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1 Introduction

The behavior of the yield curve changes across the business cycle. In recessions, premia
on long-term bonds tend to be high and yields on short bonds tend to be low. Recessions,
therefore, have upward sloping yield curves. Premia on long bonds are countercyclical
because investors do not like to take on risk in bad times. In contrast, yields on short
bonds tend to be procyclical because the Federal Reserve lowers short yields in recessions
in an effort to stimulate economic activity. For example, for every 2 percentage point
decline in GDP growth, the Fed should lower the nominal yield by 1 percentage point
according to the Taylor (1993) rule.

Inevitably, recessions are followed by expansions. During recessions, upward sloping
yield curves not only indicate bad times today, but better times tomorrow. Guided from
this intuition, many papers predict GDP growth in OLS regressions with the slope of the
yield curve, usually measured as the difference between the longest yield in the dataset
and the shortest maturity yield.1 The higher the slope or term spread, the larger GDP
growth is expected to be in the future. Related work by Fama (1990) and Mishkin
(1990a and b) shows that the same measure of slope predicts real rates. The slope is also
successful at predicting recessions with discrete choice models, where a recession is coded
as a one and other times are coded as zeros (see Estrella and Hardouvelis, 1991; Estrella
and Mishkin, 1998). The term spread is also an important variable in the construction of
Stock and Watson (1989)’s leading business cycle indicator index. Despite some evidence
that parameter instability may weaken the performance of the yield curve in the future
(see comments by Stock and Watson, 2001), it has been amazingly successful in these
applications so far. For example, every recession after the mid-1960’s was predicted by
a negative slope - an inverted yield curve - within 6 quarters of the impending recession.
Moreover, there has been only one “false positive” (an instance of an inverted yield curve
that was not followed by a recession) during this time period.

Hence, the yield curve tells us something about future economic activity. We argue
there is much more to learn from the yield curve when we explicitly model its joint dynam-
ics with GDP growth. Our dynamic model also rules out arbitrage possibilities between
bonds of different maturities and thus imposes more structure than the unrestricted OLS
regression framework previously used in the literature. While OLS regressions show that
the slope has predictive power for GDP, it is only an incomplete picture of the yield
curve and GDP. For example, we would expect that the entire yield curve, not just the
arbitrary maturity used in the construction of the term spread, would have predictive
power. Using information across the whole yield curve, rather than just the long matu-
rity segment, may lead to more efficient and more accurate forecasts of GDP. In an OLS

1See, among others, Harvey (1989 and 1993), Laurent (1988), Stock and Watson (1989), Chen (1991),
Estrella and Hardouvelis (1991), Estrella and Mishkin (1998), Dotsey (1998), and Hamilton and Kim
(2002), who regress GDP growth on term spreads on U.S. data. Jorion and Mishkin (1991), Harvey
(1991), Estrella and Mishkin (1997), Plosser and Rouwenhorst (1994), Bernard and Gerlach (1998),
among others, run a predictive GDP regression on international data. Other traditional GDP forecasting
variables include Stock and Watson (1989)’s leading business cycle index and the consumption-output
ratio in Cochrane (1994).

2



framework, since yields of different maturities are highly cross-correlated, it is difficult to
use multiple yields as regressors because of collinearity problems. This collinearity sug-
gests that we may be able to condense the information contained in many yields down to
a parsimonious number of variables. We would also like a consistent way to characterize
the forecasts of GDP across different horizons to different parts of the yield curve. With
OLS, this can only be done with many sets of different regressions. These regressions
are clearly related to each other, but there is no obvious way in an OLS framework to
impose cross-equation restrictions to gain power and efficiency.

Our approach in this paper is to impose the absence of arbitrage in bond markets to
model the dynamics of yields jointly with GDP growth. The assumption is reasonable
in a world of hedge funds and large investment banks. Traders in these institutions take
large bond positions that eliminate arbitrage opportunities arising from bond prices that
are inconsistent with each other in the cross-section and with their expected movements
over time. Based on the assumption of no-arbitrage, we build a model of the yield curve
in which a few yields and GDP growth are observable state variables. This helps us to
reduce the dimensionality of a large set of yields down to a few state variables. The
dynamics of these state variables are estimated in a Vector Autoregression (VAR). Bond
premia are linear in these variables and are thus cyclical, consistent with findings in
Cochrane and Piazzesi (2002). Our yield-curve model leads to closed-form solutions for
yields of any maturity which belong to the affine class of Duffie and Kan (1996).

We address two main issues regarding the predictability of GDP in the no-arbitrage
framework. We first demonstrate that the yield curve model can capture the same amount
of conditional predictability that is picked up by simple OLS regressions. However, OLS
approaches and the forecasts implied by our model yield different predictions. Using
the term structure model, we attribute the predictive power of the yield curve to risk
premium and Expectations Hypothesis components and show how the model can generate
the OLS coefficient patterns observed in data in small samples. The second question we
investigate is how well GDP growth can be predicted out-of-sample using term structure
information, where the coefficients in the prediction function are either estimated directly
by OLS, or indirectly, by transforming the parameter estimates of our yield curve model.

We find that our yield-curve model has several main advantages over unrestricted OLS
specifications. First, the theoretical framework advocates using long horizon forecasts
implied by Vector Autoregressions (VARs). While some authors, like Dotsey (1998) and
Stock and Watson (2001), use several lags of various instruments to predict GDP, to
our knowledge the efficiency gains from long-horizon VAR forecasts have not previously
been considered by the literature. Second, the estimated yield-curve model guides us
in choosing the maturity of the yields that should be most informative about future
GDP growth. Our results show that if we are to choose a single yield spread, the model
recommends the use of the longest yield to measure the slope, regardless of the forecasting
horizon. This result requires the framework of the term structure model to determine, in
closed form, the predictive ability of any combination of yields of any maturity. Third, the
model predicts that the nominal short rate contains more information about GDP growth
than any yield spread. This finding stands in contrast to unconstrained OLS regressions
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which find the slope to be more important. This prediction of the model is confirmed
by forecasting GDP growth out-of-sample. Finally, our model is a better out-of-sample
predictor of GDP than unrestricted OLS. This finding is independent of the forecasting
horizon and of the choice of term structure regressor variables. The better out-of-sample
performance from our yield-curve model is driven by the gain in estimation efficiency due
to the reduction in dimensionality and imposing the cross-equation restrictions from the
term structure model.

The rest of this paper is organized as follows. Section 2 documents the relationship
between the yield curve, GDP growth and recessions. Section 3 describes the yield-
curve model and the estimation method. Section 4 presents the empirical results. We
begin by discussing the parameter estimates, perform specification tests, and then show
how the model characterizes the GDP predictive regressions. We also present a series
of small sample simulation experiments to help interpret the results of the model. We
show that the model leads to better out-of-sample forecasts of GDP than unconstrained
OLS regressions in Section 5. Section 6 concludes. We relegate all technical issues to the
Appendix.

2 Data and Motivation

We use zero-coupon yield data for maturities 1, 4, 8, 12, 16 and 20 quarters from CRSP
spanning 1952:Q2 to 2001:Q4. The 1-quarter rate is from the CRSP Fama risk-free rate
file. All other bond yields are from the CRSP Fama-Bliss discount bond file. All yields
are continuously compounded and expressed at a quarterly frequency. We denote the
n-quarter yield as y(n)t . In their appendix, Fama and Bliss (1987) comment that data on
long bonds before 1964 may be unreliable because there were few traded bonds with long
maturities during the immediate post-war period 1952-1964. Fama and Bliss, and most
of the papers in the literature looking at the predictive ability of the term spread for
GDP, therefore choose to start their sample period in 1964. Our model will emphasize
the role of the short rate in forecasting GDP growth, rather than the term spread. To
ensure that we do not end up choose the sample period that favors our model, we report
results for the sample where the term spread asserts its predictive ability most strongly,
which is the post-1964 sample.2

We measure economic activity by real GDP growth rates. Data on real GDP is sea-
sonally adjusted, in billions of chained 1996 dollars, from the FRED database (GDPC1).
We denote log real GDP growth from t to t+ k expressed at a quarterly frequency as:

gt→t+k = 1/k · (logGDPt+k − logGDPt).

For the special case of 1-quarter ahead GDP growth, we denote gt→t+1 ≡ gt+1. GDP

2The results for the sample 1952:Q2-2001:Q4 are qualitatively similar, but favor our model more. The
results are available upon request. While Fama and Bliss advocate starting analysis with zero coupon
bonds from 1964, others use all the yields available from the post-Treasury Accord period from 1952
onwards (see, for example, Campbell and Shiller, 1991).
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numbers are subject to many revisions. We choose to use the revised figures rather than
a real-time data set because we are forecasting what actually happens to the economy,
not preliminary announcements of economic growth. GDP growth is significantly mean-
reverting; one-quarter GDP growth, gt+1, has an autocorrelation of 30%.

The extant literature focuses on using the longest available term spread to forecast
GDP. In our sample, the longest 5-year term spread averages 0.99% over the sample
period, reflecting the normal upward sloping pattern of the yield curve. Many authors,
like Harvey (1991 and 1993) comment that recessions are often preceded by inverted yield
curves. Table 1 shows that there are nine recessions during the post-1952 period. All
except the first three recessions are preceded by negative term spreads. Table 1 shows
that every recession since the 1964 start date, advocated by Fama and Bliss (1987), has
been preceded by an inverted yield curve. There is one notable inversion from 1966:Q3-
1966:Q4 which is not followed by an NBER recession, but this period is followed by a
period of relatively slower GDP growth. While all the post-1964 recessions are preceded
by inverted yield curves, the initial lead time between the onset of the inversion and the
start of the NBER recession varies between two to six quarters. Between the time that
the yield curve becomes inverted, it may stay inverted or return to its normal upward
sloping shape before the onset of the recession. For example, the yield curve became
inverted in 1973:Q2 and stayed inverted at the onset of the 1973:Q4-1975:Q1 recession,
while the yield curve was upward sloping over the 2001:Q1-2002:Q1 recession (having
been downward sloping from 2000:Q3-2000:Q4).

We can formalize the predictive power of the yield spread for economic activity in a
predictive regression of the form:

gt→t+k = α
(n)
k + β

(n)
k

³
y
(n)
t − y

(1)
t

´
+ ε

(n)
t+k,k, (1)

where future GDP growth for the next k quarters is regressed on the n-maturity term
spread. Numerous authors have run similar regressions, but usually involving only very
long spreads (5 or 10 years). Figure 1 plots 4-quarter GDP growth and the 5-year term
spread lagged by 4 quarters together in its upper panel. For example, in 1990, we plot
GDP growth from 1989-1990 together with the term spread at 1989. This corresponds
to the two variables on the LHS and RHS of equation (1) taking values k = 4 and
n = 20, respectively. The plot indicates that periods with high (low) spreads are typically
followed by high (low) GDP growth. (For now, please ignore the lower panel of Figure 1,
which shows another interesting correlation between 4-quarter GDP growth and lagged
information from the yield-curve: the 1-quarter nominal rate).

