f) gives

(6.9) — h[A(ffl/h'[X(f)) + X(f) = (1—k)v —

i.e.,
(6.10) f=

where X(f) is the debt—capital ratio
b2(f)/(l—o+f). Compar-

ing (6.6) and (6.10) we can see that hf in (6.10) plays

the role of m in (6.6). This —h'(f) is essentially unobserv-

able since in the present case there is no marginal condition

involving h'(X).
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Case 3. If d > a is binding but y > 0 is not, (5.3) reduces

to

(6.11) max x(b,f) + (1—6+f)h[b/(1—+f)) + (m—1)a.
b,f

The first order condition with respect to b is

(6.12) 1 + h'(A) = 0,

so that the optimal debt given f is

(6.13) b3(f)= (1—o±f)x3,

where

(6.14) h'(X3) = —1.

The first order condition with respect to f with b = b3(f)
yields

(6.15) h(k3) + A3
= (1—k)v — (1—u)ir'(f),

i.e.,

(6.16) f=

—
+ Bt (1_kt)vt— l..u
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This is the equation derived by Poterba and Suulmers(1982) for

the "double tax view" which assumes that dividends are a

constant fraction of profits and investment is financed with

new share issues whenever necessary. In their derivation, a

constant debt—capital ratio is assumed; in our derivation, it

is a result of optimization.
Given b3(f), the optimal value

of y is determined by the binding constraint x+y(l—+f)h = a:

(6.17) y(f) = ca-xcb3(f),f)],((1Ô+f)h(k))

This may or may not be an increasing function of f, but it is

easy to show that the value of new shares issued, =

increases with f.

It is easy to prove that A3 > A1 if m=(l—e)/(lc) c 1.17

Thus only three cases can happen concerning the ordering of

b11b21b3: (a) b2 c b1 c b3, (b) b1 c b2 b3, and (c) b1 c
< b2. These three cases are illustrated in panels (a)—(c) of
Figure 2. It is clear that Cases 1,2,3 corresponds to cases

(a),(b),(c), respectively. Therefore the graph of the optimal

debt b(f) consists of pieces of
b1(f), b2(f), b3(f), and will

look like the solid line in Figure 3, panel (i).18 The graph
of y(f) is drawn in panel (ii) of Figure 3.

The interpretation of the results concerning the optimal
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financing package b(f),y(f) we have just derived is quite

clear. If dividends are greater than the lower bound a, the

firm finances additional investment projects by cutting

dividends and issuing A1 dollars (per a dollar's worth of

investment) of corporate bonds. If dividends cannot be cut

any further, financing additional investment projects is done

entirely by corporate debt. However, as soon as debt reachs

a critical level, the rate of increase of bond issues will be

cut back to A3 and marginal finance is done with new equity

and debt. The graph of b2(f) represents the amount of debt

that is necessary for the firm to deliver per share dividends

a without resorting to new share issues. Therefore the

vertical difference between b2(f) and the solid line b(f) for

f > f2 is the amount of funds raised by flew equity,

Note that it is not the firm's optimal policy to finance

investment entirely by cutting dividends even when it is

feasible. This is because the increase in capital stock due

to current investment makes bankruptcy less likely for any

given level of debt; what determines the likelihood of bank-

ruptcy in the homogeneous case is the debt—capital ratio At =

This is also why debt finance coexists with

equity finance in Case 3. We also note from panel Cc) of

Figure 2 that issuing new shares can be an optimal financial

policy, even if repurchase of existing shares is legal.
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It may be useful at this point to briefly look at the role

Of what we call the firm's cash income (l—u)m(f) — Rt/Kt in

financing decisions. If this increases by one dollar, the

graph of b2(f) shifts downwards by exactly one dollar. If

the increase in cash income does not change the functional

form of h(A) —— which is what happens if, e.g., the increase

is due to a purely transitory technology shock ——, then the

graphs of b1(f) and b3(f) do not shift; so that the critical

levels of investment f1 and f3 that divide the three Cases in

Figure 3 will both increase, making Case 3 less likely.

