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Abstract

In this paper, we propose a matching model to study the efficiency of thin and thick markets.
Our model shows that the probabilities of matches in a thin market are significantly lower than
those in a thick market. When applying our results to a job search model, it implies that, if
the ratio of job candidates to job openings remains (roughly) a constant, the probability that a
person can find a job is higher in a thick market than in a thin market. We apply our matching
model to the U.S. academic market for new PhD economists. Consistent with the prediction of
our model, a field of specialization with more job openings and more candidates has a higher
probability of matching.
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1 Introduction

In this paper, we are interested in the following question: Compare two markets, one of which has

5 vacancies and 5 applicants, and the other of which has 50 vacancies and 50 candidates. Which

market has a lower unemployment rate? The market with a lower unemployment rate is said to be

more efficient than the one with a higher unemployment rate.

To answer this question, we set up the following model. We let vacancies have different minimum

standards, and job candidates have different productivities. A firm is willing to hire any candidate

with a productivity that is higher than its minimum standard, but prefers the candidate with a

higher productivity than one with a lower one. A candidate will accept any offer but prefers the firm

with a higher minimum standard. Further, we allow the minimum standards and productivities to

be randomly drawn from a common distribution, and thereupon to become public information.
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Bronars, Dean Corbae, Don Fullerton, Dan Hamermesh, Preston McAfee, Gerald Oettinger, Steve Trejo, and Randy
Wright were very helpful. All remaining errors are ours.

†Department of Economics, University of Texas, Austin, TX 78712, and NBER. Email: gan@eco.utexas.edu
‡Department of Economics, Texas A&M University, College Station, TX 77843-4228. Email:

qi@econmail.tamu.edu

1



For such a market, we prove: (1) The matching probability does not depend on the underlying

distribution. (2) When the number of firms and the number of candidates increase, we have a lower

unemployment rate (higher matching probability) in the market. For example, when both the

number of candidates and of openings are 5, the matching probability is .694. When the number

of candidates and openings are 50, the matching probability is .885. (3) The variance of matching

probabilities decreases as the market becomes thicker. (4) The conclusion that a thicker market has

a larger matching probability than a thinner market continues to hold for the following three more

general cases: first, the number of vacancies does not equal the number of candidates; second, the

minimum requirement for a vacancy and the productivity of a candidate are random draws from

different distributions; and finally, the vacancies and candidates arrive at the market sequentially.

To empirically test our model, we collect information on the U.S. academic market for new PhD

economists. We collect the American academic job openings listed for each field in the September,

October, November and December issues of Job Openings for Economists (JOE), in both 1999 and

2000. We then find out how many of these openings are filled. The ratio of the total number of filled

jobs divided by the average openings in each field is the measure of the probability of job matching.

In addition, we collect job candidate information from the top 50 departments of economics in U.S.

universities.

The empirical estimates strongly support our theoretical hypothesis: a thicker market does have

a higher matching probability than a thinner market. In particular, according to the empirical

estimate, when the number of candidates and openings are 5, the matching probability is .361.

When the number of candidates is 50, the matching probability is .523. Our matching model can

also explain the empirical finding of Niederle and Roth (2003) in which a thicker market (through

a centralized clearinghouse) increases the matching probability and mobility of gastroenterologists.

Previous literature often uses changes in vacancy rates and in unemployment rates and/or dura-

tion to empirically estimate some matching functions.1 Using the market data for PhD economists

offers several advantages over regular job markets. First, there is less of an information problem

in this market in the sense that each institute receives applications from almost all potentially

qualified job candidates, and almost all job openings are well known to all candidates, as they are

published in a single magazine JOE. Second, there is a reasonable consensus in terms of the ranking

1See, for example, Blanchard and Diamond (1989) and Berman (1997).
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of a job, i.e., a job in a better-ranked department is considered by most to be a better job. Third,

there is some consensus in terms of the ranking of candidates, although significant heterogeneity

still exists.

Although intuitively a thick market has a larger probability of matching, there is no consensus

in the literature regarding this intuition. For example, a thicker market has an adverse effect

in Burdett, Shi and Wright (2001), has no effect in Lagos (2000), and has a positive effect in

Coles and Smith (1998). The different conclusions of these papers result from different matching

technology. In Diamond (1982) and Howitt and McAfee (1987), the thickness of a market has

externality on itself. If buyers expect that fewer sellers exist in the market, the expected higher

cost of transaction discourages buyers from entering into the market. When the same conditions

are applied to sellers, low economic activities are expected. Howitt and McAfee (1988) show that it

is possible to have multiple externalities (one positive and one negative). These discussions assume

that the transaction cost is higher or the probability of matching is smaller in a thinner market.

This assumption is intuitively appealing but was neither formally modeled nor empirically verified.

The effect of “thickness” in the market has been studied extensively in the microstructure

literature in finance under the term “liquidity.” For example, in Lippman and McCall (1986), a

thicker market indicates that more transactions of a homogeneous good take place in a unit of time.

In their paper, liquidity is defined in terms of the time elapsed between transactions. This length of

time is a function of a number of factors, including the frequency of offers and the flexibility of prices,

among others. In an empirical study on common factors that affect liquidity, Chordia, Roll and

Subrahmanyam (2000) use five liquidity measures including the difference in prices offered by buyers

and sellers, and in quantities offered by buyers and sellers in a period of time. In their approach,

the smaller the difference between the prices and the larger the quantities offered by the buyers and

sellers of a homogeneous good (an equity), the more liquid a market is. One distinguishing feature

in financial markets is that buyers and sellers often arise endogenously. If prices are low, potential

sellers easily become buyers. In the labor market, it is hard for workers to become employers or

vice versa. Therefore, the pool of employers and employees is often exogenously determined.

Since our model relates the matching probability with the thickness of the market, it can provide

a matching function with a microfoundation. The importance of the matching function has been

discussed in a recent survey paper by Petrongolo and Pissarides (2001). They claim that both
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the matching function and the demand-for-money function are as important as the production

function as a tool kit for macroeconomists. However, most of the existing matching functions lack

well-received microfoundation as stated in Petrongolo and Pissarides (2001, p.425) “Currently, the

most popular functional form, Cobb-Douglas with constant return to scale, is driven by its empirical

success and lacks microfoundations. The most popular microeconomic models, such as the urn-

ball game, do not perform well empirically.” In this paper, we provide a matching function with

microfoundations and show that our matching function performs reasonably well for the empirical

data we collected.

This paper is organized as follows: Section 2 introduces our matching model and the basic

implications of the model. Section 3 presents our empirical test of the model using the data

collected from the U.S. academic job market for new PhD economists. Section 4 concludes the

paper.

2 The Model

2.1 The matching mechanism

Let u be a measure of the productivity of a job candidate. Let a firm’s profit function be:

π(u, v) = max{0, u− v}, (1)

where v indicates the type of the firm. In this simple model, the firm will hire a candidate if u > v,

and it prefers a candidate with a higher productivity than one with a lower productivity. The

variable v can be thought of as the firm’s minimum quality requirement.