Table 2 reports the results of regression (1) over 1964:Q1-2001:Q4. In regression
(1), the long horizons of GDP growth on the left-hand side means that overlapping
periods are used in the estimation, which induces moving average error terms in the
residual. We use Hodrick (1992) standard errors to correct for heteroskedasticity and
the moving average error terms, which Ang and Bekaert (2001) show have negligible size
distortions. Inappropriate standard errors, like Newey-West (1987) standard errors, can
vastly overstate the predictability of GDP growth from the term spread.
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The literature concentrates on using long term spreads to predict GDP growth. Hence,
in Table 2, the last two columns under the 5-year term spread list the known result that
the long-term spread significantly predicts GDP growth. Estrella and Mishkin (1996)
document that a large number of variables have some forecasting ability one quarter
ahead, like the Stock-Watson (1989) index. But, in predicting recessions two or more
quarters in the future, the term spread dominates all other variables and the dominance
increases as the forecasting horizon increases. Since yields of different maturities are
highly correlated, and movements of yields of different maturities are restricted by no-
arbitrage, we expect that other yields might also have forecasting power.

Table 2 shows that the whole yield curve has significant predictive power for long-
horizon GDP growth. In particular, the 16- and 20-quarter spreads significantly predict
GDP growth 1-quarter ahead, and all the term spreads significantly predict GDP growth
4-quarters ahead. The predictability remains strong at 2 years out, but weakens at a
3-year forecasting horizon. The predictive power of the yield curve for GDP growth also
varies with the maturity of the yields used as RHS variables. For example, while the
5-year term spread significantly predicts GDP growth at all horizons, the 1-year term
spread significantly forecasts only GDP growth at 1- to 2-year horizons.

We use the regression in equation (1) as a useful starting point for showing the
strong ability of the yield curve to predict future economic growth. However, Table 2
shows that the entire yield curve has predictive ability, but the predictive power differs
across maturities and across forecasting horizons. Since yields are persistent, using the
information from one particular forecasting horizon should give us information about
the predictive ability at other forecasting horizons. Hence, we should be able to use the
information for a 1-quarter forecasting horizon regression in our estimates of the slope
coefficients from a 12-quarter forecasting horizon regression. Regression (1) only uses one
term spread of an arbitrary maturity, but we may be able to improve forecasts by using
combinations of spreads. However, the variation of yields relative to each other cannot be
unrestricted, otherwise arbitrage is possible. We seek to incorporate these no-arbitrage
restrictions using a yield-curve model to forecast GDP. This is a more efficient and
powerful method than merely examining term spreads of arbitrary maturity as regressors
in Table 2.

3 Model

Our yield-curve model is set in discrete time. The data is quarterly, so that we interpret
one period to be one quarter. The nominal riskfree rate, y(1), is therefore the 1-quarter
rate. We use a model with yield curve factors, augmented by including observable quar-
terly real GDP growth gt = logGDPt − logGDPt−1 as the last factor. We collect these
factors in a vector (K+1)×1 vector Xt, which has K term structure factors. The vector
of state variables follows a Gaussian Vector Autoregression with one lag:

Xt = µ+ ΦXt−1 + Σεt, (2)
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with εt ∼IID N (0, I), and µ is a (K+1)× 1 vector and Φ is a (K+1)× (K+1) matrix.

Risk premia on bonds are linear in the state variables. More precisely, the pricing
kernel is conditionally log-normal,

mt+1 = exp

µ
−y(1)t −

1

2
λ>t λt − λ>t εt+1

¶
, (3)

where λt are the market prices of risk for the various shocks. The vector λt is a linear
function of the state variables:

λt = λ0 + λ1Xt,

for a (K+1)×1 vector λ0 and a (K+1)× (K+1) matrix λ1.We denote the parameters
of the model by Θ = (µ,Φ,Σ, λ0, λ1).

Our specification has several advantages. First, we use a parsimonious and flexible
factor model. This means that we do not need to specify a full general equilibrium
model of the economy in order to impose no-arbitrage restrictions. Structural models,
like Berardi and Torous (2002), allow the prices of risk to be interpreted as functions of
investor preferences and production technologies. While this mapping is important for
the economic interpretation of risk premia, a factor approach allows more flexibility in
matching the behavior of the yield curve, especially in the absence of a general workhorse
equilibrium model for asset pricing.

Second, parameterizing prices of risk to be time-varying allows the model to match
many stylized facts about yield curve dynamics. For example, Dai and Singleton (2001)
show that (3) allows the yield-curve model to match deviations from the Expectations
Hypothesis, but they do not relate yields to movements in macro variables. Finally, we
jointly model yield curve factors and economic growth. Ang and Piazzesi (2003) and
Piazzesi (2003) demonstrate that directly incorporating both observed macro factors and
traditional yield-curve factors is important for capturing the dynamics of yields. For
example, Ang and Piazzesi (2003) find that incorporating macro factors allows for better
out-of-sample forecasts of yields than only using yield-curve factors. However, the Ang
and Piazzesi (2003) model does not allow feed-back between macro factors and term
structure factors, so they cannot address the question of forecasting macro factors using
term structure information.3

The only macroeconomic variable in our model is GDP growth. Of course, we may
be omitting other macro variables that contain additional information about future real
activity. We consider a variety of other forecasting variables in Section 5. An obvious
candidate is inflation (see, for example, King, Stock and Watson, 1995). We do not
include inflation in our basic model because we seek to make our results directly com-
parable to the large literature using only term structure information (mostly the term

3Recent approaches integrating term structure approaches with macro models have been developed
by Wu (2002), Hordahl, Tristani, and Vestin (2003), and Rudebusch and Wu (2003). Only Hordahl,
Tristani, and Vestin report output forecasts from a general equilibrium model.
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spread) to forecast GDP. Following this literature, our model only uses term structure in-
formation and GDP, but our model yields dissimilar predictions to the extant literature.
We show that this is due to imposing the structure from a no-arbitrage pricing model,
rather than from the confounding effects of including inflation as an additional state
variable. Nevertheless, the factor structure (2) allows additional factors to be included
by augmenting the VAR. In Section 5, we include inflation in the factor VAR, but this
does not provide significantly better out-of-sample forecasts for GDP. This result may
be due to the fact that the short rate and the term spread already contain expectations
about future inflation. For example, under the null of the Fisher Hypothesis, the short
rate is the sum of the real rate and short-term expected inflation. Moreover, Ang and
Bekaert (2003) show that inflation is responsible for a large part of the movements in the
term spread.

We can solve for the price p(n)t of an n-period nominal bond at time t by recursively
solving the relation:

p
(n)
t = Et

³
mt+1p

(n−1)
t+1

´
,

with the terminal condition p
(0)
t = 1. The resulting bond prices are exponential linear

functions of the state vector:

p
(n)
t = exp

¡
An +B>

nXt

¢
,

for a scalar An and a 3×1 vector Bn of coefficients that are functions of time-to-maturity
n. The absence of arbitrage is imposed by computing these coefficients from the following
difference equations (see the derivations in Ang and Piazzesi, 2003):

An+1 = An +B>
n (µ− Σλ0) +

1

2
B>
nΣΣ

>Bn (4)

Bn+1 = (Φ− Σλ1)
>Bn − e1,

where e1 = [1 0 0]
>. The initial conditions are given by A1 = 0 and B1 = −e1. Bond

yields are then affine functions of the state vector:

y
(n)
t = − log p

(n)
t

n
(5)

= an + b>nXt,

for coefficients an = −An/n and bn = −Bn/n.

Equation (5) enables the entire yield curve to be modelled. This allows us to char-
acterize predictive relationships for yields of any maturity. If there are no risk premia,
λ0 = 0 and λ1 = 0, a local version of the Expectations Hypothesis holds. In this case,
yields are simply expected values of future average short rates (apart from some Jensen’s
inequality terms). From the difference equations (4), we can see that the constant risk
premia parameter λ0 only affects the constant yield coefficient an while the parameter λ1
also affects the factor loading bn. The parameter λ0 therefore only impacts average term
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spreads and average expected bond returns, while λ1 controls the time variation in term
spreads and expected returns.

One caveat is that we assume that the factor dynamics are stable over time. There is
evidence for regime shifts in the dynamics of interest rates (see Ang and Bekaert, 2002).
Stock and Watson (2002) find that the differences in coefficients across regimes for GDP
relationships with other economic time series mostly reflect time-varying volatility and
find that the coefficients in the conditional mean of GDP growth are much more stable.
Nevertheless, we compare our forecasts to a Hamilton (1989) regime-switching model of
GDP growth in Section 5 below.4

How Many Yield Curve Factors?

While the model in equations (2) and (3) allows term structure factors and GDP to
feed back on each other, the remaining question is how manyK yield curve factors should
be included? At a quarterly frequency, the first principal component of yields accounts
for 97.2% of the variation of yields. Adding the second principal component brings
the percentage of yield curve variation to 99.7%. The first two principal components
have almost one to one correspondences with the short rate and term spread. The first
(second) principal component has a −95.6% (−86.5%) correlation with the short rate
(5-year term spread). Hence, even if the first two true yield-curve factors are unknown,
the observable short rate and spread are good proxies. Hence, we need at most two
factors to capture almost all of the variation of yields at a quarterly frequency. Studies
like Knez, Litterman, and Scheinkman (1994) find that the third principal component
accounts for approximately 2% of the movements of yields, whereas we find it accounts
for less than 0.3%. The reason is that we work at a quarterly frequency, whereas the
third principal component is more important at daily and weekly frequencies. Diebold,
Rudebusch, and Aruoba (2003) also find that a third curvature factor is unimportant at
a monthly frequency. The third principal component is related to heteroskedasticity, and
yields exhibit little heteroskedasticity at monthly or quarterly frequencies.

While two yield curve factors are sufficient to model the dynamics of yields, are two
yield curve factors sufficient to forecast GDP? A simple way to answer this question is
to look at simple OLS regressions of GDP growth onto principal components. Although
these unconstrained regressions do not impose any economic structure, they can give us
an idea of how many term structure factors are important for predicting GDP growth.
Table 3 reports predictive GDP regressions with principal components of yields. The
third principal component (PC3) is never significant at any forecasting horizon, but the
first two principal components (PC1 and PC2) are significant predictors of GDP.5 This
confirms Hamilton and Kim (2002), who directly use interest rate volatility and find it has
little ability to forecast GDP growth. Hence, two yield curve factors are sufficient not only

4Including regime-switches in this model is computationally intensive, and difficult to implement
in out-of-sample forecasts. While recent term structure models allow for regime changes, bond prices
can only be computed in closed form under restrictive assumptions (see Ang and Bekaert, 2003; Dai,
Singleton, and Yang, 2003).

