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1 Introduction

Following Friedman’s (1957) introduction of the permanent income hypothesis, a fruit-
ful period of formalization culminated in famous papers by Schectman and Escud-
ero (1977) and Bewley (1977). However, despite powerful subsequent developments in
recursive dynamic theory (codified in Stokey et. al. (1989)), surprisingly few theoret-
ical results have ever been published about the commonly used version of the model
with unbounded (constant relative risk aversion) utility, stochastic labor income, and
no liquidity constraints.

Economists working in the area have nonetheless been able to use this model ex-
tensively because increasing computer power has allowed them to solve the problem
numerically. Starting with Zeldes (1989), numerical solutions have now become the
standard approach for serious quantitative consumption modeling.

But numerical methods have a ‘black box’ character. It is possible to use a con-
sumption rule that emerges from a numerical solution algorithm without thoroughly
understanding of the properties of that rule. Indeed, without foundational theory, it
can even be difficult to be sure that numerical solutions are correct. And without
theoretical underpinnings, the analyst often does not know the circumstances under
which any given simulation result might change.

A good example is the finding that when consumers are both impatient and “pru-
dent” there will be a target level of nonhuman wealth (‘cash’ for short) such that if
actual cash exceeds the target, the consumer will spend freely and cash will fall (in
expectation), while if actual cash is below the target the consumer will save and cash
will rise. Carroll (1992; 1997) showed that target saving behavior can arise under
plausible parameter values for both finite and infinite horizon models. Gourinchas and
Parker (2002) estimate the model and conclude that the buffer-stock saving phase of
life lasts from age 25 until around age 40-45; using the same model with different data
Cagetti (2003) finds target saving behavior into the 50s for the median household.
But none of these papers provides a formal explanation for why target saving behavior
arises. In each case, target-saving behavior is simply observed in simulations under
specific parameter values. The papers also draw a variety of other conclusions based
on the numerical solutions, such as that the marginal propensity to consume appears
to approach the perfect foresight MPC as cash gets large.

This paper provides the analytical foundations for these and other propositions
that have emerged from the simulation literature. The paper pairs these theoretical
results with illustrative simulation examples, providing an integrated framework for
understanding buffer-stock saving behavior.1

The paper proceeds in three parts.
The first part states the maximization problem, demonstrates that the problem can

1The computer programs that generate these simulation results are available on the author’s
website.
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be rewritten in terms of ratios to permanent labor income, and proves that the problem
defines a contraction mapping with a limiting consumption function. It then shows
that a related class of models (exemplified by Deaton (1991)) reflects a particular limit
of the model examined here.

The next section demonstrates five key properties of buffer-stock saving models.
First, as cash approaches infinity the expected growth rate of consumption and the
marginal propensity to consume converge to their values in the perfect foresight case.
Second, as cash approaches zero the expected growth rate of consumption approaches
infinity, and the MPC approaches a specific simple analytical limit. Third, there exists
a unique ‘target’ cash-on-hand-to-permanent-income ratio. Fourth, at the target cash
ratio, the expected growth rate of consumption is slightly less than the expected growth
rate of permanent labor income. Finally, the expected growth rate of consumption is
declining in the level of cash. All of the first four propositions are proven generally;
the last proposition is shown to hold if there are no transitory shocks, but may fail in
extreme cases if there are both transitory and permanent shocks.

The final section examines properties of aggregate behavior in an economy pop-
ulated by buffer-stock consumers. Szeidl (2002) has recently proven that an ergodic
distribution of cash will exist in such an economy.2 This section shows that even with
a fixed aggregate interest rate that differs from the time preference rate, the economy
converges to a balanced growth equilibrium in which the growth rate of consumption
and cash tend toward the (exogenous) growth rate of permanent income. A similar
proposition holds at the level of individual households.

2 The Problem

2.1 Setup

Consider a consumer solving an optimization problem from the current period t until
the end of life at T defined by the objective

max Et

[
T∑

s=t

βs−tu(Cs)

]

(1)

where u(C) is a constant relative risk aversion utility function u(C) = C1−ρ/(1 − ρ)
for ρ > 1.3 (We will ultimately be interested in the limit as the time until death T − t
approaches infinity, but we start with a finite horizon). Initial conditions are defined

2Szeidl’s proof supplants the analysis in an earlier draft of this paper, which provided simulation
evidence of ergodicity but no proof.

3The main results also hold for logarithmic utility which is the limit as ρ → 1 but dealing with
the logarithmic case is cumbersome and therefore omitted.
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by a starting value of market resources Mt (cash) and an initial value of permanent
noncapital income Pt. The consumer’s circumstances evolve according to

At = Mt − Ct,

Mt+1 = RAt + Yt+1,

Yt+1 = Pt+1ξt+1,

Pt+1 = GPtΨt+1, (2)

where At indicates the consumer’s assets at the end of period t, which grow by a
fixed interest factor R = (1 + r) between periods;4 Mt+1 is the sum of beginning-of-
next-period resources RAt and next-period noncapital income Yt+1; actual noncapital
income Yt+1 equals permanent noncapital income Pt+1 multiplied by a mean-one iid
transitory shock ξt+1 (more generally, we assume that from the perspective of period t,

all future transitory shocks satisfy Et[ξ̃t+n] = 1 ∀ n ≥ 1);5 and permanent noncapital
income in period t + 1 is equal to its previous value, multiplied by a growth factor G,
and modified by a mean-one truncated lognormal iid shock Ψt+1, Et[Ψ̃t+n] = 1 ∀ n ≥ 1
satisfying Ψ ∈ [Ψ, Ψ̄] for 0 < Ψ ≤ 1 ≤ Ψ̄ < ∞ where Ψ = Ψ̄ = 1 is the degenerate case
with no permanent shocks.6

Following Carroll (1992), assume that in future periods n ≥ 1 there is a small
probability p that income will be zero (a ‘zero-income event’),

ξt+n =

{

0 with probability p > 0

Θt+1/q with probability q ≡ (1 − p)
(3)

where Θt+n is a mean-one random variable (guaranteeing Et[ξ̃t+n] = 1), and has a
distribution satisfying Θ ∈ [Θ, Θ̄] where 0 < Θ ≤ 1 ≤ Θ̄ < ∞ (degenerately Θ = Θ̄ =
1). Call the cumulative distribution functions FΨ and FΘ (and Fξ is derived trivially
from (3) and FΘ). Permanent income and cash start out strictly positive, Pt ∈ (0,∞)
and Mt ∈ (0,∞), and the consumer cannot die in debt,

CT ≤ MT . (4)

4Allowing a stochastic interest factor is straightforward but adds little to the analysis.
5The notational convention is that stochastic variables have a ∼ over them when their expec-

tation is being taken from the perspective of a period prior to their realization, but have no ∼
otherwise. Hence we write Pt+1 = GPtΨt+1 but if we need the period-t expectation we write
Et[P̃t+1] = GPtEt[Ψ̃t+1].

6The definition of permanent income here differs from Deaton’s (1992) (which is often used in the
macro literature), in which permanent income is the amount that a perfect foresight consumer could
spend while leaving total (human and nonhuman) wealth constant. Relatedly, we refer to Mt as ‘cash’
rather than as wealth to avoid any confusion for those readers who might be accustomed to thinking
of the discounted value of future labor income as a part of wealth.
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The model looks more special than it is. In particular, the assumption of a posi-
tive probability of zero-income events may seem questionable. However, it is easy to
show that a model with a nonzero minimum value of ξ (because, for example, of un-
employment insurance) can be redefined by capitalizing the present discounted value
of perfectly certain income into current market assets,7 transforming that model back
into the model analyzed here. Also, the assumption that there is a positive point mass
(as opposed to positive density) for the worst realization of the transitory shock is
inessential, but simplifies and clarifies the proofs.

Combining the combinable transition equations, the recursive nature of the problem
allows us to rewrite it more compactly in Bellman equation form,

Vt(Mt, Pt) = max
Ct

{

u(Ct) + βEt

[

Vt+1(M̃t+1, P̃t+1)
]}

(5)

s.t.

Pt+1 = GPtΨt+1 (6)

Mt+1 = R(Mt − Ct) + Pt+1ξt+1. (7)

This model differs from Bewley’s (1977) classic formulation in several ways. The
CRRA utility function does not satisfy Bewley’s assumption that u(0) is well defined,
or that u′(0) is well defined and finite, so neither the value function nor the marginal
value function will be bounded. It differs from Schectman and Escudero (1977) in that
they impose liquidity constraints and positive minimum income. It differs from both
of these formulations in that it permits permanent growth, and permanent shocks to
income, which a large empirical literature finds to be quite substantial in micro data
(MaCurdy (1982); Abowd and Card (1989); Carroll and Samwick (1997); Jappelli
and Pistaferri (2000); Storesletten, Telmer, and Yaron (2004)) and which are almost
certainly more consequential for utility than are transitory fluctuations. It differs from
Deaton (1991) because liquidity constraints are absent; there are separate transitory
and permanent shocks; and the transitory shocks here can occasionally cause income
to reach zero. Finally, it differs from models found in Stokey et. al. (1989) because
neither constraints nor bounds on utility or marginal utility are imposed.8 Below it
will become clear that the Deaton model can be thought of as a particular limit of this
paper’s model.

7So long as this PDV is a finite number and unemployment benefits are related to Pt; see the
discussion in section 2.7.

8Similar restrictions to those in the cited literature are made in the well known papers by
Scheinkman and Weiss (1986) and Clarida (1987). See Toche (2000) for an elegant analysis of a
related but simpler continuous-time model.
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2.2 The Perfect Foresight Benchmark

A useful benchmark is the solution to the corresponding perfect foresight model, which
can be written as above with p = 0 and Θ = Θ̄ = Ψ = Ψ̄ = 1.

