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1 Introduction

Optimal monetary policy is the subject of a large and fast growing body of research in

macroeconomics. A central characteristic of all existing studies is that optimal monetary

policy is derived in highly stylized environments. Typically, optimal monetary policy is

characterized for economies with a single or a very small number of deviations from the

frictionless neoclassical paradigm. A case in point are the numerous recent studies concerned

with optimal policy within the context of the two-equation, one-friction, neo-Keynesian

model without capital accumulation.1 Other cases in which the optimal monetary policy

design problem is studied within theoretical frameworks featuring a small number of rigidities

include models with distorting income taxes (Lucas and Stokey, 1983; Schmitt-Grohé and

Uribe, 2004a), and models with sticky product and factor prices (Erceg, et al., 2000). An

advantage of this stylized approach is that it facilitates understanding the ways in which

monetary policy should respond to mitigate the distortionary effects of a particular friction

in isolation.

An important drawback of studying optimal monetary policy one distortion at a time

is that highly simplified models are unlikely to provide a satisfactory account of cyclical

movements for more than just a few macroeconomic variables of interest. For this reason,

the usefulness of this strategy to produce policy advice for the real world is necessarily

limited.

The approach to optimal monetary policy that we propose in this paper departs from

the literature extant in that it is based on a rich theoretical framework capable of explaining

observed business cycle fluctuations for a wide range of nominal and real variables. Following

the lead of Kimball (1995), the model emphasizes the importance of combining nominal as

well as real rigidities in explaining the propagation of macroeconomic shocks. Specifically,

the model features four nominal frictions, sticky prices, sticky wages, money in the utility

function, and a cash-in-advance constraint on the wage bill of firms, and four sources of real

rigidities, investment adjustment costs, variable capacity utilization, habit formation, and

imperfect competition in product and factor markets. Aggregate fluctuations are driven by

supply shocks, which take the form of stochastic variations in total factor productivity, and

demand shocks stemming from exogenous innovations to the level of government purchases.

Altig et al. (2003) and Christiano, Eichenbaum, and Evans (2003) argue that the model

economy for which we seek to design optimal monetary policy can indeed explain the observed

responses of inflation, real wages, nominal interest rates, money growth, output, investment,

1Examples of this line of research include Ireland (1997), Rotemberg and Woodford (1997), Woodford
(2003), and Clarida, Gaĺı, and Gertler (2000), among many others.
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consumption, labor productivity, and real profits to productivity and monetary shocks in

the postwar United States. In this respect, the present paper aspires to be a step ahead in

the research program of generating monetary policy evaluation that is of relevance for the

actual practice of central banking.

In our quest for the optimal monetary policy scheme we restrict attention to what we call

operational interest rate rules. By an operational interest-rate rule we mean an interest-rate

rule that satisfies three requirements. First, it prescribes that the nominal interest rate is set

as a function of a few readily observable macroeconomic variables. In the tradition of Taylor

(1993), we focus on rules whereby the nominal interest rate depends on measures of inflation,

aggregate activity, and possibly its own lag. Second, the operational rule must induce an

equilibrium satisfying the zero lower bound on nominal interest rates. And third, operational

rules must render the rational expectations equilibrium unique. This last restriction closes

the door to expectations driven aggregate fluctuations.

The object that monetary policy aims to maximize in our study is the expectation of

lifetime utility of the representative household conditional on a particular initial state of the

economy. Our focus on a conditional welfare measure represents a fundamental departure

from most existing normative evaluations of monetary policy, which rank policies based

upon unconditional expectations of utility.2 As Kim et al. (2003) point out, unconditional

welfare measures ignore the welfare effects of transitioning from a particular initial state to

the stochastic steady state induced by the policy under consideration. Indeed, we document

that under plausible initial conditions, conditional welfare measures can result in different

rankings of policies than the more commonly used unconditional measure. This finding

highlights the fact that transitional dynamics matter for policy evaluation.

In our welfare evaluations, we depart from the widespread practice in the neo-Keynesian

literature on optimal monetary policy of limiting attention to models in which the nonsto-

chastic steady state is undistorted. Most often, this approach involves assuming the existence

of a battery of subsidies to production and employment aimed at eliminating the long-run

distortions originating from monopolistic competition in factor and product markets. The

efficiency of the deterministic steady-state allocation is assumed for purely computational

reasons. For it allows the use of first-order approximation techniques to evaluate welfare

accurately up to second order.3 This practice has two potential shortcomings. First, the

instruments necessary to bring about an undistorted steady state (e.g., labor and output

subsidies financed by lump-sum taxation) are empirically uncompelling. Second, it is ex

ante not clear whether a policy that is optimal for an economy with an efficient steady state

2Exceptions are Kollmann (2003) and Schmitt-Grohé and Uribe (2004b).
3This simplification was pioneered by Rotemberg and Woodford (1997).
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will also be so for an economy where the instruments necessary to engineer the nondistorted

steady state are unavailable. For these reasons, we refrain from making the efficient-steady-

state assumption and instead work with a model whose steady state is distorted.

Departing from a model whose steady state is Pareto efficient has a number of important

ramifications. One is that to obtain a second-order accurate measure of welfare it no longer

suffices to approximate the equilibrium of the model up to first order. Instead, we obtain a

second-order accurate approximation to welfare by solving the equilibrium of the model up to

second order. Specifically, we use the methodology and computer code developed in Schmitt-

Grohé and Uribe (2004c) to compute higher-order approximations to policy functions of

dynamic, stochastic models. One advantage of this numerical strategy is that because it is

based on perturbation arguments, it is particularly well suited to handle economies with a

large number of state variables like the one studied in this paper.

In the neo-Keynesian literature, a recursive form for the equilibrium version of the price-

setting equation of firms (and workers if wages are sticky) is obtained by resorting to linear

approximations at various stages of its derivation. The resulting expression is often referred

to as the expectations augmented Phillips curve. For the reasons given above, such a linear

expression is of no use for evaluating welfare in distorted economies. Therefore, in this paper

we derive a recursive representation of the exact (nonlinear) Phillips curves for price and

wage dynamics. A third consequence of working with an economy with long-run distortions

and thus not being able to work with linearized versions of the equilibrium conditions of the

model is the need to track the evolution of price and wage dispersion over time. This task

gives rise to additional state variables summarizing the degree of relative price dispersion

in the economy. We provide a recursive representation for the equilibrium law of motion of

these state variables.

The results from our numerical work suggest that in the model economy we study, the

optimal operational interest-rate rule takes the form of a real-interest-rate targeting rule. For

it features an inflation coefficient close to unity, a mute response to output, no interest-rate

smoothing, and is forward looking. The optimal rule satisfies the Taylor principle because

the inflation coefficient is greater than unity albeit very close to 1. Optimal monetary policy

calls for significant inflation volatility. This result stands in contrast with those obtained in

the related literature. The main element of the model driving the desirability of inflation

volatility is indexation of nominal factor and product prices to 1-period lagged inflation.

Under the alternative assumption of indexation to long-run inflation, the conventional result

of the optimality of inflation stability reemerges. All of the above results are robust to a

number of variations of the baseline model, including cashless economies, no habit formation,

and economies with high costs of varying capacity utilization.
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The remainder of the paper is organized in six sections. Section 2 presents the theoretical

economy and derives nonlinear recursive representations for the price and wage Phillips

curves as well as for the state variables summarizing the degree of wage and price dispersion.

Section 3 describes the calibration of the model and discusses the solution method. Section 4

provides intuition for the workings of the model by analyzing its dynamic response to supply

and demand shocks under a simple Taylor-type interest-rate feedback rule. In section 5

we derive a second-order accurate measure of welfare conditional upon the current state of

the economy. There, we also derive a second-order accurate consumption-based metric for

the welfare differences between two alternative monetary policies. The core of the paper is

contained in section 6. It computes the optimal operational interest-rate rule and performs

an extensive sensitivity analysis. Section 7 provides concluding remarks.

2 The Model

The skeleton of the model economy that we use for policy evaluation is the standard neo-

classical growth model driven by productivity and government spending shocks. In addition

the economy features four sources of nominal frictions and five real rigidities. The nominal

frictions include price and wage stickiness à la Calvo (1983) and Yun (1996) with index-

ation to past inflation, and money demands by households and firms. The real rigidities

originate from internal habit formation in consumption, monopolistic competition in factor

and product markets, investment adjustment costs, and variable costs of adjusting capacity

utilization.

To perform monetary policy evaluation, we are forced to approximate the equilibrium

conditions of the economy to an order higher than linear. To this end, we derive the exact

nonlinear recursive representation of the complete set of equilibrium conditions. Of par-

ticular interest is the recursive nonlinear representation of the equilibrium Phillips curves

for prices and wages. These representations depart from most of the existing literature,

which restricts attention to linear approximations to these functions. Another byproduct

of deriving the exact nonlinear set of equilibrium conditions is the emergence of two state

variables measuring the degree of price and wage dispersion in the economy induced by the

sluggishness in the adjustment of nominal product and factor prices. We present a recursive

representation of these state variables and track their dynamic behavior.
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2.1 Households

The economy is populated by a large representative family with a continuum of members.

Each member is a worker. Consumption and hours worked are identical across family mem-

bers. The household’s preferences are defined over per capita consumption, ct, per capita

labor effort, ht, and per capita holdings of real money balances, mh
t , and are described by

the utility function

E0

∞∑
t=0

βtU(ct − bct−1, ht, m
h
t ), (1)

where Et denotes the mathematical expectations operator conditional on information avail-

able at time t, β ∈ (0, 1) represents a subjective discount factor, and U is a period utility

index assumed to be strictly increasing in its first and third arguments, strictly decreasing

in its second argument, and strictly concave. Preferences display internal habit formation,

measured by the parameter b ∈ [0, 1). The consumption good is assumed to be a composite

made of a continuum of differentiated goods, cit indexed by i ∈ [0, 1] via the aggregator

ct =

[∫ 1

0

cit
1−1/ηdi

]1/(1−1/η)

, (2)

where the parameter η > 1 denotes the intratemporal elasticity of substitution across differ-

ent varieties of consumption goods.

For any given level of consumption of the composite good, purchases of each individual

variety of goods i ∈ [0, 1] in period t must solve the dual problem of minimizing total

expenditure,
∫ 1

0
Pitcitdi, subject to the aggregation constraint (2), where Pit denotes the

nominal price of a good of variety i at time t. The demand for goods of variety i is then

given by

cit =

(
Pit

Pt

)−η

ct, (3)

where Pt is a nominal price index given by

Pt ≡
[∫ 1

0

P 1−η
it di

] 1
1−η

. (4)

This price index has the property that the minimum cost of a bundle of intermediate goods

yielding ct units of the composite good is given by Ptct.

Labor decisions are made by a central authority within the household, a union, which

supplies labor monopolistically to a continuum of labor markets of measure 1 indexed by j ∈
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[0, 1].4 In each labor market j, the union faces a demand for labor given by
(
W j

t /Wt

)−η̃
hd

t .