Turning now to the determination of investment given the

financing package, we first note that the optimal investment

must satisfy the marginal condition (6.5) for Case 1, (6.9)

for Case 2, and (6.15) for Case 3. A natural way to interpret

this marginal condition is to take the LBS (left hand side)

as the marginal "benefit" of investment and the right hand
side —— investment expenditure plus profits foregone due to
investment —— as the marginal "cost" of investment.20 Since

h(X) decreases with A and since A1 c b2(f)/(l—o+f) c A3, the

LBS of (6.5) is always greater than that of (6.15), and the

LBS of (6.9) lies between the two in Case 2.21 This is

illustrated in Figure 4, panel (i). The upper horizontal

line, labelled Line 1, is the graph of the LHS of (6.5) and

Line 3 that lies below it is the graph of the LBS of (6.15).
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The downward sloping line, lebelled Line 2, that cuts Line 1

and Line 3 from above is the graph of the LHS of (6.9). Thus

the graph of the marginal benefit of investment consists of

pieces of these three lines and is represented by the solid

line in Figure 4. The graph of the marginal cost of invest-

ment is the upward sloping curve whose intercept is (l—k)v —

ir'(Q) and whose slope is —(l—uyir"(f)>o. The optimal invest-

ment f* is determined at the intersection of the two curves.

In panel (i), Case 2 is occuring. Now let's see what happens

if there is an increase in the firm's cash income (l—u)7T(f) -

Rt/K. To make the story simple, suppose that the increase is

caused by a (positive) technology shock of purely temporary

nature that enters the current profit function
it additively,

so that the shock shifts neither Lines 1 and 3 through its

effect on h(X) nor the marginal cost curve through its effect

on ir'(f). Under these conditions Line 2 will slide horizon-

tally to the right along Line 1 and Line 3, as the critical

levels of investment f1 and f2 move to the right. This is

illustrated in panel (ii) of Figure 4 where the new optimal

investment is f** which is greater than the old level f*• We

can thus conclude that a windfall gain which increases the

firm's cash income but which is totally unrelated to the

future exogenous variables can increase current investment.

This may explain why corporate investment in the U.S. appears

to be too sensitive to current profits.
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We close this section by quickly looking at the case

where m = 1. As was noted in footnote 3, this case arises

if dealers in securities can deduct unlimited amounts of

short—term capital losses against ordinary income and the

stock prices are set by these dealers. It is clear from

(5.3) that when m = 1 the objective function is independent

of y and hence the optimal amount of new issues is indeter-

minate as long as the implied value of d is greater than or

equal to a. In particular, it is a rational behavior of the

firm to simultaneously pay dividends and issue new shares.

However, the optimal debt—capital ratio is determinate at
A3

and independent of investment, clearly, the investment

equation is given by (6.16) and the graph of the marginal

benefit of investmtnt collapses to Line 3 in Figure 4.
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7. Real and Financial Decisions without Adjustment Costs

We now go back to (3.10) and investigate the firms

optimal decisions without adjustment costs. Thus the product-

ion function G and the associated profit function TI do not

involve investment F. In order to make the optimization

problem well—defined, we assume that the value function

is concave in Kt+1; otherwise there will be no

solution to the firm's optimization problem. Although unable

to prove, we conjecture that a sufficient condition for the

concavity is that the profit function is cancave in the

capital stock.

It will be convenient and instructive to write the first

order conditions in terms of marginal q, which we recall was

defined to be

(7.1) =

As in the homogeneous case, three cases arise. (In what

follows the time subscript will be dropped whenever no confu-.

sions should arise.

Case 1: If y = 0 and X + yw > dQ, (3.10) reduces to

(7.2) max mX(B,F)
B,F
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The first order condition
with respect •to B is

(7.3) m + Wfl f(1_ó)1(f) = 0,

where WE is the partial derivative of Wt(Bt,Ktj) with res-
pect to B• This implicitly defines the optima], level of
debt, B1(p), as a function of F. The first order condition

with respect to F with B =
B1(F) yields

(7.4) /(1—k) =

i.e., the end—of—period capital stock Kt+l is optimal when
marginal q adjusted for investment tax credits is equal to m.

Case 2: If both constraints
are binding, (3.10) reduces to

(7.5) max wcBt(l_o)xt÷F) subject to X(B,F) =B,F

Since the level of debt must satisfy x = aQ, we have

(7.6) B2(F) = - (1—u) 'ff(Ic) + (1—k)vF — Rt
-

which is a linear function of F. The first order condition

with respect to F with B =
B2(F) is
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(7.7) /(l—k) = wB1_6+F:h

An interpretation of this marginal condition will be given

shortly.