The dynamic budget constraint plus the can’t-die-in-debt condition imply an exactly-
holding intertemporal budget constraint

PDV t(C) = Mt − Pt + PDV t(P ), (8)

and with constant growth and interest factors

PDV t(P ) = Pt + (G/R)Pt + (G/R)2Pt + ... + (G/R)T−tPt (9)

=

(
1 − (G/R)T−t+1

1 − (G/R)

)

Pt
︸ ︷︷ ︸

≡Ht

(10)

where Ht is ‘human wealth,’ the discounted value of future labor earnings.
The Euler equation implies

C−ρ
t = RβC−ρ

t+1 (11)

(Ct+1/Ct) = (Rβ)1/ρ (12)

which can be used similarly to obtain

PDV t(C) = Ct

(

1 + R−1(Rβ)1/ρ +
(
R−1(Rβ)1/ρ

)2
+ ...

)

(13)

=

(
1 − (R−1(Rβ)1/ρ)T−t+1

1 − R−1(Rβ)1/ρ

)

Ct (14)

and the IBC (8) therefore implies

Ct =

(
1 − R−1(Rβ)1/ρ

1 − (R−1(Rβ)1/ρ)T−t+1

)

︸ ︷︷ ︸

≡κt

≡Wt
︷ ︸︸ ︷

(Mt − Pt + Ht) (15)

where κt is the marginal propensity to consume and Wt is total wealth, human and
nonhuman.

We define the infinite horizon solution as the limit of the finite horizon solution as
the horizon T − t approaches infinity.9 However, (10) makes plain that in order for
limn→∞ HT−n to be finite, we must impose

G < R. (16)

9This is not necessarily the same as the solution to a truly infinite horizon problem; se ignore this
subtlety.
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Intuitively, finite human wealth requires that labor income grow at a rate less than
the interest rate.

Similarly, if we start with any positive value of consumption, then in order for the
PDV of consumption to be finite we must impose

(Rβ)1/ρ < R. (17)

Inspection of the formula for κt in (15) makes the reason for this restriction obvious:
It is necessary to guarantee a positive marginal propensity to consume. This can be
loosely thought of as imposing a maximum degree of ‘patience,’ in the sense that the
consumer cannot be so pathologically patient as to wish to spend zero or a negative
amount when Wt > 0. We will henceforth refer to this condition as ‘nonpathological
patience’ or NPP for short.

2.3 Demonstration That the Problem Can Be Rewritten in
Ratio Form

As written, the problem has two state variables, the level of permanent noncapital
income Pt and the level of market resources Mt. We show now that for relative risk
aversion ρ > 1, it is possible to normalize the model by Pt and thereby to reduce the
effective number of state variables to one.10,11 Specifically, defining lower-case variables
as the upper-case variable normalized by Pt (e.g. mt = Mt/Pt), assume that VT+1 = 0,
and consider the problem in the second-to-last period of life,

VT−1(MT−1, PT−1) = (1 − ρ)−1 max
CT−1

{

C1−ρ
T−1 + βET−1[M̃

1−ρ
T ]

}

= (1 − ρ)−1 max
cT−1

{

(PT−1cT−1)
1−ρ + βET−1[(P̃T m̃T )1−ρ]

}

= (1 − ρ)−1P 1−ρ
T−1

{

max
cT−1

(

c1−ρ
T−1 + βET−1[(GΨ̃T m̃T )1−ρ]

)}

.

Now define

Γt ≡ GΨt (18)

10The same normalization is possible in the logarithmic utility case; the derivation is omitted for
brevity.

11This subsection reviews material that is well known in order to provide a notational and conceptual
framework for subsequent novel material.
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and consider the problem

vt(mt) = max
ct

{

u(ct) + βEt[Γ̃
1−ρ
t+1 vt+1(m̃t+1)]

}

(19)

s.t.

at = mt − ct, (20)

mt+1 = Rt+1at + ξt+1 (21)

for

Rt+1 ≡ (R/Γt+1) . (22)

If we specify vT (mT ) = m1−ρ
T /(1−ρ) and define vT−1(mT−1) from (19) for t = T −1

we have that

VT−1(MT−1, PT−1) = P 1−ρ
T−1vT−1(MT−1/PT−1). (23)

Similar logic can be applied inductively to all earlier periods, which means that if
we solve the normalized one-state-variable problem specified in (19)-(21) we will have
solutions to the original problem from:

Vt(Mt, Pt) = P 1−ρ
t vt(Mt/Pt), (24)

Ct(Mt, Pt) = Ptct(Mt/Pt), (25)

and so on.

2.4 The Baseline Solution

Figure 1 depicts the successive consumption rules that apply in the last period of life
(cT (m)), the second-to-last period, and various earlier periods under the set of baseline
parameter values listed in Table 1, which correspond to a standard calibration in the
literature.

The 45 degree line is labelled as cT (m) = m because in the last period of life it
is optimal to spend all remaining resources. The figure shows the consumption rules
are converging as the end of life recedes; the infinite-horizon consumption rule c(m) is
defined as

c(m) = lim
n→∞

cT−n(m). (26)

2.5 Conditions Under Which the Problem Defines a Contrac-

tion Mapping

To prove that the consumption rules converge, we need to show that the problem de-
fines a contraction mapping. Unfortunately, (19) cannot be proven to be a contraction
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Table 1: Baseline Parameter Values

Description Parameter Value
Permanent Income Growth Factor G 1.03

Interest Factor R 1.04
Time Preference Factor β 0.96

Coeff of Relative Risk Aversion ρ 2
Probability of Zero Income p 0.005

Std Dev of Log Permanent Shock σψ 0.1
Std Dev of Log Transitory Shock σθ 0.1

mapping using the standard theorems in, say, Stokey et. al. (1989), because those theo-
rems require marginal utility to be bounded over the space of possible values of m. For
the problem specified here, the possibility (however unlikely) of an unbroken string of
zero-income events for the remainder of life means that as m approaches zero c must
approach zero (see the discussion in 2.5.2) and thus marginal utility is unbounded.
Fortunately, Boyd (1990) provides a weighted contraction mapping theorem that can
be used. To use Boyd’s theorem we need

Definition 1 Define f ∈ C(A,B) where C(A,B) is the space of continuous functions

from A to B. Suppose φ ∈ C(A,B) with B ⊂ R and φ > 0. Then f is φ-bounded if

the φ-norm of f ,

‖f‖φ = sup
m

[
|f(m)|

φ(m)

]

, (27)

is finite.

For Cφ (A,B) defined as the set of functions in C(A,B) that are φ-bounded,
Boyd (1990) proves the following.

Boyd’s Weighted Contraction Mapping Theorem. Let T : Cφ (A,B) →
C (A,B) such that

1) T is non-decreasing, i.e. wa(m) ≤ wb(m) ⇒ (T wa)(m) ≤ (T wb)(m)

2) T (0) ∈ Cφ (A,B)

3) T (w + γφ) ≤ T w + γςφ for some ς < 1 and all γ > 0. (28)

Then T is a contraction with a unique fixed point.

For our problem, take A as R++, B as R and φ(m) = η +m+m1−ρ where η > 0 is
a real number whose specific value will be determined in the course of the proof. We
introduce the mapping T : Cφ (A,B) → C (A,B),

(Tw)(mt) = sup
ct∈[κmt,¯̄κmt]

{

u(ct) + βEt

[

Γ̃1−ρ
t+1 w(m̃t+1)

]}

(29)
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Figure 1: Convergence of the Consumption Rules

where mt+1 is defined as in (21) and

¯̄κ ≡
[
1 + p1/ρR−1(Rβ)1/ρ

]−1
(30)

κ ≡
[
1 − R−1(Rβ)1/ρ

]
= lim

n→∞
κT−n (31)

where κ and ¯̄κ can be referred to respectively as the ‘minimal’ and the ‘maximal’
marginal propensies to consume (these terms will be justified later, along with the
notation).

Our goal is to show that T satisfies the conditions that Boyd requires of his operator
T , if we impose two restrictions on parameter values.

The first restriction is the nonpathological patience requirement imposed for the
perfect foresight model, (17). The second is

RβE[Γ̃−ρ] < 1, (32)

which is identical to the condition Deaton (1991) showed necessary for his model with
constraints, and the two restrictions can be combined into a single expression,

Rβ max
[

R−ρ, E[Γ̃−ρ]
]

< 1. (33)

We discuss the meaning of these restrictions in detail below; essentially, they require
the consumer to be suffiently impatient so that desired m does not head to infinity.

We are now in position to state the main theorem of the paper.
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Theorem 1 The mapping T is a contraction mapping if the restrictions on parameter

values (17) and (32) are true. Furthermore, Tvt+1(m) = vt(m), which means the

mapping T generates the sequence of value functions defined in equation (19).

2.5.1 Proof that T Is A Contraction Mapping

We must show that our operator T satisfies all of Boyd’s conditions.
Boyd’s operator T maps from Cφ(A,B) to C(A,B). A preliminary requirement is

therefore that Tw be continuous for any φ−bounded w, Tw ∈ C(R++, R). This is not
difficult to show; see Hiraguchi (2003) for details.