Here W j
t denotes the nominal wage charged by the union in labor market j at time t, Wt is

an index of nominal wages prevailing in the economy, and hd
t is a measure of aggregate labor

demand by firms. We postpone a formal derivation of this labor demand function until we

consider the firm’s problem. In each particular labor market, the union takes Wt and hd
t

as exogenous. The case in which the union takes aggregate labor variables as endogenous

can be interpreted as an environment with highly centralized labor unions. Higher-level

labor organizations play an important role in some European and Latin American countries,

but are less prominent in the United States. Given the wage charged in each labor market

j ∈ [0, 1], the union is assumed to supply enough labor, hj
t , to satisfy demand. That is,

hj
t =

(
wj

t

wt

)−η̃

hd
t , (5)

where wj
t ≡ W j

t /Pt and wt ≡ Wt/Pt. In addition, the total number of hours allocated to

the different labor markets must satisfy the resource constraint ht =
∫ 1

0
hj

tdj. Combining this

restriction with equation (5), we obtain

ht = hd
t

∫ 1

0

(
wj

t

wt

)−η̃

dj. (6)

The household is assumed to own physical capital, kt, which accumulates according to

the following law of motion

kt+1 = (1 − δ)kt + it

[
1 − S

(
it
it−1

)]
, (7)

where it denotes gross investment and δ is a parameter denoting the rate of depreciation of

physical capital. The function S introduces investment adjustment costs and is assumed to

satisfy S(1) = S ′(1) = 0 and S ′′(1) > 0. These assumptions imply the absence of adjustment

costs up to first order in the vicinity of the deterministic steady state. Owners of physical

capital can control the intensity at which this factor is utilized. Formally, we let ut measure

capacity utilization in period t. We assume that using the stock of capital with intensity

ut entails a cost of a(ut)kt units of the composite final good. The function a is assumed to

satisfy a(1) = 0, and a′(1), a′′(1) > 0. Both the specification of capital adjustment costs

4This setup departs slightly from most existing expositions of models with nominal wage inertia. It
avoids the need to assume separability of preferences in leisure and consumption to ensure homogeneity of
consumption across households.
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and capacity utilization costs are somewhat peculiar. More standard formulations assume

that adjustment costs depend on the level of investment rather than on its growth rate, as

is assumed here. Also, costs of capacity utilization typically take the form of a higher rate

of depreciation of physical capital. The modeling choice here is guided by the need to fit the

response of investment and capacity utilization to a monetary shock in the US economy. For

further discussion of this point, see Christiano, Eichenbaum, and Evans (2003, section 6.1).

Households rent the capital stock to firms at the real rental rate rk
t per effective unit

of capital. Thus, total income stemming from the rental of capital is given by rk
t utkt. The

investment good is assumed to be a composite good made with the aggregator function (2).

Thus, the demand for each intermediate good i ∈ [0, 1] for investment purposes, iit, is then

given by iit = it (Pit/Pt)
−η .

Households have access to a complete set of nominal state-contingent assets. Specifically,

each period t ≥ 0, consumers can purchase any desired state-contingent nominal payment

Xh
t+1 in period t+ 1 at the dollar cost Etrt,t+1X

h
t+1. The variable rt,t+1 denotes a stochastic

nominal discount factor between periods t and t + 1. The household’s period-by-period

budget constraint is given by:

Etrt,t+1x
h
t+1+ct+it+m

h
t +a(ut)kt =

xh
t

πt

+hd
t

∫ 1

0

wj
t

(
wj

t

wt

)−η̃

dj+rk
t utkt+φt−τt+mh

t−1

πt

. (8)

The variable xh
t /πt ≡ Xh

t /Pt denotes the real payoff in period t of nominal state-contingent

assets purchased in period t−1. The variable φt denotes profits received from the ownership

of firms, τt denotes lump-sum taxes, and πt ≡ Pt/Pt−1 denotes the gross rate of consumer-

price inflation.

We introduce wage stickiness in the model by assuming that each period the household

(or union) cannot set the nominal wage optimally in a fraction α̃ ∈ [0, 1) of randomly chosen

labor markets. In these markets, the wage rate is indexed to the previous period’s consumer-

price inflation according to the rule W j
t = W j

t−1π
χ̃
t−1, where χ̃ is a parameter measuring the

degree of wage indexation. When χ̃ equals 0, there is no wage indexation. When χ̃ equals

1, there is full wage indexation to past consumer price inflation. In general, χ̃ can take any

value between 0 and 1.

The household chooses processes for ct, ht, x
h
t+1, w

j
t , kt+1, it, m

h
t , and ut so as to maximize

the utility function (1) subject to (6)-(8), the wage stickiness friction, and a no-Ponzi-game

constraint, taking as given the processes wt, r
k
t , h

d
t , rt,t+1, πt, φt, and τt and the initial

conditions xh
0 , k0, and mh

−1. Of course, the household’s optimal plan must satisfy con-

straints (6)-(8). In addition, letting βtλtwt/µ̃t, β
tqtλt, and βtλt denote Lagrange multipliers
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associated with constraints (6), (7), and (8), respectively, the first-order conditions with

respect to ct, x
h
t+1, ht, kt+1, it, ut, m

h
t , and wj

t , in that order, are given by

Uc(ct − bct−1, ht, m
h
t ) − bβEtUc(ct+1 − bct, ht+1, m

h
t+1) = λt, (9)

λtrt,t+1 = βλt+1
Pt

Pt+1
(10)

−Uh(ct − bct−1, ht, m
h
t ) =

λtwt

µ̃t
, (11)

λtqt = βEtλt+1

[
rk
t+1ut+1 − a(ut+1) + qt+1(1 − δ)

]
, (12)

λt = λtqt

[
1 − S

(
it
it−1

)
−

(
it
it−1

)
S ′
(

it
it−1

)]
+ βEtλt+1qt+1

(
it+1

it

)2

S ′
(
it+1

it

)
(13)

rk
t = a′(ut) (14)

λt = Um(ct − bct−1, ht, m
h
t ) + βEt

λt+1

πt+1

. (15)

wj
t =

{
w̃t if wj

t is set optimally in t

wj
t−1π

χ̃
t−1/πt otherwise

where w̃t denotes the real wage prevailing in the 1 − α̃ labor markets in which the union

can set wages optimally in period t. Note that because the labor demand curve faced by

the union is identical across all labor markets, and because the cost of supplying labor is

the same for all markets, one can assume that wage rates and employment will be identical

across all labor markets updating wages in a given period. The real wage w̃t must satisfy

0 = Et

∞∑
s=0

(βα̃)sλt+s

(
w̃t

wt+s

)−η̃

hd
t+s

s∏
k=1

(
πt+k

πχ̃
t+k−1

)η̃


 η̃ − 1

η̃

w̃t∏s
k=1

(
πt+k

πχ̃
t+k−1

) − wt+s

µ̃t+s


 .

This expression states that in labor markets in which the wage rate is reoptimized in period

t, the real wage is set so as to equate the union’s future expected average marginal revenue to

the average marginal cost of supplying labor. The union’s marginal revenue s periods after

its last wage reoptimization is given by η̃−1
η̃
w̃t

∏s
k=1

(
πχ̃

t+k−1

πt+k

)
. Here, η̃/(η̃ − 1) represents

the markup of wages over marginal cost of labor that would prevail in the absence of wage

stickiness. The third factor in the expression for marginal revenue reflects the fact that

as time goes by without a chance to reoptimize, the real wage declines as the price level

increases when wages are imperfectly indexed to past inflation. In turn, the marginal cost
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of supplying labor is given by the marginal rate of substitution between consumption and

leisure, or −Uht+s

λt+s
= wt+s

µ̃t+s
. The variable µ̃t is a wedge between the disutility of labor and

the average real wage prevailing in the economy. Thus, µ̃t can be interpreted as the average

markup that unions impose on the labor market. The weights used to compute averages are

decreasing in time and increasing in the amount of labor supplied to the market.

We wish to write the wage-setting equation in recursive form. To this end, define

f 1
t = Et

∞∑
s=0

(βα̃)sλt+s

(
wt+s

w̃t

)η̃

hd
t+s

s∏
k=1

(
πt+k

πχ̃
t+k−1

)η̃−1

and

f 2
t = w̃−η̃

t Et

∞∑
s=0

(βα̃)sλt+s

µ̃t+s
w1+η̃

t+s h
d
t+s

s∏
k=1

(
πt+k

πχ̃
t+k−1

)η̃

.

One can express f 1
t and f 2

t recursively as

f 1
t = λt

(
wt

w̃t

)η̃

hd
t + α̃βEt

(
πt+1

πχ̃
t

)η̃−1 (
w̃t+1

w̃t

)η̃

f 1
t+1, (16)

f 2
t =

λt

µ̃t
wt

(
wt

w̃t

)η̃

hd
t + α̃βEt

(
πt+1

πχ̃
t

)η̃ (
w̃t+1

w̃t

)η̃

f 2
t+1. (17)

With these definitions at hand, the wage-setting equation becomes

0 = (1 − η̃)w̃tf
1
t + η̃f 2

t . (18)

The household’s optimality conditions imply a liquidity function featuring a negative

relation between real balances and the short-term nominal interest rate. To see this, we

first note that the absence of arbitrage opportunities in financial markets requires that Rt

be equal to the reciprocal of the price in period t of a nominal security that pays one unit

of currency in every state of period t+ 1. Formally, 1/Rt = Etrt,t+1. This relation together

with the household’s optimality condition (10) implies that

λt = βRtEt
λt+1

πt+1
, (19)

which is a standard Euler equation for pricing nominally risk-free assets. Now combining

this expression with equations (9) and (15) we obtain

Um(ct − bct−1, ht, m
h
t )

Uc(ct − bct−1, ht, mh
t ) − bβEtUc(ct+1 − bct, ht+1, mh

t+1)
= 1 − 1

Rt

.
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The right-hand side of this expression represents the opportunity cost of holding money,

which is an increasing function of the nominal interest rate. The left-hand side is the marginal

rate of substitution between consumption and real money balances. Note that the presence

of internal habit formation implies that the demand for money depends not only on current

but also past and future expected consumption. In addition, if preferences are nonseparable

in leisure and either consumption or real balances, then hours worked will also feature in the

liquidity preference function.

2.2 Firms

Each variety of final goods is produced by a single firm in a monopolistically competitive

environment. Each firm i ∈ [0, 1] produces output using as factor inputs capital services, kit,

and labor services, hit. The production technology is given by

ztF (kit, hit) − ψ,

where the function F is assumed to be homogenous of degree one, concave, and strictly in-

creasing in both arguments. The variable zt denotes an aggregate, exogenous, and stochastic

productivity shock. The parameter ψ > 0 introduces fixed costs of operating a firm in each

period. It implies that the production function exhibits increasing returns to scale. We

model fixed costs to ensure a realistic profit-to-output ratio in steady state.

Aggregate demand for good i, which we denote by yit, is given by

yit = (Pit/Pt)
−ηyt,

where

yt ≡ ct + it + gt + a(ut)kt, (20)

denotes aggregate absorption. The variable gt denotes government consumption of the com-

posite good in period t.

We rationalize a demand for money by firms by imposing that wage payments are subject

to a cash-in-advance constraint of the form:

mf
it ≥ νwthit, (21)

where mf
it denotes the demand for real money balances by firm i in period t and ν ≥ 0 is a

parameter indicating the fraction of the wage bill that must be backed with monetary assets.
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The period-by-period budget constraint of firm i is given by

Etrt,t+1x
f
it+1 +mf

it + rk
t kit + wthit + φit =

xf
it +mf

it−1

πt
+

(
Pit

Pt

)1−η

yt,

where Etrt,t+1x
f
it+1 denotes the total real cost of one-period state-contingent assets that the

firm purchases in period t in terms of the composite good. The variable φit denotes real

dividend payments that firm i makes to households in period t. Implicit in this specification

of the firm’s budget constraint is the assumption that firms rent capital services from a

centralized market.5 We assume that the firm must satisfy demand at the posted price.

Formally, we impose

ztF (kit, hit) − ψ ≥
(
Pit

Pt

)−η

yt. (22)

The objective of the firm is to choose contingent plans for Pit, hit, kit, x
f
it+1, and mf

it so as

to maximize the present discounted value of dividend payments, given by

Et

∞∑
s=0

rt,t+sPt+sφit+s,

where rt,t+s ≡ ∏s
k=1 rt+k−1,t+k, for s ≥ 1, denotes the stochastic nominal discount factor

between t and t+ s, and rt,t ≡ 1. Firms are assumed to be subject to a borrowing constraint

that prevents them from engaging in Ponzi games.