Case3: If X=aQ and y>0, (3.10) reduces to

(7.8) max X(B,F) +w(fl,(l—o)+F) + (m—l)aQ.
B,F

The first order condition with respect to B is

(7.9) 1 + WB(BI(l_flK+F) = 0,

which defines the optimal level of debt, B3(F), as a function

of F. The first order condition with respect to F with B =

33(F) is

(7.10) q/(1—k) = 1,

i.e., marginal q (adjusted for investment tax credits) must

equal one at the optimum. This is the condition derived by

Gordon(1981) for the case where the firm can repurchase

pre—existing shares.
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As we have seen in section
affects wt(B1ic+1)

four ways and Kt+i affects Wt(Bt,}(t1) in exactly the opposi-

te directions. So it is reasonable to assume:

(7.11) 2Wt(Bt,xtl)/(2saK) <0.

It then follows from (7.3) and (7.9) that B1(F) and B3(F) are
increasing functions of F. Furthermore, it is easy to show

that B1(F) s B3(F) for any value of F.22 If B1(F) and

are continuou functions of F, the optimal financing package

B(F),y(F) w1ll typically look like the solid lines in Figure

5. So the basic conclusion —— that marginal investment

projects are financed by retentions and by debt if the firm's

after—tax profits are large relative to investment, by new

shares and debt if they are small relative to investment, and

by debt alone in the intermediate case —— is the same as in

the homogeneous case. If B1(F) and B3(F) are discontinuous

functions of F, "case reversals" can occur. A typical example

of case reversals is illustrated in Figure 6 where Case 2 is

followed by Case 1 as F passes

If itt is equal to one, the situation is basically the same

as in the homogeneous case; from the viewpoint of the value

maximizing firm, issuing new shares and cutting dividends are

two perfectly indifferent ways of financing investment; the
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only difference from the homogeneous case is that the optimal

debt—capital ratio B3(F) is not independent of investment.

The above discussion of the firm's real and financial

decisions evolves around marginal q and we have not mentioned

the "cost of capital" or the "return to investment" which are

familiar concepts in the corporate finance literature. A

natural question is whether or not they can be related to the

above derivation of the necessary conditions for optimality.

The answer is yes, with some important reservations. It is

evident in the above derivation that (7.7) must hold in

either case.23 It turns out, not surprisingly, that ——

which is the decrese in the ex—dividend value of the firm

when debt is increased by one dollar —— is closely

connected to the "cost of capital" and q/(l—k) to the "return

to investment." However, they cannot be expressed in terms

of the corporate bond rate and the marginal value product of

capital, unless Bt is small relative to Kt+l. If it is, the

probability of bankruptcy in period t+l is almost zero and

Case 1 is bound to happen in t-i-1. What happens if it is

known with certainty in period t that Mt+l = 1 and Case 1

occurs in period t-1-l? It follows from (3.4) that

(7.12) Wt(BtKt+1) = L((l_ct+1)V+1]/(l_L(c÷1))1
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so that (assuming the order of taking derivatives and apply-

ing the pricing operator can be interchanged)

(7.13) WB(Bt,Ktl) = L((l_ct+l)avtl/a5)/(1_L1(c))
and

(7.14) wx(Bt,Kti) = L((1_ct+l)avtl/aKtl)/(l_Ll(c))

where WK(Bt,Ktl) is the partial derivative of

with respect to Kt+l. But it is easy to show that

(7.15) avlnB = _mt+l(l+(1_ut1)i)
and

(7.16)

