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It is well known that the volatility of stock returns varies over time. While considerable
research has examined the time-series relation between the volatility of the market and the ex-
pected return on the market (see, among others, Campbell and Hentschel (1992), and Glosten,
Jagannathan and Runkle (1993)), the question of how aggregate volatility affects the cross-
section of expected stock returns has received less attention. Time-varying market volatility
induces changes in the investment opportunity set by changing the expectation of future mar-
ket returns, or by changing the risk-return trade-off. If the volatility of the market return is a
systematic risk factor, an APT or factor model predicts that aggregate volatility should also be
priced in the cross-section of stocks. Hence, stocks with different sensitivities to innovations in
aggregate volatility should have different expected returns.

The first goal of this paper is to provide a systematic investigation of how the stochastic
volatility of the market is priced in the cross-section of expected stock returns. We want to de-
termine if the volatility of the market is a priced risk factor and estimate the price of aggregate
volatility risk. Many option studies have estimated a negative price of risk for market volatility
using options on an aggregate market index or options on individual stddksig the cross-
section of stock returns, rather than options on the market, allows us to create portfolios of
stocks that have different sensitivities to innovations in market volatility. If the price of aggre-
gate volatility risk is negative, stocks with large, positive sensitivities to volatility risk should
have low average returns. Using the cross-section of stock returns also allows us to easily con-
trol for a battery of cross-sectional effects, like the size and value factors of Fama and French
(1993), the momentum effect of Jegadeesh and Titman (1993), and the effect of liquidity risk
documented by &tor and Stambaugh (2003). Option pricing studies do not control for these
cross-sectional risk factors.

We find that innovations in aggregate volatility carry a statistically significant negative price
of risk of approximately -1% per annum. Economic theory provides several reasons why the
price of risk of innovations in market volatility should be negative. For example, Campbell
(1993 and 1996) and Chen (2002) show that investors want to hedge against changes in mar-
ket volatility, because increasing volatility represents a deterioration in investment opportuni-
ties. Risk averse agents demand stocks that hedge against this risk. Periods of high volatility
also tend to coincide with downward market movements (see French, Schwert and Stambaugh
(1987), and Campbell and Hentschel (1992)). As Bakshi and Kapadia (2003) comment, assets
with high sensitivities to market volatility risk provide hedges against market downside risk.
The higher demand for assets with high systematic volatility loadings increases their price and



lowers their average return. Finally, stocks that do badly when volatility increases tend to have
negatively skewed returns over intermediate horizons, while stocks that do well when volatil-
ity rises tend to have positively skewed returns. If investors have preferences over coskewness
(see Harvey and Siddigue (2000)), stocks that have high sensitivities to innovations in market
volatility are attractive and have low returhs.

The second goal of the paper is to examine the cross-sectional relationship between id-
iosyncratic volatility and expected returns, where idiosyncratic volatility is defined relative to
the standard Fama and French (1993) médHlthe Fama-French model is correct, forming
portfolios by sorting on idiosyncratic volatility will obviously provide no difference in average
returns. Nevertheless, if the Fama-French model is false, sorting in this way potentially provides
a set of assets that may have different exposures to aggregate volatility and hence different aver-
age returns. Our logic is the following. If aggregate volatility is a risk factor that is orthogonal
to existing risk factors, the sensitivity of stocks to aggregate volatility times the movement in
aggregate volatility will show up in the residuals of the Fama-French model. Firms with greater
sensitivities to aggregate volatility should therefore have larger idiosyncratic volatilities relative
to the Fama-French model, everything else being equal. Differences in the volatilities of firms’
true idiosyncratic errors, which are not priced, will make this relation noisy. We should be able
to average out this noise by constructing portfolios of stocks to reveal that larger idiosyncratic
volatilities relative to the Fama-French model correspond to greater sensitivities to movements
in aggregate volatility and thus different average returns, if aggregate volatility risk is priced.

While high exposure to aggregate volatility risk tends to produce low expected returns, some
economic theories suggest that idiosyncratic volatility should be positively related to expected
returns. If investors demand compensation for not being able to diversify risk (see Malkiel
and Xu (2002), and Jones and Rhodes-Kropf (2003)), then agents will demand a premium for
holding stocks with high idiosyncratic volatility. Merton (1987) suggests that in an information-
segmented market, firms with larger firm-specific variances require higher average returns to
compensate investors for holding imperfectly diversified portfolios. Some behavioral models,
like Barberis and Huang (2001), also predict that higher idiosyncratic volatility stocks should
earn higher expected returns. Our results are directly opposite to these theories. We find that
stocks with high idiosyncratic volatility have low average returns. There is a strongly significant
difference of -1.06% per month between the average returns of the quintile portfolio with the
highest idiosyncratic volatility stocks and the quintile portfolio with the lowest idiosyncratic
volatility stocks.



In contrast to our results, earlier researchers either found a significantly positive relation
between idiosyncratic volatility and average returns, or they failed to find any statistically sig-
nificant relation between idiosyncratic volatility and average returns. For example, Lintner
(1965) shows that idiosyncratic volatility carries a positive coefficient in cross-sectional regres-
sions. Lehmann (1990) also finds a statistically significant, positive coefficient on idiosyncratic
volatility over his full sample period. Similarly, Tinic and West (1986) and Malkiel and Xu
(2002) unambiguously find that portfolios with higher idiosyncratic volatility have higher av-
erage returns, but they do not report any significance levels for their idiosyncratic volatility
premiums. On the other hand, Longstaff (1989) finds that a cross-sectional regression coeffi-
cient on total variance for size-sorted portfolios carries an insignificant negative sign.

The difference between our results and the results of past studies is that the past literature
either does not examine idiosyncratic volatility at the firm level or does not directly sort stocks
into portfolios ranked on this measure of interest. For example, Tinic and West (1986) work
only with 20 portfolios sorted on market beta, while Malkiel and Xu (2002) work only with
100 portfolios sorted on market beta and size. Malkiel and Xu (2002) only use the idiosyncratic
volatility of one of the 100 beta/size portfolios to which a stock belongs to proxy for that stock’s
idiosyncratic risk and, thus, do not examine firm-level idiosyncratic volatility. Hence, by not di-
rectly computing differences in average returns between stocks with low and high idiosyncratic
volatilities, previous studies miss the strong negative relation between idiosyncratic volatility
and average returns that we find.

The low average returns to stocks with high idiosyncratic volatilities could arise because
stocks with high idiosyncratic volatilities may have high exposure to aggregate volatility risk,
which lowers their average returns. We investigate this issue and find that this is not a complete
explanation. Our idiosyncratic volatility results are also robust to controlling for value, size,
liquidity, volume, dispersion of analysts’ forecasts, and momentum effects. We find the effect
robust to different formation periods for computing idiosyncratic volatility and for different
holding periods. The effect also persists in both bull and bear markets, recessions and expan-
sions, and volatile and stable periods. Hence, our results on idiosyncratic volatility represent a
substantive puzzle.

The rest of this paper is organized as follows. In Section I, we examine how aggregate
volatility is priced in the cross-section of stock returns. Section Il documents that firms with
high idiosyncratic volatility have very low average returns. Finally, Section Ill concludes.



|. Pricing Systematic Volatility in the Cross-Section

A. Theoretical Motivation

When investment opportunities vary over time, the multi-factor models of Merton (1973) and
Ross (1976) show that risk premia are associated with the conditional covariances between as-
set returns and innovations in state variables that describe the time-variation of the investment
opportunities. Campbell’s (1993 and 1996) version of the Intertemporal CAPM (I-CAPM)
shows that investors care about risks from the market return and from changes in forecasts of
future market returns. When the representative agent is more risk averse than log utility, assets
that covary positively with good news about future expected returns on the market have higher
average returns. These assets command a risk premium because they reduce a consumer’s abil-
ity to hedge against a deterioration in investment opportunities. The intuition from Campbell’s
model is that risk-averse investors want to hedge against changes in aggregate volatility because
volatility positively affects future expected market returns, as in Merton (1973).

However, in Campbell’'s set-up, there is no direct role for fluctuations in market volatility to
affect the expected returns of assets because Campbell's model is premised on homoskedastic-
ity. Chen (2002) extends Campbell’'s model to a heteroskedastic environment which allows for
both time-varying covariances and stochastic market volatility. Chen shows that risk-averse in-
vestors also want to directly hedge against changes in future market volatility. In Chen’s model,
an asset’s expected return depends on risk from the market return, changes in forecasts of future
market returns, and changes in forecasts of future market volatilities. For an investor more risk
averse than log utility, Chen shows that an asset that has a positive covariance between its return
and a variable that positively forecasts future market volatilities causes that asset to have a lower
expected return. This effect arises because risk-averse investors reduce current consumption to
increase precautionary savings in the presence of increased uncertainty about market returns.

Motivated by these multi-factor models, we study how exposure to market volatility risk is
priced in the cross-section of stock returns. A true conditional multi-factor representation of
expected returns in the cross-section would take the following form:

K
i = ap+ 5fn¢(7”ﬁ1 — Ym,t) + 6£,t<vt+1 — Yot) + Z ﬁzi,t(fk,tﬂ — Vi,t), (1)
k=1
wherer;,  is the excess return on stogk3;, , is the loading on the excess market retusp,

is the asset’s sensitivity to volatility risk, and ti#, coefficients fork = 1... K represent
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loadings on other risk factors. In the full conditional setting in equation (1), factor loadings,
conditional means of factors, and factor premiums potentially vary over time. The model in
equation (1) is written in terms of factor innovations, b, — v,,: represents the innovation in

the market returny,, —, ; represents the innovation in the factor reflecting aggregate volatility
risk, and innovations to the other factors are represented,by, — vx;. The conditional
mean of the market and aggregate volatility are denoteg,hyand~, ., respectively, while the
conditional mean of the other factors are denoted;by In equilibrium, the conditional mean

of stocki is given by:

K
ap = By(riy1) = By Amit + Op i dos + Z Bri Mkt (2)

k=1
where),, ; is the price of risk of the market facto, ; is the price of aggregate volatility risk,
and the\;, are prices of risk of the other factors. Note that only if a factor is traded is the
conditional mean of a factor equal to its conditional price of risk.

The main prediction from the factor model setting of equation (1) that we examine is that

stocks with different loadings on aggregate volatility risk have different average réttios-
ever, the true model in equation (1) is infeasible to examine because the true set of factors is
unknown and the true conditional factor loadings are unobservable. Hence, we do not attempt to
directly use equation (1) in our empirical work. Instead, we simplify the full model in equation
(1), which we now detail.

B. The Empirical Framework

To investigate how aggregate volatility risk is priced in the cross-section of equity returns we
make the following simplifying assumptions to the full specification in equation (1). First, we
use observable proxies for the market factor and the factor representing aggregate volatility risk.
We use the CRSP value-weighted market index to proxy for the market factor. To proxy innova-
tions in aggregate volatility,v:11 — 7,.+), We use changes in tié/ X index from the Chicago
Board Options Exchange (CBOE)Second, we reduce the number of factors in equation (1)

to just the market factor and the proxy for aggregate volatility risk. Finally, to capture the con-
ditional nature of the true model, we use short intervals, one month of daily data, to take into
account possible time-variation of the factor loadings. We discuss each of these simplifications
in turn.



B.1. Innovations in th& I X Index

The VIX index is constructed so that it represents the implied volatility of a synthetic at-the-
money option contract on the S&P100 index that has a maturity of one month. It is constructed
from eight S&P100 index puts and calls and takes into account the American features of the
option contracts, discrete cash dividends and microstructure frictions such as bid-ask spreads
(see Whaley (2000) for further detaifs)Figure 1 plots thé/ I X index from January 1986 to
December 2000. The mean level of the daily X series is 20.5%, and its standard deviation

is 7.85%.

[FIGURE 1 ABOUT HERE]

Because thé/ 7 X index is highly serially correlated with a first-order autocorrelation of
0.94, we measure daily innovations in aggregate volatility by using daily changeés in
which we denote aaV I X. Dalily first differences i/ I X have an effective mean of zero (less
than 0.0001), a standard deviation of 2.65%, and also have negligible serial correlation (the
first-order autocorrelation aAV /X is -0.0001). As part of our robustness checks in Section
C, we also measure innovationslifY X by specifying a stationary time-series model for the
conditional mean o¥/ /X and find our results to be similar to using simple first differences.
While AV X seems an ideal proxy for innovations in volatility risk becausati& index is
representative of traded option securities whose prices directly reflect volatility risk, there are
two main caveats with using / X to represent observable market volatility.