5There is little difference in the R2s from using principal components versus the short rate, term
spread and a curvature transformation (y(1) − 2y(12) + y(20)) of yields.
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to model the dynamics of yields, but they should be sufficient to capture relationships
between the yield curve and future GDP. Note that Table 2 shows that lagged GDP
is also important, at least for horizons up to one year. Hence, we specify Xt to be a
3 × 1 vector, with K = 2 term structure factors. While our basic set-up uses 2 term
structure factors, we also consider the effect of a higher number of term structure factors
for out-of-sample forecasting in Section 5.

Estimating the Model

The most efficient way to estimate the model is to assume that the term structure
factors are latent and to use a one-step maximum likelihood estimation. However, this
procedure is computationally intensive which makes out-of-sample forecasting difficult.
Instead, we develop a two-step procedure that is fast and consistent. The key assumption
is that our term structure factors are observable.

We use two factors from the yield curve, the short rate expressed at a quarterly
frequency, y(1), to proxy for the level of the yield curve, and the 5-year term spread
expressed at a quarterly frequency, y(20) − y(1), to proxy for the slope of the yield curve.
With quarterly real GDP growth gt = logGDPt − logGDPt−1 as the last factor, the
vector of state-variables can be expressed as:

Xt =
h
y
(1)
t ,

³
y
(20)
t − y

(1)
t

´
, gt
i>

, (6)

and is thus entirely observable.6

Observable yield-curve factors enable us to use a consistent two-step procedure to
estimate the model. The parameters Θ can be partitioned into the parameters µ, Φ and
Σ governing the factor dynamics (2) and the risk premia λ0 and λ1. In the first step,
we estimate the VAR parameters µ, Φ and Σ using standard SUR. In the second step,
we estimate λ0 and λ1 given the estimates of the VAR parameters from the first step.
This is done by minimizing the sum of squared fitting errors of the model subject to the
constraint. We compute standard errors for our parameter estimates using the procedure
described in the Appendix, which takes into account the two-stage estimation. While the
two-step procedure is not as efficient as a one-step maximum likelihood procedure with
latent term structure factors, the loss in efficiency turns out to have negligible effects
for forecasting GDP growth. We present the estimation details, and a comparison to a
latent factor maximum likelihood approach, in the Appendix.

An important detail in the estimation is how we treat the n = 20 quarter yield.
For this yield, we want to ensure that the following two implications of the model are
consistent with each other. First, the model implies that we can price the 5-year bond
and compute its yield using equation (5). Second, the model implies that the 5-year yield
is the sum of the first two factors in (6). The 5-year yield is thus e>1Xt+e>2Xt, where ei is
a 3×1 vector of zeros with a 1 in the i-th element. To ensure that these two implications

6Using the 2-year, or 4-year, term spread in place of the 5-year term spread as a term structure factor
produces almost identical results.
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are consistent with each other, we impose the constraints

a20 = 0 (7)

b20 = e1 + e2

on the estimation of the market prices of risk. These constraints ensure that our no-
arbitrage model and the trivariate VAR in equation (2) have identical implications for
the 5-year yield.

Our two-step procedure is consistent, robust and fast, because many parameters are
estimated in a VAR. Speed is crucial for out-of-sample forecasting. Moreover, the estima-
tion procedure allows us to cleanly separate several sources of improvement over OLS. We
can improve on the OLS predictive regressions for GDP by moving to a dynamic system
describing the endogenous evolution of yields and GDP, parsimoniously captured by a
finite number of factors. Hence, the first source of the efficiency gains over unconstrained
OLS comes from moving from a large VAR with many yields to a low-dimensional factor
model. This is the first part of the estimation procedure. The second source of efficiency
gain is to describe the movement of yields in an internally consistent way that rules
out arbitrage across yields. In the term structure model, risk-adjusted expectations of
the short rate are consistent with the cross-section of yields. This is accomplished by
estimating the prices of risk in the second part of the estimation procedure.

Forecasting GDP Growth from the Model

The yield equation (5) allows the model to infer the dynamics of every yield and
term spread. Once the parameters Θ are estimated, the coefficients an and bn are known
functions of Θ. All the yield dynamics are therefore known functions of X. The yield-
curve model completely characterizes the coefficients in the regression (1) for any spread
maturity and for any forecasting horizon. For example, the predictive coefficient in the
regression (1) is given by:

β
(n)
k =

cov
³
gt→t+k, y

(n)
t − y

(1)
t

´
var
³
y
(n)
t − y

(1)
t

´ .

We can use equation (5) together with the implied long-run forecast for GDP growth
from equation (2) to write:

Et[gt→t+k] = c+ 1/k · e>3 Φ(I − Φ)−1(I − Φk)Xt, (8)

where c is a constant term. Hence, we can solve for β(n)k as:

β
(n)
k =

1/k · eT3Φ(I − Φ)−1(I − Φk)ΣXΣ
>
X(bn − b1)

(bn − b1)>ΣXΣ>X(bn − b1)
, (9)

where ΣXΣ
>
X is the unconditional covariance matrix of the factors X, which is given by

vec(ΣXΣ
>
X) = (I − Φ ⊗ Φ)−1vec(ΣΣ>). We compute the standard errors for β(n)k using

the delta method.
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The yield-coefficients bn together with the VAR parameters Φ and Σ (through ΣX)
completely determine the predictive regression coefficients in (9). Note that only the
factor loadings bn, and not the constants an, affect the slope coefficients. The reason is
that an only determines average term spreads and therefore is absorbed into constant
term of the forecasting regression (1). By contrast, the factor loadings bn determine the
dynamic response of yields to GDP growth and vice versa. The loadings therefore impact
the slope coefficient of the predictability regressions. The loadings are in turn affected
by the risk premia parameter λ1.

Equation (9) provides some intuition on how the no-arbitrage model provides effi-
ciency gains for forecasts. First, the term eT3Φ(I − Φ)−1(I − Φk) comes from a VAR.
It is the same expression for a k-period ahead forecast from a VAR, which comes from
assuming the VAR factor structure in (2) for the 1-quarter yield, the n-quarter spread
and GDP growth. For longer forecasting horizons k, the regression coefficient (9) ex-
ploits the long-horizon forecasts of the VAR, just as in Campbell and Shiller (1988) and
Hodrick (1992), who look at predictive regressions that forecast excess returns of the
market return using the dividend yield. However, long-horizon VAR forecasts have not
previously been exploited in GDP predictive relations.7

Second, the yield-coefficients bn enter equation (9). These coefficients tie down the
predictive coefficients to the movements of the factors and reflect the imposition of no-
arbitrage restrictions. In our empirical work, we determine the efficiency gains from each
of these two components separately. Importantly, the regression coefficients (9) allow
us to characterize the relation of future GDP growth to a term spread of any maturity
n, and also characterize the response of future GDP at any forecasting horizon k. An
important special case arises when n = 20. In this case, the yield maturity in (9) happens
to be the maturity of the long yield used as factor in our no-arbitrage model. In this
case, our two-step estimation procedure implies that the GDP forecasts computed from
our yield-curve model are identical to those computed directly from the trivariate VAR
in equation (2). For all other term spread maturities, n 6= 20, forecasts from the yield-
curve model differ from (unconstrained) VAR predictions. The yield-curve model uses
the same factor dynamics under no-arbitrage restrictions to compute equation (9) for
various maturities. In contrast, an unconstrained VAR has to be re-estimated including
these other term spreads.

We can go further than simply forecasting GDP growth with only the term spread.
Since GDP growth is autocorrelated, we can also control for the autoregressive nature of
GDP growth and augment the regression (1) by including lagged GDP growth. Whereas
the simple regression (1) also only uses one yield-curve factor (the term spread) to predict

7The implied iterated VAR forecasts derived from a term structure model is also convenient because
many macro studies of the relationships between monetary policy, yields and real activity work with
VARs. Christiano, Eichenbaum, and Evans (1999) provide an excellent survey of this literature. In a
contemporaneous paper, Marcellino, Stock and Watson (2004) investigate iterated multi-step forecasts
from autoregressive models for a large dataset of macro time series. They do not motivate this approach
from a term structure model and so cannot investigate the role of risk premia, or investigate the under-
lying sources of discrepancy between OLS forecasts and long-horizon VAR forecasts. Schorfheide (2004)
examines multi-step VAR forecasts with potentially misspecified VAR models.
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GDP and ignores other yield-curve factors (like the first short rate level factor), the yield-
curve model can fully characterize each predictive coefficient in the regression:

gt→t+k = α
(n)
k + β

(n)
k,1 · y(1)t + β

(n)
k,2 ·

³
y
(n)
t − y

(1)
t

´
+ β

(n)
k,3 · gt + ε

(n)
t+k,k, (10)

of which equation (1) is a special case. In equation (10), the subscript k notation on each
coefficient denotes the dependence of the coefficients on the forecast horizon of GDP. The
superscript (n) notation denotes the dependence of the coefficients on the choice of the
n quarter maturity term spread.

To compute the regression coefficients in equation (10), we can write k-quarter GDP
growth as gt→t+k =

1
k
eT3
Pk

i=1Xt+i. We decompose GDP growth into the part that is in
the time-t information set and future shocks:
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where c and eΦk are given by
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are constants. Hence the time-t expectation of the regressor is:

Et [gt→t+k] = c+ eT3ΦeΦkXt. (12)

The regressors in regression (10) are linear combinations of the state variables and can
be represented as A + BXt with A =

£
0 an − a1 0

¤T
and B =

£
e1 bn − b1 e3

¤T
where an and bn are the yield coefficients defined in equation (5). Hence, the regression
coefficients β(n)k = [β

(n)
k,1 , β

(n)
k,2 , β

(n)
k,3 ]

> implied by the model can be computed as:
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i
,

where ΣXΣ
T
X is the unconditional covariance matrix of the factors Xt with vec(ΣXΣ

T
X) =

(I − Φ ⊗ Φ)−1vec(ΣΣT ). Importantly, when n = 20, the forecasts of the yield curve
model reduce to long-horizon forecasts implied by a 1-step VAR, due to the factor VAR
structure of the model in equation (2) and the constraints on the risk prices imposed in
the estimation in equation (7).

Our model also allows us to compute R2s of each regression specification in closed-
form. We detail the computations of R2s and their standard errors in the Appendix.
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4 Empirical Results

4.1 Parameter Estimates

Table 4 reports estimates of the parameters of the observable yield-curve model with GDP
growth. High short rates Granger-cause low GDP growth. The significantly negative
coefficient (−0.269) in the last row of the Φ matrix is consistent with the Fed raising
(lowering) rates to cool (stimulate) economic growth. The term spread does not Granger-
cause GDP growth. This finding foreshadows the observation that term spreads behave
differently in multivariate regressions compared to univariate regressions (equation (1))
in Table 3. GDP growth remains significantly autocorrelated (0.258), when we control
for the short rate and spreads, which are themselves highly persistent. (The quarterly
autocorrelation of the short rate is 88%.)