Throughout our analysis, we will focus on equilibria featuring a strictly positive nominal

interest rate. This implies that the cash-in-advance constraint (21) will always bind. Then,

letting rt,t+sPt+smcit+s be the Lagrange multiplier associated with constraint (22), the first-

order conditions of the firm’s maximization problem with respect to capital and labor services

are, respectively,

mcitztFh(kit, hit) = wt

[
1 + ν

Rt − 1

Rt

]
(23)

and

mcitztFk(kit, hit) = rk
t . (24)

It is clear from these optimality conditions that the presence of a working-capital requirement

introduces a financial cost of labor that is increasing in the nominal interest rate. We note

5This is a common assumption in the related literature (e.g., Christiano et al., 2003; Kollmann, 2003;
Carlstrom and Fuerst, 2003; and Rotemberg and Woodford, 1992). A polar assumption is that capital is
sector specific, as in Woodford (2003, chapter 5.3) and Sveen and Weinke (2003). Both assumptions are
clearly extreme. A more realistic treatment of investment dynamics would incorporate a mix of firm-specific
and homogeneous capital.
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also that because all firms face the same factor prices and because they all have access to the

same production technology with the function F being linearly homogeneous, marginal costs,

mcit, are identical across firms. Indeed, because the above first-order conditions hold for all

firms independently of whether they are allowed to reset prices optimally or not, marginal

costs are identical across all firms in the economy.

Clearly, because rt,t+s represents both the firm’s stochastic discount factor and the market

pricing kernel for financial assets, and because the firm’s objective function is linear in asset

holdings, it follows that any asset accumulation plan of the firm satisfying the no-Ponzi

constraint is optimal. Suppose, without loss of generality, that the firm manages its portfolio

so as to ensure that its financial position at the beginning of each period is nil. Formally,

assume that xf
it+1 +mf

it = 0 at all dates and states. Note that this financial strategy makes

xf
it+1 state-noncontingent. In this case, distributed dividends take the form

φit =

(
Pit

Pt

)1−η

yt − rk
t kit − wthit − (1 −R−1

t )mf
it. (25)

For this expression to hold in period zero, we impose the initial condition xf
i0 + mf

i−1 = 0.

The last term on the right-hand side of this expression represents the firm’s financial costs

associated with the cash-in-advance constraint on wages. This financial cost is increasing

in the opportunity cost of holding money, 1 − R−1
t , which is an increasing function of the

short-term nominal interest rate Rt.

Prices are assumed to be sticky à la Calvo (1983) and Yun (1996). Specifically, each

period t ≥ 0 a fraction α ∈ [0, 1) of randomly picked firms is not allowed to optimally set

the nominal price of the good they produce. Instead, these firms index their prices to past

inflation according to the rule Pit = Pit−1π
χ
t−1. The interpretation of the parameter χ is the

same as that of its wage counterpart χ̃. The remaining 1 − α firms choose prices optimally.

Consider the price-setting problem faced by a firm that gets to reoptimize the price in period

t. This price, which we denote by P̃t, is set so as to maximize the expected present discounted

value of profits. That is, P̃t maximizes the following Lagrangian:

L = Et

∞∑
s=0

rt,t+sPt+sα
s



(
P̃t

Pt

)1−η s∏
k=1

(
πχ

t+k−1

πt+k

)1−η

yt+s − rk
t+skit+s − wt+shit+s[1 + ν(1 − R−1

t+s)]

+mcit+s

[
zt+sF (kit+s, hit+s) − ψ −

(
P̃t

Pt

)−η s∏
k=1

(
πχ

t+k−1

πt+k

)−η

yt+s

]}
.

12



The first-order condition with respect to P̃t is

Et

∞∑
s=0

rt,t+sPt+sα
s

(
P̃t

Pt

)−η s∏
k=1

(
πχ

t+k−1

πt+k

)−η

yt+s

[
η − 1

η

(
P̃t

Pt

)
s∏

k=1

(
πχ

t+k−1

πt+k

)
−mcit+s

]
= 0.

(26)

According to this expression, optimizing firms set nominal prices so as to equate average

future expected marginal revenues to average future expected marginal costs. The weights

used in calculating these averages are decreasing with time and increasing in the size of the

demand for the good produce by the firm. Under flexible prices (α = 0), the above optimality

condition reduces to a static relation equating marginal costs to marginal revenues period

by period.

It will prove useful to express this first-order condition recursively. To that end, let

x1
t ≡ Et

∞∑
s=0

rt,t+sα
syt+smcit+s

(
P̃t

Pt

)−η−1 s∏
k=1

(
πχ

t+k−1

π
(1+η)/η
t+k

)−η

and

x2
t ≡ Et

∞∑
s=0

rt,t+sα
syt+s

(
P̃t

Pt

)−η s∏
k=1

(
πχ

t+k−1

π
η/(η−1)
t+k

)1−η

.

Express x1
t and x2

t recursively as

x1
t = ytmctp̃

−η−1
t + αβEt

λt+1

λt

(p̃t/p̃t+1)
−η−1

(
πχ

t

πt+1

)−η

x1
t+1, (27)

x2
t = ytp̃

−η
t + αβEt

λt+1

λt

(
πχ

t

πt+1

)1−η (
p̃t

p̃t+1

)−η

x2
t+1. (28)

Then we can write the first-order condition with respect to P̃t as

ηx1
t = (η − 1)x2

t . (29)

The labor input used by firm i ∈ [0, 1], denoted hit, is assumed to be a composite made of a

continuum of differentiated labor services, hj
it indexed by j ∈ [0, 1]. Formally,

hit =

[∫ 1

0

hj
it

1−1/η̃
dj

]1/(1−1/η̃)

, (30)

where the parameter η̃ > 1 denotes the intratemporal elasticity of substitution across dif-
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ferent types of activities. For any given level of hit, the demand for each variety of labor

j ∈ [0, 1] in period t must solve the dual problem of minimizing total labor cost,
∫ 1

0
W j

t h
j
itdj,

subject to the aggregation constraint (30), where W j
t denotes the nominal wage rate paid to

labor of variety j at time t. The optimal demand for labor of type j is then given by

hj
it =

(
W j

t

Wt

)−η̃

hit, (31)

where Wt is a nominal wage index given by

Wt ≡
[∫ 1

0

W j
t

1−η̃
dj

] 1
1−η̃

. (32)

This wage index has the property that the minimum cost of a bundle of intermediate labor

inputs yielding hit units of the composite labor input is given by Wthit.

2.3 The Government

Government expenditure is financed via lump-sum taxes and seignorage

gt = τt +mt − mt−1

πt
,

where mt = mh
t +

∫ 1

0
mf

itdi denotes real money balances and gt denotes per capita government

spending on a composite good produced via the aggregator function given in equation (2).

We assume that the government minimizes the cost of producing gt. Thus, we have that

the public demand for a particular variety i ∈ [0, 1] of differentiated goods, git, is given by

git = (Pit/Pt)
−η gt.

Monetary policy is given by an interest-rate feedback rule of the form

R̂t = απEtπ̂t−i + αyEtŷt−i + αRR̂t−1, (33)

where a hat over a variable denotes the log-deviation of that variable from its deterministic

steady-state level (i.e., for any xt, x̂t ≡ ln(xt/x), where x denotes the non-stochastic steady-

state value of xt). The parameter i allows for backward-looking rules (i = 1), current-looking

rules (i = 0), and forward-looking rules (i = −1). We assume that in period 0 the government

chooses the policy quadruple (απ, αy, αR, i) so as to maximize the lifetime utility of the

representative household. The government is assumed to be endowed with a commitment

technology that allows it to maintain throughout time the policy decision it makes in period

14



0. As a result, the announced policy enjoys full credibility on the part of the private sector.

The family of interest rate feedback rules defined by (33) has the property of being

easily implementable. For all of the variables featured in the rule are generally available

macroeconomic indicators. We note that the type of monetary policy rules that are typically

analyzed in the related literature require no less information on the part of the policymaker

than the feedback rule given in equation (33). In effect, the rules most commonly studied

feature an output gap measure defined as deviations of output from the level that would

obtain in the absence of nominal rigidities. Computing the flexible-price level of aggregate

activity requires the policymaker to know not just the deterministic steady state of the

economy, but also the joint distribution of all the shocks driving the economy and the

current realizations of such shocks.

2.4 Aggregation and Equilibrium

We limit attention to a symmetric equilibrium in which all firms that get to change their

price optimally at a given time indeed choose the same price. It then follows from (4) that

the aggregate price index can be written as P 1−η
t = α(Pt−1π

χ
t−1)

1−η + (1− α)P̃ 1−η
t . Dividing

this expression through by P 1−η
t one obtains

1 = απη−1
t π

χ(1−η)
t−1 + (1 − α)p̃1−η

t . (34)

2.4.1 Market Clearing in the Final Goods Market

Naturally, the set of equilibrium conditions includes a resource constraint. Such a restriction

is typically of the type ztF (kt, ht)−ψ = ct + it + gt +a(ut)kt. In the present model, however,

this restriction is not valid. This is because the model implies relative price dispersion across

varieties. This price dispersion, which is induced by the assumed nature of price stickiness,

is inefficient and entails output loss. To see this, consider the following expression stating

that supply must equal demand at the firm level:

ztF (kit, hit) − ψ = (ct + it + gt + a(ut)kt)

(
Pit

Pt

)−η

.

Integrating over all firms and taking into account that (a) the capital-labor ratio is common

across firms, (b) that the aggregate demand for the composite labor input, hd
t , satisfies

hd
t =

∫ 1

0

hitdi,
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and that (c) the aggregate effective level of capital, utkt satisfies

utkt =

∫ 1

0

kitdi,

we obtain

hd
t ztF

(
utkt

hd
t

, 1

)
− ψ = (ct + it + gt + a(ut)kt)

∫ 1

0

(
Pit

Pt

)−η

di.

Let st ≡
∫ 1

0

(
Pit

Pt

)−η

di. Then we have

st =

∫ 1

0

(
Pit

Pt

)−η

di

= (1 − α)

(
P̃t

Pt

)−η

+ (1 − α)α

(
P̃t−1π

χ
t−1

Pt

)−η

+ (1 − α)α2

(
P̃t−2π

χ
t−1π

χ
t−2

Pt

)−η

+ . . .

= (1 − α)

∞∑
j=0

αj

(
P̃t−j

∏j
s=1 π

χ
t−j−1+s

Pt

)−η

= (1 − α)p̃−η
t + α

(
πt

πχ
t−1

)η

st−1.

Summarizing, the resource constraint in the present model is given by the following two

expressions

ztF (utkt, h
d
t ) − ψ = (ct + it + gt + a(ut)kt)st (35)

st = (1 − α)p̃−η
t + α

(
πt

πχ
t−1

)η

st−1, (36)

with s−1 given. The state variable st summarizes the resource costs induced by the inefficient

price dispersion featured in the Calvo model in equilibrium. Three observations are in order

about the price dispersion measure st. First, st is bounded below by 1. That is, price

dispersion is always a costly distortion in this model. To see that st is bounded below by 1,

let vit ≡ (Pit/Pt)
1−η. It follows from the definition of the price index given in equation (4) that[∫ 1

0
vit

]η/(η−1)

= 1. Also, by definition we have st =
∫ 1

0
v

η/(η−1)
it . Then, taking into account

that η/(η − 1) > 1, Jensen’s inequality implies that 1 =
[∫ 1

0
vit

]η/(η−1)

≤ ∫ 1

0
v

η/(η−1)
it = st.

Second, in an economy where the non-stochastic level of inflation is nil (i.e., when π = 1)

or where prices are fully indexed to any variable ωt with the property that its deterministic

steady-state value equals the deterministic steady-state value of inflation (i.e., ω = π), the

variable st follows, up to first order, the univariate autoregressive process ŝt = αŝt−1. In these

cases, the price dispersion measure st has no first-order real consequences for the stationary

16



distribution of any endogenous variable of the model. This means that studies that restrict

attention to linear approximations to the equilibrium conditions are justified to ignore the

variable st if the model features no price dispersion in the deterministic steady state. But st

matters up to first order when the deterministic steady state features movements in relative

prices across goods varieties. More importantly, the price dispersion variable st must be

taken into account if one is interested in higher-order approximations to the equilibrium

conditions even if relative prices are stable in the deterministic steady state. Omitting st

in higher-order expansions would amount to leaving out certain higher-order terms while

including others. Finally, when prices are fully flexible, α = 0, we have that p̃t = 1 and

thus st = 1. (Obviously, in a flexible-price equilibrium there is no price dispersion across

varieties.)