The first concern is that th& /X index is the implied volatility from the Black-Scholes
(1973) model, and we know that the Black-Scholes model is an approximation. If the true
stochastic environment is characterized by stochastic volatility and jufxigg,X will reflect
total quadratic variation in both diffusion and jump components (see, for example, Pan (2002)).
Although Bates (2000) argues that implied volatilities computed taking into account jump risk
are very close to original Black-Scholes implied volatilities, jump risk may be priced differ-
ently from volatility risk. Our analysis does not separate jump risk from diffusion risk, so our
aggregate volatility risk may include jump risk components.

A more serious reservation about thd X index is thatV’ /X combines both stochastic
volatility and the stochastic volatility risk premium. Only if the risk premium is zero or constant
would AV I X be a pure proxy for the innovation in aggregate volatility. Decompodiig X
into the true innovation in volatility and the volatility risk premium can only be done by writing
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down a formal model. The form of the risk premium depends on the parameterization of the
price of volatility risk, the number of factors and the evolution of those factors. Each different
model specification implies a different risk premium. For example, many stochastic volatility
option pricing models assume that the volatility risk premium can be parameterized as a linear
function of volatility (see, for example, Chernov and Ghysels (2000), Benzoni (2002), and
Jones (2003)). This may or may not be a good approximation to the true price of risk. Rather
than imposing a structural form, we use an unadulter&t®&d X series. An advantage of this
approach is that our analysis is simple to replicate.

B.2. The Pre-Formation Regression

Our goal is to test if stocks with different sensitivities to aggregate volatility innovations (prox-
ied by AV 1 X) have different average returns. To measure the sensitivity to aggregate volatility
innovations, we reduce the number of factors in the full specification in equation (1) to two, the
market factor and\V 7 X. A two-factor pricing kernel with the market return and stochastic
volatility as factors is also the standard set-up commonly assumed by many stochastic option
pricing studies (see, for example, Heston, 1993). Hence, the empirical model that we examine
is:

ry = Bo+ Byxr - MKT; + Bayrx - AVIX, + €, (3)

where M KT is the market excess returi\V 1 X is the instrument we use for innovations in
the aggregate volatility factor, anti, ;. and34, ; are loadings on market risk and aggregate
volatility risk, respectively.

Previous empirical studies suggest that there are other cross-sectional factors that have ex-
planatory power for the cross-section of returns, such as the size and value factors of the Fama
and French (1993) three-factor model (hereafter FF-3). We do not directly model these effects
in equation (3), because controlling for other factors in constructing portfolios based on equa-
tion (3) may add a lot of noise. Although we keep the number of regressors in our pre-formation
portfolio regressions to a minimum, we are careful to ensure that we control for the FF-3 factors
and other cross-sectional factors in assessing how volatility risk is priced using post-formation
regression tests.

We construct a set of assets that are sufficiently disperse in exposure to aggregate volatility
innovations by sorting firms oAV /X loadings over the past month using the regression (3)
with daily data. We run the regression for all stocks on AMEX, NASDAQ and the NYSE, with
more than 17 daily observations. In a setting where coefficients potentially vary over time, a
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1-month window with daily data is a natural compromise between estimating coefficients with
a reasonable degree of precision and pinning down conditional coefficients in an environment
with time-varying factor loadings. @tor and Stambaugh (2003), among others, also use daily
data with a 1-month window in similar settings. At the end of each month, we sort stocks into
guintiles, based on the value of the realizeéd,;y coefficients over the past month. Firms in
quintile 1 have the lowest coefficients, while firms in quintile 5 have the highgsty loadings.
Within each quintile portfolio, we value-weight the stocks. We link the returns across time to
form one series of post-ranking returns for each quintile portfolio.

Table | reports various summary statistics for quintile portfolios sorted by/pasty over
the previous month using equation (3). The first two columns report the mean and standard
deviation of monthly total, not excess, simple returns. In the first column under the heading
‘Factor Loadings,” we report the pre-formatioi;x coefficients, which are computed at the
beginning of each month for each portfolio and are value-weighted. The column reports the
time-series average of the pre-formatir, ;x loadings across the whole sample. By con-
struction, since the portfolios are formed by ranking on past; x, the pre-formatiorsay;x
loadings monotonically increase from -2.09 for portfolio 1 to 2.18 for portfolio 5.

[TABLE | ABOUT HERE]

The columns labelled ‘CAPM Alpha’ and ‘FF-3 Alpha’ report the time-series alphas of
these portfolios relative to the CAPM and to the FF-3 model, respectfully. Consistent with the
negative price of systematic volatility risk found by the option pricing studies, we see lower
average raw returns, CAPM alphas, and FF-3 alphas with higher past loadifgs Gf. All
the differences between quintile portfolios 5 and 1 are significant at the 1% level, and a joint test
for the alphas equal to zero rejects at the 5% level for both the CAPM and the FF-3 model. In
particular, the 5-1 spread in average returns between the quintile portfolios with the highest and
lowestSayrx coefficients is -1.04% per month. Controlling for thé KT factor exacerbates
the 5-1 spread to -1.15% per month, while controlling for the FF-3 model decreases the 5-1
spread to -0.83% per month.

B.3. Requirements for a Factor Risk Explanation

While the differences in average returns and alphas corresponding to different loadings
are very impressive, we cannot yet claim that these differences are due to systematic volatility
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risk. We will examine the premium for aggregate volatility within the framework of an uncon-
ditional factor model. There are two requirements that must hold in order to make a case for a
factor risk-based explanation. First, a factor model implies that there should be contemporane-
ous patterns between factor loadings and average returns. For example, in a standard CAPM,
stocks that covary strongly with the market factor should, on average, earn high returns over the
same period. To test a factor model, Black, Jensen and Scholes (1972), Fama and French (1992
and 1993), Jagannathan and Wang (1996), asid? and Stambaugh (2003), among others, all
form portfolios using various pre-formation criteria, but examine post-ranking factor loadings
that are computed over the full sample period. While #he;x loadings show very strong
patterns of future returns, they represent past covariation with innovations in market volatility.
We must show that the portfolios in Table | also exhibit high loadings with volatility risk over
the same period used to compute the alphas.

To construct our portfolios, we toak V' 7 X to proxy for the innovation in aggregate volatil-
ity at a daily frequency. However, at the standard monthly frequency, which is the frequency
of the ex-post returns for the alphas reported in Table I, using the charigéXnis a poor
approximation for innovations in aggregate volatility. This is because at lower frequencies, the
effect of the conditional mean &f/ X plays an important role in determining the unanticipated
change iV 1 X. In contrast, the high persistence of tHé X series at a daily frequency means
that the first difference oV’ /X is a suitable proxy for the innovation in aggregate volatility.
Hence, we should not measure ex-post exposure to aggregate volatility risk by looking at how
the portfolios in Table | correlate ex-post with monthly changes X .

To measure ex-post exposure to aggregate volatility risk at a monthly frequency, we follow
Breeden, Gibbons and Litzenberger (1989) and construct an ex-post factor that mimics aggre-
gate volatility risk. We term this mimicking factdrV’ /. X. We construct the tracking portfolio
so that it is the portfolio of asset returns maximally correlated with realized innovations in
volatility using a set of basis assets. This allows us to examine the contemporaneous relation-
ship between factor loadings and average returns. The major advantage of-iising to
measure aggregate volatility risk is that we can construct a good approximation for innovations
in market volatility at any frequency. In particular, the factor mimicking aggregate volatility
innovations allows us to proxy aggregate volatility risk at the monthly frequency by simply
cumulating daily returns over the month on the underlying base assets used to construct the
mimicking factor. This is a much simpler method for measuring aggregate volatility innova-
tions at different frequencies, rather than specifying different, and unknown, conditional means



for VIX that depend on different sampling frequencies. After constructing the mimicking ag-
gregate volatility factor, we will confirm that it is high exposure to aggregate volatility risk that
is behind the low average returns to past ;x loadings.

However, just showing that there is a relation between ex-post aggregate volatility risk expo-
sure and average returns does not rule out the explanation that the volatility risk exposure is due
to known determinants of expected returns in the cross-section. Hence, our second condition for
a risk-based explanation is that the aggregate volatility risk exposure is robust to controlling for
various stock characteristics and other factor loadings. Several of these cross-sectional effects
may be at play in the results of Table I. For example, quintile portfolios 1 and 5 have smaller
stocks, and stocks with higher book-to-market ratios, and these are the portfolios with the most
extreme returns. Periods of very high volatility also tend to coincide with periods of market
illiquidity (see, among others, Jones (2003) addter and Stambaugh (2003)). In Section C,
we control for size, book-to-market, and momentum effects, and also specifically disentangle
the exposure to liquidity risk from the exposure to systematic volatility risk.

B.4. A Factor Mimicking Aggregate \Volatility Risk

Following Breeden, Gibbons and Litzenberger (1989) and Lamont (2001), we create the mim-
icking factor 'V I X to track innovations i I X by estimating the coefficiemtin the following
regression:

AVIX, =c+ VX, + uy, 4)

where X, represents the returns on the base assets. Since the base assets are excess returns,
the coefficient has the interpretation of weights in a zero-cost portfolio. The return on the
portfolio, b’ X;, is the factorf'V I X that mimics innovations in market volatility. We use the
quintile portfolios sorted on pagty;x in Table | as the base asséfs. These base assets are,

by construction, a set of assets that have different sensitivities to past daily innovafiéhx in

We run the regression in equation (4) at a daily frequency every month and use the estimates of

b to construct the mimicking factor for aggregate volatility risk over the same month.

An alternative way to construct a factor that mimics volatility risk is to directly construct a
traded asset that reflects only volatility risk. One way to do this is to consider option returns.
Coval and Shumway (2001) construct market-neutral straddle positions using options on the
aggregate market (S&P 100 options). This strategy provides exposure to aggregate volatility
risk. Coval and Shumway approximate daily at-the-money straddle returns by taking a weighted
average of zero-beta straddle positions, with strikes immediately above and below each day’s
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opening level of the S&P 100. They cumulate these daily returns each month to form a monthly
return, which we denote &7'R.® In Section D, we investigate the robustness of our results to
using ST R in place of FV I X when we estimate the cross-sectional aggregate volatility price
of risk.

Once we construck’V 1 X, then the multi-factor model (3) holds, except we can substitute
the (unobserved) innovation in volatility with the tracking portfolio that proxies for market
volatility risk (see Breeden (1979)). Hence, we can write the model in equation (3) as the
following cross-sectional regression:

ry =o' + Bypr - MKT, + By x - FVIX, + ¢} (5)

where M KT is the market excess returf)/ I.X is the mimicking aggregate volatility factor,
and 3, - and g%,y are factor loadings on market risk and aggregate volatility risk, respec-
tively.

To test a factor risk model like equation (5), we must show contemporaneous patterns be-
tween factor loadings and average returns. That is, if the price of risk of aggregate volatility is
negative, then stocks with high covariation with’ 7 X should have low returns, on average,
over the same period used to compute ¢, factor loadings and the average returns. By
construction,F'V I X allows us to examine the contemporaneous relationship between factor
loadings and average returns and it is the factor that is ex-post most highly correlated with in-
novations in aggregate volatility. However, whitd/ I X is the right factor to test a risk story,
FVIX itself is not an investable portfolio because it is formed with future information. Nev-
ertheless,['VIX can be used as guidance for tradeable strategies that would hedge market
volatility risk using the cross-section of stocks.

In the second column under the heading ‘Factor Loadings’ of Table I, we report the pre-
formationSry;x loadings that correspond to each of the portfolios sorted onpasty load-
ings. The pre-formatiof¥ry;x loadings are computed by running the regression (5) over daily
returns over the past month. The pre-formatioii / X loadings are very similar to the pre-
formation AV I X loadings for the portfolios sorted on pasty;x loadings. For example, the
pre-formationGryx (Bavrx) loading for quintile 1 is -2.00 (-2.09), while the pre-formation
Grvix (Bavix) loading for quintile 5 is 2.31 (2.18).
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B.5. Post-Formation Factor Loadings

In the next to last column of Table I, we report post-formatidq ;x loadings over the next
month, which we compute as follows. After the quintile portfolios are formed at timee
calculate daily returns of each of the quintile portfolios over the next month, ftort+ 1. For

each portfolio, we compute the ex-paskty ; x loadings by running the same regression (3) that

is used to form the portfolios using daily data over the next marii(+ 1). We report the next
month Sayx loadings averaged across time. The next month post-formatigny loadings

range from -0.033 for portfolio 1 to 0.018 for portfolio 5. Hence, although the exspesk
loadings over the next month are monotonically increasing, the spread is disappointingly very
small.