There is little evidence of Granger-causality of GDP growth to short rates or spreads,
but shocks to all three factors are significantly correlated. In particular, shocks to the
short rate and GDP growth are 22% correlated, and shocks to the spread and GDP
growth are −5% correlated. (These numbers are computed using the covariance matrix
ΣΣ> of shocks obtained from Table 4.) This implies that the conditional covariance
structure plays an important role in bond pricing in equation (4).

Some of the parameter estimates of the risk premia in Table 4 have large standard
errors, as is common in many yield curve studies. Average risk premia (λ0) are estimated
imprecisely because yields are very persistent, which makes it hard to pin down uncon-
ditional means in small samples. Most of the time variation in the time-varying risk
premia λ1 parameters are, however, significant. Some of this time-variation is captured
by the slope of the yield curve. Many term structure studies also find this effect because
it reflects the fact that term spreads have predictive power for future holding period
returns on bonds (see Fama and Bliss, 1987). When the yield curve is upward sloping,
expected returns on long bonds are higher than on short bonds. From equation (4), we
can see that the more negative the λ1 terms, the more positive the loading bn on long
bonds. Hence, more negative λ1 terms lead to larger positive responses to conditional
short rate shocks. Since the time-variation in risk premia impacts the yield-coefficients
bn, they also significantly affect the predictive coefficients β

(n)
k in equation (9).

4.2 Specification Tests

Matching Unconditional Moments

Table 5 lists means and standard deviations of the short rate, term spreads and GDP
growth implied by the yield-curve model, against moments computed from data. (To
make the moments easily comparable with other empirical studies, we report annualized
numbers.) The standard errors implied by the model are given in parentheses. All the
data moments are well within one standard error bound. Thus, our model matches the
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unconditional moments of term spreads. Later, we will investigate the ability of our
model to capture the conditional moments implied by predictive GDP regressions using
term spreads.

Since the model, by construction, matches the dynamics of the 1- and 20-quarter
yields, we can perform χ2 over-identification tests on the various moments on the yields
not included in the VAR. Table 6 reports p-values of tests separately matching sample
means, variances and first-order autocorrelations. We use a robust Newey-West (1987)
covariance estimated from the data by GMM. The last column of Table 6 reports results
of these jointly tests for the mean, variance, or first-order autocorrelation of the 4 yields
jointly. Table 6 shows that we match the moments of the over-identified yields very closely
(with p-values all larger than 50%) when each of the yields are considered separately. The
only difficulty the model has is matching the variance of the four yields jointly. Whereas
we fail to reject that the implied means of the 4 term spreads not used as factors are
jointly equal to their sample means at the 5% level, we reject jointly for the variance test
(with a p-value of 0.007). The reason is that the data estimate of the covariance matrix
of these moments is nearly singular, because yields are highly cross-correlated.

Matching the R2s of GDP Regressions

To characterize the explanatory power of the predictive GDP regressions, we begin by
computing theoretical R2s implied by the model in Figure 2. The figure shows the model
R2s for three regressions in each panel. In the first panel, GDP growth is regressed on
the term spread; in the middle panel, the regressors are the term spread and lagged GDP
growth; and in the last panel, we have a trivariate regression on the short rate, term
spread and lagged GDP growth. On the x-axis, we plot the term spread maturity. For
the maturity corresponding to one quarter, we plot the R2 from a regression involving
the short rate. The R2s from OLS regressions are superimposed as empty squares, with
one OLS standard error bound given by the black squares. The OLS regressions can be
run only for a number of selected yields, but our model derives the predictive power for
any spread. Finally, we plot the theoretical R2s implied from the model. For the short
rate, the R2 is shown as a gray cross and one standard error bounds are shown as black
crosses. For 2- to 20-quarter spreads, the theoretical R2s are shown as solid lines with
one standard error bounds as dotted lines. While our model enables the computation of
the regression R2s from placing any horizon GDP growth on the left-hand side, the figure
shows only a 4-quarter horizon. We view this horizon as representative; the patterns are
qualitatively the same for other horizons.

The OLS one standard error bounds for the OLS regression R2s easily encompass the
R2s implied by the yield-curve model. The OLS R2s also lie very near the model-implied
R2s. This is good news for the model — the model does not seem to be at odds with
the amount of predictability of GDP observed in the data. The model-implied R2 in the
last panel is flat at 27%. This is because our model has three factors (level, slope, and
GDP growth), and two yields together with GDP growth is sufficient to capture exactly
the same information as the three factors. The remainder (73%) of the GDP forecast
variance cannot be attributed to predictable factor dynamics according to our yield-curve
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model. The model R2s provide us with a guide as to what to expect from the numerous
OLS specifications. While running many different OLS regressions with various term
spread maturities, together with other predictive variables, may give us some a rough
picture of how the whole yield curve may predict GDP, the OLS standard errors are
large enough from Figure 2 that only loose characterizations are possible. In contrast,
our model provides very clear predictions, in addition to producing tighter standard error
bounds.

First, the model-implied R2s are highest for the short rate specifications. That is, we
would expect the greatest predictive power from using a short rate in the regression, and
if we were to choose between using a term spread and a short rate, we would prefer to
choose the short rate. The theoretical R2s do not imply that we should only use short
rates instead of spreads but instead suggest that we should at least augment the term
spread with the short rate for better explanatory power. This is not what Plosser and
Rouwenhorst (1994) suggest. They find that in multiple regressions that include the
short rate and spread, the short rate, given the spread, has little predictive ability to
forecast output for the U.S. We will examine this conflicting finding in detail.

Second, if we were to use a spread to forecast GDP, the theoretical R2s give us a
guide as to which term spread we would choose. Term spreads of very long maturities
have greater predictive content for forecasting GDP in predictive regressions. The model
R2s increase with the maturity of the term spread. Interestingly, this implication of the
model is independent of the forecasting horizon that we consider and is consistent with
the OLS evidence in Table 2, where coefficients on 5-year term spreads have the highest
significance levels. This is also consistent with the previous literature using the longest
maturity spreads available, instead of spreads of intermediate maturity bonds. Also, this
result is not simply due to the fact that the longest term spread is one of the factors in
our model. To check this, we re-estimated the model with the 2-year term spread or the
4-year term spread as factors and obtained the same graph as Figure 2.

Third, controlling for lagged GDP is not as important as controlling for the short rate.
Moving from the first panel of Figure 2 to the second panel only slightly increases the
R2 by adding lagged GDP. This is because GDP is only slightly autocorrelated (30%),
and the autoregressive effect is only important for forecasting GDP at short (1- and 2-
quarter) horizons. However, we obtain a large jump in the R2 moving from the second to
the last panel, where the short rate is included. In the first two panels, the R2 plotted as
a cross for the one quarter maturity is also much higher than the term spread regressors.

4.3 Predictive GDP Regression Coefficients

To see how our model completely characterizes the GDP predictive regressions, we plot
the model and OLS regression coefficients for regression (1) in Figure 3. Each panel of
Figure 3 shows the term spread coefficients for a different forecasting horizon (1-, 4-, 8- or
12-quarters ahead), with the same scale. On the x-axis, we show the maturity of the term
spread from two to twenty quarters. The solid line plots the coefficients implied from the
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yield-curve model with two standard errors bounds as dotted lines. We can compute a
coefficient for every horizon, even those spreads not readily available from data sources.
The cross corresponding to x = 1, represents the model-implied coefficient for regressing
GDP growth onto the 1-quarter short rate. The OLS coefficients are shown as empty
squares, with two standard error bounds denoted by solid squares. All the model-implied
coefficients lie within two OLS standard error bands except for the 4-quarter spread
coefficient in the 1-quarter GDP growth horizon regression, which is borderline.

The model-implied term-spread coefficients in Figure 3 have a strong downward slop-
ing pattern, and the largest coefficients occur at the shortest maturity spreads (the un-
observed 2-quarter spread). The regression coefficients rapidly decrease and then level
off. The horizontal asymptote coincides almost exactly with the OLS estimates at the
1-quarter forecasting horizon but lies slightly below the OLS estimates for the other
horizons. Looking only at the point estimates, the OLS coefficients of term spreads are
slightly biased upwards, relative to the yield-curve model coefficients for the 4-, 8- and
12-quarter forecasting horizons. However, the difference between the coefficients is not
statistically significant for using only term spreads as regressors.

However, there are large differences in the point estimates between OLS coefficients
and the predictive coefficients implied by our model for other choices of regressors. Table
7 shows some selected regression coefficients for different forecasting horizons. Here, we
list coefficients for two specifications: the short rate alone and a trivariate regression
with short rates, term spreads and lagged GDP. We compare model-implied and OLS
coefficients across different forecasting horizons given in rows. While we can compute
the regression coefficients for any term spread, we choose the longest term spread in
our data to be comparable to the literature. Note that since the term spread is an
observable factor, the model-implied coefficients in Table 7 are just coefficients implied
from a long-horizon VAR.

In Table 7, the short rate alone is always significantly negative from our model at
the 5% level, and also significant in OLS regressions, except at the 12-quarter horizon.
Turning to the trivariate regression, the 1-quarter forecasting horizon coefficients are
identical because this regression represents the last row of the Φ matrix in the state
dynamics (2). There is a difference in the standard errors across the model-implied and
OLS columns because the model-implied standard errors are computed by the delta-
method, and take into account the sampling error of all the parameters. We use Hodrick
(1992) standard errors for the OLS regressions. As the forecasting horizon increases from
one quarter to twelve quarters, the autocorrelation of GDP becomes less important.

There are two major differences between the model-implied coefficients and the OLS
coefficients. First, at long forecasting horizons, the point estimate of the short rate coeffi-
cient implied by the model is significant in univariate regressions. The short rate model-
implied coefficient retains its magnitude and significance in the trivariate regression. For
example, in forecasting GDP growth 12-quarters out, the model-implied coefficient on
y
(1)
t is −0.24 in the univariate regression and −0.22 in the trivariate regression. Both
coefficients are significantly negative. This pattern does not occur in the OLS results.
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The OLS short rate coefficients, like the model-implied coefficients, are also significantly
negative when GDP is regressed solely on the short rate at the 1-, 4- and 8-quarter fore-
casting horizons. However, at the 12-quarter horizon, the OLS coefficient on y(1)t is −0.14
and insignificant in the univariate regression. Moreover, the OLS short rate coefficient is
small and insignificant (−0.07) in the trivariate regression.
Second, the model-implied coefficients assign more predictive power to the short rate

than to term spreads, while the opposite is true for OLS. This is consistent with the
theoretical R2 patterns observed in Figure 2. In the trivariate regressions, the model-
implied coefficients on y(20)t − y

(1)
t are all insignificant. For the OLS regressions, it is only

at the 1-quarter horizon where the spread coefficient is insignificant. At the 12-quarter
forecasting horizon, the model-implied (OLS) coefficient on y

(20)
t − y

(1)
t is 0.08 (0.42).

According to the yield-curve model, the only significant forecaster of GDP growth is the
short rate, not the spread, at long horizons. Moreover, the largest effect should still come
from the short rate, even after including the spread. According to OLS, the short rate has
little predictive power controlling for the spread, in line with Plosser and Rouwenhorst
(1994).