Consider next condition 1). For this problem,

Twa is sup
ct∈[κmt,¯̄κmt]

{

u(ct) + βEt

[

Γ̃1−ρ
t+1 wa (m̃t+1)

]}

Twb is sup
ct∈[κmt,¯̄κmt]

{

u(ct) + βEt

[

Γ̃1−ρ
t+1 wb (m̃t+1)

]}

,

so wa ≤ wb implies Twa ≤ Twb by inspection.12

Consider condition 2), T(0) ∈ Cφ (A,B). By definition T(0) is

sup
ct∈[κmt,¯̄κmt]

{(
c1−ρ
t

1 − ρ

)

+ β0

}

(34)

the solution to which is patently u(¯̄κmt). Hence T(0) is φ-bounded for φ(m) = η +
m + m1−ρ.13

Finally, we turn to Boyd’s condition 3), T(w + γφ) ≤ Tw + γςφ. We begin by
constructing the T(φ) term. Expand the expectation βEt[Γ̃

1−ρ
t+1 (η + m̃t+1 + m̃1−ρ

t+1 )],

βEt

{

Γ̃1−ρ
t+1

[

η + R̃t+1at + ξ̃t+1 + [R̃t+1at + ξ̃t+1]
1−ρ
]}

. (35)

Now note that at = (mt − ct) < mt and ξt+1 < Θ, so (35) is less than:

βEt

{

Γ̃1−ρ
t+1

[

η + R̃t+1mt + Θ + [R̃t+1at + ξ̃t+1]
1−ρ
]}

= (36)

RβEt[Γ̃
−ρ
t+1]mt + βEt

{

Γ̃1−ρ
t+1

[

η + Θ + [R̃t+1at + ξ̃t+1]
1−ρ
]}

.

12Recall that m̃t+1 is just a function of ct and the stochastic shocks.
13Note that T(0) is not vT ; this maximization does not have an economic interpretation.
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Now break up the second term in (36):

βEt

{

Γ̃1−ρ
t+1

[

η + Θ + [R̃t+1at + ξ̃t+1]
1−ρ
]}

= (37)

βEt

[

Γ̃1−ρ
t+1 [η + Θ̄]

]

+ βEt

[(

Rat + Γ̃t+1ξ̃t+1

)1−ρ
]

= (η + Θ̄)βG1−ρEt[Ψ̃
1−ρ
t+1 ] + β

{

p(Rat)
1−ρ + qEt

[(

Rat + Γ̃t+1Θ̃t+1

)1−ρ
]}

< (η + Θ̄)βG1−ρEt[Ψ̃
−ρ
t+1] + β

{

p(Rat)
1−ρ + qEt

[(

Γ̃t+1Θ
)1−ρ

]}

(38)

where the last line follows from comparing the two components on each side of the
inequality separately: For the second component, with ρ > 1, Θ1−ρ ≥ Et[(Rat +
Θ̃t+1)

1−ρ], while for the first component, if Ψ were distributed as an untruncated
lognormal we would have

Et[Ψ̃
1−ρ
t+1 ] = exp(−(1 − ρ)σ2

ψ/2 + (1 − ρ)2σ2
ψ/2) (39)

= exp(ρσ2
ψ/2 + ρ2σ2

ψ/2) exp(−σ2
ψ/2 + σ2

ψ/2 − 2ρσ2
ψ/2) (40)

= Et[Ψ̃
−ρ
t+1] exp(−2ρσ2

ψ/2) (41)

< Et[Ψ̃
−ρ
t+1]. (42)

which means that if we pick wide enough truncation points [Ψ, Ψ̄] we have Et[Ψ̃
1−ρ
t+1 ] <

Et[Ψ̃
−ρ
t+1].

Note that the impatience condition (32) implies that the first term on the RHS of
(38) can be rewritten

(η + Θ̄)RβEt[Γ̃
−ρ
t+1](G/R) < (η + Θ̄)(G/R). (43)

This condition also implies that the first term on the RHS in (36) is less than mt.
On the other hand, at satisfies at = mt − ct ≥ λmt for all t where λ = (1 − ¯̄κ) is

the minimal marginal propensity to save.14 This means

a1−ρ
t ≤ λ1−ρm1−ρ

t , (44)

which implies that the term (Rat)
1−ρ in (38) is less than R1−ρλ1−ρm1−ρ

t . Using this

and (43), the RHS of (38) is less than

(η + Θ̄)(G/R) + β
{

p(Rλ)1−ρm1−ρ
t + q(GΘ)1−ρEt[Ψ̃

1−ρ
t+1 ]
}

= (45)

(η + Θ̄)(G/R) + βp(Rλ)1−ρm1−ρ
t + βq(GΘ)1−ρEt[Ψ̃

1−ρ
t+1 ].

14Mnemonic: λ is the Greek letter l and the amount left unspent.
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Thus, combining all of these inequalities, we have that

βEt

[

Γ̃1−ρ
t+1 φ(m̃t+1)

]

< (46)

RβEt[Γ̃
−ρ
t+1]mt + (η + Θ̄)(G/R) + βp(Rλ)1−ρm1−ρ

t + βq(GΘ)1−ρEt[Ψ̃
1−ρ
t+1 ].

Under the assumptions on parameters above, there exist η > 0 and ς ∈ (0, 1) which
satisfy

(η + Θ̄)(G/R) + βq(GΘ)1−ρEt[Ψ̃
1−ρ
t+1 ] = ςη (47)

RβG−ρEt[Ψ̃
−ρ
t+1] ≤ ς (48)

βp(Rλ)1−ρ ≤ ς. (49)

Then we can obtain

ςφ(mt) ≥
(
η + Θ

)
G1−ρβEt[Ψ̃

1−ρ
t+1 ] + RβEt[Γ̃

−ρ
t+1]mt + βqΘEt[Γ̃

1−ρ
t+1 ] + βp(λR)1−ρm1−ρ

t

(50)

This means

u (ct) + βEt

[

Γ̃1−ρ
t+1 (w(m̃t+1) + γφ(m̃t+1))

]

(51)

≤ u (ct) + βEt

[

Γ̃1−ρ
t+1 w (m̃t+1)

]

+ γςφ(mt)

so if we define

c∗t (mt) = arg max
ct∈[κmt,¯̄κmt]

{

u (ct) + βEt

[

Γ̃1−ρ
t+1

{
w
(
m̃∗
t+1

)
+ γφ

(
m̃∗
t+1

)}]}

(52)

with m∗
t+1 defined analogously to (21), then we obtain our final requirement:

T(w + γφ) = u (c∗t ) + βEt

[

Γ̃1−ρ
t+1

{
w
(
m̃∗
t+1

)
+ γφ

(
m̃∗
t+1

)}]

≤ u (c∗t ) + βEt

[

Γ̃1−ρ
t+1 w

(
m̃∗
t+1

)]

+ γςφ(mt)

≤ max
ct∈[κmt,¯̄κmt]

{

u (ct) + βEt

[

Γ̃1−ρ
t+1 w (m̃t+1)

]

+ γςφ(mt)
}

= T (w) + γςφ

where the second inequality holds because Et

[

γΓ̃1−ρ
t+1 φ (m̃t+1)

]

≤ γςφ(mt) for all mt ∈

R++ and mt+1 such that ct ∈ [κmt, ¯̄κmt].
Thus, the proof that T defines a contraction mapping is complete.
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2.5.2 Existence of a Concave Consumption Function

We now show that the maximization problem (19) defines a sequence of continuously
differentiable strictly increasing concave functions {cT , cT−1, ..., cT−k}.

To do this, we need a definition. We will say that a function n(z) is ‘nice’ if it
satisfies

1. n(z) is well-defined iff z > 0

2. n(z) is strictly increasing

3. n(z) is strictly concave

4. n(z) is C3 (its first three derivatives exist)

5. n(z) < 0

6. limz↓0 n(z) = −∞

(Notice that an implication of niceness is that limz↓0 n′(z) = ∞.)
Assume that some vt+1 is nice. Our objective is to show that this implies vt is also

nice; this is sufficient to establish that vs is nice by induction for all s ≤ T because
vT (m) = u(m) and u(m) is nice by inspection for our u(c).

As a first step, define an end-of-period value function vt(a) as

vt(a) = βEt

[

Γ̃1−ρ
t+1 vt+1(R̃t+1a + ξ̃t+1)

]

. (53)

Since there is a positive probability that ξt+1 will attain its minimum of zero and
since Rt+1 > 0, it is clear that lima↓0 vt(a) = −∞ and lima↓0 v

′
t(a) = ∞. So vt(a)

is well-defined iff a > 0; it is similarly straightforward to show the other properties
required for vt(a) to be nice. (See Hiraguchi (2003)).

Next define vt(m, c) as

vt(m, c) = u(c) + vt(m − c) (54)

which is C3 since vt and u are both C3, and note that our problem’s value function
defined in (19) can be written as

vt(m) = max
c

vt(m, c). (55)

vt is well-defined only if 0 < c < m. Furthermore, limc↓0 vt(m, c) = limc↑m vt(m, c) =

−∞,
∂2vt(m,c)

∂c2
< 0, limc↓0

∂vt(m,c)

∂c
= +∞, and limc↑m

∂vt(m,c)

∂c
= −∞. It follows that the

ct(m) defined by

ct(m) = arg max
0<c<m

vt(m, c) (56)

exists and is unique, and (19) has an internal solution that satisfies

u′(ct(m)) = v
′
t(m − ct(m)). (57)

14



Since both u and vt are strictly concave, both ct(m) and at(m) = m − ct(m) are
strictly increasing. Since both u and vt(m) are three times continuously differentiable,
using (57) we can conclude that ct(m) is continuously differentiable and

c′t(m) =
v
′′
t (at(m))

u′′(ct(m)) + v
′′
t (at(m))

. (58)

Similarly we can easily show that ct(m) is twice continuously differentiable (as is
at(m)).15 This implies that vt(m) is nice, since vt(m) = u(ct(m)) + vt(at(m)).

Finally, strict concavity of the consumption functions is shown by Carroll and
Kimball (1996).