Without loss of generality we assume that v takes value in [0, C] for some C > 0. We assume a

candidate’s utility function is:

w(u, v) = max{0, v}. (2)

The candidate will accept all job offers as long as v ≥ 0 but prefers the firm with higher v than
one with a lower v.

The matching technology between firms and job candidates defined in (1) and (2) is similar to

matching medical interns and residents with hospitals described in Roth (1984). Our primary goal

is to examine how the matching probability varies with the number of job candidates and number
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of job openings. We consider the problem of V firms and U job applicants, and each firm has one

opening. Let the firms’ minimum requirement be v1, · · · , vV , and job candidates’ productivity be
u1, · · · , uU . We assume that all productivities and minimum requirements are randomly drawn from
a common continuous distribution F (·) so that no productivity is exactly the same with probability
1 as any minimum requirement. All ui

′s by all candidates and all firms’ minimum requirement vj ′s

are assumed to be known after they are drawn.

According to our model described by (1) and (2), an applicant i may be hired by firm j only

if the productivity of the applicant ui is higher than the minimum requirement of the firm vj .

If more than one applicant has a higher productivity than the minimum requirement vj , firm

j hires the candidate with the highest productivity. Similarly, if more than one firm has lower

minimum requirements than applicant i productivity ui, the applicant prefers the firm with the

highest minimum requirement. After a match occurs, both the firm and the applicant are out of

the market. The process continues until no candidate has a higher productivity than any of the

remaining firms’ minimum requirements.

In the academic market, a better department is preferred by all newly minted PhDs. The

constraint in the market is that each institute has a minimum quality requirement and a better

institute has a higher minimum quality requirement. Each institute prefers the candidate with the

highest quality that satisfies their minimum requirement. In this case, a necessary condition for a

trade to occur between candidate i and institute j is ui > vj .

In this matching mechanism, the job applicant who has the highest productivity matches with

the firm with the highest minimum requirement, provided that this highest ranked candidate meets

the minimum requirement of the firm. Otherwise, the firm leaves the market without filling its

vacancy. However, the applicant who does not match with the firm with the highest minimum

requirement has additional chances to match with other firms. This matching process repeats in

the remaining pool of the applicants and firms.

An alternative way to describe our matching technology is as follows. First we sort all the

randomly drawn productivities and minimum requirements. Then a job candidate with the highest

productivity matches with the firm with the highest minimum requirement, as long as the minimum

requirement is met. Both the job applicant and the firm leave the market. Otherwise, the firm

leaves the market. This process is repeated until no firm’s minimum requirements can be met by
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any remaining candidates.

We assume that firm j that has a job opening with quality requirement vj will be willing to

hire any candidate with ui > vj . Let v(1) < v(2) < ... < v(V ) and u(1) < u(2) < ... < u(U) denote

the order statistics obtained from (v1, ..., vV ) and (u1, ..., uU ), respectively. We are interested in the

probability that a randomly chosen candidate can find a job. Let r be the number of people that

find jobs, 0 ≤ r ≤ n = min{V,U}. Let Pr(r) denote the probability that exactly r people find jobs.
The average or expected value of r is given by:

MU,V
def
= E(r) =

n∑
r=0

rPr(r). (3)

In Lemma 1 below, we give the exact probability for a particular order statistic. This lemma

is useful for us to obtain matching probabilities.

Lemma 1: Let u(1) < u(2) < ... < u(U) be the order statistic obtained from i.i.d. data

u1, ..., uU , and v(1) < v(2) < ... < v(V ) be the order statistic obtained from i.i.d data v1, ..., vV . ui

and vj have the common distribution F ()̇ with pdf f(·). Let z(1) < z(2) < ... < z(U+V ) denote
the order statistic obtained from (u(1), ..., u(U), v(1), ..., v(V )). There are (U + V )!/[(V !)(U !)] such

orderings. Let Zn denote the random variable (z(1), ..., z(U+V )). Then for any one particular order
z, we have

Pr(Zn = z) = (V !)(U !)
(U + V )!

. (4)

The proof of Lemma 1 is given in A.1. In Lemma 1, the probability of any particular order

statistic z does not depend on the underlying distribution of candidates and openings. Since the

overall matching probability involves accounting the number of appropriate orderings, it does not

depend on underlying distributions. In the following sections, we apply Lemma 1 to study how the

matching probabilities vary with the number of vacancies and the number of candidates. We first

discuss the case where the number of vacancies and the number of candidates are the same, and

then we proceed with the case where they are different.

2.2 When the number of openings equals the number of candidates

Our primary interest in this paper is to study how the matching probability changes when the

number of openings and the number of candidates change. Our discussion starts with the case

where the number of applicants is the same as the number of openings. Let n = V = U , and we
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write Mn,n = Mn. We denote by An the probability that a randomly selected person can find a

job (when V = U), i.e.,

An =
1

n
Mn =

1

n

n∑
r=1

rPr(r).

We investigate below how An changes as n changes. We build our model from the simplest case

where there is one vacancy and one job applicant.

The case of n = 1:

Let u and v be randomly drawn from the same distribution f(·). A match occurs if u > v.

A1 =

∫
{v<u}

f(v)f(u)dvdu =

∫ ∞
−∞

[∫ u
a
dF (v)

]
dF (u) =

∫ ∞
−∞
F (u)dF (u) = 1/2.

In the case of one applicant and one job opening, given that both u and v are randomly drawn

from the same distribution, the probability that one random draw is larger than the other is 1/2.

The case of n = 2:

Let (u1, u2) be random draws of the two candidates’ productivities, and let (v1, v2) be random

draws of the minimum requirements of two job openings. All are from the same distribution. Let

u(1) < u(2) be the order statistic of (u1, u2) and v(1) < v(2) be the order statistic of (v1, v2). Using

Lemma 1 we have:

Pr(0) = Pr(u(1) < u(2) < v(1) < v(2)) = (2!)
2(1/4!) = 1/6.

Pr(2) = Pr(u(2) > v(2), u(1) > v(1))

= Pr(u(2) > v(2) > u(1) > v(1)) + Pr(u(2) > u(1) > v(2) > v(1))

= 2{(2!)2(1/4!)} = 1/3.
Pr(1) = 1− Pr(0)− Pr(2) = 1− (1/6) − (1/3) = 1/2.

Therefore we have

A2 =
1

2

2∑
r=1

rPr(r) = [(1/2) + 2(1/3)]/2 = 7/12.

We observe that A2 = 7/12 > 1/2 = A1. That is, when the market becomes thicker (n

increases from 1 to 2), the probability that each person can find a job is increased from 1/2 to 7/12.

