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1. INTRODUCTION

The Steady-State Growth Theorem says that if a neoclassical growth

model exhibits steady-state growth, then technical change must be la-

bor augmenting, at least in steady state.1 It did not escape the attention

of economists, either in the 1960s or more recently, that this is a very

restrictive theorem. We often want our models to exhibit steady-state

growth, but why should technical change be purely labor-augmenting?

The induced-innvoation literature associated with Fellner (1961), Kennedy

(1964), Samuelson (1965), and Drandakis and Phelps (1966) explicitly pon-

dered this question without achieving a clear answer. Recently, Acemoglu

(2003) and Jones (2004) have returned to this puzzle.

Perhaps surprisingly, then, given its importance in the growth literature,

we have been unable to find a clear statement and proof of the theorem.

Uzawa (1961) is typically credited with the proof of the result,2 and there

is no doubt that he proved the theorem. However, Uzawa is primarily con-

cerned with showing the equivalence of Harrod-neutral technical change

(i.e. technical change that leaves the capital share unchanged if the inter-

est rate is constant) and labor-augmenting technical change, formalizing

the graphical analysis of Robinson (1938). It is of course, only a small and

well-known step to show that steady-state growth requires technical change

to be Harrod neutral. But again, the modern reader of Uzawa will be struck

by the absence of a statement and direct proof of the steady-state growth

theorem.

Barro and Sala-i-Martin (1995, Chapter 2) come closest to providing a

clear statement and proof of the theorem. However, their statement of the

1It is sometimes added that an alternative is for the production function to be Cobb-
Douglas, at least in steady state. But this is really subsumed in the original version of
the theorem since technical change can always be written in the labor-augmenting form in
steady state if the production function is Cobb-Douglas.

2For example, see Barro and Sala-i-Martin (1995) and Solow (1999).
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theorem is more restrictive: if technical change is factor augmenting at a

constant exponential rate, then steady-state growth requires it to be labor-

augmenting. This leaves open the door, however slightly, to the possibility

that there might be some perverse non-factor augmenting twist of technical

change that could be consistent with steady-state growth.

This comment fills the gap in the literature. We provide a clear statement

and proof of the steady-state growth theorem. The inspiration for the proof

is Uzawa (1961), but we present the crucial steps in a slightly different way

that allows the economic intuition for the proof to come through.

2. STATING THE THEOREM

The steady-state growth theorem applies to the one-sector neoclassical

growth model. We begin by defining the model precisely and then defining

a balanced growth path.

Definition 2.1. A neoclassical growth model is given by the follow-
ing economic environment:

Yt = F (Kt, Lt; t), (1)

K̇t = Yt − Ct − δKt, K0 > 0, δ ≥ 0, (2)

and

Lt = L0e
nt, L0 > 0, n ≥ 0. (3)

The production function F satisfies the standard neoclassical properties:
constant returns to scale in K and L, positive and diminishing marginal
products ofK and L, and the Inada conditions that the marginal product of
a factor input goes to zero as that input goes to infinity and goes to infinity
as the input goes to zero.

A balanced growth path in the neoclassical growth model is defined as a

situation in which all quantities grow at constant exponential rates (possibly
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zero) forever. We follow the usual convention of also refering to this as a

steady state.

Finally, we will define FKK/Y to be the capital share and FLL/Y to

be the labor share. As usual, the two factor shares sum to a value of unity,

by Euler’s theorem. We follow standard notation in denoting y ≡ Y/L

and k ≡ K/L, and we will use an asterisk superscript to denote a variable

along the steady-state path.

With these definitions, we can now present the Steady-State Growth The-

orem:

Theorem 2.1 (The Steady-State Growth Theorem, Uzawa 1961). If

a neoclassical growth model possesses a steady state with constant, nonzero

factor shares and ẏ∗t /y
∗

t = g > 0, then it must be possible along the steady-

state path to write the production function as Y ∗

t = G(K∗

t , AtLt), where

Ȧt/At = g and where G is a neoclassical production function.

Before presenting the theorem, we pause to make several remarks. First,

the restriction to the case of positive factor shares is primarily intended

to rule out “AK” style models. Second, as is well-known, in the case of

Cobb-Douglas production, capital- and labor-augmenting technical change

are equivalent. One sometimes sees the theorem interpreted as saying

that technical change must be labor-augmenting or the production function

must be Cobb-Douglas. This is equivalent to the statement of the theorem

as given.
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3. PROVING THE THEOREM

This proof largely follows Uzawa (1961) in spirit. It differs in that we

provide more economic intuition, highlight the key steps of the proof more

clearly, and fill in some details.3

The capital-output ratio is a key variable throughout the proof, so we de-

fine x ≡ K/Y . We also make the standard definition f(k; t) ≡ F (k, 1; t).

The proof now follows.

1. The first step of the proof is to rewrite the production function in terms

of the capital-output ratio: yt = φ(xt; t). Intuitively, this step is readily

understood by drawing the production function in (k, y) space: for each

ray through the origin — that is for each capital-output ratio — there is a

unique level of output per worker on that ray.4

2. Next, we note that the elasticity of yt with respect to xt satisfies a

familiar property:

∂ log yt

∂ log xt

=
α(xt; t)

1 − α(xt; t)
(4)

3The only substantive innovation in the proof is in writing the key differential equation
in (4) below in terms of the elasticity of output with respect to the capital-output ratio. This
produces a familiar equation in a way that Uzawa’s consideration of the marginal product
of capital does not.