As discussed above, equilibrium marginal costs and capital-labor ratios are identical

across firms. Therefore, one can aggregate the firm’s optimality conditions with respect to

labor and capital, equations (23) and (24), as

mctztFh(utkt, h
d
t ) = wt

[
1 + ν

Rt − 1

Rt

]
(37)

and

mctztFk(utkt, h
d
t ) = rk

t . (38)

2.4.2 Market Clearing in the Labor Market

It follows from equation (31) that the aggregate demand for labor of type j ∈ [0, 1], which

we denote by hj
t ≡

∫ 1

0
hj

itdi, is given by

hj
t =

(
W j

t

Wt

)−η̃

hd
t , (39)

where hd
t ≡ ∫ 1

0
hitdi denotes the aggregate demand for the composite labor input. Taking

into account that at any point in time the nominal wage rate is identical across all labor

markets at which wages are allowed to change optimally, we have that labor demand in each

of those markets is

h̃t =

(
w̃t

wt

)−η̃

hd
t . (40)
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Combining this expression with equation (39), describing the demand for labor of type

j ∈ [0, 1], and with the time constraint (6), which must hold with equality, we can write

ht = (1 − α̃)hd
t

∞∑
s=0

α̃s

(
W̃t−s

∏s
k=1 π

χ̃
t+k−s−1

Wt

)−η̃

Let s̃t ≡ (1− α̃)
∑∞

s=0 α̃
s

(
W̃t−s

∏s
k=1 πχ̃

t+k−s−1

Wt

)−η̃

. The variable s̃t measures the degree of wage

dispersion across different types of labor. The above expression can be written as

ht = s̃th
d
t . (41)

The state variable s̃t evolves over time according to

s̃t = (1 − α̃)

(
w̃t

wt

)−η̃

+ α̃

(
wt−1

wt

)−η̃
(

πt

πχ̃
t−1

)η̃

s̃t−1. (42)

We note that because all job varieties are ex-ante identical, any wage dispersion is inef-

ficient. This is reflected in the fact that s̃t is bounded below by 1. The proof of this

statement is identical to that offered earlier for st. To see this, note that s̃t can be written

as s̃t =
∫ 1

0

(
Wit

Wt

)−η̃

di. This inefficiency introduces a wedge that makes the number of hours

supplied to the market, ht, larger than the number of productive units of labor input, hd
t .

In an environment without long-run wage dispersion, the dead-weight loss created by wage

dispersion is nil up to first order. Formally, a first-order approximation of the law of motion

of s̃t yields a univariate autoregressive process of the form ˆ̃st = α̃ˆ̃st−1, as long as there is

no wage dispersion in the deterministic steady state. When wages are fully flexible, α̃ = 0,

wage dispersion disappears, and thus s̃t equals 1.

It follows from our definition of the wage index given in equation (32) that in equilibrium

the real wage rate must satisfy

w1−η̃
t = (1 − α̃)w̃1−η̃

t + α̃w1−η̃
t−1

(
πχ̃

t−1

πt

)1−η̃

. (43)

A stationary competitive equilibrium is a set of stationary processes ct, ht, it, kt+1, m
h
t ,

λt, Rt, πt, wt, µ̃t, qt, r
k
t , ut, f

1
t , f 2

t , w̃t, h
d
t , h̃t, yt, mct, x

1
t , x

2
t , p̃t, st, s̃t satisfying (7), (9), (11)-

(20), (27)-(29), (33)-(38), and (40)-(43), given exogenous stochastic processes {gt, zt}∞t=0 and

initial conditions c−1, w−1, s−1, s̃−1, π−1, k0, i−1, R−1, and, in the case of backward-looking

interest-rate rules, y−1.
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3 Solution Method, Functional Forms, and Calibration

The above set of equilibrium conditions can be written as

Etf(yt+1, yt, xt+1, xt) = 0, (44)

where the vector xt contains the predetermined, or state variables and is of size nx, and

the vector yt contains the nonpredetermined variables of the model and is of size ny. Let

n = nx +ny. The state vector xt can be partitioned as xt = [x1
t ; x

2
t ]
′. The vector x1

t consists

of endogenous predetermined state variables and the vector x2
t consists of exogenous state

variables. Specifically, we assume that x2
t follows the exogenous stochastic process given by

x2
t+1 = Λx2

t + η̃εσεt+1, (45)

where both the vector x2
t and the innovation εt are of order nε × 1. The vector εt is assumed

to have a bounded support and to be independently and identically distributed, with mean

zero and variance/covariance matrix I. The scalar σ ≥ 0 and the nε × nε matrix η̃ε are

known parameters. All eigenvalues of the matrix Λ are assumed to have modulus less than

one. The solution to the model given in equation (44) is of the form:

yt = g(xt, σ)

and

xt+1 = h(xt, σ) + ηεσεt+1,

where g maps Rnx ×R+ into Rny and h maps Rnx ×R+ into Rnx . The matrix ηε is of order

nx × nε and is given by

ηε =

[
∅
η̃ε

]
.

We use the methodology and computer code developed in Schmitt-Grohé and Uribe (2004c)

to compute a second-order approximation of the functions g and h around the non-stochastic

steady state, xt = x and σ = 0.6 The deterministic steady state of the model, (x, y), is the

solution to the system f(y, y, x, x) = 0.

6Matlab code that implements the second-order approximation technique proposed in Schmitt-Grohé and
Uribe (2004c) is available on line at www.econ.duke.edu/~uribe.
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3.1 Functional Forms

We take from Christiano, Eichenbaum, and Evans (2003) the following functional forms for

the period utility function, the production function, the investment adjustment cost function,

and the map relating output loss to the level of capacity utilization:

U = ln(ct − bct−1) − φ0

2
h2

t + φ1
mh

t
1−σm

1 − σm
,

F (k, h) = kθh1−θ,

S
(

it
it−1

)
=
κ

2

(
it
it−1

− 1

)2

,

and

a(u) = γ1(u− 1) +
γ2

2
(u− 1)2.

We note that because the function a(u) is assumed to be quadratic, the second-order ex-

pansion of the right-hand side of the optimality condition (14)—i.e., the second-order ex-

pansion of a′(ut)—is linear in u. Thus, potential second-order effects stemming from the

curvature of a′(u) are left out. We also experimented with the alternative specification

a(u) =
γ2
1

γ2
[eγ2/γ1(u−1)−1], which allows for curvature in a′(u). As in the case of the benchmark

specification, however, we picked a two-parameter functional form because the calibration of

Christiano et al. upon which we draw heavily, provides only independent information about

the first and second derivatives of the capacity utilization cost function. Evaluated at the

steady-state value of the degree of capacity utilization (u = 1), this function as well as its

first and second derivatives take the same values as the benchmark quadratic specification.

Moreover, this functional form has the property that all of its derivatives have a constant

elasticity at the steady state equal to γ2/γ1. For the benchmark values assigned to γ1 and

γ2, the welfare consequences of monetary policy reported below are identical under both

specifications of the capacity utilization cost function.

3.2 Calibration

The time unit is meant to be one quarter. The calibration follows Christiano, Eichenbaum,

and Evans (2003) and is summarized in table 1. We restrict the steady-state labor input, hd,

and the steady-state capacity utilization rate, u, to unity and steady-state profits to zero.

The discount factor takes the value of 3 percent per annum. The share of capital in value

added is assumed to be 36 percent. The depreciation rate of capital is set at 10 percent

per year. The fraction of the wage bill that is subject to a working-capital constraint is
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Table 1: Calibration

Parameter Value Description
β 0.9926 Subjective discount factor
θ 0.36 Share of capital in value added
ψ 0.5827 Fixed cost parameter
δ 0.025 Depreciation rate
ν 1 Fraction of wage bill subject to a CIA constraint
η 6 Price-elasticity of demand for a specific good variety
η̃ 21 Wage-elasticity of demand for a specific labor variety
1 − α 0.4 Fraction of firms setting prices optimally each quarter
1 − α̃ 0.36 Fraction of labor markets setting wages optimally each quarter
b 0.65 Degree of habit persistence
φ0 1.1196 Preference parameter
φ1 0.5393 Preference parameter
σm 10.62 Preference parameter
κ 2.48 Parameter governing investment adjustment costs
χ 1 Degree of price indexation
χ̃ 1 Degree of wage indexation
γ1 0.0324 Parameter governing capacity adjustment costs
γ2 0.000324 Parameter governing capacity adjustment costs
π∗ 1.0103 Gross inflation target
z 1 Steady-state value of technology shock
λz 0.979 Serial correlation of the log of the technology shock
ηz 0.0072 Coefficient multiplying the innovation to the log of technology
g 0.5244 Steady-state value of government spending
λg 0.96 Serial correlation of the log of government spending
ηg 0.02 Coefficient multiplying the innovation to the log of gov. spending
σ 0.18 Parameter scaling the std. deviations of exogenous shocks
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assumed to be 100 percent. Households are assumed to hold 44 percent of the aggregate

money supply in the steady state. The remaining 56 percent of money balances is held by

firms. We set the long-run inflation rate to 4.2 percent per year which is consistent with

the average growth rate of the U.S. GDP deflator over the period 1960-1998. We assume

full indexation in prices and wages to the previous period’s price inflation. That is, we set

χ = χ̃ = 1. The degree of nominal rigidity is calibrated so that product prices change on

average every 2.5 quarters and nominal wages every 2.8 quarters. Steady state markups are

assumed to be 20 percent in product markets and 5 percent in labor markets. The degree of

habit formation, defined by the parameter b, is set at 0.65. The elasticity of the subutility

function that depends on real balances is assigned a value of -9.62, that is, σm = 10.62. The

steady-state elasticity of the marginal capacity utilization cost, a′′(1)/a′(1), is calibrated to

be 0.01. The parameter κ determining the degree of investment adjustment costs takes the

value 2.48.

Following Christiano and Eichenbaum (1992), the steady-state share of government pur-

chases in value added is assumed to be 18 percent. The processes describing the evolution

of the productivity shock and public spending are assumed to be univariate and first-order

autoregressive in logs. Formally,

ln zt+1 = λz ln zt + σηzε
z
t+1

and

ln(gt+1/g) = λg ln(gt/g) + σηgε
g
t+1.

The innovations εzt and εgt are assumed to be i.i.d. with mean zero and standard deviation

equal to one. In the notation of equation (45), we have that Λ = [λg 0; 0 λz] and η̃ε =

[ηg 0; 0 ηz]. King and Rebelo (1999) calibrate the productivity shock process by estimating

an AR(1) representation for the Solow residual. We set λz to 0.979, which corresponds to

their estimate of the first-order serial correlation of the Solow residual. As in Christiano

and Eichenbaum (1992), we set λg equal to 0.96. We calibrate the parameter ηz to 0.0072

and the parameter ηg to 0.02. These values correspond to the volatility of the innovation to

the Solow residual process estimated by King and Rebelo (1999) and to the volatility of the

innovation to the government purchases process estimated by Christiano and Eichenbaum

(1992), respectively.

To complete the calibration of the exogenous driving force process, it remains to pick a

value for the parameter σ, which scales the volatility of the disturbances εzt and εgt . Following

the calibrations of King and Rebelo (1999) and Christiano and Eichenbaum (1992) would

imply setting σ to unity. However, for this value of the scaling parameter the Christiano-
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Eichenbaum-Evans model studied here implies an output volatility equal to 10 percent when

monetary policy is assumed to take the form of a simple Taylor rule, R̂t = 1.5π̂t. Cooley

and Prescott (1995) estimate that the volatility of the cyclical component of U.S. output in

the postwar era is 1.72 percent, which is about six times smaller than the value implied by

the model. One reason why the Christiano-Eichenbaum-Evans model implies such a high

output volatility is that the assumed costs of varying the capital capacity utilization are

modest, which allows firms to adjust the intensity at which they utilize the existing stock

of capital fairly easily over the business cycle. We therefore set σ to 0.18, which brings the

volatility of output down to 1.72 percent under a simple Taylor rule. We note however, that

because the deviations of our welfare measure from steady state are proportional to σ2, the

welfare rankings of alternative monetary policies, which is at the core of the present study,

is independent of the size of σ2, provided the implied path for the nominal interest rate does

not violate the zero lower bound.