To understand the intuition of this result, note that since {u1, u2} and {v1, v2} are from the same
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Table 1: Matching Probabilities Based on 100,000 Simulations if (V = U)

(Openings and Candidates Have the Same Distributions)

n 1 2 3 4 5 6 7 8 9 10

An .5003 .5835 .6337 .6682 .6940 .7135 .7288 .7448 .7562 .7665

Std of An .5000 .3434 .2765 .2379 .2116 .1932 .1786 .1661 .1561 .1481

n 20 30 40 50 60 70 80 90 100 1000

An .8258 8543 .8720 .8845 .8938 .9013 .9074 .9124 .9163 .9725

Std of An .1041 .0853 .0734 .0657 .0599 .0554 .0523 .0494 .0459 .0144

distribution, the order statistics also have the distribution: Fu(1)(·) = Fv(1)(·) and Fu(2)(·) = Fv(2)(·).
Given this, we have:

Pr(u(1) > v(1)) = 1/2, and Pr(u(2) > v(2)) = 1/2. (5)

If (5) were the only cases that candidates and openings match, we would still end up with

a matching probability of 1/2. However, an additional chance exists even when u(1) < v(1) and

u(2) < v(2) since it is still possible to have u(2) > v(1). This additional chance of matching is the

source of the effect of a thicker market.

In A.3 and A.4, we calculate the matching probabilities for n = 3 and n = 4. Although the

same approach can be applied to compute An for any n > 4, the burden of computation becomes

tedious as n increases. A simple alternative is to use simulations to numerically compute An. Let

An,j be the estimated value of An based on the jth simulation draw of (u1, ..., un) and (v1, ..., vn),

i.e., An,j equals the number of people finding jobs in the jth random draw. We estimate An by

Ān. = J
−1∑J

j=1An,j. Provided that J is sufficiently large, we can obtain an estimated value of An

with any desired accuracy. We use J = 100, 000 in our simulation. We also compute the sample

standard error of {An,j}nj=1 by [(J − 1)−1
∑J
j=1(An,j − Ān.)2]1/2. The results are given in Table 1.

We have already shown that A1 = 0.5, A2 = 7/12 ∼ 0.5833. In the Appendix we also compute
the exact values of An for n = 3, 4; they are A3 = 19/30 ∼ 0.6333 and A4 = 187/280 ∼ 0.6679.
Comparing these results with the simulation results of Table 1, we see that the simulation results

differ from the theoretical results only in the fourth decimal.
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From Table 1 we observe that An increases as n increases, while the standard error decreases

as n increases. The monotonically increasing relationship between matching probabilities and the

thickness of the market can also be clearly seen in Figure 1. The solid line in Figure 1 illustrates the

matching probabilities as a function of the number of candidates. As n→∞, both the candidates
and openings become dense in the support of f(·). Therefore, the probability of matching is
expected to converge to one as n→∞. This is indeed the case as the next lemma shows.

Lemma 2: The employment rate An converges to one as n→∞.

The proof of lemma 2 is given in the appendix. Note that lemma 2 does not mean that as n→∞,
every individual will find a match. In fact the total unemployed, calculated by n(1−An), also goes
up as n increases. For example, when n= 10, 100 and 1000, the average numbers of unemployed

workers are roughly 2, 8, and 30, respectively. It is 1 − An, the percentage of unemployed (the
unemployment rate) that goes down as n increases.

Our theoretical analysis and simulation results show that: (1) A thicker market provides a

larger chance of matching; (2) The probability of matching varies less in a thicker market than in

a thinner market.

Previous results are obtained by assuming that the job requirements and candidates’ produc-

tivities have the same distribution. Next, we briefly discuss the case that they have different

distributions. We show that in this case the matching probability will depend on the specific

distribution functions, but a thicker market still has a larger probability of matching.

We consider the simple case where candidates are randomly drawn from uniform[0,1], and the

openings are randomly drawn from uniform [δ, 1 + δ], 0 ≤ δ ≤ 1. We will only consider the case of
V = U = n. In Section A.5 we show that:

A1 =
1

2
(1− δ)2, and A2 = 7

12
(1− δ)2 + 1

12
δ(1 − δ)2(2 + 3δ). (6)

Obviously, A2 > A1 for all δ ∈ [0, 1]. A thicker market still has a larger probability of matching.
For n > 2, the computation becomes quite tedious. However, one can use simulations to compute

An easily for any value of n. Figure 2 illustrates how the simulated matching probabilities vary with

n and with δ. Two patterns emerge from Figure 2. First, as expected, a larger difference in means

results in lower matching probabilities. Second, for a fixed value of δ, the matching probabilities
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increase as the market becomes thicker. By exactly the same argument as in the proof of lemma

2, one can show that as n→∞, An → 1− δ (0 < δ < 1).
Note that when δ ≥ 1, An = 0 for all n, because in this case the highest seller’s productivity

is lower than the lowest buyer’s requirement. However, if the two distributions are N(µ, σ2) and

N(µ+ δ, σ2) (the two means also differ by δ), then An > 0 for all values of δ. This simple example

shows that when the two distributions are different, the matching probability will depend on the

specific distributions.

2.3 The number of vacancies is different from the number of candidates

In the previous section, we only focus on the case where the number of candidates equals the

number of openings. In a real market, it is unlikely that there will be exactly the same number

of candidates and openings. In this section, we consider cases where the number of candidates is

different from the number of openings. They are still random draws from a common distribution.

Let U be the number of candidates and V be the number of openings. The number of people

who find jobs, r, must satisfy 0 ≤ r ≤ n = min{U, V }. Recall that the expected value of r is

MU,V = E(r) =
n∑
r=0

rPr(r). (7)

We summarize some properties of matching functions below.

(i)MU,V =MV,U is symmetric in V and U , (ii) MU,V increases as either V or U increases, (iii)

If both V and U increase with V/U = a, a fixed positive constant, then BU,V = MU,V /V increase

as V (U = V/a) increases.

(i) follows from a simple symmetry argument. (ii) is true because adding more candidates

or openings to a market obviously cannot reduce the number of matching; in fact, there is a

positive probability of increasing the number of matching, thus the average matching of MU,V

will be larger (for any finite values of V and U). (iii) is the most interesting result: it says

that when the market becomes thicker, the probability of matching success increases for both

candidates and openings. The intuition behind (iii) is quite simple. We have already seen that

this is true for the case of V = U = n. In Appendix A.6 we show how to compute MU,V (or

BU,V ) for the general (U, V ) case. For example, for (U, V ) = (1, 2) (or (2, 1)), MU,V = 2/3;

for (U, V ) = (1, 3), MU,V = 3/4; and for (U, V ) = (2, 4), MU,V = 23/15. First we note that
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B1,2 = 2/3 < B2,4 = (1/2)(23/15) = 23/30, so that as the number of V and U doubles (the market

becomes thicker), the matching probability increases. Next we compare the case of (U, V ) = (1, 3)

and (2, 2), where we have M2,2 = 7/6 > 3/4 =M1,3. With the same total number of openings and

candidates, the closer the ratio of V/U is to 1, the higher the averaging number of people that can

find jobs.

Again, a simple alternative is to use simulations to estimate MU,V (BU,V ). We will use the

simulation method to help us evaluate some of our proposed matching functions in the next section.