In intuitive terms, the reason ct(m) < m is that if the consumer spent all available
resources, he would arrive in period t + 1 with assets of zero, then might earn zero
noncapital income for the rest of his life (an unbroken series of zero-income events is
unlikely but possible). In such a case, the budget constraint and the can’t-die-in-debt
condition mean that the consumer would be forced to spend zero, incurring negative
infinite utility. To avoid this disaster, the consumer never spends everything.

2.5.3 T generates {vT−n+1(m)}∞n=1

Here we show that our operator T produces the sequence of value functions defined
in (19); that is, Tvt+1 = vt. The only differences between vt as defined in (19) and
Tvt+1 are 1) the restriction, for the T operator, that ct ∈ [κmt, ¯̄κmt], and, 2) the use
of the sup operator in the definition of T as opposed to max for vt. We show here that
these differences do not matter.

The first step is to show that the lower bound for consumption is

ct(m) ≥ c(m) ≡ κm (59)

where κ is defined by (31).
To see that this holds, define ~ct(m) as the solution to the normalized version of the

perfect foresight finite horizon problem,

~ct(mt) = (mt − 1 + ht)κt (60)

and note from the definition of κt, (15), that

κT−n−1 < κT−n (61)

so that limn→∞ κT−n = κ < κt.

15See Appendix A.
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Furthermore, Carroll and Kimball (1996) show, in finite horizon models of the class
considered here, that the MPC for a consumer facing uncertainty is strictly greater
than the MPC for the corresponding perfect foresight consumer:

c′T−n(m) > κT−n. (62)

Combining these, we have

c′t(m) > κt > κ (63)

which justifies our earlier labeling of κ as the ‘minimal’ marginal propensity to con-
sume. Since limm↓0 ct(m) = 0 the fact that κ is the lower bound MPC implies

ct(m) > κm (64)

as required for all t < T and m > 0.
The next step is to show that

ct(m) ≤ ¯̄κm for all t ≤ T − 1 (65)

where ¯̄κ is defined by (30). Begin by defining

et(m) = ct(m)/m (66)

κ̄t = lim
m↓0

et(m) > 0 (67)

and note that this limit exists and is strictly positive because continuous differentiabil-
ity and strict concavity of ct(m) along with ct(m) > 0 imply that et(m) is continuous,
decreasing, and 0 < et(m) < 1 for t < T .

The Euler equation says that

ct(mt)
−ρ = βREt

[(

ct+1(m̃t+1)Γ̃t+1

)−ρ
]

(68)

(mtet(mt))
−ρ = βREt

[(

et+1(m̃t+1)Γ̃t+1m̃t+1

)−ρ
]

(69)

et(mt)
−ρ = βREt

[(

et+1(m̃t+1)

(

Rat(mt) + Γ̃t+1ξ̃t+1

mt

))−ρ]

(70)

= qmρ
tβR

∫∫

(et+1(Rt+1at(mt) + Θ/q) (Rt+1at(mt) + Θ/q))−ρ dFΨdFΘ

+pβR1−ρ

∫ (

et+1(Rt+1at(mt))
at(mt)

mt

)−ρ

dFΨ (71)

but note that since limm↓0 at(m) = 0 the limit of the double integral in (71) tends
toward bounds defined by (et+1(Θ/q)Θ/q)−ρ and (et+1(Θ̄/q)Θ̄/q)−ρ both of which are
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finite numbers, implying that the whole term multiplied by q goes to zero as mρ
t goes

to zero. The integral in the other term goes to κ̄−ρ
t+1(1− κ̄t)

−ρ. It follows that κ̄t satisfies
(κ̄t)

−ρ = βpR1−ρ(κ̄t+1)
−ρ(1 − κ̄t)

−ρ. We can conclude that

κ̄t = (βpR)−
1

ρR(1 − κ̄t)κ̄t+1 (72)

R−1(βpR)1/ρ

︸ ︷︷ ︸

≡λ

κ̄t = (1 − κ̄t)κ̄t+1 (73)

which implies

(λκ̄t)
−1 = (1 − κ̄t)

−1κ̄−1
t+1 (74)

κ̄−1
t (1 − κ̄t) = λκ̄−1

t+1 (75)

κ̄−1
t = 1 + λκ̄−1

t+1. (76)

Then
{
κ̄−1
T−n

}∞

n=1
is an increasing convergent sequence if

0 ≤ λ < 1 (77)

0 ≤ p1/ρR−1(Rβ)1/ρ < 1 (78)

but since 0 ≤ p ≤ 1 by the definition of probability, this is a weaker condition than
R−1(Rβ)1/ρ < 1 which is the nonpathological patience condition (17) already imposed.

Since κ̄T = 1, from (76) we have that

κ̄T−1 =
[
1 + R−1(βpR)1/ρ

]−1
= ¯̄κ (79)

and since κ̄T−n is a decreasing sequence we have κ̄T−n < ¯̄κ for n > 1, justifying our
earlier labeling of ¯̄κ as the maximal MPC.

The foregoing analysis permits us to conclude that the solution to our original
problem is identical to the solution to the problem

vt(mt) = max
ct∈[κmt,¯̄κmt]

{

u(ct) + βEt

[

Γ̃1−ρ
t+1 vt+1 (m̃t+1)

]}

. (80)

The only difference between (80) and Tvt+1 is the use of the max rather than
the sup operator in (80). But the u(c) and Et+1[Γ̃

1−ρ
t+1 vt+1(R̃t+1(m − c) + Γ̃t+1ξ̃t+1)]

functions are both continuous in c, and the sup of a sum of continuous functions over
a bounded compact set is a max in that set, so we can replace the sup operator with
a max operator without loss of generality. Thus, vt is equivalent to Tvt+1 as required.

2.5.4 Convergence of Consumption Functions

Application of Boyd’s theorem demonstrates that the the vt−n functions converge in
a φ−bounded space. What we are really interested in, however, is convergence of
the consumption policy functions. The proof that the former implies the latter is
uninteresting and is relegated to appendices B and C.
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2.6 Liquidity Constraints as a Limit

This section demonstrates that a related problem commonly considered in the liter-
ature (e.g. by Deaton (1991)), with a liquidity constraint and a positive minimum
value of income, is the limit of the model considered here as the probability p of the
zero-income event approaches zero.

Formally, suppose we change the description of the problem by making the following
two assumptions:

p = 0 (81)

ct ≤ mt, (82)

and suppose we designate the solution to this consumer’s problem c̀t(mt). We will
henceforth refer to this as the problem of the ‘restrained’ consumer (and, to avoid a
common confusion, we will refer to the consumer as ‘constrained’ only in circumstances
when the constraint is actually binding).

Redesignate the consumption function that emerges from our original problem for a
given fixed p as ct(mt; p) where we separate the arguments by a semicolon to distinguish
between mt, which is a state variable, and p, which is not. The proposition we wish
to demonstrate is

lim
p↓0

ct(mt; p) = c̀t(mt). (83)

We will first examine the problem in period T − 1, then argue that the key result
propagates to earlier periods. For simplicity, suppose that the interest, growth, and
time-preference factors are R = β = G = 1, and there are no permanent shocks, Ψ = 1;
the results below are easily generalized to the full-fledged version of the problem.

The solution to the restrained consumer’s optimization problem can be obtained
as follows. Assuming that the consumer’s behavior in period T is given by cT (mT ) (in
practice, this will be cT (mT ) = mT ), consider the unrestrained optimization problem

à∗
T−1(m) = arg max

a

{

u(m − a) + β

∫ Θ̄

Θ

vT (a + Θ)dFΘ

}

. (84)

As usual, the envelope theorem tells us that v′
T (m) = u′(cT (m)) so the expected

marginal value of ending period T − 1 with assets a can be defined a la (53) as

v̀
′
T−1(a) ≡

∫ Θ̄

Θ

u′(cT (a + Θ))dFΘ, (85)

and the solution to (84) will satisfy

u′(m − a) = βv̀
′
T−1(a). (86)
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Defining à∗
T−1(m) as the function that solves (86), à∗

T−1(m) answers the question
“With what level of assets would the restrained consumer like to end period T − 1
if the constraint cT−1 ≥ mT−1 did not exist?” (Note that the restrained consumer’s
income process remains different from the process for the unrestrained consumer so
long as p > 0). The restrained consumer’s actual asset position will be

àT−1(m) = min[0, à∗
T−1(m)], (87)

reflecting the inability of the restrained consumer to spend more than current resources,
and note (as pointed out by Deaton (1991)) that

m#
T−1 =

(
βv̀

′
T−1(0)

)−1/ρ
(88)

is the cusp value of m at which the constraint makes the transition from binding to
not binding.

Analogously to (86), defining

v
′
T−1(a; p) ≡

{

β

[

pa−ρ + (1 − p)

∫ Θ̄

Θ

(cT (a + Θ/(1 − p)))−ρ dFΘ

]}

, (89)

the Euler equation for the original consumer’s problem implies

(m − a)−ρ = βv
′
T−1(a; p) (90)

with solution aT−1(m; p). Now note that for a fixed a > 0, limp↓0 v
′
T−1(a; p) =

v̀
′
T−1(a). Since the LHS of (86) and (90) are identical, this means that for such an m

limp↓0 aT−1(m; p) = à∗
T−1(m). That is, for any fixed value of m > m#

T−1 such that the
consumer subject to the restraint would voluntarily choose to end the period with pos-
itive assets, the level of end-of-period assets for the unrestrained consumer approaches
the level for the restrained consumer as p ↓ 0. With the same a and the same m, the
consumers must have the same c, so the consumption functions are identical in the
limit.