Finding large spreads in the next month post-formatiaqn; y loadings is a very stringent
requirement and one that would be done in direct tests of a conditional factor model like equa-
tion (1). Our goal is more modest. We examine the premium for aggregate volatility using
an unconditional factor model approach, which requires that average returns are related to the
unconditional covariation between returns and aggregate volatility risk. As Hansen and Richard
(1987) note, an unconditional factor model implies the existence of a conditional factor model.
However, to form precise estimates of the conditional factor loadings in a full conditional set-
ting like equation (1) requires knowledge of the instruments driving the time-variation in the
betas, as well as specifying the complete set of factors.

The ex-postiayrx loadings over the next month are computed using, on average, only 22
daily observations each month. In contrast, the CAPM and FF-3 alphas are computed using
regressions measuring unconditional factor exposure over the full sample (180 monthly obser-
vations) of post-ranking returns. To demonstrate that exposure to volatility innovations may
explain some of the large CAPM and FF-3 alphas, we must show that the quintile portfolios
exhibit different post-ranking spreads in aggregate volatility risk sensitivities over the entire
sample at the same monthly frequency for which the post-ranking returns are constructed. Av-
eraging a series of ex-post conditional one month covariances does not provide an estimate of
the unconditional covariation between the portfolio returns and aggregate volatility risk.

To examine ex-post factor exposure to aggregate volatility risk consistent with a factor
model approach, we compute post-rankiiity / X betas over the full sample.In particular,
since the FF-3 alpha controls for market, size, and value factors, we compute exipbat
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factor loadings also controlling for these factors in a 4-factor post-formation regression:
i =o' + Bhygr MKT, + +B%y5 - SMBy + By - HM Ly + By iy - FVIX; + €, (6)

where the first three factor® K'T', SM B and H M L constitute the FF-3 model's market, size
and value factors. To compute the ex-post;x loadings, we run equation (6) using monthly
frequency data over the whole sample, where the portfolios on the LHS of equation (6) are the
guintile portfolios in Table | that are sorted on past loading80f; x using equation (3).

The last column of Table | shows that the portfolios sorted on pastx exhibit strong
patterns of post-formation factor loadings on the volatility risk fadtdr/.X. The ex-post
Gryix factor loadings monotonically increase from -5.06 for portfolio 1 to 8.07 for portfolio
5. We strongly reject the hypothesis that the ex-phst; x loadings are equal to zero, with a
p-value less than 0.001. Thus, sorting stocks on pastx provides strong, significant spreads
in ex-post aggregate volatility risk sensitiviti&s.

B.6. Characterizing the Behavior 6V I X

Table Il reports correlations between thé' 7 X factor, AV IX, andSTR, as well as correla-
tions of these variables with other cross-sectional factors. We denote the daily first difference
in VIX asAVIX, and used,,VIX to represent the monthly first difference in thWé X in-

dex. The mimicking volatility factor is highly contemporaneously correlated with changes in
volatility at a daily frequency, with a correlation of 0.91. At the monthly frequency, the cor-
relation betwee”VIX andA,,VIX is lower, at 0.70. The factorBV /X andSTR have a

high correlation of 0.83, which indicates that 7/ X, formed from stock returns, behaves like
the ST'R factor constructed from option returns. Hené8/ /X captures option-like behavior

in the cross-section of stocks. The facfoV /X is negatively contemporaneously correlated
with the market return (-0.66), reflecting the fact that when volatility increases, market returns
are low. The correlations of' V' I.X with SM B and HM L are -0.14 and 0.26, respectively.
The correlation betweeA'V I X andU M D, a factor capturing momentum returns, is also low

at -0.25.

[TABLE Il ABOUT HERE]

In contrast, there is a strong negative correlation betwegrn X and the Rstor and Stam-
baugh (2003) liquidity factod. /), at -0.40. The.I() factor decreases in times of low liquidity,
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which tend to also be periods of high volatility. One example of a period of low liquidity with
high volatility is the 1987 crash (see, among others, Jones (2003)astdrRnd Stambaugh
(2003)). However, the correlation betweétV' /X and LIQ) is far from -1, indicating that
volatility risk and liquidity risk may be separate effects, and may be separately priced. In the
next section, we conduct a series of robustness checks designed to disentangle the effects of
aggregate volatility risk from other factors, including liquidity risk.

C. Robustness

In this section, we conduct a series of robustness checks in which we specify different mod-
els for the conditional mean df /X, use windows of different estimation periods to form
the Bayrx portfolios, and control for potential cross-sectional pricing effects due to book-to-
market, size, liquidity, volume, and momentum factor loadings or characteristics.

C.1. Robustness to Different Conditional Mean$/dftX

We first investigate the robustness of our results to the method measuring innovatioh¥ in

We used the change In/ X at a daily frequency to measure the innovation in volatility because
V' I1X is a highly serially correlated series. But/ X appears to be a stationary series, and using
AVIX as the innovation i/ /X may slightly over-difference. Our finding of low average
returns on stocks with highzy;x is robust to measuring volatility innovations by specifying
various models for the conditional mean B X. If we fit an AR(1) model toV' /X and
measure innovations relative to the AR(1) specification, we find that the results of Table | are
almost unchanged. Specifically, the mean return of the difference between the first and fifth
Bavix portfolios is -1.08% per month, and the FF-3 alpha of the 5-1 difference is -0.90%, both
highly statistically significant. Using an optimal BIC choice for the number of AR lags, which

is 11, produces a similar result. In this case, the mean of the 5-1 difference is -0.81% and the
5-1 FF-3 alpha is -0.66%, and both differences are significant at the 5%¢1evel.

C.2. Robustness to the Portfolio Formation Window

In this subsection, we investigate the robustness of our results to the amount of data used to
estimate the pre-formation factor loadings, ; x. In Table I, we use a formation period of one
month, and we emphasize that this window was chosen a priori without pretests. The results
in Table | become weaker if we extend the formation period of the portfolios. Although the
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point estimates of thEay ;x portfolios have the same qualitative patterns as Table I, statistical
significance drops. For example, if we use the past 3-months of daily d&& éiX to compute
volatility betas, the mean return of the 5th quintile portfolio with the highest pasty stocks

is 0.79%, compared with 0.60% with a 1-month formation period. Using a 3-month formation
period, the FF-3 alpha on the 5th quintile portfolio decreases in magnitude to -0.37%, with
a robust t-statistic of -1.62, compared to -0.53%, with a t-statistic of -2.88, with a 1-month
formation period from Table I. If we use the past 12-monthd/dfX innovations, the 5th
guintile portfolio mean increases to 0.97%, while the FF-3 alpha decreases in magnitude to
-0.24%, with a t-statistic of -1.04.

The weakening of thgay x effect as the formation periods increases is due to the time-
variation of the sensitivities to aggregate market innovations. The turnover in the monthly
Bavix portfolios is high (above 70%) and using longer formation periods causes less turnover,
but using more data provides less precise conditional estimates. The longer the formation win-
dow, the less these conditional estimates are relevant at tiarel the lower the spread in the
pre-formationGay;x loadings. By using only information over the past month, we obtain an
estimate of the conditional factor loading much closer to time

C.3. Robustness to Book-to-Market and Size Characteristics

Small growth firms are typically firms with option value that would be expected to do well
when aggregate volatility increases. The portfolio of small growth firms is also one of the
Fama-French (1993) 25 portfolios sorted on size and book-to-market that is hardest to price by
standard factor models (see, for example, Hodrick and Zhang (2001)). Could the portfolio of
stocks with high aggregate volatility exposure have a disproportionately large number of small
growth stocks?

Investigating this conjecture produces mixed results. If we exclude only the portfolio among
the 25 Fama-French portfolios with the smallest growth firms and repeat the quintile portfolio
sorts in Table I, we find that the 5-1 mean difference in returns is reduced in magnitude from
-1.04% for all firms to -0.63% per month, with a t-statistic of -3.30. Excluding small growth
firms produces a FF-3 alpha of -0.44% per month for the zero-cost portfolio that goes long
portfolio 5 and short portfolio 1, which is no longer significant at the 5% level (t-statistic is
-1.79), compared to the value of -0.83% per month with all firms. These results suggest that
small growth stocks may play a role in thg ;x quintile sorts of Table I.

However, a more thorough characteristic-matching procedure suggests that size or value
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characteristics do not completely drive the results. Table Il reports mean returns@fithe
portfolios characteristic-matched by size and book-to-market ratios, following the method pro-
posed by Daniel, Grinblatt, Titman, and Wermers (1997). Every month, each stock is matched
with one of the Fama-French 25 size and book-to-market portfolios according to its size and
book-to-market characteristics. The table reports value-weighted simple returns in excess of
the characteristic-matched returns. Table Il shows that characteristic controls for size and
book-to-market decrease the magnitude of the raw 5-1 mean return difference of -1.04% in Ta-
ble 1 to -0.90%. If we exclude firms that are members of the smallest growth portfolio of the
Fama-French 25 size-value portfolios, the magnitude of the mean 5-1 difference decreases to -
0.64% per month. However, the characteristic-controlled differences are still highly significant.
Hence, the low returns to high past, ;x stocks are not completely driven by a disproportion-

ate concentration among small growth stocks.

[TABLE Il ABOUT HERE]

C.4. Robustness to Liquidity Effects

Pastor and Stambaugh (2003) demonstrate that stocks with high liquidity betas have high aver-
age returns. In order for liquidity to be an explanation behind the spreads in average returns of
theSay 1 x portfolios, highBayrx stocks must have low liquidity betas. To check that the spread

in average returns on théxy;x portfolios is not due to liquidity effects, we first sort stocks

into five quintiles based on their historicaa$flor-Stambaugh liquidity betas. Then, within each
quintile, we sort stocks into five quintiles based on their past; x coefficient loadings. These
portfolios are rebalanced monthly and are value-weighted. After forming thé liquidity

beta andiay;x portfolios, we average the returns of eatli ; x quintile over the five liquidity

beta portfolios. Thus, these quintila ;x portfolios control for differences in liquidity.

We report the results of theaBtor-Stambaugh liquidity control in Panel A of Table 1V,
which shows that controlling for liquidity reduces the magnitude of the 5-1 difference in average
returns from -1.04% per month in Table | to -0.68% per month. However, after controlling for
liquidity, we still observe the monotonically decreasing pattern of average returns@xhe
quintile portfolios. We also find that controlling for liquidity, the FF-3 alpha for the 5-1 portfolio
remains significantly negative at -0.55% per month. Hence, liquidity effects cannot account for
the spread in returns resulting from sensitivity to aggregate volatility risk.
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[TABLE IV ABOUT HERE]

Table 1V also reports post-formatigh-, ;x loadings. Similar to the post-formatigh:y ; x
loadings in Table I, we compute the post-formatién, ;x coefficients using a monthly fre-
guency regression with the 4-factor model in equation (6) to be comparable to the FF-3 alphas
over the same sample period. Both the pre-formatian;x and post-formatiorfy;x load-
ings increase from negative to positive from portfolio 1 to 5, consistent with a risk story. In
particular, the post-formatiofyy;x loadings increase from -1.87 for portfolio 1 to 5.38 to
portfolio 5. We reject the hypothesis that the ex-p@st;x loadings are jointly equal to zero
with a p-value less than 0.001.

C.5. Robustness to Volume Effects

Panel B of Table IV reports an analogous exercise to that in Panel A except we control for
volume rather than liquidity. Gervais, Kaniel and Mingelgrin (2001) find that stocks with high
past trading volume earn higher average returns than stocks with low past trading volume. It
could be that the low average returns (and alphas) we find for stocks wittbhigh loadings

are just stocks with low volume. Panel B shows that this is not the case. In Panel B, we control
for volume by first sorting stocks into quintiles based on their trading volume over the past
month. We then sort stocks into quintiles based on thgijr; x loading and average across the
volume quintiles. After controlling for volume, the FF-3 alpha of the 5-1 long-short portfolio
remains significant at the 5% level at -0.58% per month. The post-formatippy loadings

also monotonically increase from portfolio 1 to 5.

C.6. Robustness to Momentum Effects

Our last robustness check controls for the Jegadeesh and Titman (1993) momentum effect in
Panel C. Since Jegadeesh and Titman report that stocks with low past returns, or past loser
stocks, continue to have low future returns, stocks with high past y loadings may tend

to also be loser stocks. Controlling for past 12-month returns reduces the magnitude of the
raw -1.04% per month difference between stocks with low and Hjgh x loadings to -0.89%,

but the 5-1 difference remains highly significant. The CAPM and FF-3 alphas of the portfo-
lios constructed to control for momentum are also significant at the 1% level. Once again, the
post-formationsry ;x loadings are monotonically increasing from portfolio 1 to 5. Hence, mo-
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mentum cannot account for the low average returns to stocks with high sensitivities to aggregate
volatility risk.