2.4 A matching function

Because our model relates the matching probability with the thickness of the market, it can provide

a matching function with a microfoundation. A series of matching functions has already been

introduced in the literature; here we briefly discuss some of the existing matching functions and

compare them with our matching function.

In a typical matching model with constant return to scale, the thickness of the market does not

enter the matching probability. The relationship between the number of people who are looking for

jobs and the number of people who find jobs is different from our claim that market thickness has

a positive effect on the job matching ratio. For example, consider a typical matching model with

constant return to scale,

M = m(U, V ) = V ·m
(
U

V
, 1

)
,

where m(U, V ) is the matching function, M is the number of people who find jobs, V and U are

numbers of job openings and job searchers. The second equality of the previous equation is due to

the assumption of the constant return to scale. Rearranging the previous equation, we get:

BU,V =
M

V
= m

(
U

V
, 1

)
(8)

where BU,V is firms’ matching probability. If the ratio of candidates to vacancies is fixed, so is

the matching probability M/V . A particular form of constant return to scale function is M/V =

1 − exp(−aU/V ), which is used in Blanchard and Diamond (1994) where a is the intensity of the
search. Other interesting works related to our matching model include Burdett et al. (2001) and

the stock-flow matching of Coles and Smith (1998).
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It would be ideal if one could derive an explicit functional form to relate matching probabilities

with the thickness of the market. While this goal may be quite difficult to accomplish, we are able to

propose a parsimonious approximate matching function which satisfies some basic properties of the

theoretical matching function. We will show that this approximate matching function can fit the

theoretical matching probabilities very well. We are interested in obtaining a probability matching

function, say BU,V =MU,V /V . However, it is easier to impose restrictions on the matching function

MU,V . We first list some of the properties that MU,V should preserve.

(i) MU,V is symmetric on (U, V ).

(ii) For any finite values of (U, V ), MU,V < min{U, V }, and MU,V is an increasing function in U
(V ) for a fixed value of V (U).

(iii) Let d =
√
U2 + V 2 denote the distance of (U, V ) to the origin. For (U, V ) ∈ R2+ with d = c,

a constant, MU,V is monotonically decreasing as d (U, V ) moves away from the middle point

of V = U (along the arc of d = c).

The following simple matching function satisfies the above four conditions:

M
(0)
U,V = α0 + α1min{U, V }+

α2
d
, (9)

where d =
√
V 2 + U2, and α0, α1, and α2 are parameters (α1 is positive and α2 is negative).

It is obvious that M
(0)
U,V in (9) satisfies properties (i) and (ii) above. To see that it also satisfies

(iii), note that when d = c is a constant, M
(0)
U,V = α1min{U, V }|d=c + α2/c, which decreases

monotonically as (U, V ) moves away from the middle point of U = V (along the arc of d = c).

By rearranging (9) in terms of matching probability, we get

M
(0)
U,V

V
= α0 + α1min

{
U

V
, 1

}
+
α2
V d
. (10)

If we replace α2/(V d) by α2/d (removing the 1/V factor) in (10) we obtain the following

alternative approximate matching function:

M
(1)
U,V

V
= α0 + α1min

{
U

V
, 1

}
+
α2
d
. (11)
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Table 2: Regressions of Matching Probabilities

1 ≤ U, V ≤ 10
Models Model (10) Model (11) Model (12)

constant .015 (.841)∗ .075 (4.28) .060 (1.96)

min{U/V, 1} .805 (37.7) .787 (42.8) .779 (42.3)

1/(U2 + V 2)1/2 -.423 (-7.07) -.456 (-4.55)

1/[V (U2 + V 2)1/2] -.281 (-3.20)

α3 1.19 (3.05)

R2 .937 .951 .957

Number of observations 100 100 100

* t-values are in parentheses.

Interestingly we observe that (11) performs better that model (10) using both theoretical (sim-

ulated) matching probabilities and the empirical data.

A more flexible model than (11) is

M
(1)
U,V

V
= α0 + α1min

{
U

V
, 1

}
+
α2
dα3
. (12)

When α3 = 1, (12) reduces back to (11). Because model (12) is nonlinear in parameters, one

needs some iterative procedure such as a nonlinear least squares method to estimate model (12).

To examine how well our proposed matching functions approximate the theoretical (simulated)

matching function, we carry out a least squares regression, using (simulated) theoretical values

of BU,V = MU,V /V as the dependent variable, and estimate models (10), (11), and (12). The

regression results for models in (10) to (12) are reported in Table 2.

As can be seen in Table 2, our specifications can explain the (simulated) theoretical matching

probability well, with R2 being at least .937. The R2 is .951 for model (11) and .957 for model (12).

The results show that all of the proposed models fit the theoretical model very well. However, this

does not imply that one should expect that all of them should fit empirical data equally well. As

we will see shortly, model (12) provides the best fit for the empirical data we collected.
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2.5 A sequential matching mechanism

Up to now we have only considered a static model where all candidates and openings arrive at the

market simultaneously. In this section we briefly discuss the case of a sequential matching model.

Our approach follows closely that of Coles and Smith (1998) who capture a realistic feature of

market search, that if a job seeker cannot match with the exiting pool of vacancies, he/she will

wait for the arrivals of new job vacancies. We consider two extreme cases: (i) All matched pairs

can break up an earlier match and re-match in a later period without a cost. The time discount

rate is zero. (ii) Both the re-match cost and the time discount rate are infinite.

A zero re-matching cost and a zero time discount rate

It is easy to see that in this case the results of sections 2.2 and 2.3 remain valid without changes.

Suppose at period t, we have a cumulative of Ut job candidates, and a cumulative of Vt vacancies,

the number of matches will be exactly the same as in the static case with a total number of Ut

candidates and Vt vacancies. This is because all matched pairs can freely break up with earlier

matches and to find the best match available to them. The highest quality individual will match

with the best job available provided her quality meets the minimum requirement of that job. The

second highest quality individual will match with the next best available job. Consequently, the

matching results will be identical as in the static case with the same total numbers of candidates

and vacancies.

An infinite re-matching cost and an infinite time discount rate

When both the cost of re-entering the market and the time discount rate are infinite, all firms

and individuals will try to find a match as soon as possible, and when a match is found, the matched

pair will exit the market. Although these assumptions are not realistic, they serve as a benchmark

case and from which we can deduct useful information on the more realistic finite re-matching

cost/discount factor cases.

We will only consider the case where the number of candidates equals the number of openings.

This will be the case if candidates and openings arrive at the market in pairs so that the total

numbers of candidates and openings equal each other at all times. We assume that different pairs

arrive at the market sequentially. If the first pair of candidate and opening matches with each

other, they will sign a contract and exit the market. If not, they become stock and wait for
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matching opportunities among future arrivals. When a pair (a candidate and an opening) arrives

at the market, the two can match with each other or match with the existing stock, according to

whichever gives the higher utility. If no match is found, they become stock.

Let n = V = U denote the total number of openings and candidates. We use P̄ (r) to denote

the probability that exactly r people find jobs, and use Ān = n
−1∑n

r=0 rP̄ (r) to denote the mean

value of r (the bar notation is used to emphasize a sequential matching process).