4Formally, we can use the inverse function theorem to justify this step. The capital-
output ratio depends only on kt and t, since yt is a function of kt and t: xt = kt/yt =
k/f(kt; t) ≡ h(kt; t). We can apply the inverse function theorem to show that this function
can be inverted:

∂h(kt; t)

∂kt
=

1

f(k; t)
−
ktfk(kt; t)

f(kt; t)2

=
1

f(kt; t)

(

1 −
fk(kt; t)kt
f(kt; t)

)

6= 0 ∀kt,

where the last step follows from the fact that the labor share is strictly between zero
and one. Therefore, by the inverse function theorem, h−1(· ; t) exists, and we can write
kt = h−1(xt; t). Finally, we can substitute this result into the production function to get
yt = f(kt; t) = f(h−1(xt; t), t) ≡ φ(xt; t).
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where α(xt; t) ≡ fkkt/yt is the capital share. This equation says that the

elasticity of output with respect to the capital-output ratio is equal to the

ratio of the capital and labor shares. Such an equation is well-known in the

case of Cobb-Douglas production, where it has been exploited by Mankiw,

Romer and Weil (1992), Klenow and Rodriguez-Clare (1997), and Hall and

Jones (1999), among others. Equation (4) shows that this property holds

more generally.5

3. Now comes the key step of the proof. From this point on, we assume

the economy is on a balanced growth path. Because the capital share is

constant in steady state, the right side of equation (4) is invariant over time.

Then, since yt = φ(xt; t), we can write this equation as

∂ log φ(x∗; t)

∂ log x∗
=

α(x∗)

1 − α(x∗)
, (5)

where we use an asterisk to indicate a quantity along a balanced growth

path.

Because the right-hand side of this equation does not depend on time,

this partial differential equation can be solved to yield6

log φ(x∗; t) = a(t) +

∫

α(x∗)

1 − α(x∗)

dx∗

x∗
(6)

for some function a(t). And therefore

y∗t = φ(x∗; t) = A(t)ψ(x∗), (7)

where A(t) ≡ exp(a(t)) > 0 and ψ(x∗) ≡ exp
(

∫

α(x∗)
1−α(x∗)

dx
∗

x∗

)

.

This is the crucial result. We’ve shown that the effects of t and x∗ can be

separated. This implies, for example, the familiar result that y∗t /At = x∗ is

5To derive this equation, begin with kt = ytxt. This implies that dkt/kt = dyt/yt +
dxt/xt. Multiply through by y/dy to get dktyt

dytkt

= 1 + dxtyt

dytxt

, which can be rearranged to
yield the desired result.

6This can be readily verified by differentiating the solution.
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constant along a balanced growth path, where At ≡ A(t). Since y∗t grows

at rate g by assumption, it must therefore be the case that Ȧt/At = g as

well.

4. To conclude the proof, note that k = xy, so that

k∗t
At

=
y∗t
At

ψ−1
(

y∗t
At

)

≡ G̃−1
(

y∗t
At

)

. (8)

Inverting7, we have

y∗t
At

= G̃

(

k∗t
At

)

(9)

and therefore

Y ∗

t = AtLtG̃

(

K∗

t

AtLt

)

≡ G(K∗

t , AtLt). (10)

And this proves the key result: technical change is labor-augmenting along

the balanced growth path. Finally, sinceY ∗

t = F (K∗

t , Lt; t) = G(K∗

t , AtLt),

it must be the case that G satisfies the standard neoclassical properties as

well.

4. DISCUSSION

Here’s the one paragraph version of the proof. The crux of the proof is

step 3 above. To begin, we notice that the familiar Cobb-Douglas property

also holds more generally: the elasticity of output per worker with respect

7To show invertibility, differentiate:

G̃−1(z) = zψ−1(z)

⇒
dG̃−1

dz
= ψ−1(z) + z

dψ−1(z)

dz

= ψ−1 +
z

(

dψ

dx

)

> 0 ∀z > 0

as ψ = y/A is always positive and dψ/dx is also always positive. So G̃(·) exists.
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to the capital-output ratio is α(x; t)/(1 − α(x; t)). Then, the fact that the

capital share must be constant in steady state means that the production

function must be factorable. That is, it must be possible, at least in steady

state, to write the production function as yt = A(t)ψ(x). But this means

that y/A and k/A must be constant as well, and one can really just look

at the production function y/A = F (k/A, 1/A; t) to see that this requires

technical change to be labor augmenting. The intuition that is closest to the

spirit of this proof, then, is that technical change must be labor-augmenting

in order to keep the capital share constant.

A related intuition can be obtained by looking at the marginal product of

capital. Because both the capital-output ratio and the capital share must be

constant in steady state, we know the marginal product of capital must be

constant as well. This marginal product is F1(K,L; t) = F1(k/y, 1/y; t)

since the marginal product is homogeneous of degree zero in the factor

inputs. Since k/y is constant in steady state and y grows at a constant

exponential rate, technical change must exactly offset the fact that “effective

labor” is falling at the rate of growth of y. That is, technical change must

be labor-augmenting. If this were not the case, then the marginal product

of capital would trend over time.
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