Now consider values m ≤ m#
T−1 for which the restrained consumer is constrained.

It is obvious that the baseline consumer will never choose a ≤ 0 because the first
term in in (89) is lima↓0 pa−ρ = ∞, while lima↓0(m− a)−ρ is finite (the marginal value
of end-of-period assets approaches infinity as assets approach zero, but the marginal
utility of consumption has a finite limit for m > 0). The subtler question is whether
it is possible to rule out strictly positive a for the unrestrained consumer.

The answer is yes. Suppose, for some m < m#, that the unrestrained consumer
is considering ending the period with any positive amount of assets a = δ > 0. For
any such δ we have that limp↓0 v

′
T−1(a; p) = v̀

′
T−1(a). But by assumption we are

considering a set of circumstances in which à∗
T−1(m) < 0, and we showed earlier that
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limp↓0 a∗
T−1(m; p) = à∗

T−1(m). So, having assumed a = δ > 0, we have proven that the
consumer would optimally choose a < 0, which is a contradiction. A similar argument
holds for m = m#

T−1.
These arguments demonstrate that for any m > 0, limp↓0 cT−1(m; p) = c̀T−1(m)

which is the period T − 1 version of (83). But given equality of the period T − 1
consumption functions, backwards recursion of the same arguments demonstrates that
the limiting consumption functions in previous periods are also identical in the limit,
so (83) holds.

Note finally that another intuitive confirmation of the equivalence between the two
problems is that our formula (30) for the maximal marginal propensity to consume
satisfies

lim
p↓0

κ̄ = 1, (91)

which makes sense because the marginal propsensity to consume for a constrained
restrained consumer is one by the definition of ‘constrained.’

2.7 Discussion of Conditions Required for Convergence

For the proof to hold we needed to impose two parametric conditions, (32) and (17).
To understand these conditions, consider a comparison to the infinite horizon perfect
foresight problem.

Both problems impose the nonpathological patience condition, (17). Surprisingly,
however, our other restriction, (32), can actually be weaker than the second condition
required for the perfect foresight problem, G < R. To see this, raise both sides of (32)
to the (1/ρ) power and extract the G term to obtain:

(Rβ)1/ρ
(
E[Ψ−ρ]

)−1/ρ
< G (92)

and note that if we turn off the permanent shocks Ψ = Ψ̄ = 1 this reduces to

(Rβ)1/ρ < G. (93)

A particularly transparent case is R = 1 and G ≥ 1. Human wealth is infinite so
the perfect foresight infinite horizon model has no solution, but if β < 1 our model
does have a solution.

To help interpret our condition, consider an infinite horizon perfect foresight con-
sumer who does satisfy G < R and who arrives in period t with beginning-of-period
resources of zero, so that he has only human wealth. If initial permanent income is Pt
then Wt = Ht = Pt(R/(R − G)) and the formula for consumption (15) becomes

Ct =

(
R − (Rβ)1/ρ

R − G

)

Pt (94)
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so the condition (Rβ)1/ρ < G guarantees that consumption will exceed labor income
of Pt. Thus, this consumer is ‘impatient’ in the sense of wanting to borrow against
future labor income to finance current consumption.

The presence of permanent shocks tightens the restriction, since if Ψ is nondegen-
erate then E[Ψ−ρ]−1/ρ > 1. The interpretation of this effect is simple: The presence of
uncertainty in permanent income increases the consumer’s precautionary saving mo-
tive, and therefore increases the degree of patience; the condition requires that even
after this boost to the saving motive, the consumer remains impatient in the relevant
sense.

The simplest intuition for why our model has a solution when G > R comes from
the essential equivalence between the precautionary saving motive and liquidity con-
straints. Consider a version of the perfect foresight model with liquidity constraints.
This model does have a well defined solution for G > R because even a consumer with
considerable current resources cannot spend an infinite amount (even if the PDV of fu-
ture labor income is infinite) because that would violate the constraint. Furthermore,
the amount the consumer is willing to spend today is limited by the knowledge that,
because of impatience, they will be constrained at some point in the future.

The precautionary motive induced by the labor income risk can be thought of
as being like a smoothed version of liquidity constraints. As cash declines toward
zero, the size of the risk relative to the size of cash increases, which means that the
relative variation in consumption increases, which means that the intensity of the
precautionary motive increases. For a more rigorous and detailed treatment of the
relationship between precautionary saving and liquidity constraints, see Carroll and
Kimball (2001).

3 Analysis of the Converged Consumption Func-

tion

Figures 2 and 3a,b capture the main properties of the converged consumption rule.16

Figure 2 shows the expected consumption growth factor Et[C̃t+1/Ct] for a consumer
using the converged consumption rule, while Figures 3a,b illustrate theoretical bounds
for the consumption function and the marginal propensity to consume.

I will demonstrate five features of behavior captured, or suggested, by the figures.
First, as mt → ∞ the expected consumption growth factor goes to (Rβ)1/ρ, indicated
by the lower bound in figure 2, and the marginal propensity to consume approaches
κ = (1 − R−1(Rβ)1/ρ) (figure 3), the same as in the perfect foresight case. Second,
as mt → 0 the consumption growth factor approaches ∞ (figure 2) and the MPC
approaches κ̄ = (1 − R−1(Rβp)1/ρ) (figure 3). Third (figure 2), there is a target

16These figures reflect the converged rule corresponding to the parameter values indicated in table 1.
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Figure 2: Target Saving, Expected Consumption Growth, and Permanent Income
Growth

cash-on-hand-to-income ratio m∗ such that if mt = m∗ then Et[m̃t+1] = mt, and (as
indicated by the arrows of motion on the Et[C̃t+1/Ct] curve) that target ratio is stable
in the sense that if mt < m∗ then cash-on-hand will rise (in expectation), while if
mt > m∗ then above the target, it will fall (in expectation). Fourth (figure 2), at the
target m, the expected growth rate of consumption is less than the expected growth
rate of permanent labor income. The final proposition suggested by figure 2 is that
the expected consumption growth factor is declining in the level of the cash-on-hand
ratio mt. This turns out to be true in the absence of permanent shocks, but in extreme
cases it can be false if permanent shocks are present.

Throughout the remaining analysis I make a final assumption that is not strictly
justified by the foregoing. From Carroll and Kimball (1996) we know that the finite-
horizon consumption functions cT−n(m) are twice continuously differentiable and strictly
concave, and we have shown above that these converge to a continuous function c(m).
It does not follow that c(m) is twice continuously differentiable, but I will assume that
it is.
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3.1 Limits as mt → ∞

Recall our definition of

c(m) = κm (95)

in (59) which is the solution to an infinite-horizon problem with no labor income
(ξt = 0 ∀ t); clearly c(m) < c(m), since allowing the possibility of future labor income
cannot reduce current consumption.

Assume that G < R so that the infinite horizon perfect foresight solution,

~c(m) = (m − 1 + h)κ, (96)

exists. (We discuss the G ≥ R case below). This constitutes an upper bound on
consumption in the presence of uncertainty, since Carroll and Kimball (1996) show
that the introduction of uncertainty strictly decreases the level of consumption at any
m.

Thus, we can write

c(m) < c(m) < ~c(m) (97)

1 < c(m)/c(m) < ~c(m)/c(m). (98)

But

lim
m→∞

~c(m)/c(m) = lim
m→∞

(m − 1 + h)/m (99)

= 1. (100)

Hence, as m → ∞, c(m)/c(m) → 1, and the continuous differentiability and strict
concavity of c′(m) therefore imply

lim
m→∞

c′(m) = c′(m) = ~c′(m) = κ (101)

because any other fixed limit would eventually lead to a level of consumption either
exceeding ~c(m) or lower than c(m).

Figure 3 confirms these limits visually. The top plot shows the converged consump-
tion function along with its upper and lower bounds, while the lower plot shows the
marginal propensity to consume.

Next we establish the limit of the expected consumption growth factor as mt → ∞:

lim
mt→∞

Et[C̃t+1/Ct] = lim
mt→∞

Et[Γ̃t+1c̃t+1/ct]. (102)

But

lim
mt→∞

Γt+1c(mt+1)/~c(mt) = lim
mt→∞

Γt+1~c(mt+1)/c(mt) = lim
mt→∞

Γt+1mt+1/mt, (103)
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and

lim
mt→∞

Γt+1mt+1/mt = lim
mt→∞

(
Ra(mt) + Γt+1ξt+1

mt

)

(104)

= (Rβ)1/ρ (105)

because limmt→∞ a′(m) = R−1(Rβ)1/ρ and Γt+1ξt+1/mt ≤ (GΨ̄Θ̄/q)/mt which goes to
zero as mt goes to infinity.

Hence we have
(Rβ)1/ρ ≤ lim

mt→∞
Et[C̃t+1/Ct] ≤ (Rβ)1/ρ (106)

so as cash goes to infinity, consumption growth approaches its value in the perfect
foresight model.

This argument applies equally well to the problem of the restrained consumer,
because as m approaches infinity the constraint becomes irrelevant.

Of course, the constraint never becomes irrelevant if human wealth is infinite. We
ruled out infinite human wealth at the beginning of this section by assuming R > G.
We now consider the case where R ≤ G.

Think first about the perfect foresight model with constraints. With infinite human
wealth the constraint never becomes irrelevant, but the date at which it binds recedes
arbitrarily far in the future as nonhuman approaches infinity. Between the present and
that receding date, the optimal growth rate of consumption approaches (Rβ)1/ρ, which
in turn implies that the marginal propensity to consume approaches the same limit
as before, (1 − R−1(Rβ)1/ρ). (For further discussion of the perfect foresight liquidity
constrained case see Carroll and Kimball (2001)).