The case of V = U = 1.

In this case we have P̄ [U > V ] = 1/2 as before, which gives Ā1 = P̄ (1) = 1/2.

The case of V = U = 2.

Let uj (vj) be the jth arrival of candidates(openings), j = 1, 2. Because candidates and openings

arrive sequentially, we cannot use the order statistics to compute P̄ (r). However, the result obtained

earlier can help calculate the matching probabilities.

The total number of different rankings of u1, u2, v1 and v2 is 4! = 24 (four times that of the order

statistic case). We can use the calculation of Pr(r) to help us to obtain P̄ (r). For example, in the

market of simultaneous arrival, the order statistic that no one finds a job is: u(1) < u(2) < v(1) < v(2),

and the probability is Pr(0) = 1/6. In the market of sequential arrival, there are four cases that

no one finds a job: (i) u1 < u2 < v1 < v2, (ii) u2 < u1 < v1 < v2, (iii) u1 < u2 < v2 < v1, and (iv)

u2 < u1 < v2 < v1, giving P̄ (0) = 4/24 = 1/6. So the probability that no one finds a job remains

unchanged.

There is only one case that results in different matching probabilities between a sequential

market and a simultaneous market. In the case of v1 < u2 < v2 < u1, u1 will match with v1

and then (u1, v1) exit the market. In the second period, v2 and u2 arrive at the market but they

cannot match because u2 < v2. If the two pairs had arrived simultaneously, there would be two

matched pairs, u1 with v2, and u2 with v2. So we see that when arrivals are sequential, the matching

probability decreases and the market becomes less efficient. Using (4) we obtain:

P̄ (0) = 4/24 = 1/6 (= 4/24 as in the simultaneous arrival case)

P̄ (1) = (12 + 1)/24 = 13/24 (it was 12/24 = 1/2 in the simultaneous arrival case)

P̄ (2) = (8− 1)/24 = 7/24 (it was 8/24 = 1/3 in the simultaneous arrival case)
Thus, Ā2 = (1/2)

∑2
r=0 rP̄ (r) = [(13/24) + 2(7/24)]/2 = 27/48 > 1/2 = Ā1.
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We still observe that as the total number of candidates and openings goes up, the average

matching probability increases. However, Ā2 = 27/48 < 28/48 = A2, the market of sequential

arrival is less efficient compared to the case that all the candidates and openings arrive simultane-

ously, which is an expected result since sequential trading may lead to a very high quality candidate

to match with a vacancy with a very low minimum requirement, resulting in a less efficient market.

Let Pr[(ui, vj)] denote the probability that ui matches vj . Then conditional on u1 < v1 (so that

u1 and v1 become stock), it is easy to show that Pr[(u2, v2)] = 1/3 > Pr[(u2, v1)] = 1/4. Thus,

our matching mechanism implies that u2 has a lower matching probability, or higher rejection rate,

when meeting with v1 (an opening from the stock) than when meeting with v2 (a random draw

from the distribution of job openings). This is because the openings from the stock have a higher

mean value than those drawn from the population. As is easily shown, our model implies that the

rejection rate between a candidate from the flow and an opening from the stock increases as the size

of the stock increases, or equivalently as the averaging matching probability increases (as argued by

Petrongolo and Pissarides (2001, p.406)). This is because the mean of the stock of openings goes

up as its size goes up, resulting in a higher rejection rate for a given pair. Nevertheless, the average

matching probability still goes up since there are more matching opportunities as the market gets

thicker.

Table 3 reports the simulated values of Ān for n from 1 to 1, 000 (based on 100,000 replications).

Since Ā2 = 27/48 = .5625, we see again that the simulated value matches the true value in the first

three decimals.

In Table 3, we observe similar phenomena in the case of simultaneous trading, i.e., Ān increases

(with a decreasing rate) while the standard deviation of Ān decreases as n increases. The dashed

line in Figure 1 shows that, as expected, the Ān curve is lower than the solid line of the An curve.

A larger friction exists in a market of sequential arrivals.

Even though sequential arrival leads to higher friction, the intuition that a thick market is more

efficient than a thin market remains the same as in the case of a simultaneous arrival. Further it

can be shown that Ān → 1 as n→∞.
So far we consider two extreme case: zero time discount rate and re-match cost vs. infinite

time discount rate and re-match cost. Complete discussions of more realistic cases where the time

discount rate and the re-match cost are some finite positive numbers are left for future research.
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Table 3: Matching Probabilities Based on 100,000 Simulations if (V = U)

(Vacancies and Candidates Arrive Sequentially)

n 1 2 3 4 5 6 7 8 9 10

Ān .5003 .5622 .5999 .6257 .6452 .6603 .6728 .6833 .6922 .7001

Std of Ān .5001 .3330 .2665 .2273 .2034 .1846 .1694 .1575 .1475 .1403

n 20 30 40 50 60 70 80 90 100 1000

Ān .7486 .7736 .7905 .8030 .8127 .8207 .8272 .8332 .8383 .9248

Std of Ān .0977 .0812 .0713 .0632 .0582 .0538 .0515 .0486 .0461 .0146

We did not yet consider searching cost in our model. Adding a fixed searching cost will not alter

any of the conclusions obtained earlier. A variable searching cost may reduce matching probability.

Given the rapid improvement of internet searching, it seems that a fixed search cost is appropriate

for most situations such as economics new Ph.D’s market. We leave more detailed discussions on

extensions such as strategic trading behavior and variable searching cost to future research work.

3 Data Collection and an Empirical Test

Empirical study of this issue can be very difficult. It is relatively simple to collect information

about successfully completed transactions in a particular market. However, gathering data about

the participants who failed to complete transactions is often very difficult.

The job market for new PhD economists, therefore, provides an excellent opportunity for exactly

such an empirical study of thin and thick markets’ performances. First, we must identify the levels

of supply and demand for this market. The information we require to determine market demand

is available through the journal Job Openings for Economists (JOE). The problem of information

asymmetry is minimal when we consider the job market in economics because JOE provides virtually

complete information sets for the supply of the academic jobs in the U.S. In other labor markets,

we often do not know what specific information sets job applicants can access; but in this case we

do because the journal is widely available to candidates going on the job market. In addition, we

may determine the level of market supply by contacting graduate programs in economics regarding
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their PhDs who have gone on the job market in the past several years.

Our data is organized by field. The definition of the field can be found in the “Classification

System of Journal Articles” by the Journal of Economic Literature. In particular, we use the

field consisting of a capital letter and a numeral. For example, E0 means “Macroeconomics and

Monetary Economics.”

We collect the American academic job openings listed in the September, October, November,

and December issues of JOE in 1999 and 2000. In JOE, m job openings are listed with n fields

where m and n are integers. We determine that each field has average openings of m/n. For

example, in 2000, the Department of Economics at the Texas A&M University had five openings

in nine different fields. We assign each field with 5/9 openings. We sum all the average openings

for all American universities by each field. We then find out how many of these openings are filled

by going to each institute’s website and/or by contacting relevant people. The ratio of the total

number of filled jobs divided by the average openings in each field is the measure of the probability

of job matching.