4 Dynamics Under a Taylor Rule

To gather intuition about the dynamic behavior of the model economy, it is useful to analyze

the equilibrium response of a number of macroeconomic variables of interest to supply and

demand shocks. Before conducting such an exercise, it is necessary to specify a monetary

regime. Here we assume that monetary policy takes the form of a simple interest-rate feed-

back rule whereby the short-term interest rate is set as an increasing function of deviations

of inflation from a target, with a coefficient of 1.5. Formally, we assume that

R̂t = 1.5π̂t.

According to the available empirical evidence (e.g., Taylor, 1993; and Clarida, Gaĺı, and

Gertler, 1998), this is a realistic policy benchmark for the U.S. economy and other indus-

trialized countries over the past two decades. Arguably, a more realistic formulation of the

interest-rate rule would feature the cyclical component of output and the lagged nominal

interest rate as additional arguments of the interest-rate rule (Sack, 1998). However, such

a rich feedback rule complicates the task of building intuition about the workings of the

model. We will analyze richer rules later on when we perform policy evaluations.

Figure 1 displays the economy’s response to a 1 percent increase in productivity (zt). In

response to this shock, inflation and the nominal interest rate fall, while the average markup

of prices over marginal cost increases.7 To understand why inflation falls in response to a

7We define the average markup in the economy as the sales-weighted average over markups charged by
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Figure 1: Response To A Unit Innovation In Technology Under A Simple Taylor Rule
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positive technology shock, it is crucial to analyze the behavior of the real interest rate. To see

this, note that up to first order (and leaving aside uncertainty) the Taylor rule, R̂t = 1.5π̂t,

together with the Fisher relation, R̂t = π̂t+1 + r̂t, where r̂t denotes the real interest rate,

imply that inflation follows the first-order process π̂t+1 = 1.5π̂t − r̂t. It is immediate from

this difference equation that, because along the entire transition the real interest rate is

below its steady-state level (bottom right panel of figure 1), in order for the inflation rate

not to explode, it must be the case that inflation is below its steady-state level during the

adjustment process.

The question, therefore, is why a positive productivity shock depresses real interest rates.

The answer to this question has a lot to do with the magnitude of investment adjustment

costs. In the absence of investment adjustment costs (κ = 0), the model studied here

predicts that the real interest rate actually increases on impact and then falls gradually.

This is because in the absence of investment adjustment costs, investment displays a large

increase on impact, delaying the positive response of consumption. Indeed, in this case

(habit-adjusted) consumption is hump-shaped. In order for consumers to be induced to

undertake a hump-shaped habit-adjusted consumption profile, the real interest rate must be

above its long-run level during the initial phase of the transition. By contrast, in the presence

of investment adjustment costs (κ positive), which is the case under the baseline calibration

of the model studied here, the real interest rate falls on impact. This decline occurs because

in this case investment is slow to react to the productivity shock making consumption absorb

much of the initial increase in output. As a result, habit-adjusted consumption increases on

impact and then falls. To induce households to adopt such a declining spending path, the

real interest rate must be below its steady-state value. It follows from this analysis, that

when monetary policy takes the form of a simple Taylor Rule, an increase in productivity

is inflationary in the absence of investment adjustment costs and is deflationary in their

presence.

Having established why inflation falls in response to a positive productivity shock, one

can also understand why markups are above average along the transition. Those firms

that get to set prices optimally when the productivity shock occurs will tend to keep their

markup close to its long-run mean. Note that equation (26) implies that in their price setting

behavior these firms penalize more heavily deviations of markups from η/(η−1) in the short

run because demand is highest during this part of the transition. In addition, the fact that

inflation falls on impact requires that firms that reoptimize prices in that period actually

individual firms. Formally, µt =
[∫ 1

0 µitpityitdi
]
/
[∫ 1

0 pityitdi
]
. Recalling that yit = p−η

it yt, that µit =

pit/mct, and that st =
∫ 1

0 p−η
it di, and defining s̄t =

∫ 1

0 p2−η
it di, we can write µt = s̄t/(stmct). Finally, note

that s̄t can be written recursively as s̄t = (1 − α)p̃2−η
t + αs̄t−1(πt/πχ

t−1)
η−2, with s̄−1 given.
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lower nominal prices. This implies that the relative price of firms that get to change prices

optimally, P̃t/Pt, falls. Since markups for these firms are little changed, we deduce that real

marginal costs fall. Now, since real marginal costs are common across all firms, the markup

of firms who do not have the chance to reset prices optimally must go up. It follows that

the average markup in the economy increases, as indicated by row 4 column 2 of figure 1.

The increase in markups produces an inefficient macroeconomic adjustment in response to

the productivity shock.

Recently, there has been a lively debate about the effect of technology shocks on hours

worked. At the heart of the controversy is whether in post-Volker U.S. data hours increase

or fall in response to a positive innovation in productivity. It is of interest to note that in

the Christiano-Eichenbaum-Evans model hours fall on impact in response to a positive shock

to labor productivity when monetary policy takes the form of a simple Taylor rule. If one

believes that a simple interest-rate feedback rule whereby the short-term nominal interest

rate depends only on consumer price inflation with a response coefficient of 1.5 is a reason-

able description of U.S. monetary policy over the past two decades, then the Christiano-

Eichenbaum-Evans model is in line with those suggesting that the empirical evidence points

to a decline in hours in response to a positive technology shock. It is fair to mention that in

the empirical debate technology shocks are typically identified as permanent changes in total

factor productivity, whereas in our study productivity shocks, although highly persistent,

are assumed to follow a stationary autoregressive process.

One factor that contributes to the contractionary effect of productivity shocks on aggre-

gate employment in the model is the presence of price stickiness in product markets. When

the number of firms that do not get to reoptimize (reduce) prices after a positive technology

shock is sufficiently large (i.e., when prices are sufficiently sticky), then the fact that em-

ployment at those firms falls drives the behavior of aggregate employment dominating the

increase in employment at firms that get to reoptimize prices when the shock occurs.

Figure 2 displays the economy’s response to a 1 percent increase in government spend-

ing. Because the increase in unproductive public spending makes households poorer, hours

worked increase. To smooth out the necessary adjustment in consumption and leisure, the

private sector reduces investment in physical capital and uses the existing capital stock more

intensively. The resulting response of consumption is negative but negligible, reflecting the

fact that households are fairly successful in smoothing out consumption expenditure. The

flat time path of consumption implies a modest reaction in real interest rates. In turn, recall-

ing that inflation is linked to real interest rates via the difference equation π̂t+1 = 1.5π̂t − r̂t,

the small response in real interest rates translates into an equally small response in inflation.

The Taylor rule then implies that nominal interest rates are also little changed.
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Figure 2: Response To A Unit Innovation In Government Spending Under A Simple Taylor
Rule
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5 The Welfare Measure

We measure the level of utility associated with a particular monetary policy specification as

follows. Let the equilibrium processes for consumption, money holdings, and hours associated

with a particular monetary regime be denoted by {ct, mh
t , ht}. Then we measure welfare as

the conditional expectation of lifetime utility as of time zero evaluated at {ct, mh
t , ht}. We

denote this welfare measure by V0. Formally, V0 is given by

V0 ≡ E0

∞∑
t=0

βtU(ct − bct−1, m
h
t , ht). (46)

In addition, we assume that at time zero all state variables of the economy, including c−1,

equal their respective steady-state values. We depart from the usual practice of identifying

the welfare measure with the unconditional expectation of lifetime utility because using

unconditional expectations of welfare amounts to not taking into account the transitional

dynamics leading to the stochastic steady state. Because the deterministic steady state

is the same across all policy regimes we consider, our choice of computing expected welfare

conditional on the initial state being the nonstochastic steady state ensures that the economy

begins from the same initial point under all possible policies. Therefore, our strategy will

deliver the constrained optimal monetary rule associated with a particular initial state of

the economy. It is of interest to investigate the robustness of our results with respect to

alternative initial conditions. For, in principle, the welfare ranking of the alternative polices

will depend upon the assumed value for (or distribution of) the initial state vector. For

further discussion of this issue, see Kim et al., 2003.

We compute the welfare cost of a particular monetary regime relative to a reference rule

as follows. Consider two policy regimes, a reference policy regime denoted by r and an

alternative policy regime denoted by a. Then we define the welfare associated with policy

regime r as

V r
0 = E0

∞∑
t=0

βtU(crt − bcrt−1, m
hr
t , h

r
t ),

where crt , m
hr
t , and hr

t denote the contingent plans for consumption, real money balances,

and hours under policy regime r. Similarly, define the welfare associated with policy regime

a as

V a
0 = E0

∞∑
t=0

βtU(cat − bcat−1, m
ha
t , h

a
t ).

Let λ denote the welfare cost of adopting policy regime a instead of the reference policy

regime r. We measure λ as the fraction of regime r’s consumption process that a household
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would be willing to give up to be as well off under regime a as under regime r. That is, λ is

implicitly defined by

V a
0 = U(cr0(1 − λ) − bc−1, m

hr
0 , h

r
0) + E0

∞∑
t=1

βtU((crt − bcrt−1)(1 − λ), mhr
t , h

r
t ). (47)

Note that we do not apply the factor 1 − λ to c−1, because this variable is predetermined

at the time of the policy evaluation. Using the particular functional form assumed for the

period utility function, equation (49) can be written as

V a
0 − V r

0 = ln[(1 − λ)cr0 − bc−1] +
β

1 − β
ln(1 − λ) − ln(cr0 − bc−1).

Resorting to the notation introduced in section 3, let V a
0 = gva(x0, σ), V r

0 = gvr(x0, σ),

and ln c0 = gcr(x0, σ), where x0 is the value of the state vector in period zero and σ is a

parameter scaling the standard deviation of the exogenous shocks. Then we can rewrite the

above expression as

gva(x0, σ)−gvr(x0, σ) = ln[(1−λ)egcr(x0,σ)−bc−1]+
β

1 − β
ln(1−λ)−ln(egcr(x0,σ)−bc−1). (48)

It is clear from this expression that λ is a function of x0 and σ, which we write as

λ = Λ(x0, σ).

Consider a second-order approximation of the function Λ around the point x0 = x and

σ = 0, where x denotes the deterministic steady-state of the state vector. Because we

wish to characterize welfare conditional upon the initial state being the deterministic steady

state, that is, x0 = x, in performing the second-order expansion of λ only its first and second

derivatives with respect to σ have to be considered. Formally, we have

λ ≈ Λ(x, 0) + Λσ(x, 0)σ +
Λσσ(x, 0)

2
σ2.

Because the deterministic steady-state level of welfare is the same across all monetary policies

belonging to the class defined in equation (33), it follows that λ vanishes at the point x0 = x

and σ = 0. Formally,

Λ(x, 0) = 0.

Totally differentiating equation (48) with respect to σ and evaluating the result at (x0, σ) =
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(x, 0) one obtains

gva
σ (x, 0) − gvr

σ (x, 0) =
1

1 − b
[gcr

σ (x, 0) − Λσ(x, 0)] +
β

1 − β
Λσ(x, 0) − 1

1 − b
gcr

σ (x, 0)

Schmitt-Grohé and Uribe (2004c) show that the first derivatives of the policy functions with

respect to σ evaluated at xt = x and σ = 0 are nil (so gva
σ = gvr

σ = gcr
σ = 0). It follows

immediately from the above expression that

Λσ(x, 0) = 0.

Now totally differentiating (48) twice with respect to σ and evaluating the result at (x0, σ) =

(x, 0) yields

Λσσ(x, 0) = −g
va
σσ(x, 0) − gvr

σσ(x, 0)
β

1−β
+ 1

1−b

.