= mt÷l((l_ut l �1r÷l/aK+l + (l—6)(l_kt+i)vt÷1J,

if Case 1 holds in period t+i.24 This result —— which holds

for any value of and K1 (not just for small for the

case without adjustment costs —— is proved in Appendix 3•

Combining (7.13) through (7.16) we can conclude that

(7.17) =

and

(7.18) = L((l_ct i)mtic(l_u )(

+ (1_6)(l_k)vJ)/(1_Ll(c))
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If we further assume that c41 = 0 and that
Ut+l, kt÷i

and v1 are known with certainty in period t, then (7.17)

and (7.18) simplify to

(7.19)
1 +

and

+ (l_5)(l_kt+i)vt+iJ
(7.20) WK= l+r

where rt is the nominal interest rate on a safe, tax—free one

period bond, MVP is the expected value of the marginal value

product of capital:25

(7.21) ?4IJPt =

and is a sort of risk premium associated with the uncer-

tain marginal value product of capital m+l/?K+1 as it is

defined by

(7.22) L(t+1/axt1) =

Thus the optimality condition q/(l—k) = reduces to

+

_t t
= 1 + (l_u1)i
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If, on top of all this, we assume kt+i = kt and v1 =
then this simplifies to the familiar expression:

MVPt/(l+tst)(7.24)
(l_kt)vt

= +

This is (approximately) equivalent to the following express-
ion which is even more familiar:

Etfl t+i/Kt÷j)(7.25)
(l_kt)vt

= i + At +

The left hand side is the "return to investment" and the

right hand side is the "cost of capital."

However, apart from the assumptions (on tax rates and the

price of investment goods) we have made, this familiar equal-

ity (7.25) will never hold at the optimum. If is suffi-

ciently small, the value function
Wt(Bt,Kti) is linear in

(as (7.19) shows), so that the objective function mx +is linear in This implies that the optimal debt is

either infinitely negative or large enough to make (7.13) and
(7.14) (from which (7.25) was derived) invalid.26 If is

not small, neither nor (and hence q = Wx/vt) has a
simple expression like (7.13) or (7.14), because.a chang in

or in Kt+i alters the probability distribution (as of t)

of Mt1 and because it is not certain as of t which case will
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occur in t+l. Consequently, the cost of capital and the

return to investment that
appear in (7.25) capture Only one

effect of an increase in and Kt+i on w, namely the direct
effect On X1. They do not capture the other three effects
—— the resulting change in the discounting factor

(j>O) (which affects the share price), in the corporate bond

rate, and in the likelihood of
dt+l = This seems to

be a serious omission,
Particularly because the corporate

bond rate in the real world does depend on leverage.
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8. Qualifications

Although it carries a rich menu of tax rates, the model

does not consider depreciation allowances for tax purposes on

investment expenditure. We could incorporate them into the

model along the line indicated in Hayashi(l982), but doing so

would greatly complicate the analysis without altering the

main results of the paper. It should however be noted that

the sharp results we obtained in section 6 will not carry

over to the case with depreciation allowances. The reason

for this is as follows. Included in the firm's future cash

flow is depreciation allowances for tax purposes yet to be

claimed on past investments. If the market value of this

stream of depreciation allowances were exogenous to the firm,

we could subtract this market value from the firm's share

price and carry out exactly the same analysis as we did in

section 6. This will in fact be the case if there is a full

loss offset and if shareholders can somehow secure that

market value of depreciation allowances in the event of bank-

ruptcy. Otherwise the firm's future action does influence

the market value of depreciation allowances as it can alter

the probability of bankruptcy. This is an element that was

absent in the analysis in section 6.

The corporate bonds in our model have only one maturity.

Relaxing this seems to be a rather straightforward task whose
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main part would be to formalize a rule to specify the shares

of bondholders of various maturities in the event of bankrupt-
cy.

Our analysis is a partial equilibrium one in the sense

that the pricing mechnism in the asset market is taken as

given. In order to analyze, for example, the effect of a

change in tax rates or in the inflation rate on corporate

behavior, we have to know how the pricing formula is affected

by such changes. Analyzing it would require (like any other

studies on the effect of taxes and inflation on corporate

behavior) a complete specification
of preference, technology

and expectations formation, which clearly is well beyond the

scope of the paper.
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Footnotes

1. It is assumed for simplicity that the liquidation value

of the firm is zero. In particular, as long as the liquida-

tion value is proportional to the firm's capital stock, the

analysis in sections 5 and 6 remains unchanged.