The differences in the y(1)t and y
(20)
t − y

(1)
t coefficients are not statistically significant

— otherwise the model would be rejected. The OLS coefficients in Table 7 lie within
two standard error bounds of the model-implied coefficients, where the standard errors
are due solely to sampling error of the OLS predictive coefficients. The model-implied
coefficients also lie within two standard error bounds of the OLS coefficients, where the
standard errors are computed using the delta-method. Hence, statistically there may not
be much difference, but the two sets of coefficients have vastly different implications for
the role of the short rate and spread in forecasting GDP growth. Note that while some
authors, like Dueker (1997) and Dotsey (1998) demonstrate the weak performance of the
spread over specific sample periods (particularly over the 1990’s), the unconstrained OLS
regressions still firmly make the case for the predictive power of the spread. However,
our model, estimated over the whole sample, implies that the short rate — not the spread
— should be the most powerful predictor of GDP growth. The strong model prediction
that the short rate should have the most explanatory power for future GDP movements
is not the product of looking at a particular subsample, but is due to estimating the
predictive relationship more efficiently.

The source of discrepancy between the model-implied and the OLS coefficients is sam-
pling error, both from estimating the model and from estimating the OLS coefficients.8

When we estimate the yield-curve model, we use information from across the entire curve
and impose restrictions derived from no-arbitrage factor models that yield greater effi-
ciency. In contrast, the OLS regressions treat the regressors as exogenous variables. To
better characterize the important differences between the OLS and model-implied pre-

8An alternative explanation for the difference is small-sample endogenous regressor bias (see Stam-
baugh, 1999). We performed small sample simulations which indicate that this is not the source of the
discrepancy between the OLS and model-implied coefficients. Of course, another explanation — which
can never be ruled out — is model misspecification. However, Monte Carlo simulations in Section 4.5
show that our model can give rise to the OLS patterns observed in the data in small samples.
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dictions for GDP, we next examine the role of risk premia in Section 4.4 and describe
the small sample distributions of the OLS regression coefficients implied by our model in
Section 4.5.

4.4 The Role of Risk Premia in Forecasting

To help interpret the finding that the model assigns little role to the term spread in
forecasting GDP growth in the OLS regression, but assigns more importance to the short
rate, we can write the spread as the sum of two components:
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The first component is the spread computed under the Expectations Hypothesis (EH).
The n-quarter yield under the EH is just the expected average future short rate. The
second component is the risk premium (RP) — the deviation of the actual yield from the
yield implied by the EH.

The OLS predictive regressions (1) are often motivated by the idea that the term
spread captures expectations of the future path of GDP. The regressions, however, do not
differentiate between the risk premium and expectations of future interest rates. There is
thus no distinction between correlations between future GDP growth and expectations of
future short rates and the premium that investors demand for holding long-term bonds.
Based on equation (13), we can disentangle expected future short rates and risk premia in
term spreads. We compute the EH-spread from the VAR dynamics (2) and regress GDP
growth on both components in (13) separately for the 4- and 20-quarter term spreads in
Table 8.9

The results in Table 8 are striking. For comparison, we repeat the results with only
the spread regressor in the first set of columns for different spread maturities from Table
2. The other columns report the EH and RP components of the spreads, treated as
separate regressors. The R2s from the bivariate regression with the two separate EH
and RP components are much higher than the R2s from the univariate regressions using
the term spread. Moreover, the EH-spread coefficient is much larger in magnitude than
the term spread coefficient for all forecasting horizons. Finally, the coefficient on the
RP component is always insignificant, while the EH-spread is highly significant. These

9Strictly speaking, the interpretation of the EH-spread computed using the VAR (2) is inaccurate.
The VAR dynamics in equation (2) do not impose the null of the EH, because the 20-year spread contains
risk premia that is already captured by the VAR. To strictly impose the EH on the VAR requires complex
estimation procedures (see, for example, Bekaert and Hodrick, 2001). The EH component also does not
take into account Jensen’s inequality terms. To check whether these two approximations matter for our
results, we re-ran the results of Table 8 using the EH-spread directly computed from the latent factor
model in the Appendix by imposing the prices of risk to be zero (λ1 = λ2 = 0). However, the results in
Table 8 did not change.
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results suggest that to predict GDP growth, we should subtract the RP component from
the spread. Otherwise the expectations contained in the term spread are contaminated
by the RP component, which blurs the GDP forecasts.

The EH-spread is highly correlated with the current short rate, because the short rate
is slowly mean-reverting and, thus, highly predictable. The short rate instruments for
the EH-spread in multivariate regressions based on the short rate and the term spread.
This may explain why our model finds that the short rate does better at forecasting
GDP than term spreads. An advantage of our model is that it effectively allows for a
decomposition of term spreads into expected short rate changes and RP according to
equation (13) using prices of risk.

4.5 Small Sample Simulations

The model coefficients that we estimate and the implied predictions for GDP predictive
regressions that favor the short rate (rather than the term spread as the unconstrained
OLS regressions suggest) are statements about population coefficients. It is conceivable
that even though the OLS spread regression does not deliver an optimal population
forecast, OLS may have less sampling variability than the model-implied forecast and is
preferable in finite samples. To examine this possibility, and the implied small sample
behavior of the forecasting coefficients, we use the estimated yield-curve model to generate
10,000 samples of the same length as our sample period (152 observations). In each
simulated sample, we re-estimate our factor dynamics (a VAR), and compute an implied
long-run forecast, which is a long-horizon VAR forecast, and compare them to a forecast
from a simple OLS regression. For this exercise, we focus on the 5-year term spread. In
this case, the GDP forecasts computed from our no-arbitrage model and those computed
from the VAR in equation (2) are identical.10 Table 9 presents the results.

Table 9 lists three rows for each forecasting horizon. First, the row labelled “Truth”
reports the population forecasting coefficients from the estimated yield-curve model. The
row labelled “Re-estimated Model” reports the average coefficients across all the simu-
lations from re-estimating the model VAR, and computing long-horizon VAR forecasts.
The numbers in parentheses represent the standard deviations of the coefficients across
the simulations. Similar numbers are reported for the row labelled “OLS,” which refer
to the simple unconstrained OLS specification. The last column “RMSE” in Table 9
reports the Root Mean Squared Errors an out-of-sample forecasting period of 44 obser-
vations that corresponds to the same length of the out-of-sample forecasting period we
use below in Section 5. The RMSE are relative to an AR(1) which we estimate for each
simulated sample. The RMSE numbers for “Truth” use the true populations coefficients
for forecasting in each simulated sample. In the out-of-sample forecasting period, each
model is re-estimated in a rolling procedure, corresponding to the out-of-sample exercise
using actual U.S. data in Section 5.

10Unfortunately, we cannot re-estimate prices of risk in each simulation due to computational com-
plexity. Note that when using the 5-year yield as a factor, the model reduces to a VAR.
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Table 9 shows that the small sample distributions of the implied forecasting coeffi-
cients from the re-estimated model come much closer to the truth than the OLS regres-
sions. In fact, the averages are often exactly aligned with the population coefficients.
The small sample distributions of the OLS regressions are very interesting. The OLS
regressions place a large weight on the spread, even though the population places little
weight on the spread. For example, for the 12-quarter horizon, the spread coefficient in
population is only 0.08 (which the re-estimated model nails at 0.09), whereas the spread
coefficient is a very large 0.61. This is exactly the result we see from the OLS coeffi-
cients estimated from data reported in Table 7! Hence, OLS has a tendency to favor the
spread in small samples, even though the population distribution places little weight on
the spread. In contrast, the greater efficiency of our yield-curve model recovers the true
population forecasting coefficients that emphasize the short rate. Finally, consistent with
the small sample distributions of the forecasting coefficients, the model RMSE are lower
than OLS in the simulated out-of-sample.

5 Out-of-Sample Forecasting

5.1 Out-of-Sample Forecasting Results

We perform out-of-sample forecasts over the period 1990:Q1-2001:Q4. Our choice of
the out-of-sample period must balance the need for a long in-sample time-series of data
needed to estimate the yield-curve model, and a sufficiently long out-of-sample period
to conduct the forecasting analysis. Our out-of-sample period covers 11 years and en-
compasses two recessions (one from 1990-1991 and one beginning in 2001). The fore-
casting exercise we conduct is rolling. That is, we first estimate the model parameters
Θ = {µ,Φ,Σ, λ0, λ1} starting in 1964:Q1, and forecast k-quarter GDP growth from
1990:Q1 (k > 1). Then at each later point in time t, we re-estimate Θ again using the
same number of observations up to time t, and forecast for horizons t+ k.

Table 10 focuses on the forecasting performance using the short rate as opposed to
spreads, while Table 11 examines the performance of different spread maturities. Our
benchmark is the RMSE from an AR(1) specification, which is a reasonable benchmark
that is also used by Stock and Watson (2001) in the context of forecasting macro-series.
We first focus on the ability of the yield-curve model’s factor structure to beat uncon-
strained OLS regressions. In out-of-sample forecasts, very often it is the most parsi-
monious statistical models that produce the best forecasts even if they are not based
on economic theory. Over-parameterized models usually perform very well on in-sample
tests but perform poorly out-of-sample. Our yield-curve model has many more parame-
ters than an unconstrained OLS approach. This puts the performance of our model at a
potential disadvantage relative to the standard OLS regressions.

Table 10 reports the out-of-sample forecasts results for several specifications to illus-
trate the efficiency gains from moving from OLS to a parsimonious factor VAR represen-
tation. The second last column refers to a system that includes all yields and GDP. The
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last column refers to a 4-variable system with the short rate, 5-year term spread, GDP
growth and the CPI inflation rate. The remaining columns compare the results from the
yield-curve model, which here reduces to a long-horizon VAR because the short rate and
term spread are factors. The rows labeled “OLS” refer to unconstrained OLS regressions.
For comparison, a random walk performs atrociously, producing RMSE ratios as large
as 1.496 for the 12-quarter forecasting horizon. Similarly, a simple OLS regression with
all yields and GDP produces RMSE ratios all larger than the RMSE ratios in Table 10,
reaching 1.378 for the 8-quarter horizon.

The first striking result of Table 10 is that the best performing models use short rates
rather than term spreads. This is in line with the theoretical R2 results in Section 4.2,
which advocates using short rates as predictors. The RMSE ratios are particularly low
for long-horizon out-of-sample forecasts at 8- and 12-quarters for the short rate only and
short rate plus lagged GDP specifications. While the OLS in-sample results (Table 7)
advocate the use of the term spread to forecast GDP, the out-of-sample results confirm
the predictions from the yield-curve model that stress the use of the short rate. Not
surprisingly, adding GDP helps to lower the RMSE ratios, particularly at short horizons.