Thus, our welfare cost measure, in percentage terms, is given by

welfare cost = −g
va
σσ(x, 0) − gvr

σσ(x, 0)
β

1−β
+ 1

1−b

× σ2

2
× 100. (49)

As mentioned above, in deriving this measure of welfare costs we do not apply the factor

1 − λ to the level of consumption in period −1. Alternatively, one could define the welfare

cost index applying the factor 1 − λ to the entire argument of the first term of the initial

period’s utility function, c0−bc−1, rather than just to c0. In this case, λ is implicitly given by

V a
0 = E0

∑∞
t=0 β

tU((crt − bcrt−1)(1− λ), mhr
t , h

r
t ). A second-order-accurate measure of welfare

costs is then given by −(1 − β)[gva
σσ(x, 0) − gvr

σσ(x, 0)] × (σ2/2) × 100. Clearly, because this

welfare measures is proportional to the one we adopt, both measure will deliver identical

welfare rankings. Moreover, under the baseline calibration adopted in this paper the ratio

of the welfare cost measure we adopt to the alternative discussed here is 0.9865. Therefore,

both criteria deliver almost identical welfare cost numbers.8

8The reason why λ is always bigger in absolute value under the alternative welfare cost measure is quite
intuitive. Suppose that the reference policy (r) yields less welfare than the alternative policy (a). In this
case, λ is negative, because households living under the reference policy must be compensated by an increase
in consumption. However, if the increase in consumption also applies to the initial stock of habit c−1, as is
the case under the welfare cost criterion not adopted in this paper, then the compensated initial stock of
habit is higher making the agent worse off. As a result λ must be bigger.
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6 Policy Evaluation

In our search for the optimal monetary rule, we limit attention to what we call operational

rules. To be operational, an interest-rate rule must set the nominal interest rate as a function

of a few readily observable macroeconomic variables. We study rules where the nominal

interest rate responds to its own lag, inflation, and output. In addition, an operational rule

is required to posses the following two properties: First, it must induce a locally unique

rational expectations equilibrium.9 Second, operational rules must satisfy the nonnegativity

constraint on the nominal interest rate. For technical reasons, we are unable to impose

this constraint directly. Specifically, the second-order perturbation approach we apply in

our numerical work is ill equipped to handle occasionally binding constraints.10 Instead,

we require that under an operational rule the target value for the nominal interest rate be

greater than two times the standard deviation of the nominal interest rate. Formally, we

require that ln(R∗) ≥ 2σR̂t
. If the equilibrium nominal interest rate was normally distributed

around its target value, then this constraint would ensure a positive nominal interest rate

98 percent of the time. A possible alternative would be to require that the unconditional

mean of the nominal interest rate, rather than its target value, be greater than 2 standard

deviations of the nominal interest rate, that is, E lnRt > 2σR̂t
. One reason why we do not

pursue this alternative is that it is computationally more costly. This is because obtaining a

second-order accurate approximation to the unconditional mean of the nominal interest rate

requires approximating the equilibrium up to second order, whereas obtaining a second-order

accurate approximation to the variance of the nominal interest rate requires approximating

the equilibrium conditions only up to first order. Admittedly, as long as E lnRt < lnR∗,

the criterion lnR∗ > 2σR̂t
is less restrictive than the criterion E lnRt > 2σR̂t

. Indeed, in our

economy, there is a tendency for optimal policy to induce a mean interest rate below the

target R∗. This is because the demand for money in combination with indexation creates

incentives for policy to gravitate toward the Friedman rule. As we show later, however,

although the operational rule that we identify as optimal implies that E lnRt < lnR∗, it

satisfies the tighter criterion E lnRt > 2σR̂t
.

An operational rule is judged to be optimal when it yields a higher level of welfare to the

representative agent than any other operational rule.

9An alternative, not pursued in this study, is to enlarge the set of operational monetary rules by allowing
for policy regimes that render the equilibrium locally indeterminate. This approach requires introducing
plausible assumptions about the expectations coordination mechanism, which is outside the scope of our
investigation.

10Other authors have also faced the need to circumvent the problem of not being able to directly impose
the zero-bound constraint on nominal interest rates. See, for instance, Rotemberg and Woodford (1999, p.
75).

31



The family of interest-rate rules presented in equation (33) can be fully characterized by

four parameters, namely, απ, measuring the responsiveness of interest rates to deviations of

inflation from the central bank’s target, αy, the output-gap coefficient, αR, measuring the

degree of policy inertia, and i, measuring the backward-, current-, or forward-looking nature

of policy. We further restrict the policy quadruple (απ, αy, αR, i) to lie in the following space:

The parameters απ, measuring the responsiveness of interest rates to deviations of inflation

from the central bank’s target, and αy, the output gap coefficient, are confined to take values

in the interval -3 and 3. For both απ and αy, we consider a grid with a step size of 0.0625.

The degree of policy inertia, measured by the parameter αR, can take 3 possible values, 0, 1,

and 2. When αR equals zero we say that policy lacks inertia. When αR equals unity, policy is

referred to as inertial. And, following the terminology of Rotemberg and Woodford (1999),

when αR equals two, we say that policy is superinertial. Finally, we consider three possible

values for the parameter i, 1, 0, and -1. When i = 1, the central bank is backward-looking

in the sense that it sets interest rates based on past information regarding inflation and

output. When i equals zero, the central bank responds to contemporaneous realizations of

inflation and the output gap. And when i = −1, the monetary authority is forward-looking,

as the current instrument setting is a function of expectations of future price and output

movements. Summarizing, our discretized policy parameter space contains 97 possible values

for απ, 97 possible values for αy, 3 possible values for αR, and 3 possible values for i. This

implies that we evaluate a total of 84,681 different monetary policy regimes.

An alternative to our approach of discretizing the policy space would be to rely on a

numerical optimization routine to find the optimal interest-rate rule coefficients απ, αy, and

αR for each value of the policy parameter i. The reason why we choose not to adopt this

numerical strategy is that it identifies local extrema. And, as will become clear shortly,

in our model economy, welfare is a nonmonotonic function of the policy parameters, with

several local maxima.

6.1 Welfare Surfaces

Figure 3 shows the level of welfare associated with the different policy rules as functions

of the policy parameters απ and αy holding constant the degree of policy inertia αR and

the parameter i indicating whether the rule is backward-, current-, or forward-looking. The

welfare measure that is plotted corresponds to a second-order approximation to the expres-

sion given in equation (46). Only policies that imply a welfare cost of at most 0.1 percent

of the lifetime consumption stream under the best operational rule are shown. The welfare

surfaces appear to be piecewise smooth in απ and αy. However, the welfare graph displays
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Figure 3: Welfare as a Function of απ and αy
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multiple local maxima. This feature motivates our choice of finding the optimal interest rate

rule using a grid search over the policy parameters rather than relying on local optimization

routines.

Figure 4 depicts in black the pairs απ and αy for which the associated equilibrium is

determinate but the zero-bound constraint is violated, with grey the pair for which the

equilibrium is determinate and the zero-bound constraint is satisfied, and with white the

pairs for which the equilibrium fails to be locally determinate, given values for the policy

parameters αR and i. A cross marks the optimal operational rule given αR and i. Each row

of graphs reveals a tight connection between the degree of interest-rate smoothing, αR, and

the threshold value for the inflation sensitivity parameter απ above which an operational

rule exists. In the absence of inertia (αR = 0, left column), operational rules exist only for

inflation coefficients greater than unity (απ > 1). This stability condition also appears in

simpler monetary models. When policy is inertial (αR = 1, middle column), operational

rules exist for values of απ greater than zero, and when policy is superinertial (αR = 2, right

column), operational rules exist for απ > −1. This relation suggests a pattern according

to which operational rules exist only for values of απ greater than 1 − αR. The area of

operational rules is roughly symmetric around acyclical rules (αy = 0). As a result, the more

cyclical is the rule (whether pro- or countercyclical) the less likely it is to be operational.

For the subclass of acyclical rules, the set of operational rules is the same as the set of rules

that induce a locally determinate equilibrium.

6.2 The Optimal Operational Rule

Table 2 displays the inflation and output coefficients of the operational rules that maximize

welfare for each of the 3 values of the degree of policy inertia considered (αR = 0, 1, 2) and

for each of the 3 values taken by the parameter i measuring the current-, backward-, or

forward-looking nature of policy. The table also shows the level of welfare attained by each

optimized rule and the associated welfare cost relative to the best operational rule using the

welfare cost measure given in equation (49).

The optimal operational rule takes the form

R̂t = 1.125Etπ̂t+1 − 0.0625Etŷt+1.

This rule can be interpreted as a real-interest-rate targeting rule, for it is forward looking,

has an inflation coefficient close to unity, has an output coefficient of about zero, and displays

no inertia. Importantly, the inflation coefficient, although close to unity, is in accordance

with the Taylor principle, prescribing a more than one-to-one response of interest rates to
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Figure 4: Determinacy of Equilibrium and Operational Rules
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Table 2: Optimal Operational Interest-Rate Rules

Optimized Interest-Rate Rules R̂t = απEtπ̂t−i + αyEtŷt−i + αRR̂t−1

απ αy Welfare Welfare Cost
Current-Looking Rules (i = 0)
No Inertia (αR = 0) 1.0625 0 -156.7227 0.0005
Inertia (αR = 1) 0.625 0.1250 -156.7237 0.0012
Super Inertia (αR = 2) 0.8125 0.3125 -156.7248 0.0020

Backward-Looking Rules (i = 1)
No Inertia (αR = 0) 1.3125 0.0625 -156.7233 0.0009
Inertia (αR = 1) 0.75 0.1250 -156.7243 0.0017
Super Inertia (αR = 2) -0.75 -0.0625 -156.7250 0.0022

Forward-Looking Rules (i = −1)
No Inertia (αR = 0) 1.1250 -0.0625 -156.7220 0
Inertia (αR = 1) 0.8125 0.1875 -156.7232 0.0008
Super Inertia (αR = 2) 1.6875 0.6250 -156.7237 0.0012

Non-Optimized Rules
Inflation Targeting (π̂t = 0) – – Indeterminate
Taylor Rule 1.5 0.5 Zero-bound violated
Simple Taylor Rule 1.5 – -156.7261 0.0029

Note: (1) Rt denotes the gross nominal interest rate, πt ≡ Pt/Pt−1 denotes the
gross inflation rate, and yt denotes output. (2) For any variable xt, its non-
stochastic steady-state value is denoted by x, and its log-deviation from steady
state by x̂t ≡ ln(xt/x). (3) In all cases, the parameter απ is restricted to lie in
the interval [−3, 3] while αy is restricted to be in the interval [−3, 3]. (4) Welfare
is computed as a second-order approximation to the expression in equation (46),
conditional on that period’s state being the non-stochastic steady state. (5) The
welfare cost is measured relative to the optimal rule (απ = 1.125, αy = −0.0625,
αR = 0, and i = −1), and is defined in equation (49).
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deviations of inflation from target.

Real-interest-rate targeting appears to be a robust feature of optimal operational policy.

In effect, even if one limits attention to either contemporaneous- or backward-looking rules,

the optimal rule lacks inertia, is acyclical in the sense that the output coefficient is nil, and

features an inflation coefficient close to 1. The finding that real-interest-rate targeting is

optimal even when policy is restricted to being contemporaneous or backward looking is

important because some may argue that a forward-looking rule is not truly operational. For

forward-looking rules require knowledge on the part of the central bank of the private sector’s

expectations of future output and inflation, which is not readily observable information.

Moreover, some may argue that in practice current realizations of output and inflation are

not in the information set of the monetary authority at the time it makes policy decisions,

thus disqualifying current-looking rules from the set of operational rules. For these critics, a

rule is operational only when it is based on past observations of macroeconomic indicators.

Table 2 shows that the welfare costs of restricting policy to be operational in this tighter

sense are negligible. Specifically, the welfare cost of the best backward-looking rule vis-à-vis

the optimal rule is only 0.0009 percent of consumption per period.

Table 2 also reports welfare evaluations of some commonly prescribed non-optimized

monetary policy rules. A monetary rule whereby the inflation rate is at its target in and out of

equilibrium, labeled inflation targeting in the bottom panel of table 2, induces indeterminacy

of the rational expectations equilibrium. For this reason, we are unable to evaluate the

welfare consequences of such a policy. A standard Taylor rule with an inflation coefficient

of 1.5 and an output coefficient of 0.5 fails to be operational, as it implies that 2σR̂t
> lnR∗

so that the associated equilibrium frequently violates the zero bound on nominal interest

rates. A simpler Taylor rule, with an inflation coefficient of 1.5 and an output coefficient

of 0 does satisfy all of the requirements of an operational rule. It entails a welfare cost of

0.0029 percent of the lifetime consumption associated with the optimal rule. This welfare

cost number, although small in absolute terms, is greater than those associated with any of

the optimized rules shown in table 2.