2. This is true in Japan where the dividend tax rate is .2

and the capital gains tax rate is zero for individuals. If

the dividend tax rate depends on the shareholders' income, U

represents the marginal tax rate for the shareholders. See

Miller(l977)

3. If Pt > (l-et)d + p. - c(Pp), individuals can make

unlimited profits by selling the stock short cum—dividend and

buy it back ex—dividend. If the reverse inequality holds,

individuals can buy the stock cum—dividend and sell it ex-

dividend. Thus Pt = (l_e)d + p — ct(p_pt) if the stock

price is set by these individual arbitragers. However, for

corporations in most countries capital gains and losses are

part of their corporate income. Furthermore, in the U.S. at

least, short term capital gains for individuals are taxed as

ordinary income. Thus a sizable fraction of the agents in

the stock market are those for which = c. If the stock

price is set by such agents, then m in (2.1) should be one,

See Kalay(l982) for more detaiLs. Most empirical studies

(see Auerbach(1982) and Kalay(l982) foc a survey) show that

stock prices drop by siinificantly less than the value of the

dividend on the exrdividend day, implying that m is less
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than one. What is crucial in the present paper is not that

rn is written as (l—9t)/(l_c), but that m is less than one.

We will consider separately the case where =

4. We assume a full loss offset, so the firm can qualify for

a rebate of utitlBti dallars when profits for tax purposes,

(l_utr'ff — (l+it1)sti, is negative. This assumption can

easily be relaxed. Just define a dummy variable Dt for the

sign of profits for tax purposes and replace u by utDt; the

formal analysis in this paper will hold without any modifica-

tions.

S. The capital asset pricing model is a special case of this.

Anothe.r example is the so—called consumption based capital

asset pricing model which implies L(xt+.) = Et(yt.xt.)
where is the conditional expectation operator and =

6Ju1(Ct.)/uI(c) with u(.) = utility function of a "repre—
sentative" consumer, ts = subjective rate of time preferenáe,

and C = consumption. -

6. If the firm is a price taker, output and factor prices
and the price pf investment goods are the parameters that

characterize the demand and supply functions.

7. The Markovness assumption is not really crucial for the

analysis that follows, but it clarifies it.

8. Thus for example includes the nominal interest

rate on a safe, tax—free one—period bond. Macro variables

such as money supply will be included in if they influence

either the values of the exogenous variables or the function—
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al form of the pricing operator.

9. SO K1 = (l—6)Kt+Ft effectively is in I.

10. See section 6 for what happens when this constraint is

absent.

11. It is also a function of i, but, as (2.12) shows, i. in

turn is a function of
Bt.Kt+11Zt, and ).

12. Otherwise the problem of time inconsistency (Lucas and

Sargent(19l)) will arise.

13. To prove that L(Yt+1) is independent of Et would require

mathematical induction starting from the terminal period of

the firm's horizon. The entire result of the paper will

carry over to the case where the firm's planning horizon is

finite rather than infinite.

14. This does not necessarily mean that the technology shock

is multiplicative.

15. This it' should not be confused with the marginal value

product of capital. Note that 71 also depends on the technolo-

gy shock and output and factor prices.

16. The same line of proof was independently found by Andrew

B. Abel.

17. Since A1 maximizes mx + h(x) and A3 maximizes m + h(X),

we have mA1 + h(X1) >
mA3 + h(A3) and A3 + h(A3) > A1 +

h(A1). This and in c 1 imply A1 < A3• We are assuming here

that the maximizer of mx + h(A) or A + h(A) is unique,

which is a reasonable assumption since the functional form of

h depends only on it will be only by accident that the
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maximizer of mx + h(A) or x + h(X) is not unique. We

also assume that A1 is positive. A sufficient condition for

this is that the function h(x) is linear for nonpositive A

and its slope for nonpositive A, which is equal to w in

(3.7), is less than ni (in absolute value).

13. Since A1 and x3 are unique maximizer of mA + h(A) and

A + h(A), respectively, "case reversals" cannot occur. For

example, it cannot happen that Case 2 is followed by Case 1

as f keeps increasing.

19. So the corporate bond rate i depends on and Kt+1
only through their ratio

Bt/}ct1. This is not true in the

non—homogeneous case.

20. Note that ir'(f) is negative. The cost of investment

must not be confused with the "cost of capital" which we will

define in the next section.

21. The proof is similar to the argument in footnote 17.

22. The proof is essentially the same as footnote 17.

23. For example for Case 1, (7.3) and (7.4) imply (7.7).

24. If Case 3 holds in period t+1, (7.15) and (7.16) hold

with m+1 replaced by one. (7.15) holds also for the case

with adjustment costs.