D. The Price of Aggregate \Volatility Risk

Tables Il and IV demonstrate that the low average returns to stocks with high past sensitivities
to aggregate volatility risk cannot be explained by size, book-to-market, liquidity, volume, and
momentum effects. Moreover, Tables Ill and IV also show strong ex-post spread<iithg

factor. Since this evidence supports the case that aggregate volatility is a priced risk factor in the
cross-section of stock returns, the next step is to estimate the cross-sectional price of volatility
risk.

To estimate the factor premiumyy ;x on the mimicking volatility factorF'V 1.X, we first
construct a set of test assets whose factor loadings on market volatility risk are sufficiently dis-
perse so that the cross-sectional regressions have reasonable power. We construct 25 investible
portfolios sorted bys,,xr and Gay;x as follows. At the end of each month, we sort stocks
based ons,, xr, computed by a univariate regression of excess stock returns on excess market
returns over the past month using daily data. We computgthey loadings using the bivari-
ate regression (3) also using daily data over the past month. Stocks are ranked first into quintiles
based oy, k7 and then within each¥,, 7 quintile into Gay ;7 x quintiles.

Jagannathan and Wang (1996) show that a conditional factor model like equation (1) has the
form of a multi-factor unconditional model, where the original factors enter as well as additional
factors associated with the time-varying information set. In estimating an unconditional cross-
sectional price of risk for the aggregate volatility facior' / X, we recognize that additional
factors may also affect the unconditional expected return of a stock. Hence, in our full spec-
ification, we estimate the following cross-sectional regression that includes FF-3, momentum
(UM D), and liquidity (L1Q) factors:

ry = ¢+ Byurr AMKT + Bryvix - Arvix + Bsyp - AsuB

+ Binr - Aamr + Byyp - Aump + Brig - Ang +e; (7)

where the\s represent unconditional prices of risk of the various factors. To check robustness,
we also estimate the cross-sectional price of aggregate volatility risk by using the Coval and
Shumway (2001pT R factor in place off'V I X in equation (7).

We use the 2%,k X Bayrx base assets to estimate factor premiums in equation (7) fol-
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lowing the two-step procedure of Fama-MacBeth (1973). In the first stage, betas are estimated
using the full sample. In the second stage, we use cross-sectional regressions to estimate the
factor premia. We are especially interested in ex-post factor loadings dnti&’ aggregate
volatility factor, and the price of risk of'V/X. Panel A of Table V reports the results. In
addition to the standard Fama and French (1993) fadtbkSI’, SM B and H M L, we include

the momentum factot/ M D, and Rastor and Stambaugh’s (2003) non-traded liquidity factor,
LI1@Q). We estimate the cross-sectional risk premiumi&df/ X together with the Fama-French
model in regressions |. In regression Il, we check robustness of our results by using Coval
and Shumway’s (200197 R option factor. Regressions Ill and 1V also include the additional
regressoré/ M D andLIQ).

[TABLE V ABOUT HERE]

In general, Panel A shows that the premiums of the standard fadksI(, SM B, HM L)
are estimated imprecisely with this set of base assets. The premiufi/ads is consistently
estimated to be negative because the size strategy performed poorly from the 1980’s onwards.
The value effect also performs poorly during the late 1990’s, which accounts for the negative
coefficient ond M L.

In contrast, the price of volatility risk in regression | is -0.08% per month, which is statisti-
cally significant at the 1% level. Using the Coval and Shumway (2601} factor in regression
II, we estimate the cross-sectional price of volatility risk to be -0.19% per month, which is also
statistically significant at the 1% level. These results are consistent with the hypothesis that
the cross-section of stock returns reflects exposure to aggregate volatility risk, and the price of
market volatility risk is significantly negative.

When we add thé/ M D and LI() factors in regressions Il and IV, the estimates of the
FVIX coefficient are essentially unchanged. Wh&w D is added, its coefficient is insignif-
icant, while the coefficient o’V 1 X barely moves from the -0.080 estimate in regression |
to -0.082. The small effect of adding a momentum control onAR& X coefficient is con-
sistent with the low correlation betwednl/ /X andU M D in Table 1l and with the results in
Table IV showing that controlling for past returns does not remove the low average returns on
stocks with hightry;x loadings. In the full specification regression 1V, th& I X coefficient
becomes slightly smaller in magnitude at -0.071, but the coefficient remains significant at the
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5% level with a robust t-statistic of -2.02. Moreovét) I X is the only factor to carry a rel-
atively large absolute t-statistic in the regression, which estimates seven coefficients with only
25 portfolios and 180 time-series observations.

Panel B of Table V reports the first-pass factor loadingg®f/ X for each of the 25 base
assets from Regression | in Panel A. Panel B confirms that the portfolios formed giwpast
loadings reflect exposure to volatility risk measuredry 7 X over the full sample. Except for
two portfolios (the two lowests,, k- portfolios corresponding to the lowesky;x quintile),
all the FVIX factor loadings increase monotonically from low to high. Examination of the
realized 'V 1 X factor loadings demonstrates that the set of base assets, sorted GRpast
and pasiiy; k7, provides disperse ex-poBt/ I X loadings.

From the estimated price of volatility risk of -0.08% per month in Table V, we revisit Table
| to measure how much exposure to aggregate volatility risk accounts for the large spread in
the ex-post raw returns of -1.04% per month between the quintile portfolios with the lowest
and highest pastay;x coefficients. In Table |, the ex-post spreadAfv / X betas between
portfolios 5 and 1 i8.07 — (—5.06) = 13.13. The estimate of the price of volatility risk is
—0.08% per month. Hence, the ex-post 13.13 spread infthd X factor loadings accounts for
13.13 x —0.080 = —1.05% of the difference in average returns, which is almost exactly the
same as the ex-post -1.04% per month number for the raw average return difference between
quintile 5 and quintile 1. Hence, virtually all of the large difference in average raw returns in
the Gay 1 x portfolios can be attributed to exposure to aggregate volatility risk.

E. A Potential Peso Story?

Despite being statistically significant, the estimates of the price of aggregate volatility risk from
Table V are small in magnitude (-0.08% per month, or approximately -1% per annum). Given
these small estimates, an alternative explanation behind the low returns té\high stocks is

a Peso problem. By constructioh )/ I X does well when thé 1 X index jumps upward. The
small negative mean df'V /X of -0.08% per month may be due to having observed a smaller
number of volatility spikes than the market expected ex-ante.

Figure 1 shows that there are two episodes of large volatility spikes in our sample coinciding
with large negative moves of the market: October 1987 and August 1998. In 198V,
volatility jumped from 22% at the beginning of October to 61% at the end of October. At the
end of August 1998, the level 8f I X reached 48%. The mimicking factétV' / X returned
134% during October 1987, and 33.6% during August 1998. Since the cross-sectional price of
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risk of CVIX is -0.08% per month, from Table V, the cumulative return over the 180 months

in our sample period is -14.4%. A few more large values could easily change our inference.
For example, only one more crash, with A% /X return of the same order of magnitude as

the August 1998 episode, would be enough to generate a positive return Bivthe factor.

Using a power law distribution for extreme events, following Gabaix, Gopikrishnan, Plerou
and Stanley (2003), we would expect to see approximately three large market crashes below
three standard deviations during this period. Hence, the ex-ante probability of having observed
another large spike in volatility during our sample is quite likely.

Hence, given our short sample, we cannot rule out a potential Peso story and, thus, we are
not extremely confident about the long-run price of risk of aggregate volatility. Nevertheless,
if volatility is a systematic factor as asset pricing theory implies, market volatility risk should
be reflected in the cross-section of stock returns. The cross-sectional Fama-MacBeth (1973)
estimates of the negative price of risk 81/ X are consistent with a risk-based story, and our
estimates are highly statistically significant with conventional asymptotic distribution theory
that is designed to be robust to conditional heteroskedasticity. However, since we cannot con-
vincingly rule out a Peso problem explanation, our -1% per annum cross-sectional estimate of
the price of risk of aggregate volatility must be interpreted with caution.

Il. Pricing Idiosyncratic Volatility in the Cross-Section

The previous section examines how systematic volatility risk affects cross-sectional average re-
turns by focusing on portfolios of stocks sorted by their sensitivities to innovations in aggregate
volatility. In this section, we investigate a second set of assets sorted by idiosyncratic volatility
defined relative to the FF-3 model. If market volatility risk is a missing component of systematic
risk, standard models of systematic risk, such as the CAPM or the FF-3 model, should mis-price
portfolios sorted by idiosyncratic volatility because these models do not include factor loadings
measuring exposure to market volatility risk.

A. Estimating Idiosyncratic Volatility
A.1. Definition of Idiosyncratic Volatility

Given the failure of the CAPM to explain cross-sectional returns and the ubiquity of the FF-3
model in empirical financial applications, we concentrate on idiosyncratic volatility measured
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relative to the FF-3 model:
ri =o'+ B erMKT; + By g SMBy + By HM Ly + €. (8)

We define idiosyncratic risk ag'var(e}) in equation (8). When we refer to idiosyncratic volatil-
ity, we mean idiosyncratic volatility relative to the FF-3 model. We also consider sorting port-
folios on total volatility, without using any control for systematic risk.

A.2. A Trading Strategy

To examine trading strategies based on idiosyncratic volatility, we describe portfolio formation
strategies based on an estimation period.ahonths, a waiting period o/ months, and a
holding period of N months. We describe ah/M /N strategy as follows. At month, we
compute idiosyncratic volatilities from the regression (8) on daily data ovérmonth period

from montht — L — M to montht — M. Attime ¢, we construct value-weighted portfolios based

on these idiosyncratic volatilities and hold these portfolios¥omonths. We concentrate most

of our analysis on thé/0/1 strategy, in which we simply sort stocks into quintile portfolios
based on their level of idiosyncratic volatility computed using daily returns over the past month,
and we hold these value-weighted portfolios for 1 month. The portfolios are rebalanced each
month. We also examine the robustness of our results to various choitedband N.

The construction of thé./M /N portfolios for L > 1 and N > 1 follows Jegadeesh and
Titman (1993), except our portfolios are value-weighted. For example, to construey/the 2
quintile portfolios, each month we construct a value-weighted portfolio based on idiosyncratic
volatility computed from daily data over the 12 months of returns ending one month prior to the
formation date. Similarly, we form a value-weighted portfolio based on 12 months of returns
ending two months prior, three months prior, and so on up to 12 months prior. Each of these
portfolios is value-weighted. We then take the simple average of these twelve portfolios. Hence,
each quintile portfolio changes 1/12th of its composition each month, where each 1/12th part of
the portfolio consists of a value-weighted portfolio. The first (fifth) quintile portfolio consists of
1/12th of the lowest value-weighted (highest) idiosyncratic stocks from one month ago, 1/12th
of the value-weighted lowest (highest) idiosyncratic stocks two months ago, etc.
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B. Patterns in Average Returns for Idiosyncratic Volatility

Table VI reports average returns of portfolios sorted on total volatility, with no controls for
systematic risk, in Panel A and of portfolios sorted on idiosyncratic volatility in PariéMge

use al/0/1 strategy in both cases. Panel A shows that average returns increase from 1.06%
per month going from quintile 1 (low total volatility stocks) to 1.22% per month for quintile

3. Then, average returns drop precipitously. Quintile 5, which contains stocks with the highest
total volatility, has an average total return of only 0.09% per month. The FF-3 alpha, reported
in the last column, for quintile 5 is -1.16% per month, which is highly statistically significant.
The difference in the FF-3 alphas between portfolio 5 and portfolio 1 is -1.19% per month, with
a robust t-statistic of -5.92.

[TABLE VI ABOUT HERE]

We obtain similar patterns in Panel B, where the portfolios are sorted on idiosyncratic
volatility. The difference in raw average returns between quintile portfolios 5 and 1 is -1.06%
per month. The FF-3 model is clearly unable to price these portfolios since the difference in the
FF-3 alphas between portfolio 5 and portfolio 1 is -1.31% per month, with a t-statistic of -7.00.
The size and book-to-market ratios of the quintile portfolios sorted by idiosyncratic volatility
also display distinct patterns. Stocks with low (high) idiosyncratic volatility are generally large
(small) stocks with low (high) book-to-market ratios. The risk adjustment of the FF-3 model
predicts that quintile 5 stocks should have high, not low, average returns.