As we add more predictors, the out-of-sample forecasts implied by the yield-curve
model tend to produce lower RMSE ratios than the corresponding unconstrained OLS
forecasts. For the full specification of the short rate, spread and GDP, the OLS and
model forecasts are identical at the 1-quarter horizon by construction. As we increase
the forecasting horizon, the model RMSE ratios become markedly lower than the OLS
forecasts. This result is not unexpected, since the yield-curve model is able to incorporate
information from the yield curve more efficiently than OLS, where the regressors are
exogenous. This demonstrates that the yield-curve model can improve forecasts of GDP
by exploiting the factor structure.

In our framework, it is easy to accommodate more factors than the 3 factors (short
rate, spread and GDP) of our basic model. Because of the factor structure in equation
(2), including additional factors simply augments the VAR. Table 10 shows that using two
term structure factors is not only more parsimonious, but also produces more accurate
forecasts than employing all the yields as factors. In particular the column labelled
“Short Rate, All Spreads and GDP” reports higher RMSE ratios than the columns lying
on its left, partly due to the added noise from having many more parameters from the
additional state variables. Hence, there are valuable forecasting gains by reducing the
dimensionality of the system. When we include inflation in the system, the forecasts are
similar to our chosen 3-factor specification (slightly worse for short horizon and slightly
better at long horizons).

The first potential gain from forecasting from the yield-curve model is the reduction
in dimensionality of the system relative to a large VAR with all yields. The second
potential gain is that the yield-curve model uses the risk premia to ensure the yields not
used as factors move in a manner consistent with no-arbitrage. To investigate which gain
is more important, Table 11 reports results for 3-variable systems with the short rate, a
term spread of an arbitrary maturity, and GDP growth. To compute the “Model” RMSE
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ratios, we compute the predictive coefficients using the model with relations similar to
those in equation (9). (Note that when we use the 5-year term spread, as in Table
10, the model implies long-horizon VAR forecasts.) The row labelled “OLS” in Table 11
reports the RMSE ratio of an unconstrained OLS regression using the short rate, the term
spread of arbitrary maturity, and GDP growth. Finally, the “VAR” refers to long-horizon
forecasts from a 3-variable VAR with the same regressors as the OLS regressions, which
is why the OLS and VAR RMSE ratios coincide for the 1-quarter forecasting horizon.
The VAR forecasts differ from the forecasts implied by the model, because the model
uses the prices of risk to pin down the implied forecasting coefficients, rather than just
using the arbitrary term spread from data.

Table 11 shows that the risk premia not already captured by the factor structure does
not contribute much to improving the GDP forecasts. The RMSE of the last column are
much larger than those in the other columns. Table 11 also reports that the forecasting
gains come from moving from OLS to the model or from OLS to the VAR. However,
there is little difference between the RMSE ratios of the model and the VAR, and the
model RMSE ratios are slightly higher for the model forecasts at for longer term spread
maturities. Hence, the main advantage of the yield-curve model comes from using the
VAR factor dynamics (equation (2)). The VAR structure places larger weight on the
short rate (with a negative sign) and less weight on the spread than OLS (see Table 7),
especially at long horizons. The better performance of the model is not due to the lack
of inverted yield curves during the sample: the yield curve was inverted before both the
1991 and 2001 recessions for substantial periods of time (see Table 1).

There are two important messages in these out-of-sample forecasting results. First,
while the point estimates of the predictive coefficients in the various regression specifi-
cations are well within OLS confidence bounds (see Table 7 and Figure 3), the magni-
tudes of the model-implied coefficients are quite different from the OLS estimates. In
out-of-sample forecasting, this difference becomes important, particularly for the weight
assigned to the short rate. By imposing restrictions implied by a term structure pricing
framework, our estimates are more efficient than unrestricted OLS estimates. The stark
implications of the superior forecasting power from short rates in the model versus term
spreads in OLS show that these efficiency gains matter.

Second, the biggest gain comes from imposing a low-dimensional factor structure.
Estimating a full VAR with all yields and GDP results in an over-parameterized model.
A select choice of factors captures the common information in the yield curve, allowing
us to reduce the sampling variability of the prediction functions. In this sense, the factor
structure works like the shrinkage approaches on large VAR systems (see, for example,
Schorfheide, 2003; Del Nelgro and Schorfheide, 2004). While our model has, for simplicity,
used observable short rates and term spreads as factors, we expect that other methods
of constructing factors will have similar efficiency gains. Some alternative factors include
principal components (which we also consider below) or Nelson and Siegel (1987) splines
(as used by Diebold and Li, 2003).

Our forecasting results are subject to a number of important qualifications. For exam-
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ple, the out-of-sample period covers only two recessions and during the mid-1990’s, there
was a large decline in interest rates. While the full sample shows strong predictability
(see Tables 2 and 7), there may be issues of the structural stability of these relations,
particularly since monetary policy has undergone several different regimes. Another con-
cern is that the superior forecasting ability of adding short rates or using a yield-curve
model is small. None of the forecasts from the yield-curve model are strongly significant
relative to their OLS counterparts using Diebold and Mariano (1995) tests. However,
the number of observations in the out-sample is small and out-of-sample forecasting tests
have very low power in these cases. Another observation is that there is one prediction
from the model R2s that is not borne out in the out-of-sample forecasting. The model
predicts that greater explanatory power should come from longer term spreads. In Table
11, the RMSE ratios for longer term spread maturities should be lower, but they are not
always so.

5.2 What is Driving the Short Rate Predictability?

Are the 1990’s Special?

The high predictability of GDP growth by the short rate during the out-of-sample
forecasting exercise may be due to the 1990’s. The best performing models in the out-of-
sample forecasting exercise used short rates. Over the out-sample (1990:Q1 to 2001:Q4),
this particular sample may favor the short rate over the spread. Looking at Figure 1,
we can see that during the 1990’s, particularly, post 1994, the lagged term spread, if
anything, is slightly negatively correlated with GDP growth. In contrast, the short rate
moves clearly in the opposite direction to future GDP growth. Hence, the 1990’s does
seem to be a period where the spread does not seem to positively predict GDP growth
but high short rates forecast negative GDP growth. However, the top panel of Figure
1 shows that prior to 1970, the term spread is almost flat and has little to do with
GDP fluctuations. It is only between 1970 and 1990 that the lagged spread is positively
correlated with GDP growth. In contrast, in the bottom panel of Figure 1, lagged short
rates and GDP are negatively correlated throughout the whole sample period. Table 12
makes this clear.

Table 12 reports unconstrained OLS coefficients on the short rate, 5-year term spread
and lagged GDP growth, forecasting future GDP growth k-quarters ahead across various
sample periods. Over the out-of-sample period, post-1990, the OLS regressions place little
weight on the spread but significantly large negative weights on the short rate. Prior to
1970, we see that the 5-year spread is also insignificant (but also has negative point
estimates) and the coefficients on short rates are large in magnitude, highly statistically
significant, and negative. It is only from 1971-1989 that the term spread significantly
predicts future GDP growth with a positive sign and drives out the predictive power of
the short rate. It is this period that dominates in the unconstrained OLS regressions over
the full sample (listed in Table 7). Hence, although the 1990’s favor the short rate, this
period is by no means special. Over the full sample, OLS favors the term spread rather
than the short rate. In contrast, the forecasting coefficients implied by our model always
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favor the short rate over the term spread. Our model estimations do not let the 1970’s
and 1980’s dominate the results.

Is it Inflation or the Real Rate?

To better understand why the nominal short rate predicts GDP growth, we decompose
the nominal rate into the real rate and inflation. The actual real rate is unobservable,
so we use an ex-post real rate that we construct by using the nominal short rate less
realized CPI inflation over the last quarter. Since we use the ex-post real rate, the two
sum up to the nominal short rate. To decompose the effect of the nominal rate into the
real rate and inflation, we fit a 4-variable VAR of inflation, the real rate, the 5-year term
spread and GDP. We compute long-horizon coefficients of each variable for forecasting
inflation k-quarters out.

Table 13 reports the GDP forecasting coefficients where we distinguish between the
real rate and inflation. We compare the 4-variable inflation-real rate system with the last
3 columns, which report the results from the yield-curve model that uses the nominal rate.
We can see that the forecasting power from the nominal rate is mostly due to inflation.
While both inflation and the real rate have negative coefficients, the inflation coefficients
are larger in magnitude than the real rate coefficients. Moreover, the real rate coefficients
are all insignificant while the inflation coefficients are all significant at the 5% level. The
magnitude of the inflation coefficient is also roughly comparable to the coefficient on the
nominal rate in the yield-curve model. We can conclude that it is the inflation content
of the nominal rate that has predictive power for future economic growth. These results
are consistent with Stock and Watson (1999), who find that the nominal rate is a leading
business-cycle indicator, while the ex-post real rate is less cyclical. Bernanke and Blinder
(1992) argue that the forecasting power of the nominal rate may be due to monetary
policy. However, a full analysis of how monetary policy influences GDP through the
short rate is beyond the scope of this paper, and should be approached with a structural
model with no-arbitrage assumptions, building on the models of Hordahl, Tristani and
Vestin (2003) and Rudebusch and Wu (2003).

5.3 Comparison with Other Predictive Variables

Best practice in forecasting involves the use of combinations of forecasts from a variety of
models (see Granger and Newbold, 1987; Diebold, 2004). Our results show the benefit of
using term structure approaches for forecasting GDP, but the yield curve is only one set
of predictive instruments available to forecast economic growth. While finding optimal
combinations of term structure forecasts with other variables is beyond the scope of this
paper, we can compare the out-of-sample forecasts of the term structure model with a
laundry list of predictive instruments. We compare the following variables as predictors:
consensus GDP forecasts, the Stock-Watson experimental leading index XLI and the
alternative non-financial experimental leading index XLI-2, default spreads, commercial
paper spreads, lagged stock returns, housing starts, residential investments, growth in
help-wanted ads, the first three principal components of yields and predictions from
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Hamilton (1989)’s regime-switching model. A full description of these variables is given
in the Appendix.

Table 14 compares the term structure model forecasts along with forecasts with other
predictive variables, concentrating on results only with the short rate and GDP, and with
the full 3-variable specification of the short rate, spread and GDP. Table 14 lists ratios
of RMSE’s relative to an AR(1) over the same out-of-sample period as Tables 10 and 11,
1990:Q1 to 2001:Q4. The results are very interesting. At all horizons, many variables
perform much more poorly than an AR(1). The strongest competitor of the yield-curve
model is the Stock-Watson XLI index. Note that the index employs term structure
information along with other economic variables. For 1-quarter ahead forecasts, the
consensus forecasts and both Stock-Watson indices do well. At the 12-quarter horizon,
the term structure model outperforms all alternative predictors in the table, including
the Stock-Watson XLI index.