In addition, we collect the job candidate information. We search the links of job candidates

in each of the top-50 departments in the U.S. defined in Dusansky and Vernon (1998). We use

the first field listed in each candidate’s CV or in the brief introduction of a candidate if no CV is

available.

The summary information of the markets is listed in Table 4. In addition to showing the ten

fields with the most job openings in the table, we include any field (AF), the mean of the remaining

fields not listed in the table, and the whole market. In both years, AF is by far the largest “field.”

Macroeconomics (E0), Microeconomics (D0), and International Economics (F0) were the top three

fields other than AF in both years. In 1999, the mean of the matching probabilities in the ten fields

with the most job openings is .501, while the mean of the matching probabilities in the remaining

fields is .305. Thicker fields do have larger matching probabilities than thinner fields. The same

pattern repeats in 2000 where the mean of the matching probabilities for the ten fields with the

largest demand is .451, while the rest of the fields have an average matching probability of .268.

We estimate our proposed matching models, given in (10), (11), and (12), using the collected

data. We are primarily interested in the sign of the coefficient for the variable of thickness, measured

by the the variable d = (candidates2 + openings2)1/2.
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Table 4: Summary of Academic Markets for New PhD Economists
Fields with average # of filled probability number of
most openings openings positions of matching candidates

Year 2000
Any field(AF) 95.3 42 .441 0
Macro(E0) 49.3 30 .608 83
Micro(D0) 36.2 18 .498 42
International(F0) 34.9 25 .717 39
Econometrics(C1) 33.5 13 .388 43
Financial Econ(G0) 33.4 19 .568 39
Agric Econ(Q0) 25.6 13 .507 16
Public Econ(H0) 25.4 9 .354 37
General Econ(A1) 22.6 4 .177 0
Health Econ(I1) 21.2 9 .426 11
IO(L0) 19.6 15 .765 60
Mean of remaining fields 2.96 1.40 .305 2.16
Total 617 308 .499 529

Year 2001
Any field(AF) 125.0 64 .512 0
Macro(E0) 54.8 31 .566 72
International(F0) 39.6 11 .277 29
Micro(D0) 38.2 20 .523 34
Agric Econ(Q0) 37.9 13 .343 11
Econometrics(C1) 36.0 13 .361 32
Health Econ(I1) 34.5 18 .521 14
Financial Econ(G0) 31.9 16 .501 24
Public Econ(H0) 20.7 11 .532 25
IO(L0) 20.7 15 .726 59
General Econ(A1) 18.3 3 .164 0
Mean of remaining fields 3.27 1.20 .268 1.92
Total 696 308 .443 445
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Table 5 gives the estimation results of models (10), (11), and (12), in the same format as that

of Table 2. It is clear that the regressions based on model (12) have the best fit, followed by model

(11). In all these different specifications using different sample data, the parameter estimates of α2,

the coefficient of the inverse of the thickness variable d, are negative. Moreover, they are significant

at the 5% level for eight out of nine cases, and are all significant at the 10% level (note that it is

an one-sided test). Thus our estimation results predict that the matching probability increases as

the market becomes thicker, consistent with the main prediction of our theoretical model. In other

words, a thicker market produces a better probability of matching. The statistically insignificant

estimates of α1 reflects the fact that the total number of supply in each field, U , is measured with

error.2

Figure 3a gives the estimated curves using 2000 job market data, Figure 3b uses 2001 job

market data, and Figure 3c uses the pooled sample. These figures graph the observed and predicted

matching probabilities for models (11) and (12). Each point in these figures represents one field.

The dotted line in each figure represents the predicted probability based on model (11); the solid

line plots the predicted probability based on model (12). The prediction is carried at the sample

mean of min{U/V, 1}. Comparing model (11) with model (12) we observe that the nonlinear model
shows more pronounced thickness effects. Within the same model (say model (12)), all three graphs

are similar, reflecting the fact that estimates from different sample are similar. From all the graphs,

we clearly see that matching probability is an increasing and concave function of the thickness (d)

of the market.

To understand the magnitude of the effect of thickness on the matching probability, consider

model (12) where the number of candidates equals the number of job openings; we have that (when

U = V ) the matching probability is

̂(M/V ) = α̂0 + α̂1(1) + α̂2/dα̂3 ,
where d =

√
2V (since U = V ). For U = V = 5, 10, and 50, and using the pooled sample estimation

2The total number of candidates in these 50 schools in each field is our noisy measure of the total supply of the

market. One source of noise comes from the classification of candidates’ fields. For example, students often indicate

their fields to be one of the thicker fields. In the two year period we have data, among the 126 fields that have

academic openings, only 45% of them have candidates, although 62% of those fields have some success to hire at least

one candidate.
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result, our empirical model predicts the matching probabilities of .361, .421, and .523, respectively.

Finally, in order to check whether fields such as “any field” (AF) and “general economics” (A1)

contaminate our estimation results, we conduct estimates removing fields “AF” and “A1”. These

two fields have large numbers of openings while there are no candidates labeled as “any field” or

“general economics.” Estimation results not reported here (they are available upon request) show

virtually identical parameters estimates as well as the goodness-of-fit R2 for the results given in

Table 5. Thus the fact that there are zero candidates in the thick fields “AF” and “A1” does not

affect our estimation results nor the conclusions derived from them.

4 Conclusions

In this paper we propose a matching model with the matching probability depending on the thick-

ness of a market. In our model, the minimum job requirements of firms and the productivities of

job applicants are randomly drawn from a common distribution. A firm employs a job applicant

only if the job applicant’s productivity is higher than the minimum requirement. All firms prefer a

higher productivity applicant to a lower one, and all applicants prefer a higher minimum standard

firm to a lower one. In this hypothetical market, we show that the probabilities of matches in a

thin market differ significantly from those in a thick market.

We also characterize the case where firms and applicants have different distributions, the case

where the number of openings does not equal the number of applicants, and the case where openings

and candidates arrive at the market sequentially. In all these cases, the matching probability still

increases with the thickness of the market. In addition, we propose a parsimonious matching

function which is fairly close to the (simulated) theoretical matching function.

The implications of our model are consistent with the liquidity literature in the financial market

where more trading occurs in a thicker market than in a thinner market. We apply our matching

model to the U.S. academic market for junior PhD economists. Consistent with the prediction of

our model, a field with more job openings and more candidates has a higher probability of matching.

In particular, according to our model, the matching probability increases from .361 for 5 candidates

and openings to .523 for 50 candidates and openings.