The findings in Table VI are provocative, but there are several concerns raised by the anoma-
lously low returns of quintile 5. For example, although quintile 5 contains 20% of the stocks
sorted by idiosyncratic volatility, quintile 5 is only a small proportion of the value of the mar-
ket (only 1.9% on average). Are these patterns repeated if we only consider large stocks, or
only stocks traded on the NYSE? The next section examines these questions. We also examine
whether the phenomena persist if we control for a large number of cross-sectional effects that
the literature has identified either as potential risk factors or anomalies. In particular, we con-
trol for size, book-to-market, leverage, liquidity, volume, turnover, bid-ask spreads, coskewness,
dispersion in analysts’ forecasts, and momentum effects.

23



C. Controlling for Various Cross-Sectional Effects

Table VII examines the robustness of our results with1tj@/1 idiosyncratic volatility port-

folio formation strategy to various cross-sectional risk factors. The table reports FF-3 alphas,
the difference in FF-3 alphas between the quintile portfolios with the highest and lowest id-
iosyncratic volatilities, together with t-statistics to test their statistical significahadl the
portfolios formed on idiosyncratic volatility remain value-weighted.

[TABLE VIl ABOUT HERE]

C.1. Using Only NYSE Stocks

We examine the interaction of the idiosyncratic volatility effect with firm size in two ways.
First, we rank stocks based on idiosyncratic volatility using only NYSE stocks. Excluding
NASDAQ and AMEX has little effect on our results. The highest quintile of idiosyncratic
volatility stocks has a FF-3 alpha of -0.60% per month. The 5-1 difference in FF-3 alphas is
still large in magnitude, at -0.66% per month, with a t-statistic of -4.85. While restricting the
universe of stocks to only the NYSE mitigates the concern that the idiosyncratic volatility effect

is concentrated among small stocks, it does not completely remove this concern because the
NYSE universe still contains small stocks.

C.2. Controlling for Size

Our second examination of the interaction of idiosyncratic volatility and size uses all firms. We
control for size by first forming quintile portfolios ranked on market capitalization. Then, within
each size quintile, we sort stocks into quintile portfolios ranked on idiosyncratic volatility. Thus,
within each size quintile, quintile 5 contains the stocks with the highest idiosyncratic volatility.

The second panel of Table VII shows that in each size quintile, the highest idiosyncratic
volatility quintile has a dramatically lower FF-3 alpha than the other quintiles. The effect is
not most pronounced among the smallest stocks. Rather, quintiles 2-4 have the largest 5-1
differences in FF-3 alphas, at -1.91%, -1.61% and -0.86% per month, respectively. The average
market capitalization of quintiles 2-4 is, on average, 21% of the market. The t-statistics of these
alphas are all above 4.5 in absolute magnitude. In contrast, the 5-1 alphas for the smallest and
largest quintiles are actually statistically insignificant at the 5% level. Hence, it is not small
stocks that are driving these results.
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The row labelled ‘Controlling for Size’ averages across the five size quintiles to produce
quintile portfolios with dispersion in idiosyncratic volatility, but which contain all sizes of firms.
After controlling for size, the 5-1 difference in FF-3 alphas is still -1.04% per month. Thus,
market capitalization does not explain the low returns to high idiosyncratic volatility stocks.

In the remainder of Table VII, we repeat the explicit double-sort characteristic controls,
replacing size with other stock characteristics. We first form portfolios based on a particular
characteristic, then we sort on idiosyncratic volatility, and finally we average across the charac-
teristic portfolios to create portfolios that have dispersion in idiosyncratic volatility but contain
all aspects of the characteristic.

C.3. Controlling for Book-to-Market Ratios

It is generally thought that high book-to-market firms have high average returns. Thus, in order
for the book-to-market effect to be an explanation of the idiosyncratic volatility effect, the high
idiosyncratic volatility portfolios must be primarily composed of growth stocks that have lower
average returns than value stocks. The row labelled ‘Controlling for Book-to-Market’ shows
that this is not the case. When we control for book-to-market ratios, stocks with the lowest
idiosyncratic volatility have high FF-3 alphas, and the 5-1 difference in FF-3 alphas is -0.80%
per month, with a t-statistic of -2.90.

C.4. Controlling for Leverage

Leverage increases expected equity returns, holding asset volatility and asset expected returns
constant. Asset volatility also prevents firms from increasing leverage. Hence, firms with high
idiosyncratic volatility could have high asset volatility but relatively low equity returns because

of low leverage. The next line of Table VII shows that leverage cannot be an explanation of the
idiosyncratic volatility effect. We measure leverage as the ratio of total book value of assets to
book value of equity. After controlling for leverage, the difference between the 5-1 alphas is
-1.23% per month, with a t-statistic of -7.61.

C.5. Controlling for Liquidity Risk

Pastor and Stambaugh (2003) argue that liquidity is a systematic risk. If liquidity is to ex-
plain the idiosyncratic volatility effect, high idiosyncratic volatility stocks must have low lig-
uidity betas, giving them low returns. We check this explanation by using the histoéastirP
Stambaugh liquidity betas to measure exposure to liquidity risk. Controlling for liquidity does
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not remove the low average returns of high idiosyncratic volatility stocks. The 5-1 difference in
FF-3 alphas remains large at -1.08% per month, with a t-statistic of -7.98.

C.6. Controlling for Volume

Gervais, Kaniel and Mingelgrin (2001) find that stocks with higher volume have higher returns.
Perhaps stocks with high idiosyncratic volatility are merely stocks with low trading volume?
When we control for trading volume over the past month, the 5-1 difference in alphas is -1.22%
per month, with a t-statistic of -8.04. Hence, the low returns on high idiosyncratic volatility
stocks are robust to controlling for volume effects.

C.7. Controlling for Turnover

Our next control is turnover, measured as trading volume divided by the total number of shares
outstanding over the previous month. Turnover is a noisy proxy for liquidity. Table VII shows
that the low alphas on high idiosyncratic volatility stocks are robust to controlling for turnover.
The 5-1 difference in FF-3 alphas is -1.19% per month, and it is highly significant with a t-
statistic of -8.04. Examination of the individual turnover quintiles (not reported) indicates that
the 5-1 differences in alphas are most pronounced in the quintile portfolio with the highest, not
the lowest, turnover.

C.8. Controlling for Bid-Ask Spreads

An alternative liquidity control is the bid-ask spread, which we measure as the average daily
bid-ask spread over the previous month for each stock. In order for bid-ask spreads to be an
explanation, high idiosyncratic volatility stocks must have low bid-ask spreads, and correspond-
ing low returns. Controlling for bid-ask spreads does little to remove the effect. The FF-3 alpha
of the highest idiosyncratic volatility portfolio is -1.26%, while the 5-1 difference in alphas is
-1.19% and remains highly statistically significant with a t-statistic of -6.95.

C.9. Controlling for Coskewness Risk

Harvey and Siddique (2000) find that stocks with more negative coskewness have higher re-
turns. Stocks with high idiosyncratic volatility may have positive coskewness, giving them low
returns. Computing coskewness following Harvey and Siddique (2000), we find that exposure

26



to coskewness risk is not an explanation. The FF-3 alpha for the 5-1 portfolio is -1.38% per
month, with a t-statistic of -5.02.

C.10. Controlling for Dispersion in Analysts’ Forecasts

Diether, Malloy and Scherbina (2002) provide evidence that stocks with higher dispersion in
analysts’ earnings forecasts have lower average returns than stocks with low dispersion of ana-
lysts’ forecasts. They argue that dispersion in analysts’ forecasts measures differences of opin-
ion among investors. Miller (1977) shows that if there are large differences in stock valuations
and short sale constraints, equity prices tend to reflect the view of the more optimistic agents,
which leads to low future returns for stocks with large dispersion in analysts’ forecasts.

If stocks with high dispersion in analysts’ forecasts tend to be more volatile stocks, then
we may be finding a similar anomaly to Diether, Malloy and Scherbina (2002). Over Diether,
Malloy and Scherbina’s sample period, 1983-2000, we test this hypothesis by performing a
characteristic control for the dispersion of analysts’ forecasts. We take the quintile portfolios of
stocks sorted on increasing dispersion of analysts’ forecasts (Table VI of Diether, Malloy and
Scherbina (2002, p2128)) and within each quintile sort stocks on idiosyncratic volatility. Note
that this universe of stocks contains mostly large firms, where the idiosyncratic volatility effect
is weaker, because multiple analysts usually do not make forecasts for small firms.

The last two lines of Table VII present the results for averaging the idiosyncratic volatility
portfolios across the forecast dispersion quintiles. The 5-1 difference in alphas is still -0.39%
per month, with a robust t-statistic of -2.09. While the shorter sample period may reduce power,
the dispersion of analysts’ forecasts reduces the non-controlled 5-1 alpha considerably. How-
ever, dispersion in analysts’ forecasts cannot account for all of the low returns to stocks with
high idiosyncratic volatility:*

D. A Detailed Look at Momentum

Hong, Lim and Stein (2000) argue that the momentum effect documented by Jegadeesh and
Titman (1993) is asymmetric and has a stronger negative effect on declining stocks than a pos-
itive effect on rising stocks. A potential explanation behind the idiosyncratic volatility results

is that stocks with very low returns have very high volatility. Of course, stocks that are past
winners also have very high volatility, but loser stocks could be over-represented in the high
idiosyncratic volatility quintile.
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In Table VIII, we perform a series of robustness tests of the idiosyncratic volatility effect to
this possible momentum explanation. In Panel A, we perfos characteristic sorts first over
past returns, and then over idiosyncratic volatility. We average over the momentum quintiles to
produce quintile portfolios sorted by idiosyncratic risk that control for past returns. We control
for momentum over the previous one month, 6 months, and 12 months. Table VIII shows that
momentum is not driving the results. Controlling for returns over the past month does not
remove the very low FF-3 alpha of quintile 5 (-0.59% per month), and the 5-1 difference in
alphas is still -0.66% per month, which is statistically significant at the 1% level. When we
control for past 6-month returns, the FF-3 alpha of the 5-1 portfolio increases in magnitude
to -1.10% per month. For past 12-month returns, the 5-1 alpha is even larger in magnitude at
-1.22% per month. All these differences are highly statistically significant.

[TABLE VIIl ABOUT HERE]

In Panel B, we closely examine the individuak 5 FF-3 alphas of the quintile portfolios
sorted on past 12-month returns and idiosyncratic volatility. Note that if we average these
portfolios across the past 12-month quintile portfolios, and then compute alphas, we obtain the
alphas in the row labelled ‘Past 12-months’ in Panel A of Table VIII. This more detailed view of
the interaction between momentum and idiosyncratic volatility reveals several interesting facts.

First, the low returns to high idiosyncratic volatility are most pronounced for loser stocks.
The 5-1 differences in alphas range from -2.25% per month for the loser stocks, to -0.48% per
month for the winner stocks. Second, the tendency for the momentum effect to be concentrated
more among loser, rather than winner, stocks cannot account for all of the low returns to high
idiosyncratic volatility stocks. The idiosyncratic volatility effect appears significantly in every
past return quintile. Hence, stocks with high idiosyncratic volatility earn low average returns,
no matter if these stocks are losers or winners.

Finally, the momentum effect itself is also asymmetric across the idiosyncratic volatility
quintiles. In the first two idiosyncratic volatility quintiles, the alphas of losers (winners) are
roughly symmetrical. For example, for stocks with the lowest idiosyncratic volatilities, the
loser (winner) alpha is -0.41% (0.45%). In the second idiosyncratic volatility quintile, the loser
(winner) alpha is -0.83% (0.85%). However, as idiosyncratic volatility becomes very high, the
momentum effect becomes highly skewed towards extremely low returns on stocks with high
idiosyncratic volatility. Hence, one way to improve the returns to a momentum strategy is to
short past losers with high idiosyncratic volatility.
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E. Is it Exposure to Aggregate \Volatility Risk?

A possible explanation for the large negative returns of high idiosyncratic volatility stocks is
that stocks with large idiosyncratic volatilities have large exposure to movements in aggregate
volatility. We examine this possibility in Table IX. The first row of Panel A reports the results
of quintile sorts on idiosyncratic volatility, controlling fagiay ;x. This is done by first sorting

on Bayrx and then on idiosyncratic volatility, and then averaging acrosgithe y quintiles.

We motivate using pastay;x as a control for aggregate volatility risk because we have shown
that stocks with past highay;x loadings have high future exposure to thig" /. X mimicking
volatility factor.