6 Conclusion

We present a model of yields and GDP growth for forecasting GDP. Our approach is
motivated from term structure approaches for pricing bonds in a no-arbitrage frame-
work. The model is easily estimated and gives us a number of advantages to forecasting
future economic growth. First, the model advocates using a select number of factors
to summarize the information in the whole yield curve. These factors follow a Vector
Autoregression (VAR), and long-term forecasts for these factors and GDP are simply
long-horizon forecasts implied by the VAR. Second, the yield-curve model guides us in
choosing the right spread maturity in forecasting GDP growth. We find that the maxi-
mal maturity difference is the best measure of slope in this context. Third, the nominal
short rate dominates the slope of the yield curve in forecasting GDP growth both in- and
out-of-sample. We find that the factor structure is largely responsible for most of the ef-
ficiency gains resulting in better out-of-sample forecasts. In contrast, our term structure
approach allows us to show that risk premia not captured by the factor dynamics matter
less in forecasting GDP. However, an unanswered question is whether we can improve
on these yield curve forecasts by combining both term structure information and other
macro variables. Furthermore, a better out-of-sample test than just using U.S. data is to
use international data to test the efficiency gains of factor approaches implied by a term
structure model.
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Appendix

Estimation procedure

We use a two-step procedure to estimate the model. The parametersΘ can be partitioned
into the parameters µ, Φ and Σ governing the factor dynamics (2) and the risk premia
λ0 and λ1. In the first step, we estimate the VAR parameters µ, Φ and Σ using standard
SUR. In the second step, we estimate λ0 and λ1 given the estimates of the parameters µ,
Φ and Σ estimated in the first step. This is done by minimizing the sum of squared fitting
errors of the model. More precisely, we compute model-implied yields ŷ(n)t = an + b>nXt

for given values of the state vector at time t and then solve:

min
{λ0,λ1}

TX
t=1

NX
n=1

³
ŷ
(n)
t − y

(n)
t

´2
(14)

for the N yields used to estimate the model.

The observed factors, the short rate and spread, make direct use of the yields y(1)t and
y
(20)
t . Hence these are yields to be considered to be measured without any observation
error. The other yields (with maturities 4, 8, 12, and 16 quarters) are then functions
of y(1)t and y

(20)
t − y

(1)
t and GDP growth, according to the model pricing equation (5).

Naturally, this stochastic singularity means that the model generates yields ŷ(n)t slightly
different from the observed yields for the intermediate maturities. We therefore place
a small sampling error on these yields not included as factors. We assume that the
sampling errors have mean zero and estimate their standard deviation Ω in the second
stage. Since y(1)t and y(20)t −y(1)t are generated by the VAR, and the model also determines
y
(20)
t , we ensure that the no-arbitrage restrictions are satisfied by y

(20)
t by imposing this

constraint on the estimation. Effectively, the price of risk parameters adjust in our
estimation so that this constraint is satisfied. We can also view the minimization (14)
as a GMM estimation, subject to a constraint (see Newey and McFadden, 1994; Bekaert
and Hodrick, 2001).

We compute standard errors for our parameter estimates using GMM, with moments
from each stage of our two-step procedure. The moments are the first order conditions
of ordinary least squares for µ and Φ, the covariance conditions of Σ, and the first-order
conditions of λ0 and λ1 to satisfy (14). The standard errors we compute adjust for the
two-stage estimation process. This is done as follows.

Let θ1 = {µ,Φ,Σ} and θ2 = {λ0, λ1,Ω} be the partitioned parameter space and
denote the corresponding sample estimates by overlined letters. We estimateΘ = {θ1, θ2}
following a consistent two-step procedure. In the first step, we fit a VAR(1) process to
the observed state variable series and estimate θ1 by solving the system of equations:

√
Tg1

¡
θ1
¢
= 0, (15)

where the function g1 (.) represents the usual SUR moment conditions.
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In the second step we choose θ2 so as to minimize the sum of squared fitting errors
of the yields:

min
θ2

1

2
g2
¡
θ2; θ1

¢>
g2
¡
θ2; θ1

¢
,

where g2
¡
θ2; θ1

¢
=
n
ŷ
(n)
t − y

(n)
t

oN
n=1

is a column vector of fitting errors of the yields

evaluated at any given θ2 and a fixed θ1 from the first step. The first-order conditions
for this minimization problem are:

G
0
2,2

√
Tg2

¡
θ2; θ1

¢
= 0, (16)

where Gi,j = ∂gi/∂θ
0
j, i, j = 1, 2.

We can expand the function g1 and g2 around the true parameter values using the
first-order Taylor approximation:
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which can then be substituted back into the moment conditions (15) and (16) to yield:·
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Invoking the rule of partitioned matrix inversion we obtain:·
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The asymptotic variances of the parameter estimates are thus:
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is the variance of the sample mean of the moment conditions

{g1, g2}.

28



Computing Regression R2s

We detail the computation of the R2 statistic for the most general regression (10), which
regresses the k-quarter GDP growth gt→t+k onto the short rate, the n-quarter term spread
and GDP growth. By switching the order of summation, the last term in (11) can be
rewritten as:

1

k
eT3

kX
j=1

kX
i=j

Φi−jΣεt+j =
1
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kX
j=1

k−jX
i=0

ΦiΣεt+j

=
1

k
eT3

kX
j=1

j−1X
i=0

ΦiΣεt+k−j+1

= eT3

kX
j=1
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Combining (11) and (18), we can compute the unconditional variance of the k-quarter
ahead GDP growth as
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and the R2 statistic as
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We compute the standard errors for R2 using the delta method.

Comparison with a Latent Factor Model

To compare the performance of our model with a more traditional model with unobserv-
able factors, we estimate a system with 2 latent yield curve factors and GDP. Latent
factors leads to identification issues of parameters, as rotations and linear transforma-
tions can be applied to the latent factors that result in observationally equivalent systems
(see Dai and Singleton, 2000). We estimate the most general identified model.11 We use
maximum likelihood following Chen and Scott (1993) by inverting the latent factors from
the 1 and 20-quarter yields.

While the estimation of the observable yield-curve model is not as efficient as the
1-step estimation of the latent yield-curve model, the results from the two approaches
11The first two elements of µ are set to zero, Φ is lower triangular, Σ can be partitioned into as

Σ =
h

1 0 0
0 1 0
Σ31 Σ32 Σ33

i
. The short rate is rt = δ0 + δ>1 X for a scalar δ0 and a 3-dimensional vector δ1. The

first element in λ0 is constrained to be zero.
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are almost identical. The extracted latent factors are almost exact transformations of
the first two principal components, or level and slope. The first latent factor has a 97%
correlation with the first principal component and a −100% correlation with the short
rate level. The second latent factor has a 98% correlation with the second principal
component and a −99% correlation with the 20-quarter term spread. The correlations
of the two latent factors with any other principal components are very small.

The second, more convincing, evidence is that the latent and observable models have
near-identical implications for forecasting GDP. Figure 4 graphs the implied coefficients
from a predictive GDP regression with short rate, term spread and lagged GDP regressors,
as given by equation (10). In the left (right) hand column we show the coefficients for
a forecast horizon of k = 1 quarter (4 quarters). In each plot, the x-axis denotes the
maturity of the term spread used in the regression. For example, the coefficients β(10)1,1

for the short rate, β(10)1,2 for the 10-quarter term spread and β
(10)
1,3 for GDP shown in the

top, middle and bottom panels on the left column, respectively, correspond to using a
term spread maturity of n = 10 quarters for a forecasting horizon of k = 1 quarter. The
thin solid line in Figure 4 represents the implied predictive coefficients from the latent
yield-curve model. The implied coefficients from the observable yield-curve model are
shown as diamonds. The two lines are almost identical. The dotted lines represent two
standard deviation bounds computed using the delta-method from the latent yield-curve
model. Figure 4 clearly shows that the predictive implications for forecasting GDP from
the latent and observable yield-curve models are the same. Hence, we focus on the more
easily interpretable observable yield-curve model that is more tractable, especially for
out-of-sample forecasting.

Data Appendix of Other Predictive Instruments

Consensus forecasts on next-quarter real GDP growth are computed using consensus
forecasts on current and next-quarter nominal GDP numbers together with current and
next-quarter GDP deflators obtained from the Federal Reserve Bank of Philadelphia.
The resulting series starts in 1968:Q4. We use the Stock-Watson Experimental Leading
Index (XLI ) and Alternative Nonfinancial Experimental Leading Index-2 (XLI-2 ) from
Jim Stock’s website. The default spread is computed as the difference between Moody’s
AAA corporate bond yield and Moody’s BAA corporate bond yield, obtained from the
Federal Reserve Bank of St. Louis FREDII database. The commercial paper spread
is computed as the difference between the 3-month AA nonfinancial commercial paper
rate, obtained from the Board of Governors of the Federal Reserve System, and the 3-
month T-Bill rate. The 3-month non-financial commercial paper rate is only available
back to 1997:Q1 and is supplemented using the 3-month commercial paper rate from
1971:Q2 to 1996:Q4. The stock returns are NYSE value-weighted returns from CRSP.
The housing starts are the level of “new privately owned housing units started” available
from the Census Bureau, while residential investment growth is the quarterly log growth
rate of “real private residential fixed investment” from the Bureau of Economic Analysis.
The index of help-wanted advertising in newspapers is in levels and is obtained from
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the Conference Board. All data start in 1964:Q1, except those marked with special start
dates. The out-of-sample forecast period is the same as in Table 10: 1990:Q1 to 2001:Q4.

The two remaining forecasts are based on the first 3 principal components of yields
and Hamilton (1989)’s regime-switching model. The regime-switching model is specified
as:

gt+1 = µ (st+1) + ρ · gt + σ(st+1)εt+1,

where εt+1 ∼ N(0, 1) and the regime variable st = {1, 2} follows a Markov chain with
the constant transition probability matrix:

Π =

·
p 1− p

1− q q

¸
.

The model is estimated using maximum likelihood. The time t forecast is computed as

Et [gt→t+k] = Et

kX
i=1

ρk−iµ (st+i) + ρkgt

=
kX
i=1

ρk−i

X
St

X
St+i

µ (st+i)P [st+i|st]
+ ρkgt.

Both the principal components and the regime-switching model are estimated recursively
through the sample.
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Table 1: NBER Recession Forecasts from Term Spreads

NBER recession Inversion Lead Time
1953:Q3-1954:Q2
1957:Q3-1958:Q2
1960:Q2-1961:Q1

- - - - - - - - Fama-Bliss sample starts 1964:Q1 - - - - - - - -
1966:Q3-1966:Q4

1969:Q4-1970:Q4 1968:Q2,1968:Q4,1969:Q4 6 qtrs
1973:Q4-1975:Q1 1973:Q2-1974:Q1,1974:Q4 2 qtrs
1980:Q1-1980:Q3 1978:Q4-1980:Q1 5 qtrs
1981:Q3-1982:Q4 1980:Q3-1980:Q4,1981:Q2,1982:Q1 4 qtrs
1990:Q3-1991:Q1 1989:Q2 5 qtrs
2001:Q1-2002:Q1 2000:Q3-2000:Q4 2 qtrs

NOTE: The first column lists periods of recessions as defined by the NBER. The
second column reports the periods of inverted yield curves (a negative difference
between the 5-year zero coupon yield and the 3-month T-bill yield) prior to the
onset of a recession. The final column reports the time from an initial inverted
yield curve and the onset of a recession.