The model above can be extended in many directions, such as to the regular labor or housing
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Table 5: Regressions of Matching Probabilities
(U.S. Academic Market for New PhD Economists)

Model (10) Model (11) Model (12)
Job Market in January 2000

constant .284 .362 .847
(5.69)∗ (6.67) (1.98)

min{U/V, 1} .208 .142 .020
(2.51) (1.75) (.237)

1/[(V2 +U2)1/2] -.112 -.674
(-4.03) (-1.52)

1/[V(V2 +U2)1/2] -.017
(-2.72)

α3 .223
(1.30)

R2 .250 .339 .466
# of observations 61 61 61

Job Market in January 2001
constant .370 .456 .658

(8.29) (8.97) (3.36)
min{U/V, 1} -.023 -.094 -.155

(-.29) (-1.19) (-1.84)

1/[(V2 +U2)1/2] -.212 -.468
(-4.78) (-2.20)

1/[V(V2 +U2)1/2] -.061
(-3.80)

α3 .411
(1.70)

R2 .192 .273 .315
# of observations 65 65 65

Pooled Sample of 2000 and 2001
constant .314 .398 .775

(9.43) (10.88) (3.36)
min{U/V, 1} .106 .035 -.068

(1.82) (.62) (-1.15)

1/[(V2 +U2)1/2] -.139 -.591
(-5.97) (-2.45)

1/[V(V2 +U2)1/2] -.023
(-3.94)

α3 .274
(2.03)

R2 .160 .266 .369
# of observations 126 126 126
* t-values are in parentheses.
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markets. It may require more serious effort to relax some assumptions made in this paper. For

example, job candidates may have different preference orderings of employers, as may employers.

More general transferable utility functions may be more appropriate for a general labor market

because one may enjoy a higher utility if he/she moves to a better quality firm. Buyers in the

housing market have several aspects to consider, while sellers may only care about the selling

prices.

A Appendix

A.1 Proof of Lemma 1

Proof: The joint distribution of (u(1), ..., u(U)) and (v(1), ..., v(V )) are (U !)
∏U
r=1 f(u(r)) and (V !)

∏V
r=1 f(v(r)),

respectively. Therefore, the joint distribution function for (u(1), ..., u(U), v(1), ..., v(V )) is

(V !)(U !)[
∏V
r=1 f(u(r))][

∏U
r=1 f(v(r))].

Pr(Zn = z) = P (z(1) < z(2) < ... < z(U+V )) = (V !)(U !)

∫
{z(1)<z(2)<...<z(U+V )}

U+V∏
r=1

dF (z(r))

= (V !)(U !)

∫
{z(2)<z(3)<...<z(U+V )}

F (z(2))

U+V∏
r=2

dF (z(r))

= (V !)(U !)

∫
{z(3)<...<z(U+V )}

(1/2)F 2(z(3))
U+V∏
r=3

dF (z(r))

= (V !)(U !)

∫
{z(3)<...<z(U+V )}

(1/2)...(1/(U + V − 1))
∫ b
a

FU+V−1(z(U+V ))F (z(U+V ))

=
(V !)(U !)

(U + V )!
.

A.2 Proof of Lemma 2

We know that An is independent of the distribution f . Therefore, without loss of generality we assume that

f is a uniform distribution in the unit interval. For any (small) η > 0, we choose m = [1/η] > 1/η. ([.]

denotes the integer part of .) and divide the unit interval into m intervals with equal length 1/m for each.

That is: [0, 1] = ∪ml=1Il, where Il = [(l − 1)/m, l/m) (l = 1, ...,m, with Im = [(m − 1)/m, 1]). Let nu,l and
nv,l denote the number of observations from {ui}ni=1 and {vi}ni=1 that fall inside in interval Il (l = 1, ...,m).
We know that on the average there are n/m observations from both {ui}ni=1 and {vi}ni=1 that fall inside
interval Il for all l = 1, ...,m. In fact by the strong law of large number (Billingsley 1986(p.80)) we have

P (limn→∞ ns,l/n = 1/m) = 1 for all l = 1, ...,m (s = u, v).
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Note that the candidates with ui’s fall inside the interval Il can match with any job opening with vj ’s

falls in Il−1 (l = 2, ...,m). Given that with probability one that nu,l/n→ 1/m and nv,l−1/n→ 1/m, we know
that, with probability approaching to one as n→∞, that there can have n/m matches for u′is ∈ Il matching
with v′is ∈ Il−1. Sum over l from 2 to m we get, with probability one, that the number of matched candidates
is at least (since we ignore the possibility that u′is ∈ I1 may also find match) nmatch/n ≥ (m−1)/m ≥ 1−η,
or more formally, we have, as n→∞,

P (
nmatch

n
≥ 1− η)→ 1. (13)

Therefore we have

1 ≥ An = 1
n

n∑
r=0

rP (r) ≥ 1
n

∑
r≥n(1−η)

rP (r)→ 1,

because for any 1 > ε > 0, we can choose η = ε/2 and by (13), we have n−1
∑
r≥n(1−η) rP (r) ≥ n−1n(1 −

η)
∑
r>n(1−η) P (r) ≥ (1 − η)2 ≥ 1 − ε. Thus, n−1

∑
r≥n(1−η) rP (r) → 1 as n → ∞ which implies An → 1,

completing the proof of Lemma 2.

Let Pr(# ≥ r) denote the probability that at least r people find jobs. Then it is easy to see that
Pr(# ≥ r) = Pr(u(n) > v(n−r+1), u(n−1) > v(n−r), ..., u(n−r) > v(2), u(n−r+1) > v(1)). The next lemma shows
that Pr(# ≥ r) can be used to compute E(r).

Lemma 3: Let # denote the number of people who find jobs (0 ≤ # ≤ min{V, U}), and denote by
Pr(# ≥ r) =∑nm=r Pr(m) the probability that at least r people find jobs. Then

E(r) =

n∑
r=1

Pr(# ≥ r).

Proof:

E(r) =
n∑
r=1

rPr(r) = {Pr(1) + (2)Pr(2) + ...+ (n) Pr(n)}

= {[Pr(1) + Pr(2) + ...+ Pr(n)] + [Pr(2) + ...+ Pr(n)] + [Pr(n− 1) + Pr(n)] + Pr(n)}

=

n∑
r=1

Pr(# ≥ r).

A.3 The case of n = 3

Let u3 > u2 > u1 be the order statistic of candidates, and v3 > v2 > v1 be the order statistic of openings

(we omit the parentheses in the subscripts to simplify the notation).

Pr(0) = Pr(u3 < u2 < u1 < v1 < v2 < v3) = (3!)
2(1/6!) = 1/20.

Pr(# ≥ 1) = 1− Pr(0) = 19/20.
Pr(# ≥ 2) = Pr(u3 > v2, u2 > v1) = Pr(u3 > v2 > u2 > v1) + Pr(u3 > u2 > v2 > v1) = 14/20
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since

Pr(u3 > v2 > u2 > v1) = Pr(u3 > v3 > v2 > u2 > v1 > u1) + Pr(v3 > u3 > v2 > u2 > v1 > u1)

+ Pr(u3 > v3 > v2 > u2 > u1 > v1) + Pr(v3 > u3 > v2 > u2 > u1 > v1)

= 4[(3!)/(6!)] = 4/20.