We argued earlier, however, that consumption of the perfect foresight liquidity
constrained consumer is an upper bound to consumption of our consumers, which
implies again that the marginal propensity to consume approaches κ as m approaches
infinity; thus the above arguments continue to go through.

3.2 Limits as mt → 0

Now consider the limits of behavior as mt gets arbitrarily small.
Equation (75) implies that the limiting value of κ̄ is

κ̄ = 1 − R−1(pRβ)1/ρ. (107)

Defining e(m) = c(m)/m as before we have

lim
m↓0

e(m) = (1 − p1/ρR−1(Rβ)1/ρ) = κ̄ (108)
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Now differentiate

e′(m) = m−1c′(m) − m−2c(m) (109)

me′(m) = c′(m) − c(m)/m (110)

c′(m) = e(m) + me′(m) (111)

and using the continuous differentiability of the consumption function along with 0 <
e(m) < 1 we have

lim
m↓0

c′(m) = lim
m↓0

e(m) = κ̄. (112)

Figure 3 confirms that standard simulation methods obtain this limit for the MPC
as m approaches zero.

For consumption growth, we have

lim
mt↓0

Et

[(
c(m̃t+1)

c(mt)

)

Γ̃t+1

]

> lim
mt↓0

Et

[(

c(R̃t+1a(mt) + ξ̃t+1)
¯̄κmt

)

Γ̃t+1

]

> lim
mt↓0

Et

[(

c(ξ̃t+1)

¯̄κmt

)

Γ̃t+1

]

(113)

= ∞ (114)

where the last line follows because the minimum possible realization of ξt+1 is Θ > 0
so the minimum possible value of expected next-period consumption is positive.

The same arguments establish limm↓0 Et[Ct+1/Ct] = ∞ for the problem of the
restrained consumer.

3.3 There exists exactly one target cash-on-hand ratio, which

is stable

Define the target cash-on-hand-to-income ratio m∗ as the value of m such that

Et[m̃t+1/mt] = 1 if mt = m∗. (115)

We prove existence by noting that Et[m̃t+1/mt] is continuous on mt > 0, and takes
on values both above and below 1.

Specifically, the same logic used in section 3.2 shows that limmt↓0 Et[m̃t+1/mt] = ∞.
The limit as mt goes to infinity is

lim
mt→∞

Et[m̃t+1/mt] = lim
mt→∞

Et

[

R̃t+1a(mt) + ξ̃t+1

mt

]

(116)

= Et[(R/Γ̃t+1)R
−1(Rβ)1/ρ] (117)

= Et[(Rβ)1/ρ/Γ̃t+1] (118)
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and appendix D shows that

Et[(Rβ)1/ρ/Γ̃t+1] < 1 (119)

under our assumptions.
Stability means that in a local neighborhood of m∗, values of mt above m∗ will result

in a smaller ratio of Et[m̃t+1/mt] than at m∗. That is, if mt > m∗ then Et[mt+1/mt] <
1. This will be true if

(
d

dmt

)

Et[m̃t+1/mt] < 0 (120)

in a neighborhood around mt = m∗. But

(
d

dmt

)

Et[m̃t+1/mt] = Et

[(
d

dmt

)[

R̃t+1(1 − c(mt)/mt) + ξ̃t+1/mt

]]

= Et

[

R̃t+1(c(mt) − c′(mt)mt) − ξ̃t+1

m2
t

]

which will be negative if its numerator is negative. Define ν(mt) as the expectation of
the numerator,

ν(mt) = Et[R̃t+1](c(mt) − c′(mt)mt) − 1. (121)

Now consider the definition of the target level of cash m∗ such that Et[m̃t+1] =
mt = m∗:

Et[m̃t+1] = Et[R̃t+1(mt − ct) + ξ̃t+1] (122)

m∗ = Et[R̃t+1](m
∗ − c(m∗)) + 1 (123)

Et[R̃t+1]c(m
∗) = 1 − (1 − Et[R̃t+1])m

∗. (124)

At the target, equation (121) is

ν(m∗) = Et[R̃t+1]c(m
∗) − Et[R̃t+1]c

′(m∗)m∗ − 1. (125)
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Substituting for the first term in this expression using (124) gives

ν(m∗) = 1 − (1 − Et[R̃t+1])m
∗ − Et[R̃t+1]c

′(m∗)m∗ − 1 (126)

= m∗
(

Et[R̃t+1] − 1 − Et[R̃t+1]c
′(m∗)

)

(127)

= m∗
(

Et[R̃t+1](1 − c′(m∗)) − 1
)

(128)

< m∗
(

Et[R̃t+1](1 − (1 − R−1(Rβ)1/ρ)) − 1
)

(129)

= m∗
(

Et[R̃t+1](R
−1(Rβ)1/ρ) − 1

)

(130)

= m∗




Et[(Rβ)1/ρ/Γ̃t+1]
︸ ︷︷ ︸

<1 from (119)

−1




 (131)

< 0. (132)

We have now proven that some target m∗ must exist, and that at any such m∗ the
solution is stable. Nothing we have said so far, however, rules out the possibility that
there will be multiple values of m that satisfy the definition (115) of a target.

Multiple targets can be ruled out as follows. Suppose there exist multiple targets,
indexed by i, so that the target with the smallest value is m∗,1. The argument just
completed implies that since Et[m̃t+1/mt] is continuously differentiable there must exist
some small ε such that Et[m̃t+1/mt] < 1 for mt = m∗,1+ε. (Continuous differentiability
of Et[m̃t+1/mt] follows from the continous differentiability of c(mt)).

Now assume there exists a second value of m satisfying the definition of a target,
m∗,2. Since Et[m̃t+1/mt] is continuous, it must be approaching 1 from below as mt →
m∗,2, since by the intermediate value theorem it could not have gone above 1 between
m∗,1+ε and m∗,2 without passing through 1, and by the definition of m∗,2 it cannot have
passed through 1 before reaching m∗,2. But saying that Et[m̃t+1/mt] is approaching 1
from below as mt → m∗,2 implies that

(
d

dmt

)

Et[m̃t+1/mt] > 0 (133)

at mt = m∗,2. However, we just showed above that precisely the opposite of equation
(133) holds for any m that satisfies the definition of a target. Thus, assuming the
existence of more than one target implies a contradiction, and so there must be only
one target m∗.

The foregoing arguments rely on the continuous differentiability of c(m), so the
arguments do not directly go through for the restrained consumer’s problem in which
the existence of liquidity constraints can lead to discrete changes in the slope c′(m) at
particular values of m. But we can use the fact that the restrained model is the limit
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of the baseline model as p ↓ 0 to conclude that there must be a unique target cash
level in the restrained model.

If consumers are sufficiently impatient, however, the target level in the restrained
model will be m∗ = Et[ξ̃t+1] = 1. That is, if a consumer starting with m = 1 will
save nothing, a(1) = 0, then the target level of m in the restrained model will be 1;
if a consumer with m = 1 would choose to save something, then the target level of
cash-on-hand will be greater than the expected level of income.

3.4 Expected consumption growth at target m is less than

expected permanent income growth

In figure 2 the intersection of the target cash-on-hand ratio locus at m∗ with the
expected consumption growth curve lies below the intersection with the horizontal
line representing the expected growth rate of permanent income. This can be proven
as follows.

Strict concavity of the consumption function implies that if Et[m̃t+1] = m∗ = mt

then

Et

[

Γ̃t+1c(m̃t+1)

c(mt)

]

< Et

[(

Γ̃t+1(c(m
∗) + c′(m∗)(m̃t+1 − m∗))

c(m∗)

)]

(134)

= Et

[

Γ̃t+1

(

1 +

(
c′(m∗)

c(m∗)

)

(m̃t+1 − m∗)

)]

(135)

= G +

(
c′(m∗)

c(m∗)

)

Et

[

Γ̃t+1 (m̃t+1 − m∗)
]

(136)

= G +

(
c′(m∗)

c(m∗)

)


Et[Γt+1] Et[m̃t+1 − m∗]
︸ ︷︷ ︸

=0

+covt(Γ̃t+1, m̃t+1)





(137)

and since mt+1 = (R/Γt+1)a(m∗)+ξt+1 and a(m∗) > 0 it is clear that covt(Γ̃t+1, m̃t+1) <
0 which implies that the entire term added to G in (137) is negative, as required.

3.5 Expected consumption growth is a declining function of
mt (or is it?)

Figure 2 depicts the expected consumption growth factor as a strictly declining function
of the cash-on-hand ratio. To investigate this, define

Υ = Ct+1/Ct (138)

= Γt+1c(Rt+1a(mt) + ξt+1)/c(mt) (139)
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and the proposition in which we are interested is

(d/dmt)E[Υ] < 0. (140)

Now define

Υ′ ≡ dΥ/dmt (141)

= Γt+1

(
c′(mt+1)Rt+1a

′(mt)c(mt) − c(mt+1)c
′(mt)

c(mt)2

)

(142)

and note that we can differentiate through the expectations operator so (140) is equiv-
alent to

E[Υ′] < 0. (143)

Henceforth indicating appropriate arguments by the corresponding subscript (e.g.
c′t+1 ≡ c′(mt+1)), since Γt+1Rt+1 = R equation (142) can be rewritten

ctΥ
′ = c′t+1a

′
tR − c′tΓt+1ct+1/ct (144)

= c′t+1a
′
tR − c′tΥ (145)

Now differentiate the Euler equation with respect to mt:

1 = RβE[Υ−ρ] (146)

0 = E[Υ−ρ−1Υ′] (147)

= E[Υ−ρ−1]E[Υ′] + cov(Υ−ρ−1, Υ′) (148)

E[Υ′] = −cov(Υ−ρ−1, Υ′)/E[Υ−ρ−1] (149)

but since Υ > 0 we can see from (149) that (143) is equivalent to

cov(Υ−ρ−1, Υ′) > 0 (150)

which, using (145), will be true if

cov(Υ−ρ−1, c′t+1a
′
tR − c′tΥ) > 0 (151)

which in turn will be true if both

cov(Υ−ρ−1, c′t+1) > 0 (152)

and

cov(Υ−ρ−1, Υ) < 0. (153)
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The latter proposition is obviously true. The former will be true if

cov
(
(GΨt+1c(mt+1))

−ρ−1, c′(mt+1)
)

> 0

where recall that mt+1 = (R/GΨt+1)at + ξt+1.
The two shocks cause two kinds of variation in mt+1. Variations due to ξt+1 satisfy

the proposition, since a higher draw of ξ both reduces c−ρ−1
t+1 and reduces the marginal

propensity to consume. However, permanent shocks have conflicting effects. On the
one hand, a higher draw of Ψt+1 will reduce mt+1, thus increasing both c−ρ−1

t+1 and

c′t+1. On the other hand, the c−ρ−1
t+1 term is multiplied by GΨt+1, so the effect of a

higher Ψt+1 could be to decrease the first term in the covariance, leading to a negative
covariance with the second term.