25. If the firm is a price taker, air/aK is equal to the

marginal product of capital multiplied by the output price.

26. Of course, in the knife edge case where m÷1 is equal to

the riyht hand side of (7.17), the optimal debt Bt is indeter-

minate.
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APPENDIX 1

This appendix presents a formal definition of the pricing

operator Lt and a proof of the pricing formula (2.8). The

former closely parallels Ross(1978) and Hansen, Richard and

Singleton(l992) and the latter Brock(1978).

Let Mt+. be a set of random nominal after—tax payoffs in

period t+j. More formally, let zj (t=o,1,2.•. be a sequen-

ce of random vectors defined on a probability space U?, 3,p).
We call the sequence up to t,

Z0,z1,..,z , the information

set at t and denote it by
I.e.

Let be the sigma field

generated by I. Mt÷. is a set of functions from Q to R that

are %t÷5_measurable. By definition, Mt+. is a linear space.

Associated with and is a mapping L from Mt+ to R.
We assume:

(Al.l) Lt is a linear operator so that

L(utxt+. + Xtyt+.) = t1xt+) +

for any and A in 1 (i.e., any 1j and that are

it_measurable.

Since L.(xt) is in Mt.. it can be priced by L. We
assume:
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(A1.2) L(L+.(xt÷.k)) = Lk(xt+.+k).

Ross(].976) has proved (1) that if M is a set of payoffs that

can be spanned by available marketed assets and if L(x) is

the market price of an asset whose payoff is x, then the

absence of arbitrage opportunities implies that L satisfies

(Al.1) and (Al.2), and (ii) that L can be extended to the

space of payoffs that includes non—marketed assets as well as

marketed assets (although the extension is not unique).

We now prove (2.8). By multiplying both sides of (2.4)

by and using t+l = (l+)Q, we obtain

(Al.3) = +

From (2.6) we get

(Al.4) tt+l =

= L(atiptiQti) (since is in It).

Thus from (A1.3) and (Al.4) we obtain

(Al.5) = mX +

By shifting time forward by one period on (Al.3) and multiply—
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ing both sides by tCt+l we obtain

= Btat+imt+ix+i +

Apply 4 on this to get

tat+lPt÷lQt÷l) = 4( tat+lmt÷iXt+i)
+

This last term equals

L(tatllL1(apQ)) (by AL4)

=
(by Al.l)

=
L(Yt2Pt+2Qt+2). [by A1.2 and (2.9))

Thus we have

L(YtlPt+lQt+i) = L(Yt 1mt+ix+1 + L(vt2pt+2Qt+2)

By the sane argument we can easily show that

(Al.6 L(Yt.pt.Qt.)
in X

t.j t+j t+j t
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BY summing (Al.6) over i' we obtain

= :: L(Yt m+X÷.) ÷ L(YtNPt+NQt+N).

If we assume the transversality condition

uirnL(ypQ) = 0,

we obtain the desired result (2.8).
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APPENDIX 2

This appendix proves the following theorem:

Theorem. If the production function
Gt(NtKt,F,e)

homogeneous of degree one in (Ht.Jct,Ft) and if the firm is a

price taker, then Vt(Btl,Kt;zt) is homogeneous of degree one
in

Proof. Let (j>0) be the stochastic process generated

by the optimal decision rule ..) with the initial

condition (B1t) = (B1,K), where stands for

t+j_lIKt+jFt÷j?Yt+.Mt.,xt.) For the initial condition

= (XB11XK) consider the following decision rule

hA "B z \—Ah* B° K°x,t+j' t+j—l' t+j' t-s-j' — x,t-f-j' t-f-j-.l' t+j' t+j

and

hA (B K z \_h* 'B° K° Zx,t+j ti-j--l' t+j' t+j' — x,t+j' t+j—l' t+j' ti-j
(x =

where h represents a decision rule for x. Let be the

stochastic process generated by the decision rule hA when the

initial condition is (XB1,xx). Clearly K. = XK. for

any reali2ation of and for all j>0. It then follows

from the hypotheses in the Theorem that = AX+. for
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any realization of z and for all j>O, so that the discounting

factor (jo) takes the same value under the two

decision rules h* and hA for all j>O. Therefore we can

conclude that:

the value of the firm with (AB1,xic) under hA

= t t—l' t' t

But since the left hand side is less than or equal to the

value of the firm with (AB1,xK) under the optimal decision

rule h*, we have

Vt(XBi,XIc°;zt) - AVt(B1iK7zt)

Exactly the same argument gives

Vt(Bi,Ic;zt) >

These two inequalities imply the desired result.