[TABLE IX ABOUT HERE]

Panel A of Table IX shows that after controlling for aggregate volatility exposure, the 5-1
alphais -1.19% per month, almost unchanged from the 5-1 quintile idiosyncratic volatility FF-3
alpha of -1.31% in Table VI with no control for systematic volatility exposure. Hence, it seems
that Gay7x accounts for very little of the low average returns of high idiosyncratic volatility
stocks. Panel B of Table IX reports ex-pdst’ /X factor loadings of thé x 5 Gay;x and
idiosyncratic volatility portfolios, where we compute the post-formaftdn/ X factor loadings
using equation (6). We cannot interpret the alphas from this regression, bécduseéis not a
tradeable factor, but thE'V I X factor loadings give us a picture of how exposure to aggregate
volatility risk may account for the spreads in average returns on the idiosyncratic volatility
sorted portfolios.

Panel B shows that in the first thrék, ;x quintiles, we obtain almost monotonically in-
creasingF'V I X factor loadings that start with large negative ex-post;y loadings for low
idiosyncratic volatility portfolios and end with large positive ex-post ;x loadings. How-
ever, for the two highest paghy;x quintiles, theF'V 1 X factor loadings have absolutely no
explanatory power. In summary, exposure to aggregate volatility partially explains the puzzling
low returns to high idiosyncratic volatility stocks, but only for stocks with very negative and
low past loadings to aggregate volatility innovations.

F. Robustness to Different Formation and Holding Periods

If risk cannot explain the low returns to high idiosyncratic volatility stocks, are there other ex-
planations? To help disentangle various stories, Table X reports FF-3 alphas of. piligiN
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strategies described in Section A. First, we examine possible contemporaneous measurement
errors in thel /0/1 strategy by settind/ = 1. Allowing for a 1-month lag between the mea-
surement of volatility and the formation of the portfolio ensures that the portfolios are formed
only with information definitely available at time The top row of Table X shows that the 5-1

FF-3 alpha on theé/1/1 strategy is -0.82% per month, with a t-statistic of -4.63.

[TABLE X ABOUT HERE]

A possible behavioral explanation for our results is that higher idiosyncratic volatility does
earn higher returns over longer horizons than one month, but short-term over-reaction forces
returns to be low in the first month. If we hold high idiosyncratic volatility stocks for a long
horizon (V = 12 months), we might see a positive relation between past idiosyncratic volatility
and future average returns. The second row of Table X shows that this is not the case. For the
1/1/12 strategy, we still see very low FF-3 alphas for quintile 5, and the 5-1 difference in alphas
is still -0.67% per month, which is highly significant.

By restricting the formation period tb = 1 month, our previous results may just be captur-
ing various short-term events that affect idiosyncratic volatility. For example, the portfolio of
stocks with high idiosyncratic volatility may be largely composed of stocks that have just made,
or are just about to make, earnings announcements. To ensure that we are not capturing specific
short-term corporate events, we extend our formation peridd4012 months. The third row
of Table X reports FF-3 alphas fori2/1/1 strategy. Using one entire year of daily data to
compute idiosyncratic volatility does not remove the anomalous high idiosyncratic volatility-
low average return pattern: the 5-1 difference in alphas is -1.12% per month. Similarly, the
patterns are robust for th&/1/12 strategy, which has a 5-1 alpha of -0.77% per month.

G. Subsample Analysis

Table Xl investigates the robustness of the low returns to stocks with high idiosyncratic volatility
over different subsamples. First, the effect is observed in every decade from the 1960’s to the
1990’s. The largest difference in alphas between portfolio 5 and portfolio 1 occurs during the
1980’s, with a FF-3 alpha of -2.23% per month, and we observe the lowest magnitude of the
FF-3 alpha of the 5-1 portfolio during the 1970’s, where the FF-3 alpha is -0.77% per month.
In every decade, the effect is highly statistically significant.
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[TABLE XI ABOUT HERE]

A possible explanation for the idiosyncratic volatility effect may be asymmetry of return dis-
tributions across business cycles. \Volatility is asymmetric (and larger with downward moves),
so stocks with high idiosyncratic volatility may have normal average returns during expansion-
ary markets, and their low returns may mainly occur during bear market periods, or recessions.
We may have observed too many recessions in the sample relative to what agents expected ex-
ante. We check this hypothesis by examining the returns of high idiosyncratic volatility stocks
conditioning on NBER expansions and recessions. During NBER expansions (recessions), the
FF-3 alpha of the 5-1 portfolio is -1.25% (-1.79%). Both the expansion and recession differ-
ences in FF-3 alphas are significant at the 1% level. There are more negative returns to high
idiosyncratic volatility stocks during recessions, but the fact that the t-statistic in NBER expan-
sions is -6.55 shows that the low returns from high idiosyncratic volatility also thrives during
expansions.

A final possibility is that the idiosyncratic volatility effect is concentrated during the most
volatile periods in the market. To test for this possibility, we compute FF-3 alphas of the dif-
ference between quintile portfolios 5 and 1 conditioning on periods with the lowest or highest
20% of absolute moves of the market return. These are ex-post periods of low or high market
volatility. During stable (volatile) periods, the difference in the FF-3 alphas of the fifth and
first quintile portfolios is -1.71% (-0.89%) per month. Both the differences in alphas during
stable and volatile periods are significant at the 5% level. The most negative returns of the high
idiosyncratic volatility strategy are earned during periods when the market is stable. Hence, the
idiosyncratic volatility effect is remarkably robust across different subsamples.

[1l. Conclusion

Multifactor models of risk predict that aggregate volatility should be a cross-sectional risk fac-
tor. Past research in option pricing has found a negative price of risk for systematic volatility.
Consistent with this intuition, we find that stocks with high past exposure to innovations in
aggregate market volatility earn low future average returns. We use changeslii hén-
dex constructed by the Chicago Board Options Exchange to proxy for innovations in aggregate
volatility.

To find the component of market volatility innovations that is reflected in equity returns, we
construct a factor to mimic innovations in market volatility following Breeden, Gibbons and
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Litzenberger (1989) and Lamont (2001). We first form portfolios on the basis of their past sen-
sitivity to first differences in thé 7 X index. Then, we project innovations in/ X onto these
portfolios to produce a factor that mimics aggregate volatility risk, which we #€vid X . This
portfolio of basis assets is maximally correlated with the realized aggregate volatility innova-
tions. Portfolios constructed by ranking on past betas to first differencés i also exhibit
strong patterns in post-formatiadnl/ I X factor loadings. In particular, the ex-post increasing
patterns inF'V I.X factor loadings correspond to decreasing Fama-French (1993) alphas over
the same period that the alphas are computed.

We estimate a cross-sectional price of volatility risk of approximately -1% per annum, and
this estimate is robust to controlling for size, value, momentum and liquidity effects. Hence, the
decreasing average returns to stocks with high past sensitivities to changex iis consistent
with the cross-section of returns pricing aggregate volatility risk with a negative sign. However,
despite the statistical significance of the negative volatility risk premium, its small size and
our relatively small sample mean that we cannot rule out a potential Peso problem explanation.
Since thel"'V I X portfolio does well during periods of market distress, adding another volatility
spike like October 1987 or August 1998 to our sample would change the sign of the price of
risk of FVIX from negative to positive. Nevertheless, our estimate of a negative price of
risk of aggregate volatility is consistent with a multi-factor model or Intertemporal CAPM.

In these settings, aggregate volatility risk is priced with a negative sign because risk-averse
agents reduce current consumption to increase precautionary savings in the presence of higher
uncertainty about future market returns. Our results are also consistent with the estimates of a
negative price of risk for aggregate volatility estimated by many option pricing studies.

We also examine the returns of a set of test assets that are sorted by idiosyncratic volatility
relative to the Fama-French (1993) model. We uncover a very robust result. Stocks with high
idiosyncratic volatility have abysmally low average returns. In particular, the quintile portfolio
of stocks with the highest idiosyncratic volatility earns total returns of just -0.02% per month
in our sample. These low average returns to stocks with high idiosyncratic volatility cannot be
explained by exposures to size, book-to-market, leverage, liquidity, volume, turnover, bid-ask
spreads, coskewness, and dispersion in analysts’ forecasts characteristics. The effect also per-
sists in bull and bear markets, NBER recessions and expansions, volatile and stable periods, and
it is robust to considering different formation and holding periods as long as one year. Although
we argue that aggregate volatility is a new cross-sectional, systematic factor, exposure to ag-
gregate volatility risk accounts for very little of the anomalous low returns of stocks with high
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idiosyncratic volatility. Hence, the cross-sectional expected return patterns found by sorting on
idiosyncratic volatility present something of a puzzle.
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Notes

!See, among others, Jackwerth and Rubinstein (1996), Bakshi, Cao and Chen (2000), Cher-
nov and Ghysels (2000), Burashi and Jackwerth (2001), Coval and Shumway (2001), Benzoni
(2002), Jones (2003), Pan (2002), Bakshi and Kapadia (2003), Eraker, Johannes and Polson
(2003), and Carr and Wu (2003).

2 Bates (2001) and Vayanos (2004) provide recent structural models whose reduced form

factor structures have a negative risk premium for volatility risk.

3 Recent studies examining total or idiosyncratic volatility focus on the average level of
firm-level volatility. For example, Campbell, Lettau, Malkiel and Xu (2001), and Xu and
Malkiel (2003) document that idiosyncratic volatility has increased over time. Brown and Fer-
reira (2003) and Goyal and Santa-Clara (2003) argue that idiosyncratic volatility has positive
predictive power for excess market returns, but this is disputed by Bali, Cakici, Yan and Zhang

(2004).

“While an I-CAPM implies joint time-series as well as cross-sectional predictability, we do
not examine time-series predictability of asset returns by systematic volatility. Time-varying
volatility risk generates intertemporal hedging demands in partial equilibrium asset allocation
problems. In a partial equilibrium setting, Liu (2001) and Chacko and Viceira (2003) examine
how volatility risk affects the portfolio allocation of stocks and risk-free assets, while Liu and
Pan (2003) show how investors can optimally exploit the variation in volatility with options.
Guo and Whitelaw (2003) examine the intertemporal components of time-varying systematic

volatility in a Campbell (1993 and 1996) equilibrium I-CAPM.

°In previous versions of this paper, we also considered sample volatility, following Schwert
and Stambaugh (1987); a range-based estimate, following Alizadeh, Brandt and Diebold (2002);
and a high-frequency estimator of volatility from Andersen, Bollerslev and Diebold (2003).

Using these measures to proxy for innovations in aggregate volatility produces little spread in
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cross-sectional average returns. These tables are available upon request.

50On September 22, 2003, the CBOE implemented a new formula and methodology to con-
struct its volatility index. The new index is based on the S&P500 (rather than the S&P100) and
takes into account a broader range of strike prices rather than using only at-the-money option
contracts. The CBOE now us&5s/ X to refer to this new index. We use the old index (de-
noted by the ticket” XO). We do not use the new index because it has been constructed by
back-filling only to 1990, whereas tHéX O is available in real-time from 1986. The CBOE
continues to make both volatility indices available. The correlation between the new and the old
CBOE volatility series is 98% from 1990-2000, but the series that we use has a slightly broader

range.

"Our results are unaffected if we use the six Fama-French (1293) portfolios sorted on

size and book-to-market as the base assets. These results are available upon request.

8The STR returns are available from January 1986 to December 1995, because it is con-
structed from the Berkeley Option Database, which has reliable data only from the late 1980’s

and ends in 1995.

% The pre-formation betas and the post-formation betas are computed using different criteria
(AVIX and FVIX, respectively). However, Table | shows that the pre-formatien;x

loadings are almost identical to the pre-formation, ; x loadings.

19" When we compute ex-post betas using the monthly changélixi, A,,VIX, using a
4-factor model similar to equation (6) (except usihg V' 1 X in place of 'V IX), there is less
dispersion in the post-formatiofy,, V' I X betas, ranging from -2.46 for portfolio 1 to 0.76 to

portfolio 5, compared to the ex-post ;x loadings.

HIn these exercises, we estimate the AR coefficients only using all data up td tine
compute the innovation far+ 1, so that no forward-looking information is used. We initially

estimate the AR models using one year of daily data. However, the optimal BIC lag length is
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chosen using the whole sample.

12I1f we compute idiosyncratic volatility relative to the CAPM, we obtain almost identical
results to Panel B of Table VI. Each quintile portfolio of idiosyncratic volatility relative to
the CAPM has a correlation of above 99% with its corresponding quintile counterpart when

idiosyncratic volatility is computed relative to the FF-3 model.