I have constructed an example in which this perverse effect dominates. However,
extreme assumptions were required (p < 0.000000001, very small transitory shocks)
and the region in which Υ′ > 0 was tiny. In practice, for plausible parametric choices,
E[Υ′] < 0 should generally hold.

4 The Aggregate and Idiosyncratic Relationship Be-

tween Consumption Growth and Income Growth

This section examines the behavior of large collections of buffer-stock consumers with
identical parameter values. Such a collection can be thought of as either a subset of the
population within a single country (say, members of a given education or occupation
group), or as the whole population in a small open economy (we will continue to take
the aggregate interest rate as exogenous and constant). It is also possible, though
more difficult, to solve a closed-economy version of the model where the interest rate
is endogenous; see Carroll (2000) for an example.

Formally, we assume a continuum of ex ante identical households on the unit inter-
val, with constant total mass normalized to one and indexed by i ∈ [0, 1], all behaving
according to the model specified above.

4.1 Convergence of the Cross-Section Distribution

A recent paper by Szeidl (2002) proves that such a population will be characterized
by an ergodic (invariant) distribution of m which induces invariant distributions for c
and a; designate these Fm, Fa, and F c. (Szeidl’s proof supplants simulation evidence
of ergodicity that appeared in an earlier version of this paper).

The proof of convergence does not yield any sense of how quickly convergence
occurs, which in principle depends on all of the parameters of the model as well as
the initial conditions. To build intuition, Figure 4 supplies an example in which a
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population begins with a particularly simple distribution that is far from the ergodic
one:

mi,1 = ξi,1, (154)

which would characterize a population in which all assets had been wiped out imme-
diately before the receipt of period 1’s labor income. The figure plots the distributions
of a (for technical reasons, this is slightly better than plotting m) at the ends of 1, 4,
10, and 40 periods.

0.2 0.4 0.6 0.8
a

0.2

0.4

0.6

0.8

1.0

F

F1
a �

F4
a �

� F10
a

� F40
a » F¥

a

Figure 4: Convergence of Fa to Invariant Distribution

As the figure indicates, under these parameter values convergence of the CDF to
the invariant distribution has largely been accomplished within 10 periods. By 40
periods, the distribution is indistinguishable from the invariant distribution.

4.2 Consumption and Income Growth at the Household Level

It is useful to define the operator Et {} which yields the mean value of its argument in
the population, as distinct from the expectations operator represents beliefs about the
future.
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An economist with a microeconomic dataset could calculate the average growth
rate of idiosyncratic consumption, and would find

E {∆ log Ci,t+1} = E {log ci,t+1Pi,t+1 − log ci,tPi,t}

= E {log Pi,t+1 − log Pi,t + log ci,t+1 − log ci,t}

= E {log Pi,t+1 − log Pi,t} + E {log ci,t+1 − log ci,t}

= g − σ2
ψ/2, (155)

where the last equality follows because the invariance of F c means that E {log ci,t+1} =
E {log ci,t} .

Papers in the simulation literature have observed an approximate equivalence be-
tween the average growth rates of idiosyncratic consumption and permanent income,
but formal proof was not possible until Szeidl’s proof of ergodicity.

4.3 Growth Rates of Aggregate Income and Consumption

Attanasio and Weber (1995) point out that nonlinearities in consumption models make
it important to distinguish between the growth rate of average consumption and the
average growth rate of consumption. We have just examined the average growth rate;
it is now time to examine the growth rate of the average.

Let bold varibles designate the average and aggregate values of variables. The
growth factor for aggregate income is given by:

Yt+1/Yt = E
{
ξi,t+1GΨi,t+1Pi,t

}
/E
{
Pi,tξi,t

}
(156)

= GE {Pi,t} /E {Pi,t} (157)

= G (158)

because of the independence assumptions we have made about ξ and Ψ.
Aggregate assets are:

At = E {ai,tPi,t}

= aPt + cov(ai,t, Pi,t) (159)

where we are assuming that a in period t was distributed according to the invariant
distribution which justifies the lack of a time subscript on a. Since permanent income
grows at mean rate G while the distribution of a is invariant, if we normalize Pt to
one we will similarly have for any period n ≥ 1

At+1 = aGn + cov(ai,t+n, Pi,t+n). (160)

Unfortunately, the proof of the invariance of Fa does not yield the required infor-
mation about how the covariance between a and P evolves.
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We can show the desired result if there are no permanent shocks. Suppose the
population starts in period t with an arbitrary value for cov(ai,t, Pi,t). Then if we
define

â(m̂) =

∫ m̂

m

a′(z + 1)dz (161)

we can write

ai,t+1 = a(Ra + 1) + â(Rai,t + ξi,t+1 − 1) (162)

so

cov(ai,t+1, Pi,t+1) = cov
(
â(Rai,t + (ξi,t+1 − 1)), GPi,t

)
(163)

= cov (â(Rai,t), Pi,t) (164)

which holds because ξi,t+1 is a mean one variable independent of Pi,t. But since

R−1(pRβ)1/ρ < â′(m) < R−1(Rβ)1/ρ

cov((pRβ)1/ρai,t, Pi,t) < cov(ai,t+1, Pi,t+1) < cov((Rβ)1/ρai,t, Pi,t) (165)

and for the version of the model with no permanent shocks we know that (Rβ)1/ρ < G,
which implies

cov(ai,t+1, Pi,t+1) < Gcov(ai,t, Pi,t). (166)

This means that from any arbitrary starting value, the relative size of the covariance
term shrinks to zero over time (compared to the aGn term which is growing steadily
at rate G). Thus, limn→∞ At+n+1/At+n = G.

This logic unfortunately does not go through when there are permanent shocks,
because the Ri,t+1 terms are not independent of the permanent income shocks.

To see the problem clearly, define R̄ = E {Ri,t+1} and consider a second order
Taylor expansion of â(Ri,t+1ai,t) around R̄ai,t,

âi,t+1 ≈ â(R̄ai,t) + â′(R̄ai,t)(Ri,t+1 − R̄)ai,t + â′′(R̄ai,t)

(
(Ri,t+1ai,t − R̄ai,t)

2

2

)

.

The problem comes from the â′′ term. The concavity of the consumption function
implies convexity of the â function, so this term is strictly positive but we have no
theory to place bounds on its size as we do for â′. Intuitively, a large positive shock to
permanent income will produce a low ratio of assets to permanent income, which will
be associated with a low marginal propensity to save (a high MPC).

It is possible that methods like those developed by Szeidl (2002) might be able
to establish the long run properties of the covariance term, and thus verify or refute
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the proposition that the economy heads towards a balanced growth path from any
starting position. In the absence of such a proof, we must rely on simulation evidence.
In practice, a wide range of simulations finds that the influence of the covariance term
is modest. An example is given in Figure 5, which plots Ct+1/Ct for the economy for
which the CDFs were depicted in 4.

As an experiment, after the 40 periods of simulation that generated CDFs plotted
in 4, we reset the level of permanent income to be identical for all consumers (‘the
revolution’):

Pi,41 = GP40 (167)

and we redistribute cash among consumers in such a way as to leave each consumer
with the same value of mi,41 that they would have had in the absence of the revolution.
The purpose of this experiment is to wipe out the inherited covariance between P and
m in order to gauge the importance of the covariance effect and the dynamic effects
of that term on aggregate growth.

10 20 30 40 50 60
Time

G

1.05

1.10

1.15

Ct+1 � Ct

Revolution �

Figure 5: Consumption Growth in Simulated Economy with G = 1.03

The effect of the revolution on consumption growth is small, and dissipates almost
immediately. This simulation and others suggest that the practical effects of the co-
variance between m and P are likely to be negligible, so that we should expect that in
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buffer stock economies aggregate consumption growth will be very close to aggregate
permanent income growth.

5 Conclusions

This paper provides theoretical foundations necessary to prove many characteristics of
buffer stock saving models that have heretofore been observed in simulations but not
proven. The main results apply either to a model without liquidity constraints, or to
the model with constraints (e.g. Deaton (1991)) considered as a limiting case. Perhaps
the most important such proposition is the existence of a target cash-to-income ratio
toward which actual cash will tend.