Pr(u3 > u2 > v2 > v1) = Pr(u3 > u2 > v3 > v2 > v1 > u1) + Pr(u3 > v3 > u2 > v2 > v1 > u1)

+ Pr(v3 > u3 > u2 > v2 > v1 > u1) + Pr(u3 > u2 > v3 > v2 > u1 > v1)

+ Pr(u3 > v3 > u2 > v2 > u1 > v1) + Pr(v3 > u3 > u2 > v2 > u1 > v1)

+ Pr(u3 > u2 > v3 > u1 > v2 > v1) + Pr(u3 > v3 > u2 > u1 > v2 > v1)

+ Pr(v3 > u3 > u2 > u1 > v2 > v1) + Pr(u3 > u2 > u1 > v3 > v2 > v1)

= 10[(3!)/(6!)] = 10/20.

Pr(3) = Pr(u3 > v3, u2 > v2, u1 > v1)

= Pr(u3 > v3 > u2 > v2 > u1 > v1) + Pr(u3 > u2 > v3 > v2 > u1 > v1)

+ Pr(u3 > v3 > u2 > u1 > v2 > v1) + Pr(u3 > u2 > v3 > u1 > v2 > v1)

+ Pr(u3 > u2 > u1 > v3 > v2 > v1)

= 5{(3!)2/(1/6!)} = 5/20.

Therefore, by Lemma 3 we have

A3 =
1

3

3∑
r=1

Pr(# ≥ r) = [(19/20) + (14/20) + (5/20)]/3 = 19/30.

A.4 The case of n = 4

Pr(0) = (4!)2/(8!) = 1/70 by Lemma 1. Pr(# ≥ 1) = 1− P (0) = 69/70.
Pr(# ≥ 2) = [(3 + 6) + (3 + 6 + 10) + (3 + 6 + 10 + 15)]/70 = 62/70.
Pr(# ≥ 3) = [(2 + 3) + (2 + 3 + 4) + (2 + 3 + 4 + 5)]/70 = 42/70.
Pr(4) = [(2 + 3) + (2 + 3 + 4)]/70 = 14/70. Therefore, by Lemma 3 we have

A4 =
1

4

4∑
r=1

Pr(# ≥ r) = [(69/70) + (62/70) + (42/70) + (14/70)]/4 = 187/280.

A.5 The case of different means

We assume that sellers are randomly drawn from a uniform distribution in the unit interval (unif[0,1]), while

the buyers are random draws with a uniform distribution in the interval of [δ, 1 + δ]. We only consider the
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case of V = U = n.

For n = 1, straightforward calculation shows that A1 = Pr(1) = (1/2)(1− δ)2.
For n = 2, a more tedious calculation shows that

Pr(0) = (1 + 4δ + 6δ2 − 4δ3 − δ4)/6, andPr(2) = (1− δ)4/3.

Hence (using Pr(1) = 1− Pr(0)− Pr(2)),

A2 = (1/2)[Pr(1) + 2Pr(2)] = (7/12)(1− δ)2 + (1/12)δ(1− δ)2(2 + 3δ).

A.6 The case of V 6= U
Case (i) (U, V ) = (1, 2) or (2, 1)

Let v1 < v2 be the order statistic of openings. By Lemma 1 we have

Pr(1) = Pr(v2 > u > v1 or u > v1, v2) = Pr(v2 > u > v1) + Pr(u > v2 > u1) = 2{1!2!/3!} = 2/3.

Therefore, MU,V =M1,2 = Pr(1) = 2/3. From this one can compute BU,V .

Case (ii) (U, V ) = (3, 1) or (1, 3)

Let v1 < v2 < v3 be the order statistic of openings.

Pr(0) = Pr(u < v1, v2, v3) = Pr(u < v1 < v2 < v3) = {1!3!/4!} = 1/4.
Pr(1) = 1− Pr(0) = 3/4. Therefore, M1,3 = Pr(1) = 3/4. Then one can compute BU,V .

Case (iii) (U, V ) = (2, 4) or (4, 2)

Let u1 < u2 and v1 < v2 < v3 < v4 be the order statistics of candidates and openings, respectively.

Pr(0) = Pr(u2 < v2) = Pr(u1 < u2 < v1 < v2 < v3 < v4) = {2!4!/6!} = 1/15.
Pr(1) = Pr(v1 < u1 < u2 < v2) + Pr(v1 < u1 < v2) = 1/15 + 4/15 = 1/3.

Pr(2) = 1− Pr(0)− Pr(1) = 3/5. Hence, M2,4 = 1/3 + 2(3/5) = 23/15.

References

Berman, E.: 1997, Help wanted, job needed: estimates of a matching function from employment
service data, Journal of Labor Economics 15(1), S251–S292.

Billingsley, P.: 1995, Probability and Measure, New York, New York: John Wiley & Sons.

Blanchard, O. and Diamond, P.: 1989, The Beveridge Curve, Brookings Papers on Economic
Activity (1), 1–60.

26



Blanchard, O. and Diamond, P.: 1994, Ranking, unemployment duration, and wages, Review of
Economic Studies 61, 417–34.

Burdett, K., Shi, S. and Wright, R.: 2001, Pricing and matching with friction, Journal of Political
Economy 109(5), 1060–85.

Chordia, T., Roll, R. and Subrahmanyam, A.: 2000, Commonality in liquidity, Journal of Financial
Economics 56, 3–28.

Coles, M. and Smith, E.: 1998, Marketplace and matching, International Economic Review
39(1), 239–54.

Diamond, P.: 1982, Aggregate demand management in search equilibrium, Journal of Political
Economy 90(5), 881–94.

Dusansky, R. and Vernon, C.: 1998, Rankings of U.S. economics departments, Journal of Economic
Perspective 12(4).

Howitt, P. and McAfee, P. R.: 1987, Costly search and recruiting, International Economic Review
28(1), 89–107.

Howitt, P. and McAfee, R. P.: 1988, Stability of equilibria with externalities, Quarterly Journal of
Economics 103(2), 261–77.

Lagos, R.: 2000, An alternative approach to search frictions, Journal of Political Economy
108(5), 851–73.

Lippman, S. and McCall, J.: 1986, An operational measure of liquidity, American Economic Review
76(1), 43–55.

Niederle, M. and Roth, A.: 2003, Unraveling reduces mobility in a labor market: gastroenterology
with and without a centralized match, Journal of Political Economy forthcoming.

Petrongolo, B. and Pissarides, C.: 2001, Looking into the black box: a survey of the matching
function, Journal of Economic Literature 34, 390–431.

Roth, A.: 1984, The evolution of the labor market for medical interns and residents: a case study
in game theory, Journal of Political Economy 92(6), 991–1016.

27



28

Figure 1 Matching Probabilities as a Function of Thickness
(openings = applicants)
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Figure 2 Matching Probabilities
(openings are from uniform(0,1) and candidates are from uniform( ÿ, 1))
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Figure 3a January 2000 Job Market
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Figure 3b January 2001 Job Market
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Figure 3c Job Markets 2000 and 2001
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