6.3 Inertia, Cyclicality, and the Taylor Principle

The three main characteristics of the optimal operational rule are lack of inertia in interest

rates (αR = 0), acyclicality (αy close to zero), and a mildly active response to inflation (i.e.,

an inflation coefficient greater than and close to unity). These three features of optimal

policy survive a large number of fundamental modifications to the baseline model.

Table 4 presents the optimal operational rule for 7 variations of the baseline model: (1)
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indexation to long-run inflation (i.e., non-reoptimized prices/wages are adjusted by the factor

π∗ each period); (2) flexible wages (α̃ = 0.01); (3) flexible prices (α = 0.01); (4) Higher costs

of varying capacity utilization (γ2/γ1 = 2); (5) No habit formation (b = 0); (6) No money

held by households (φ1 = 0); and (7) no money at all (φ1 = ν = 0).

Under all model variations considered, optimal operational policy lacks inertia in interest

rates. An exception is the case in which prices are indexed to long-run inflation. Interestingly,

indexation to long-run inflation is implicitly or explicitly assumed in related studies that

identify inertia as a feature of optimal monetary policy (e.g., Rotemberg and Woodford,

1999). This result underlines the importance of the exact indexation modality in shaping

optimal policy.

The Taylor principle prescribing interest rate rules with an inflation coefficient greater

than one is present in 5 of the 7 perturbations to the baseline model we perform. The

largest inflation coefficient obtains under flexible wages, where απ = 3. This number indeed

hits the upper bound imposed in our numerical computations. Intuitively, when wages are

flexible, the monetary authority has a larger incentive to stabilize inflation to ameliorate the

consequences of the sticky-price distortion. In this case, the central bank stabilizes inflation

by setting the inflation coefficient in the interest-rate rule as high as it can. As a result,

the equilibrium under flexible wages features a standard deviation of inflation of only 0.5

percent, 4 times smaller than in the baseline model.

Another robust feature of optimal operational rules appears to be a muted response of

interest rates to output. This result cannot be immediately related to the findings in the

related literature. The reason is that in most existing studies the central bank is assumed

to respond to a sophisticated output gap measure given by the difference between actual

output and the level of output that would obtain in a world without nominal rigidities. As

we mentioned earlier, this measure of the output gap is not readily observable and thus does

not satisfy our requirement of operationality.

6.4 Optimal Macroeconomic Adjustment

Figure 5 compares the dynamic response of the model economy induced by a 1-percent

technology shock under the optimal operational rule (solid line) to that arising under a simple

Taylor rule (broken line). The response of the real side of the economy is remarkably similar

under both rules. Under the optimal rule, however, the productivity shock produces smaller

though more persistent fluctuations in all real variables. In particular, the real interest rate

displays a much smoother response under the optimal rule than under the simple Taylor

rule. On the nominal side, both rules call for an immediate easing in monetary policy to
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Figure 5: Comparing the Optimal Rule with a Simple Taylor Rule: Response to a Unit
Innovation in Technology
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accommodate the expansion caused by the improvement in productivity. However, under the

optimal rule the initial reduction in nominal interest rates is accompanied by a commitment

to tighten money market conditions in the future. By contrast, under the simple Taylor rule

the nominal interest rule remains below target along the entire transition. As a consequence,

the two rules induce quite different inflationary dynamics. Under the best operational rule

an initial decline in inflation is accompanied by a large future increase in prices, whereas

under the simple Taylor rule this overshooting of inflation is absent.

As a point of reference, figure 5 also shows, with a circled line, the dynamics of an

economy without any of the 4 nominal frictions that impede efficient adjustment in the

baseline model. That is, an economy with flexible prices and wages (α = α̃ = 0), and without

a demand for money by households or firms (φ1 = ν = 0).11 The optimal operational rule

does a remarkably good job at replicating the dynamics of the efficient economy during the

initial phase of the transition. On the other hand, for the later part of the transition the

Taylor rule keeps the real allocation closer to that associated with the economy without

nominal frictions. Our welfare evaluation suggests that the welfare gains of mimicking the

initial transition outweigh the benefits of replicating the later part of the adjustment. Recall,

however, that the welfare differences between the best operational rule and the simple Taylor

rule are minimal.

6.5 Is Inflation Stabilization Desirable?

Much of the existing literature on optimal monetary policy in the neo-Keynesian tradition

has stressed the importance of inflation stabilization as a central goal of monetary policy. A

general result that emerges from this body of work is that as Woodford (2004) puts it in his

recent survey of the inflation targeting literature, “it is not a bad first approximation to say

that the goal of monetary policy should be price stability.” This conclusion emerges from

models that are highly stylized in the sense that they include a small number of nominal

and real frictions.

Price stability ceases to dominate the monetary policy prescription in the richer theoret-

ical environment studied in this paper. Specifically, table 3 shows that under the optimal

operational rule price inflation is significantly volatile, with a standard deviation of 2 percent

per annum, about half the U.S. mean inflation in the past 4 decades. The main force driving

the optimality of relatively high inflation volatility is the assumed indexation of wages and

prices to the lagged rate of inflation. As shown on line 2 of table 4, when the assumption

of indexation to lagged inflation is replaced by the assumption of indexation to long-run

11Because in this economy monetary policy plays no role in the determination of real variables, figure 5
does not show the response of inflation and the nominal interest rate in this economy.
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inflation, then the optimal volatility of inflation falls tenfold to 0.2 percent per annum. A

reason why the role of the precise nature of the indexation scheme in determining the de-

gree of optimal inflation volatility did not emerge earlier in the related literature is that by

focusing exclusively in the case of no indexation and zero long-run inflation, existing studies

in effect concentrated in a special case of indexation to long-run inflation. The intuition for

why the indexation scheme is related to the optimal degree of inflation volatility is relatively

straightforward. Under indexation to lagged inflation, the distorting price dispersion induced

by price stickiness is smaller than under indexation to long-run inflation. This is because

when firms get the chance to reoptimize prices they need not fully incorporate expected

future deviations of inflation from trend in their current markups, as they know that they

will be allowed to keep up with aggregate price changes through indexation. On the other

hand, when indexation is based on long-run inflation, it is crucial for firms to incorporate in

their optimized prices the expected future deviations of inflation from trend. An economy

with indexation to lagged inflation is in this sense closer to a flexible-price economy than an

economy with indexation to long-run inflation. An obvious implication of our finding is that

investigating what assumptions about indexation is empirically most compelling should be

a high priority for the applied monetary research agenda.

Previous authors, notably Erceg, Henderson, and Levin (2000) have argued that the

optimality of low inflation volatility is not robust to the introduction of sluggish factor price

adjustment. Specifically, these authors extend the synthetic new Keynesian model to allow

for nominal wage stickiness and find that full price stabilization is suboptimal. We find that

this result generalizes to the richer economic environment studied here. Specifically, line 3

of table 4 shows the standard deviation associated with the best operational rule falls from

2 percent to 0.5 percent per annum when wage stickiness is removed.

6.6 The Role of Money

Optimal monetary policy induces a surprising positive relationship between the size of money

demand and the optimal degree of interest rate and inflation volatility. In effect, in the

baseline economy inflation and the nominal interest rate display a volatility of about 2 percent

(see table 3). If one eliminates the demand for money by households by setting φ1 = 0, the

volatilities of inflation and the nominal interest rate drop to 0.8 (see table 4). This effect

appears at first as counterintuitive. For one would expect that the larger is the demand for

money, the stronger is the incentive for optimal policy to smooth the opportunity cost of

holding money, given by the nominal interest rate. This incentive is present in our model

economy. But there is also a payoff for increasing interest rate volatility as the importance of
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Table 3: Aggregate Volatility Induced by Alternative Monetary Regimes

Optimized Rules R̂t = απEtπ̂t−i + αyEtŷt−i + αRR̂t−1

σc σh σmh σy σπ σR

Current-Looking Rules (i = 0)
No Inertia (αR = 0) 1.2 0.8 1.1 1.7 0.7 0.8
Inertia (αR = 1) 1.2 1.1 2.2 2.0 1.6 1.6
Super Inertia (αR = 2) 1.2 1.1 1.8 2.0 1.4 1.4

Backward-Looking Rules (i = 1)
No Inertia (αR = 0) 1.2 1.1 2.1 2.0 1.6 1.6
Inertia (αR = 1) 1.2 1.1 1.8 2.0 1.3 1.3

Super Inertial (αR = 2) 1.1 0.6 1.9 1.4 1.5 1.4
Forward-Looking Rules (i = −1)
No Inertia (αR = 0) 1.1 0.6 2.7 1.3 2.0 2.1
Inertia (αR = 1) 1.3 1.2 2.6 2.1 2.0 2.0
Super Inertia (αR = 2) 1.3 1.2 2.7 2.1 2.0 2.0

Simple Taylor Rule
(αR = αy = 0, απ = 1.5) 1.2 0.9 0.9 1.7 0.4 0.6

Note: For any variable xt, σx denotes its unconditional standard deviation. The
variables ct, ht, m

h
t , and yt are measured as percentage deviations from their

respective deterministic steady-state levels; πt and Rt are in percent per annum.
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Table 4: Optimal Operational Rules: Sensitivity Analysis

Optimized Interest-Rate Rules

R̂t = απEtπ̂t−i + αyEtŷt−i + αRR̂t−1

i απ αy αR σR σπ σy

Baseline -1 1.13 -0.06 0 2.1 2.0 1.3
Indexation to Long-Run Inflation -1 0.19 0 1 0.1 0.2 1.6
Flexible Wages (α̃ = 0.01) -1 3 -0.19 0 0.6 0.5 1.5
Flexible Prices (α = 0.01) 1 -0.69 -0.31 2 3.5 3.7 0.9
Higher Capital Utilization Costs (γ2/γ1 = 2) 0 1.44 0.25 0 3.4 3.3 1.4
No Habit Formation (b = 0) -1 1.13 0 0 1.5 1.3 1.8
No Money Held by Households (φ1 = 0) 0 1.06 0 0 0.8 0.7 1.7
No Money At All (φ1 = ν = 0) -1 1.75 0.31 0 2.8 2.8 1.6
One Nominal Friction at a Time
Sticky Prices Only (φ1 = ν = α̃ = 0) 0 3 0 1 0.2 0.0 1.6
Sticky Wages Only (φ1 = ν = α = 0) 0 1.5 0.25 0 3.5 3.4 1.6
Household Money Only (ν = α = α̃ = 0) 1 0.44 -0.25 1 3.5 4.0 1.6
Firm Money Only (φ1 = α = α̃ = 0) 1 -3 -0.25 1 1.0 0.7 1.8

Notes: See tables 2 and 3.

money holdings increases. Specifically, the benefit is that higher interest rate volatility may

achieve a lower average nominal interest rate, thus increasing average money holdings, which

is welfare increasing, since money held by households enters into the utility function. The

policy maker resorts to this cumbersome way of reducing the opportunity cost of holding

money because by assumption he must work with an exogenously given target for inflation

and the nominal interest rate. Comparing the means and standard deviations of the nominal

interest rate in the benchmark economy with those of the economy in which households do

not demand money, suggest that the policy maker resolves this mean-volatility tradeoff in

favor of lower mean nominal interest rates at the cost of higher interest rate volatility.12

6.7 Transitional Dynamics Matter

The existing literature on macroeconomic stabilization says little about the role of initial

conditions in shaping optimal policy. Typically, policy-evaluation studies are conducted on

the basis of unconditional measures of welfare, which by design ‘integrate away’ the role

of the initial state. We find that transitional dynamics are indeed an important factor

12The unconditional mean of the nominal interest rate in the models with and without money held by
households are, respectively, 6.9 and 7.1.