13We emphasize that the difference in mean raw returns between quintile 5 and 1 portfolios
is very similar to the difference in the FF-3 alphas, but we focus on FF-3 alphas as they control

for the standard set of systematic factors.

4We can also reverse the question and ask if the low average returns of stocks with high
dispersion of analysts’ forecasts are due to the low returns on stocks with high idiosyncratic
volatility by first sorting stocks on idiosyncratic volatility and then by forecast dispersion. Con-
trolling for idiosyncratic volatility, the FF-3 alpha for the quintile portfolio that is long stocks
with the highest forecast dispersion and short stocks in the quintile portfolio with the lowest
forecast dispersion, is -0.36% per month, which is insignificant at the 5% level (the robust

t-statistic is -1.47).
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Table II: Factor Correlations

Panel A: Daily Correlation

AVIX

FVIX

0.91

Panel B: Monthly Correlations

FVIX A,VIX MKT SMB HML UMD LIQ

AL VIX
FVIX
STR

0.70 1.00 -0.58 -0.18 0.22 -0.11 -0.33
1.00 0.70 -0.66 -0.14 0.26 -0.25 -0.40
0.75 0.83 -0.39 -0.39 0.08 -0.26  -0.59

The table reports correlations of first differenceslid X, FVIX, and ST R with various factors. The
variable AVIX (A,,VIX) represents the daily (monthly) change in #ié X index, andFVIX is the
mimicking aggregate volatility risk factor. The factSfI'R is constructed by Coval and Shumway (2001)
from the returns of zero-beta straddle positions. The facwrfsT, SM B, HM L are the Fama and French
(1993) factors, the momentum factoM D is constructed by Kenneth French, ahd( is the Fastor and
Stambaugh (2003) liquidity factor. The sample period is January 1986 to December 2000, except for corre-
lations involvingST R, which are computed over the sample period January 1986 to December 1995.
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Table Ill: Characteristic Controls for Portfolios Sorted on Gayrx

Excluding Small,

All Firms Growth Firms

Rank Mean Std Dev Mean Std Dev
1 0.32 2.11 0.36 1.90
2 0.04 1.25 0.02 0.94
3 0.04 0.94 0.05 0.89
4 -0.11 1.04 -0.10 1.02
5 -0.58 3.39 -0.29 2.17
5-1 -0.90 -0.64

[-3.59] [-3.75]

The table reports the means and standard deviations of the excess returnsi@ir thequintile portfolios
characteristic-matched by size and book-to-market ratios. Each month, each stock is matched with one of the
Fama and French (1993) 25 size and book-to-market portfolios according to its size and book-to-market char-
acteristics. The table reports value-weighted simple returns in excess of the characteristic-matched returns.
The columns labelled ‘Excluding Small, Growth Firms’ exclude the Fama-French portfolio containing the
smallest stocks and the firms with the lowest book-to-market ratios. The row ‘5-1’ refers to the difference in
monthly returns between portfolio 5 and portfolio 1. The p-values of joint tests for all alphas equal to zero are
less than 1% for the panel of all firms and for the panel excluding small, growth firms. Robust Newey-West
(1987) t-statistics are reported in square brackets. The sample period is from January 1986 to December
2000.
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Table IV: Portfolios Sorted on Sayrx Controlling for Liquidity, Volume and Momentum

CAPM  FF-3 Pre-Formation Post-Formation
Rank Mean StdDev Alpha Alpha Sayvrx Loading Bryvix Loading

Panel A: Controlling for Liquidity

1 1.57 5.47 0.21 0.19 -1.89 -1.87
[1.31] [1.34] [-1.65]
2 1.48 4.48 0.27 0.15 -0.43 -2.70
[2.25] [1.68] [-2.78]
3 1.40 4.54 0.15 0.09 0.03 -1.34
[1.59] [0.97] [-1.90]
4 1.30 4.74 0.02 -0.02 0.49 0.49
[0.21] [-0.17] [0.54]
5 0.89 5.84 -0.52 -0.36 1.96 5.38
[-2.87] [-2.09] [4.26]
5-1 -0.68 -0.73 -0.55
[-3.04] [-2.99] [-2.15]
Joint test p-value 0.04 0.01 0.00

Panel B: Controlling for Volume

1 1.10 4,73 -0.11 -0.13 -2.08 -3.12
[-0.58] [-1.34] [-3.17]
2 1.18 4.01 0.08 -0.08 -0.47 -3.39
[0.46] [-0.92] [-4.19]
3 1.18 3.78 0.10 -0.04 0.04 -2.84
[0.66] [-0.50] [-4.84]
4 0.98 4.18 -0.17 -0.23 0.55 0.14
[-1.06] [2.16] [0.24]
5 0.38 5.31 -0.90 -0.71 2.17 4.29
[-3.86] [-4.84] [5.07]
5-1 -0.72 -0.79 -0.58
[-3.49] [-3.22] [-3.03]
Joint test p-value 0.00 0.00 0.00
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Table IV—Continued

CAPM FF-3 Pre-Formation Post-Formation
Rank Mean StdDev Alpha Alpha Bavx Loading Gryrx Loading

Panel C: Controlling for Past 12-Month Returns

1 1.25 5.55 -0.11 -0.17 -2.03 0.39
[-0.64] [-1.08] [0.28]
2 1.19 4.87 -0.08 -0.19 -0.49 0.82
[-0.57] [-1.54] [0.68]
3 1.28 4,76 0.02 -0.08 0.03 0.97
[0.15] [-0.73] [0.89]
4 1.06 4.88 -0.22 -0.27 0.56 4.86
[-1.64] [-2.26] [5.50]
5 0.36 5.87 -1.05 -0.90 211 7.7
[-5.01] [-4.72] [5.50]
5-1 -0.89 -0.93 -0.74
[-4.72] [-4.00] [-3.42]
Joint test p-value 0.00 0.00 0.00

In Panel A, we first sort stocks into five quintiles based on their historical liquidity beta, follonastpP

and Stambaugh (2003). Then, within each quintile, we sort stocks based oBtheikx loadings into

five portfolios. All portfolios are rebalanced monthly and are value-weighted. The five portfolios sorted
on Bayrx are then averaged over each of the five liquidity beta portfolios. Hence, théare; quintile
portfolios controlling for liquidity. In Panels B and C, the same approach is used except we control for average
trading volume (in dollars) over the past month and past 12-month returns, respectively. The statistics in the
columns labelled Mean and Std Dev are measured in monthly percentage terms and apply to total, not excess,
simple returns. The table also reports alphas from CAPM and Fama-French (1993) regressions. The row
‘6-1’ refers to the difference in monthly returns between portfolio 5 and portfolio 1. The pre-formation betas
refer to the value-weightefla v ; x within each quintile portfolio at the start of the month. We report the pre-
formationBa v ;x averaged across the whole sample. The last column reports eg+post factor loadings

over the whole sample, wheféV I X is the factor mimicking aggregate volatility risk. To correspond with

the Fama-French alphas, we compute the ex-post betas by running a four-factor regression with the three
Fama-French factors together with th8/7X factor, following the regression in equation (6). The row
labelled ‘Joint test p-value’ reports a Gibbons, Ross and Shanken (1989) test that the alphas equal to zero,
and a robust joint test that the factor loadings are equal to zero. Robust Newey-West (1987) t-statistics are
reported in square brackets. The sample period is from January 1986 to December 2000.
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Table V: Estimating the Price of Volatility Risk

Panel A: Fama-MacBeth (1973) Factor Premiums

I I [l \Y

Constant -0.145 -0.527 -0.202  -0.247
[-0.23] [-0.88] [-0.31] [-0.36]
MKT 0977 1276 1.034 1.042
[1.11] [1.47] [1.13] [1.13]
FVIX  -0.080 -0.082 -0.071
[-2.49] [-2.39] [-2.02]
STR -0.194
[-2.32]
SMB  -0.638 -0.246 -0.608 -0.699
[1.24] [-0.59] [1.13] [-1.25]
HML  -0590 -0.247 -0.533 -0.232
[-0.95] [-0.40] [-0.82] [-0.34]

UMD 0.827  0.612
[0.83] [0.59]

LIQ -0.021
[-1.00]

Adj R? 0.67 0.56 0.65 0.79

Panel B: Ex-Post Factor Loadings 6tV I X

Pre-ranking orbavrx
1low 2 3 4 5

Pre-ranking Low1l -1.57 -5.89 -3.83 -3.35 -1.03
onBykr [[0.46] [-3.23] [-1.93] [-1.99] [-0.45]
2 -3.49 -4.47 -401 -200 -0.54
[-1.67] [-3.18] [-3.11] [-1.66] [-0.31]
3 574 -349 -256 -0.95 3.72
[-3.16] [-2.84] [-2.21] [-0.78] [2.30]
4 -580 -141 -0.34 3.39 6.66
[(4.13] [-1.00] [-0.29] [2.69] [3.85]
High5 -3.69 -0.57 3.52 7.81 11.70
[-2.05] [-0.45] [1.76] [3.32] [3.13]

Panel A reports the Fama-MacBeth (1973) factor premiums on 25 portfolios sorted fi#gton and then
onBavrx. M KT is the excess return on the market portfolid; I X is the mimicking factor for aggregate
volatility innovations,STR is Coval and Shumway’s (2001) zero-beta straddle retdt,B and HM L

are the Fama-French (1993) size and value factord,D is the momentum factor constructed by Kenneth
French, and () is the aggregate liquidity measure froradtor and Stambaugh (2003). In Panel B, we report
ex-post factor loadings oR'V X, from the regression specification | (Fama-French model plud X).

Robust t-statistics that account for the errors-in-variables for the first-stage estimation in the factor loadings
are reported in square brackets. The sample period is from January 1986 to December 2000, except for the
Fama-MacBeth regressions wittT’ R, which are from January 1986 to December 1995.
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Table VI. Portfolios Sorted by Volatility

Std % Mkt CAPM FF-3
Rank Mean Dev Share Size B/M Alpha Alpha
Panel A: Portfolios Sorted by Total Volatility
1 1.06 371 41.7% 4.66 0.88 0.14 0.03
[1.84] [0.53]
2 1.15 448 33.7% 4.70 0.81 0.13 0.08
[2.14] [1.41]
3 122 563 155% 4.10 0.82 0.07 0.12
[0.72] [1.55]
4 099 7.15 6.7% 3.47 0.86 -0.28 -0.17
[[1.73] [-1.42]
5 0.09 8.30 24% 257 1.08 -1.21 -1.16
[-5.07] [-6.85]
5-1 -0.97 -1.35 -1.19
[-2.86] [-4.62] [-5.92]

Panel B: Portfolios Sorted by Idiosyncratic Volatility Relative to FF-3

1 1.04 3.83 535% 4.86 0.85 0.11 0.04
[1.57]  [0.99]
2 116 474 27.4% 4.72 080 0.11 0.09
[1.98]  [1.51]
3 1.20 5.85 11.9% 4.07 0.82 0.04 0.08
[0.37]  [1.04]
4 087 7.13 52% 342 087 -038  -0.32
[2.32] [-3.15]
5 002 816 19% 252 110 -1.27 @ -1.27
[-5.09] [-7.68]
51  -1.06 138 -1.31
[-3.10] [-4.56]  [-7.00]

We form value-weighted quintile portfolios every month by sorting stocks based on total volatility and id-
iosyncratic volatility relative to the Fama-French (1993) model. Portfolios are formed every month, based on
volatility computed using daily data over the previous month. Portfolio 1 (5) is the portfolio of stocks with

the lowest (highest) volatilities. The statistics in the columns labelled Mean and Std Dev are measured in
monthly percentage terms and apply to total, not excess, simple returns. Size reports the average log market
capitalization for firms within the portfolio and B/M reports the average book-to-market ratio. The row ‘5-1’
refers to the difference in monthly returns between portfolio 5 and portfolio 1. The Alpha columns report
Jensen’s alpha with respect to the CAPM or Fama-French (1993) three-factor model. Robust Newey-West
(1987) t-statistics are reported in square brackets. Robust joint tests for the alphas equal to zero are all less
than 1% for all cases. The sample period is July 1963 to December 2000.
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Table VII: Alphas of Portfolios Sorted on Idiosyncratic Volatility