Another contribution of the paper is that it provides a set of tools for simulation
analysis (available on the author’s web page) that confirm and illustrate the theoretical
propositions. These programs demonstrate how the incorporation of the theoretical
results can make numerical solution algorithms more efficient and simpler. The simu-
lation programs also provide quantification of the qualitative properties derived ana-
lytically (what is the target level of the buffer stock? what is the population-average
marginal propensity to consume? etc.). Much previous work in the consumption liter-
ature has been either purely theoretical or purely simulation-based. This paper aims
to bridge that gap.
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Appendices

A ct(m) Is Twice Continuously Differentiable

First we show that ct(m) is C1. Define y as y ≡ x+ dx . Since u′ (ct(y))−u′ (ct(m)) =

v
′
t(at(y)) − v

′
t(at(m)) and at(y)−at(m)

dm
= 1 − ct(y)−ct(m)

dm
,

v
′
t(at(y)) − v

′
t(at(m))

at(y) − at(m)
=

(
u′ (ct(y)) − u′ (ct(m))

ct(y) − ct(m)
+

v
′
t(at(y)) − v

′
t(at(m))

at(y) − at(m)

)
ct(y) − ct(m)

dm

Since ct and at are continuous and increasing, lim
dm→+0

u′(ct(y))−u′(ct(m))
ct(y)−ct(m)

< 0 and lim
dm→0

v
′

t(at(y))−v
′

t(at(m))

at(y)−at(m)
≤

0 are satisfied. Then u′(ct(y))−u′(ct(m))
ct(y)−ct(m)

+
v
′

t(at(y))−v
′

t(at(m))

at(y)−at(m)
< 0 for sufficiently small dx.

Hence we obtain a well-defined equation:

ct(y) − ct(m)

dm
=

v
′

t(at(y))−v
′

t(at(m))

at(y)−at(m)

u′(ct(y))−u′(ct(m))
ct(y)−ct(m)

+
v
′

t(at(y))−v
′

t(at(m))

at(y)−at(m)

This implies that the right-derivative, c′+t (m) is well-defined and

c′+t (m) =
v
′′
t (at(m))

u′′(ct(m)) + v
′′
t (at(m))

Similarly we can show that c′+t (m) = c′−t (m), which means c′t(m) exists. Since vt

is C3, c′t(m) exists and is continuous. c′t(m) is differentiable because v
′′
t is C1, ct(m) is

C1 and u′′(ct(m)) + v
′′
t (at(m)) < 0. c′′t (m) is given by

c′′t (m) =
a′
t(m)v′′′

t (at) [u′′(ct) + v
′′
t (at)] − v

′′
t (at) [c′tu

′′′(ct) + a′
tv

′′′
t (at)]

[u′′(ct) + v
′′
t (at)]

2 (168)

Since v
′′
t (at(m)) is continuous, c′′t (m) is also continuous.

B Convergence of vt in Euclidian Space

Boyd’s theorem shows that T defines a contraction mapping in a φ-bounded space.
We now show that T also defines a contraction mapping in Euclidian space.

Since v∗(m) = Tv∗(m),

‖vT−n+1(m) − v∗(m)‖φ ≤ ςn−1 ‖vT (m) − v∗(m)‖φ (169)
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On the other hand, vT − v∗ ∈ Cφ (A,B) and κ = ‖vT (m) − v∗(m)‖φ < ∞ because vT
and v∗ are in Cφ (A,B). It follows that

|vT−n+1(m) − v∗(m)| ≤ κςn−1 |φ(m)| (170)

Then we obtain
lim
n→∞

vT−n+1(m) = v∗(m). (171)

Since vT (m) = m1−ρ

1−ρ
, vT−1(m) ≤ (¯̄κm)1−ρ

1−ρ
< vT (m). On the other hand, vT−1 ≤

vT means TvT−1 ≤ TvT , in other words, vT−2(m) ≤ vT−1(m). Inductively one gets
vT−n(m) ≥ vT−n−1(m). This means that {vT−n+1(m)}∞n=1 is a decreasing sequence.

C Convergence of ct

Given the proof that the value functions converge, we now show the pointwise conver-
gence of consumption functions {cT−n+1(m)}∞n=1.

We start by showing that

c(m) = arg max
ct∈[κm,¯̄κm]

{

u(ct) + βEt

[

Γ̃1−ρ
t+1 v(m̃t+1)

]}

(172)

is uniquely determined. We show this by contradiction. Suppose there exist c1 and c2

that both attain the supremum for some m, with mean č = (c1 + c2)/2. ci satisfies

Tv(m) = u(ci) + βEt

[

Γ̃1−ρ
t+1 v(m̃t+1(m, ci))

]

(173)

where mt+1(m, c) = Rt+1(m−c)+ξt+1 and i = 1, 2. Tv is concave for concave v. Since
the space of continuous and concave functions is closed, v is also concave and satisfies

1

2

∑

i=1,2

Et

[

Γ̃1−ρ
t+1 v(m̃t+1(m, ci))

]

≤ Et

[

Γ̃1−ρ
t+1 v(m̃t+1(m, č))

]

. (174)

On the other hand, 1
2
{u(c1) + u(c2)} < u(č). Then one gets

Tv(m) < u(č) + βEt

[

Γ̃1−ρ
t+1 v(m̃t+1(m, č))

]

(175)

Since č is a feasible choice for cj , v(č) is not a maximum, which contradicts the
definition.

Using uniqueness of c(m) we can now show

lim
n→∞

cT−n+1(m) = c(m). (176)
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Suppose this does not hold for some m = m∗. In this case, {cT−n+1(m
∗)}∞n=1 has a sub-

sequence
{
cT−n(i)(m

∗)
}∞

i=1
that satisfies limi→∞ cT−n(i)(m

∗) = c∗ and c∗ 6= c(m∗). Now
define c∗T−n+1 = cT−n+1(m

∗). c∗ > 0 because limi→∞ vT−n(i)+1(m
∗) ≤ limi→∞ u(c∗T−n(i)).

Because a(m∗) > 0 and Ψ ∈ [Ψ, Ψ̄] there exist {m∗
+, m̄∗

+} satisfying 0 < m∗
+ < m̄∗

+

and mT−n+1(m
∗, c∗T−n+1) ∈

[
m∗

+, m̄∗
+

]
. It follows that limn→∞ vT−n+1(m) = v(m) and

the convergence is uniform on m ∈
[
m∗

+, m̄∗
+

]
. (Uniform convergence is obtained from

Dini’s theorem.17) Hence for any δ > 0, there exists an n1 such that

βET−n

[

Γ̃1−ρ
T−n+1

∣
∣vT−n+1(m̃T−n+1(m

∗, c∗T−n+1)) − v(m̃T−n+1(m
∗, c∗T−n+1))

∣
∣

]

< δ

for all n ≥ n1. It follows that if we define

w(m∗, z) = u(z) + βET−n

[

Γ̃1−ρ
T−n+1v(mT−n+1(m

∗, z))
]

(177)

then vT−n(m
∗) satisfies

lim
n→∞

∣
∣vT−n(m

∗) − w(m∗, c∗T−n+1)
∣
∣ = 0. (178)

On the other hand, there exists an i1 ∈ N such that
∣
∣v(mT−n(i)(m

∗, c∗T−n(i))) − v(mT−n(i)(m
∗, c∗))

∣
∣ ≤ δ for all i ≥ i1 (179)

because v is uniformly continuous on [m∗
+, m̄∗

+]. limi→∞

∣
∣cT−n(i)(m

∗) − c∗
∣
∣ = 0 and

∣
∣mT−n(i)(m

∗, c∗T−n(i)) − mT−n(i)(m
∗, c∗)

∣
∣ ≤

R

GΨ

∣
∣c∗T−n(i) − c∗

∣
∣ (180)

This implies
lim
i→∞

∣
∣w(m∗, c∗T−n(i)+1) − w(m∗, c∗)

∣
∣ = 0 (181)

From (178) and (181), we obtain limi→∞ vT−n(i)(m
∗) = w(m∗, c∗) and this implies

w(m∗, c∗) = v(m∗). This implies that c(m) is not uniquely determined, which is a
contradiction.

Thus, the consumption functions must converge.

D Et[(Rβ)1/ρ/Γ̃t+1] < 1

If Ψt+1 were distributed lognormally with no bounds, we would have that

log Ψ−ρ
t+1 = −ρ log Ψt+1 (182)

∼ N(ρσ2
ψ/2, ρ2σ2

ψ) (183)

17[Dini’s theorem] For a monotone sequence of continuous functions {vn(m)}
∞

n=1
which is defined

on a compact space and satisfies limn→∞ vn(m) = v(m) where v(m) is continuous, convergence is
uniform.
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implying
Et[Ψ̃

−ρ
t+1] = eρσ

2

ψ
/2+ρ2σ2

ψ
/2

so (32) can be rewritten

RβG−ρeρσ
2

ψ
/2+ρ2σ2

ψ
/2 < 1 (184)

(Rβ)1/ρG−1eσ
2

ψ
/2+ρσ2

ψ
/2 < 1 (185)

(Rβ)1/ρG−1eσ
2

ψ
/2+σ2

ψ
/2+(ρ−1)σ2

ψ
/2 < 1 (186)

(Rβ)1/ρG−1Et[Ψ̃
−1
t+1]e

(ρ−1)σ2

ψ
/2 < 1 (187)

Et[(Rβ)1/ρ/Γ̃t+1]e
(ρ−1)σ2

ψ
/2 < 1 (188)

Et[(Rβ)1/ρ/Γ̃t+1] < 1 (189)

where the last line follows under the maintained assumption ρ > 1.
We have assumed Ψ is distributed as a truncated lognormal; clearly if we specify

the truncation points [Ψ, Ψ̄] sufficiently widely (189) will hold. We therefore assume
that the truncation points are sufficiently wide.
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