43



Table 5: Unconditional Means Induced by Alternative Monetary Regimes

Optimized Interest-Rate Rules R̂t = απEtπ̂t−i + αyEtŷt−i + αRR̂t−1

ct ht mh
t yt πt Rt Vt

Current-Looking Rules (i = 0)
No Inertia (αR = 0) 0.1025 -0.1018 0.0953 -0.1248 4.1101 7.0657 -156.4310
Inertia (αR = 1) 0.1115 -0.1437 0.0853 -0.1749 4.2541 7.2099 -156.3668
Super Inertia (αR = 2) 0.1092 -0.1365 0.0559 -0.1671 4.2296 7.1852 -156.3789

Backward-Looking Rules (i = 1)
No Inertia (αR = 0) 0.1088 -0.14 0.0658 -0.1702 4.2503 7.2061 -156.3752
Inertia (αR = 1) 0.1084 -0.1344 0.363 -0.1643 4.2237 7.1795 -156.3826

Super Inertial (αR = 2) 0.0759 -0.06 0.3181 -0.0776 4.0372 6.9930 -156.5230
Forward-Looking Rules (i = −1)
No Inertia (αR = 0) 0.0817 -0.0498 0.6323 -0.0635 3.9821 6.9373 -156.5276
Inertia (αR = 1) 0.1155 0.1543 0.1606 -0.1873 4.2871 7.2429 -156.3480
Super Inertia (αR = 2) 0.1157 -0.1554 0.1619 -0.1888 4.2899 7.2457 -156.3464

Simple Taylor Rule
(αR = αy = 0, απ = 1.5) 0.1002 -0.1019 0.1242 -0.1270 4.1124 7.0673 -156.4342

Notes: ct, ht, and yt are measured as percentage deviations from their deter-
ministic steady-state levels; πt and Rt are in percent per annum; and Vt ≡
Et

∑∞
j=0 β

jU(ct+j − bct−1+j , m
h
t+j , ht+j) is expressed in levels.

determining the choice of the optimal policy rule. This can be seen by comparing the

conditional welfare numbers reported in table 2 with the unconditional expectation of lifetime

utility, which are shown in the last column of table 5. Based on an unconditional measure

of welfare, the optimal operational rule is in fact the worst of all rules shown in the table.

By construction, the unconditional welfare measure is a weighted average of the conditional

welfare levels associated with all possible values of the state vector with weights given by

their unconditional probabilities. It follows that for some initial conditions the conditional

welfare ranking reported in table 2 should be reversed as well. This result is indicative

of the fact that the optimal operational rule lacks time consistency. In other words, if the

monetary authority was given the chance to reoptimized the parameters defining the interest-

rate feedback rule after period 0, it would in general not choose the the policy quadruple

that was optimal from the point of view of period 0.

The fact that welfare rankings appears not to be independent of the initial state of the

economy suggests that it is important to consider relevant initial conditions. Here we explore

the initial condition given by the unconditional expectation of the state vector in an economy

in which monetary policy takes the form of a simple Taylor rule (R̂t = 1.5π̂t). The reason

44



Table 6: Comparing Three Alternative Welfare Measures

Unconditional Conditional Welfare
Interest-Rate Rule απ αy Welfare x0 = x x0 = ExSTR

t

Current-Looking Rules (i = 0)
No Inertia (αR = 0) 1.0625 0 -156.4310 -156.7227 -156.5049
Inertia (αR = 1) 0.625 0.1250 -156.3668 -156.7237 -156.5132
Super Inertia (αR = 2) 0.8125 0.3125 -156.3789 -156.7248 -156.5133

Backward-Looking Rules (i = 1)
No Inertia (αR = 0) 1.3125 0.0625 -156.3752 -156.7233 -156.5124
Inertia (αR = 1) 0.75 0.1250 -156.3826 -156.7243 -156.5126
Super Inertia (αR = 2) -0.75 -0.0625 -156.5230 -156.7250 -156.5025

Forward-Looking Rules (i = −1)
No Inertia (αR = 0) 1.1250 -0.0625 -156.5276 -156.7220 -156.4940
Inertia (αR = 1) 0.8125 0.1875 -156.3480 -156.7232 -156.5138
Super Inertia (αR = 2) 1.6875 0.6250 -156.3464 -156.7237 -156.5143
Simple Taylor Rule 1.5 – -156.4342 -156.7261 -156.5095

Notes: (1) See notes to table 2. (2) xt denotes the state vector in period t,
x denotes the deterministic steady-state value of xt, and ExSTR

t denotes the
unconditional expectation of xt when the monetary policy takes the form of a
simple Taylor rule (STR) of the form R̂t = 1.5π̂t.

we consider this initial condition is that the policy rule that induces it can be interpreted as

a rough characterization of actual U.S. monetary policy post 1980.

Table 6 shows three alternative welfare measures for the 10 operational policies presented

in table 2: namely, unconditional expected welfare, expected welfare conditional on the initial

state being the deterministic steady state, and expected welfare conditional on the initial

state being the mean of the state vector in an economy that follows a simple Taylor rule. An

important result conveyed by table 6 is that changing the initial condition of the economy

from the deterministic steady state to an arguably more relevant one given by the mean of

the distribution of the state vector under a simple Taylor rule does not alter the fact that

the real-interest-rate targeting rule R̂t = 1.125Etπ̂t+1 − 0.0625Etŷt+1 welfare dominates all

other 9 rules considered in table 2. This result suggests that a monetary authority that has

being following a simple Taylor rule in the past could find it beneficial to switch policy to

a real interest-rate targeting rule like the optimal operational rule if the economy is in its

average state.
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6.8 Optimal Policy One Nominal Friction at a Time

It is well known from the work of Goodfriend and King (1997) among many others that

in a model where sluggish product price adjustment is the only nominal friction, optimal

policy stabilizes inflation completely. That is, the optimal monetary policy calls for setting

the variance of πt equal to zero. It is also well known that one way to implement this

policy is by means of an interest-rate feedback rule with a very large inflation coefficient

(Woodford, 2001). The existing literature containing this result is based on simple theoretical

frameworks. Here we show that the same conclusions hold is the much richer and empirically

plausible model studied in this paper. In effect, table 4 shows that if one shuts down all

of the nominal rigidities present in our model but price stickiness by setting φ1, ν, and α̃

equal to zero—and thereby engineering a cashless economy with flexible wages—then the

best interest-rate rule calls for a short-run inflation coefficient απ equal to the upper bound

of 3 imposed by our grid, and a long-run inflation coefficient, απ/(1 − αR), of infinity by

making the rule inertial. Moreover, the optimal interest-rate rule is welfare dominated by a

strict inflation targeting rule whereby the inflation rate is kept at its target level at all times,

π̂t = 0.

Not surprisingly, in a world where the only nominal friction stems from wage stickiness,

inflation stabilization is no longer optimal. Table 4 shows that in this case the optimal

level of inflation volatility is 3.5 percent per annum. Also as expected, in the economy

with sticky wages only the volatility of wage inflation is smaller than the volatility of price

inflation (0.8 versus 3.5 percent per year) whereas in the economy with sticky prices only it

is the other way around (0.1 versus 0). What is somewhat surprising is that the presence of

wage stickiness does not call for stabilizing wage inflation. In the sticky-wage-only economy,

the volatility of wage inflation under the optimal interest-rate rule is 0.8 percent per year

whereas in the sticky-price-only economy it is only 0.1 percent per year. Interestingly, in the

model we study in this paper, the presence of wage stickiness does not appear to introduce

a meaningful inflation-output volatility tradeoff, as found in simpler setups (e.g., Erceg,

Henderson, Levin, 2000). Specifically, under the optimized rule the volatility of output is

the same, 1.6 percent, in the economies with sticky prices only, sticky wages only, and sticky

wages and sticky prices only (i.e., no money).

In the economy where money demand by household represents the only nominal friction,

optimal monetary policy is geared toward reducing the average opportunity cost of holding

money to increase mean real money holdings, which enter the welfare index directly. Specif-

ically, the mean of the nominal interest rate is 6.8 percent, compared to 7.2 in the economy

without money. As a result, real balances in the economy with money by households only are

on average 2.4 percent above their steady-state level. The reduction in the average nominal
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interest rate is achieved at the costs of relatively high interest-rate volatility. As mentioned

earlier, this awkward taste for nominal interest-rate volatility on the part of the central bank

is induced by the exogeneity of the inflation target. If the inflation target was endogenous,

the monetary authority should choose an inflation level in line with the Friedman rule, and,

in the case of money being the only nominal friction, no interest-rate volatility. A different

pattern emerges when the only nominal friction in the economy is a demand for money by

firms. In this case, the mean-volatility tradeoff for the nominal interest rate is resolved in

favor of interest-rate stability.

7 Conclusion

The contribution of this paper is to perform second-order accurate welfare evaluations of

operational interest rate feedback rules in a large-scale, empirically compelling model of

the U.S. business cycle. The stabilization policy problem in this economy is complicated

by the presence of a multitude of nominal and real frictions including sticky wages and

prices, a demand for money by households and firms, monopolistic competition, investment

adjustment costs, habit formation, and variable costs of adjusting the degree of capacity

utilization.

The key characteristic of the optimal operational rule is that it stabilizes the real interest

rate. The presence of nominal rigidities play a significant role in shaping optimal monetary

policy. This is reflected in the fact that when either one of the nominal rigidities is elimi-

nated or when the price or wage indexation scheme is altered, then the form of the optimal

operational rule changes significantly.

The optimal operational rule induces an equilibrium with a non-negligible degree of in-

flation volatility. This implication of optimal policy is sensitive to the particular indexation

scheme assumed for prices and wages. In particular, when the baseline assumption of indexa-

tion to lagged price inflation is replaced by the assumption of indexation to the long-run level

of inflation, then inflation volatility under the optimal operational rule drops significantly.

This paper can be extended in a variety of ways. One is to investigate how optimal policy

changes as the sources of uncertainty driving business cycles is expanded. One alternative

is to incorporate the rich set of shocks identified in econometric estimations of the model

considered in this paper (e.g., Smets and Wouters, 2004).

The class of operational rules studied in this paper is clearly not exhaustive. It would

be of interest to investigate whether the inclusion of macroeconomic indicators other than

those considered here would improve the policy makers ability to stabilize the economy. In

particular, the related literature has emphasized the use of measures of the output gap that
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are different from that used in the present study. Additionally, it has been argued that in

models with nominal wage and price rigidities the optimal policy should target an average

of wage and price inflation as opposed to only price inflation, which is the case analyzed in

this paper.

The optimal policy problem analyzed in this paper takes the central bank’s inflation

target as exogenously given. A natural extension is to endogenize this variable. However, in

the theoretical framework studied here, the optimal inflation target is the one associated with

the Friedman rule. This is because the assumption of full indexation to past inflation implies

the absence of inefficient price and wage dispersion in the long run. Thus the only remaining

nominal friction is the demand for money by households and firms. The elimination of

these frictions calls for driving the opportunity costs of holding money to zero in the long

run. In other words, the zero bound on nominal interest rate binds in the non-stochastic

steady state. Unfortunately, the perturbation technique employed in this paper is ill suited

to handle this case. Therefore, analyzing the case of an endogenous inflation target entails

either changing the model so that the Friedman rule is no longer optimal in the long-run or

adopting alternative numerical techniques for computing welfare accurately up to second-

order or higher.

A finding of this paper is that the initial state of the economy plays a role in determining

the parameters defining the optimal interest-rate rule. This finding suggests that the optimal

operational rule identified here is time inconsistent. Throughout the paper we assume that

the government is able to commit to the policy announcements made at time 0. It would be

of interest to compute optimal operational rules in an environment without commitment.

Finally, the current study limits attention to the special case of passive fiscal policy,

taking the form of a balanced-budget rule with lump-sum taxation. It is well known that

the set of operational monetary rules depends on the stance of fiscal policy. For instance, the

determinacy properties of the rational expectations equilibrium associated with a particular

monetary rule can change as fiscal policy is altered. Therefore, it would be of interest to

introduce operational fiscal rules as an additional policy instrument.
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