Ranking on Idiosyncratic Volatility

1 Low 2 3 4 5 High 5-1
NYSE Stocks Only 0.06 0.04 0.02 -0.04 -0.60 -0.66
[1.20] [0.75] [0.30] [-0.40] [-5.14] [-4.85]
Size Quintiles Smalll 0.11 0.26 0.31 0.06 -0.43 -0.55
[0.72] [1.56] [1.76] [0.29] [-1.54] [-1.84]
2 019 0.20 -0.07 -0.65 -1.73 -1.91
[1.49] [1.74] [-0.67] [-5.19] [-8.14] [-7.69]
3 012 0.21 0.03 -0.27 -1.49 -1.61
[1.23] [2.40] [0.38] [-3.36] [-10.1] [-7.65]
4 0.03 0.22 0.17 -0.03 -0.82 -0.86
[0.37] [2.57] [2.47] [-0.45] [-6.61] [-4.63]
Large5 0.09 0.04 0.03 0.14 -0.17 -0.26
[1.62] [0.72] [0.51] [1.84] [-1.40] [-1.74]
Controlling for Size 0.11 0.18 0.09 -0.15 -0.93 -1.04
[1.30] [2.49] [1.35] [-1.99] [-6.81] [-5.69]
Controlling for Book-to-Market 0.61 0.69 0.71 0.50 -0.19 -0.80
[3.02] [2.80] [2.49] [1.47] [-0.48] [-2.90]
Controlling for Leverage 0.11 0.11 0.08 -0.24 -1.12 -1.23
[2.48] [2.20] [1.19] [-2.45] [-7.81] [-7.61]
Controlling for Liquidity 0.08 0.09 -0.01 -0.16 -1.01 -1.08
[1.71] [1.53] [-0.09] [-1.62] [-8.61] [-7.98]
Controlling for Volume -0.03 0.02 -0.01 -0.39 -1.25 -1.22
[-0.49] [0.39] [-0.32] [-7.11] [-10.9] [-8.04]
Controlling for Turnover 0.11 0.03 -0.11 -0.49 -1.34 -1.46
[2.49] [0.58] [-1.79 [-6.27] [-11.0] [-10.7]
Controlling for Bid-Ask Spreads -0.07 -0.01 -0.09 -0.49 -1.26 -1.19
[-1.21] [-0.18] [-1.14] [-5.36] [-9.13] [-6.95]
Controlling for Coskewness -0.02 -0.00 0.01 -0.37 -1.40 -1.38
[[0.32] [-0.02] [0.08] [-2.30] [-6.07] [-5.02]
Controlling for Dispersion 0.12 -0.07 0.11 0.01 -0.27 -0.39
in Analysts’ Forecasts [1.57] [-0.76] [1.12] [0.09] [-1.76] [-2.09]

49



Note to Table VII

The table reports Fama and French (1993) alphas, with robust Newey-West (1987) t-statistics in square brack-
ets. All the strategies are/0/1 strategies for idiosyncratic volatility computed relative to FF-3, but control

for various effects. The column '5-1’ refers to the difference in FF-3 alphas between portfolio 5 and portfolio

1. In the panel labelled 'NYSE Stocks Only’, we sort stocks into quintile portfolios based on their idiosyn-
cratic volatility, relative to the FF-3 model, using only NYSE stocks. We use daily data over the previous
month and rebalance monthly. In the panel labelled 'Size Quintiles,” each month we first sort stocks into
five quintiles on the basis of size. Then, within each size quintile, we sort stocks into five portfolios sorted
by idiosyncratic volatility. In the panels controlling for size, liquidity volume and momentum, we perform

a double sort. Each month, we first sort stocks based on the first characteristic (size, book-to-market, lever-
age, liquidity, volume, turnover, bid-ask spreads, or dispersion of analysts’ forecasts) and then, within each
quintile we sort stocks based on idiosyncratic volatility, relative to the FF-3 model. The five idiosyncratic
volatility portfolios are then averaged over each of the five characteristic portfolios. Hence, they represent
idiosyncratic volatility quintile portfolios controlling for the characteristic. Liquidity represents trstoP

and Stambaugh (2003) historical liquidity beta, leverage is defined as the ratio of total book value of assets to
book value of equity, volume represents average dollar volume over the previous month, turnover represents
volume divided by the total number of shares outstanding over the past month, and the bid-ask spread control
represents the average daily bid-ask spread over the previous month. The coskewness measure is computed
following Harvey and Siddique (2000) and the dispersion of analysts’ forecasts is computed by Diether,
Malloy and Scherbina (2002). The sample period is July 1963 to December 2000 for all controls with the
exceptions of liquidity (February 1968 to December 2000), the dispersion of analysts’ forecasts (February
1983 to December 2000), and the control for aggregate volatility risk (January 1986 to December 2000). All
portfolios are value-weighted.
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Table VIII: Alphas of Portfolios Sorted on Idiosyncratic Volatility Controlling for Past
Returns

Ranking on Idiosyncratic Volatility
1Low 2 3 4 5 High 5-1

Panel A: Controlling for Momentum

Past 1-month 0.07 008 009 -005 -059 -0.66
[0.43] [0.94] [1.26] [-0.47] [3.60] [-2.71]

Past 6-months -0.01 -0.12 -0.28 -0.45 -1.11 -1.10
[-0.20] [-1.86] [-3.60] [-5.20] [-9.35] [-7.18]

Past 12-months  0.01  -0.05 -0.28 -0.64 -121  -1.22
[0.15] [-0.76] [-3.56] [6.95] [11.5] [-9.20]

Panel B: Past 12-Month Quintiles

Losers1 -0.41 -0.83 -1.44 211 -266 -2.25
[1.94] [3.90] [6.32] [-9.40] [-10.6] [-7.95]

2 -008 -024 -064 -109 -170 -1.62
[-0.49] [-1.58] [-4.40] [-6.46] [-8.90] [-7.00]

3 -006 -011 -026 -048 -1.03 -0.97
[-0.52] [1.16] [-2.15] [-3.49] [-7.93] [-5.85]

4 015 007 023 -003 -065 -0.80
[1.57] [0.65] [2.27] [0.29] [4.76] [-4.89]
Winners5 045 0.85 071 052 -0.03 -0.48
[3.52] [5.44] [3.97] [2.63] [0.13] [-2.01]

The table reports Fama and French (1993) alphas, with robust Newey-West (1987) t-statistics in square brack-
ets. All the strategies are/0/1 strategies, but control for past returns. The column ‘5-1’ refers to the dif-
ference in FF-3 alphas between portfolio 5 and portfolio 1. In the first three rows labelled ‘Past 1-month’
to ‘Past 12-months,’ we control for the effect of momentum. We first sort all stocks on the basis of past
returns, over the appropriate formation period, into quintiles. Then, within each momentum quintile, we sort
stocks into five portfolios sorted by idiosyncratic volatility, relative to the FF-3 model. The five idiosyncratic
volatility portfolios are then averaged over each of the five characteristic portfolios. Hence, they represent
idiosyncratic volatility quintile portfolios controlling for momentum. The second part of the panel lists the
FF-3 alphas of idiosyncratic volatility quintile portfolios within each of the past 12-month return quintiles.

All portfolios are value-weighted. The sample period is July 1963 to December 2000.
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Table 1X: The Idiosyncratic Volatility Effect Controlling for Aggregate Volatility Risk

Ranking on Idiosyncratic Volatility
1 Low 2 3 4 5 High 5-1

Panel A: FF-3 Alphas

Controlling for Exposure to 0.05 0.01 -0.14 -0.49 -1.14 -1.19
Aggregate Volatility Risk [0.83] [0.09] [-1.14] [-3.08] [-5.00] [-4.72]

Panel B:FVIX Factor Loadings

Bavix Quintiles Lowl -6.40 -1.98 -0.55 8.80 7.51
[-3.82] [-0.78] [-0.23] [2.16] [2.31]

2 -2.66 -3.21 0.06 -3.04 5.37

[-2.27] [-2.06] [0.05] [-2.00] [1.80]

3 -651 -2.74 -1.93 -0.31 7.25

[-4.50] [-2.41] [-1.14] [-0.29] [3.37]

4 5.65 3.73 3.50 1.33 8.22

[2.31] [2.08] [2.83] [0.87] [3.97]

High5  7.53 2.46 8.60 7.53 5.79

[5.16] [1.16] [3.72] [2.53] [1.65]

We control for exposure to aggregate volatility using e, ;x loading at the beginning of the month,
computed using daily data over the previous month, following equation (3). We first sort all stocks on the
basis of a7 x into quintiles. Then, within eachay rx quintile, we sort stocks into five portfolios sorted

by idiosyncratic volatility, relative to the FF-3 model. In Panel A, we report FF-3 alphas of these portfolios.
We average the five idiosyncratic volatility portfolios over each of the fixg ; x portfolios. Hence, these
portfolios represent idiosyncratic volatility quintile portfolios controlling for exposure to aggregate volatility
risk. The column ‘5-1’ refers to the difference in FF-3 alphas between portfolio 5 and portfolio 1. In Panel B,
we report ex-post’V I X factor loadings from a regression of each of the52% ; x x idiosyncratic volatility
portfolios onto the Fama-French (1993) model augmented With X as in equation (6). Robust Newey-

West (1987) t-statistics are reported in square brackets. All portfolios are value-weighted. The sample period

is from January 1986 to December 2000.
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Table X: Quintile Portfolios of Idiosyncratic Volatility for L/M /N Strategies

Ranking on Idiosyncratic Volatility
Strategy 1 low 2 3 4 5 high 5-1

1/1/1 0.06 004 009 -0.18 -0.82 -0.88
[1.47] [0.77] [1.15] [-1.78] [-4.88] [-4.63]

1/1/12 003 002 -0.02 -017 -0.64 -0.67
[0.91] [0.43] [0.37] [1.79] [5.27] [4.71]

12/1/1 004 008 -001 -029 -1.08 -1.12
[1.15] [1.32] [0.08] [2.02] [-5.36] [-5.13]

12/1/12  0.04 004 -0.02 -035 -0.73 -0.77
[1.10] [0.54] [0.23] [2.80] [4.71] [-4.34]

The table reports Fama and French (1993) alphas, with robust Newey-West (1987) t-statistics in square brack-
ets. The column ‘5-1’ refers to the difference in FF-3 alphas between portfolio 5 and portfolio 1. We rank
stocks into quintile portfolios of idiosyncratic volatility, relative to FF-3, usingl/ /N strategies. At month

t, we compute idiosyncratic volatilities from the regression (8) on daily data ovérmonth period from
monthst — L — M to montht — M. Attimet, we construct value-weighted portfolios based on these idiosyn-
cratic volatilities and hold these portfolios féf months, following Jegadeesh and Titman (1993), except our
portfolios are value-weighted. The sample period is July 1963 to December 2000.
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Table XI: The Idiosyncratic Volatility Effect over Different Subsamples

Ranking on Idiosyncratic Volatility
Subperiod 1 low 2 3 4 5 high 5-1

Jul 1963 -Dec 1970 0.06  0.03 009 -0.36 -0.94 -1.00
[1.23] [0.42] [0.73] [2.18] [5.81] [5.62]

Jan1971-Dec1980 -024 032 019 003 -1.02 -0.77
[2.53] [3.20] [1.55] [0.21] [5.80] [-3.14]

Jan1981-Dec1990 0.15 008 -0.16 -0.66 -2.08 -2.23
[2.14] [1.07] [1.25] [4.82] [-10.1] [9.39]

Jan 1991 -Dec2000 0.16 -0.01 014 -048 -139 -155
[1.34] [-0.08] [0.77] [2.41] [3.31] [-3.19]

NBER Expansions 0.06 002 008 -033 -119 -1.25
[1.26] [0.25] [1.01] [3.18] [-7.07] [-6.55]

NBER Recessions 010 064 -001 -0.34 -1.88 -1.79
[-0.65] [3.58] [-0.04] [-1.32] [-3.32] [-2.63]

Stable Periods 0.05 -0.02 -0.11 -0.62 -1.66 -1.71
[0.44] [-0.25] [-1.07] [-4.06] [-6.56] [-4.75]

Volatile Periods -0.04 024 032 018 -093 -0.89
[(0.29] [1.69] [2.32] [0.55] [-2.40] [-2.02]

The table reports Fama and French (1993) alphas, with robust Newey-West (1987) t-statistics in square brack-
ets. The column ‘5-1’ refers to the difference in FF-3 alphas between portfolio 5 and portfolio 1. We rank
stocks into quintile portfolios of idiosyncratic volatility, relative to FF-3, using tH8/1 strategy and ex-

amine robustness over different sample periods. The stable and volatile periods refer to the months with the
lowest and highest 20% absolute value of the market return, respectively. The full sample period is July 1963
to December 2000.
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Figure 1: Plot of V1 .X.

The figure shows th¥ I X index plotted at a daily frequency. The sample period is January 1986 to December
2000.
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