Remark 1. To implement the decision rule hA at time t+j, the

firm (with the initial condition has to know
and which are functions of

(ztizt1t...,zt.1).
So if the firm knows just but not its past realized

values, the decision rule hA cannot be implemented. We can

avoid this difficulty by redefining z to be (z0,z11...



Remark . Since

(see equation (3.6)

depend on the size

Theorem immediately

homogeneous.
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= Lt(at÷lvtl(Bt,Kti;zti))
in the text) and since does not

of the firm (see (2.7) and (3.1)), our

implies that Wt(Bt,Kti) also is linearly
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APPENDIX 3

This section proves the following theorem:

Theorem. Suppose the value function (for the case without

adjustment costs) Vt(Btl,Kt;zt) is a concave function in

(Rti,ic) in a neighborhood of (Blic) and suppose the

profit function Trt(Kt) is concave and differentiable in
Kt.

Then Vt is a differentiable function of Bti,Jct at
if either Case 1 or Case 2 occurs in the neighborhood of

The derivatives are given by:

= _mt(l+(l_ut)it1)
and

avt(BliK;zt)flxt = + (l—6)(l_kt)vt),
if Case 1 occurs in period t, and

Vt(Bl,K0;z)/B =

and

= (l_ut)aRt/aK +

if Case 3 Occurs ii period t.

The proof of this theorem is essentially the same as the

proof of Theorem 1 in Benveniste
and Scheinkrnan(l979), so we

do not repeat it here. We merely point out that Vt is +
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if Case 1 occurs in period t and +

+ if Case 3 occurs in period t, and that can be

written as

= (i_ut) 7J't(x)
—

+ —
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Figure 3
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Figure 4
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Figure 5
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LIST OF SYMBOLS

Bt; nominal value of corporate debt issued in period t

B1: implicitly defined by (7.3)

B2: defined by (7.6)

B3: implicitly defined by (7.9)

bt: Bt/Kt, ratio of Et to the beginning—of_the_period capital
stock

defined by (6.3)

defined by (6.8)

b3: defined by (6.13)

c: capital gains tax rate

d: nominal amount of dividend per share

a: lower bound for d

e: technology shock

F: investment

ft: Ft/1(t, ratio of F to the beginning—of_the_period
capital

stock

G: production function

rate of growth of the number of shares, i.e.,
=

defined by (5.2); equals

I: information set at the begenning of period t; consists of

Btitxtt Z

i: corporate bond tate
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Kt: capital stock at the beginning of period t

k: rate of investment tax credit

L: pricing operator

N: bankruptcy dummy; equals 0 if the firm goes broke and One

otherwise

MVP: defined by (7.21); expected value of the marginal value

product of capital

m: (]-—O)/(l—c)

N: vector of variable factor inputs

p: share price of the currently operating firm

p': ex—dividend share price of the currently operating firm

number of pre—existing shares at the beginningS of the

period

q: marginal q, defined by (7.1)

H: interest payment plus principal, defined by (3.12)

r.t: nominal interest rate on a default—free, tax—free

j—period bond

U: corporate tax rate

V: value of the firm; equals pQ

v: price of investment goods

W: defined by (3.4); equals

X: defined by (2.3); cash flow plus debt issue minus interest

payments and principal

Y: defined by (4.3)

y: /(l+)
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state of the world for period t

a: defined by (2.7)

: defined by (2.10)

y: discounting factor, defined by (2.9)

6: exponential rate of phisical depreciation

8: tax rate on dividend income

8': tax rate on interest income

At: "debt—capital ratio," defined as

A1: defined implicitly by (6.2)

A3: defined implicitly by (6.12)

I: upper bound for A

p: decision rule of the firm

Tj: before—tax profits where variable factor inputs are

already maximized out

t: Ttt/Kt

w: inverse function of .(f)

A: defined by (7.22); "risk premium" associated with the next

period's before—tax profits.