37



Table 2: Forecasts of GDP Growth from Term Spreads

Term Spread Maturity
Horizon 4-qtr 8-qtr 12-qtr 16-qtr 20-qtr

k-qtrs β
(4)
k R2 β

(8)
k R2 β

(12)
k R2 β

(16)
k R2 β

(20)
k R2

1 0.31 0.00 0.78 0.03 0.72 0.04 0.66 0.04 0.65 0.04
(0.73) (0.49) (0.39) (0.33) (0.29)

4 1.18 0.06 1.23 0.16 1.06 0.18 0.90 0.17 0.89 0.20
(0.49) (0.38) (0.32) (0.28) (0.26)

8 1.06 0.10 1.04 0.20 0.91 0.25 0.78 0.24 0.73 0.24
(0.41) (0.33) (0.29) (0.26) (0.24)

12 0.56 0.05 0.67 0.16 0.59 0.19 0.53 0.20 0.48 0.20
(0.32) (0.27) (0.24) (0.21) (0.20)

NOTE: The table reports the slope coefficient β
(n)
k and R2 for the regression

gt→t+k = α
(n)
k +β

(n)
k

³
y
(n)
t − y

(1)
t

´
+ε

(n)
t+k,k, where gt→t+k is annualized GDP growth

over the next k quarters and y
(n)
t denotes a zero-coupon yield of maturity n quar-

ters. Hodrick (1992) standard errors are reported in parentheses.
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Table 3: Forecasting GDP with Principal Components

Horizon Principal Components Lagged
k-qtrs PC1 PC2 PC3 GDP R2

1 0.10 −0.68 1.48 0.27 0.18
(0.05) (0.28) (1.00) (0.08)

4 0.11 −0.91 0.05 0.12 0.32
(0.06) (0.30) 0.72) (0.06)

8 0.07 −0.81 −0.10 −0.02 0.32
(0.05) (0.27) (0.54) (0.04)

12 0.02 −0.59 0.37 −0.02 0.24
(0.04) (0.22) (0.43) (0.03)

NOTE: The table reports the slope estimates and R2 from regressing GDP growth
on a constant and the indicated right-hand side variables. Hodrick (1992) standard
errors are reported in parentheses.
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Table 4: Parameter estimates for Yield-Curve Model

State dynamics Xt = µ+ ΦXt−1 + Σεt
µ Φ Σ

Short Rate 0.086 0.923 0.096 0.012 0.286
(0.087) (0.044) (0.094) (0.040) (0.062)

Spread 0.025 0.026 0.768 −0.008 −0.150 0.124
(0.056) (0.029) (0.072) (0.024) (0.038) (0.009)

GDP growth 0.935 −0.269 0.320 0.258 0.177 0.147 0.773
(0.303) (0.132) (0.325) (0.090) (0.061) (0.075) (0.068)

Risk premia λt = λ0 + λ1Xt Std dev of errors Ω
λ0 λ1 1-yr yield 2-yr yield

Short Rate 0.29 −34.18 −52.61 1.60 0.084 0.058
(0.22) (0.27) (0.17) (10.88) (0.009) (0.006)

Spread 0.41 2.04 −102.90 0.85
(0.67) (0.11) (0.08) (1.64) 3-yr yield 4-yr yield

GDP Growth 6.57 2.84 −2.56 8.87 0.041 0.031
(4.89) (0.09) (0.01) (0.38) (0.012) (0.008)

NOTE: Parameters µ, Σ and standard deviations of measurement errors are multi-
plied by 100. Standard errors (in parentheses) are computed following the method
in the Appendix.
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Table 5: Unconditional Moments from Model and Data

Short
Rate Term Spreads GDP

Maturity 1-qtr 4-qtr 8-qtr 12-qtr 16-qtr 20-qtr growth

Model Implied Moments
Mean 6.28 0.44 0.70 0.85 0.96 1.03 3.21

(1.06) (0.07) (0.12) (0.16) (0.18) (0.20) (0.42)
Std.Dev. 2.66 0.36 0.70 0.91 1.06 1.16 3.52

(0.72) (0.15) (0.24) (0.29) (0.31) (0.33) (0.30)

Data
Mean 6.34 0.46 0.66 0.81 0.93 0.99 3.20
Std.Dev 2.61 0.50 0.74 0.93 1.06 1.15 3.54

NOTE: The table compares model-implied means and standard deviations of short
rates, term spreads and GDP growth with data. Standard errors (in parentheses)
are computed using the delta method.
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Table 6: P-values of χ2 Specification Tests

4-qtr 8-qtr 12-qtr 16-qtr Joint
Mean 0.845 0.947 0.958 0.932 0.071
Variance 0.908 0.967 0.909 0.971 0.007
Autocorrelation 0.510 0.544 0.591 0.673 0.905

NOTE: The table reports p-values for GMM χ2 tests for matching means, variances
and autocorrelations of yields not used as factors in the estimation of the model.
The last column lists p-values for χ2 tests performed jointly across the 4-, 8-, 12-,
and 16-quarter yields.
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Table 7: Model-Implied and OLS Coefficients

Model Implied Coefficients OLS Coefficients
Horizon 5-Year GDP 5-Year GDP
qtrs Short Rate Term Spread Growth Short Rate Term Spread Growth
1 −0.39 −0.39

(0.14) (0.14)
−0.27 0.32 0.26 −0.27 0.32 0.26
(0.13) (0.33) (0.09) (0.14) (0.26) (0.09)

4 −0.35 −0.42
(0.13) (0.15)
−0.28 0.25 0.08 −0.28 0.60 0.11
(0.14) (0.31) (0.04) (0.15) (0.25) (0.06)

8 −0.28 −0.28
(0.11) (0.13)
−0.25 0.14 0.04 −0.19 0.56 −0.02
(0.14) (0.25) (0.03) (0.13) (0.21) (0.03)

12 −0.24 −0.14
(0.10) (0.12)
−0.22 0.08 0.02 −0.07 0.42 −0.02
(0.13) (0.20) (0.02) (0.11) (0.17) (0.02)

NOTE: Slope estimates for predictive GDP regressions using only short rates as
regressors, and short rates, term spreads and GDP growth as regressors. The table
reports predictive coefficients implied by the yield-curve model (left panel) versus
unrestricted OLS coefficients (right panel). Standard errors (in parentheses) are
computed by the delta-method for the model-implied coefficients, and following the
method of Hodrick (1992) for the OLS coefficients.
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Table 8: The Role of Risk Premia

Horizon 4-qtr Term Spread 20-qtr Term Spread
k-qtrs Spread R2 EH RP R2 Spread R2 EH RP R2

1 0.31 0.00 2.75 −1.00 0.12 0.65 0.04 0.92 0.20 0.09
(0.73) (1.02) (0.73) (0.29) (0.34) (0.31)

4 1.18 0.06 3.41 −0.08 0.30 0.89 0.20 1.15 0.47 0.30
(0.49) (0.65) (0.45) (0.26) (0.23) (0.30)

8 1.06 0.10 2.46 0.26 0.27 0.73 0.24 0.87 0.50 0.31
(0.41) (0.44) (0.41) (0.24) (0.15) (0.27)

12 0.56 0.05 1.33 0.12 0.15 0.48 0.20 0.53 0.40 0.21
(0.32) (0.50) (0.35) (0.20) (0.14) (0.21)

NOTE: This table reports predictive GDP regression results from equation (1) and
results from regressing GDP growth on the Expectations Hypothesis (EH) and risk
premium (RP) components in equation (13) separately. Hodrick (1992) standard
errors are in parentheses.
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Table 9: Small Sample Predictive Coefficients

Horizon 5-Year GDP
k-qtrs Short Rate Term Spread Growth RMSE
4 Truth −0.28 0.25 0.08 0.896

Re-estimated Model −0.30 0.20 0.07 0.951
(0.07) (0.07) (0.10) (0.014)

OLS −0.16 0.59 0.10 0.960
(0.09) (0.16) (0.14) (0.018)

8 Truth −0.25 0.14 0.04 0.887
Re-estimated Model −0.22 0.14 0.03 0.961

(0.07) (0.07) (0.10) (0.014)
OLS −0.07 0.65 −0.02 0.981

(0.09) (0.16) (0.14) (0.018)
12 Truth −0.22 0.08 0.02 0.888

Re-estimated Model −0.18 0.09 0.02 0.974
(0.07) (0.07) (0.10) (0.014)

OLS 0.02 0.61 −0.01 1.004
(0.09) (0.16) (0.14) (0.018)

NOTE: The row labelled “Truth” reports population coefficients. In each simula-
tion of 152 observations, we re-estimate the model, compute predictive coefficients
implied by the model, and estimate OLS coefficients. The numbers in brackets
are the standard deviations of these coefficient estimates across simulated sam-
ple paths. The column labelled “RMSE” reports the RMSE relative to an AR(1)
that corresponds to a series of rolling out-of-sample estimations over the last 44
observations in each simulation. We perform 10,000 simulations.
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Table 10: Out-of-Sample Forecasts — Effect of Factor Dynamics

Short Rate, Short Rate, Short Rate,

Horizon Short Rate Spread Short Rate Spread Spread All Spreads Spread, GDP

k-qtrs Only Only and GDP and GDP and GDP and GDP and Inflation

1 OLS 1.133 1.130 1.043 1.033 1.059 1.160 1.077

Model 1.134 1.135 1.043 1.038 1.059 1.160 1.077

4 OLS 1.041 1.169 1.011 1.121 1.151 1.151 1.117

Model 1.010 1.064 0.980 1.018 1.014 1.068 1.024

8 OLS 0.851 1.190 0.881 1.225 1.281 1.271 1.233

Model 0.831 0.972 0.827 0.947 0.888 1.007 0.886

12 OLS 0.742 0.955 0.762 1.002 1.116 1.179 1.054

Model 0.720 0.863 0.710 0.836 0.750 0.831 0.740

NOTE: Table entries are RMSE ratios relative to an AR(1). The spread refers to
the 5-year term spread. The out-of-sample period is 1990:Q1-2001:Q4.
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Table 11: Out-of-Sample GDP Forecasts — Effect of Risk Premia

Horizon Term Spread Maturity
kqtrs 4-qtrs 8-qtrs 12-qtrs 16-qtrs
1 Model 1.021 1.041 1.054 1.063

OLS 1.080 1.044 1.048 1.054
VAR 1.080 1.044 1.048 1.054

4 Model 0.993 1.003 1.013 1.023
OLS 0.997 1.060 1.091 1.117
VAR 1.029 1.000 1.002 1.009

8 Model 0.862 0.878 0.885 0.899
OLS 0.908 1.057 1.148 1.212
VAR 0.899 0.857 0.861 0.874

12 Model 0.709 0.726 0.741 0.755
OLS 0.798 0.918 0.991 1.048
VAR 0.783 0.727 0.728 0.736

NOTE: Table entries are RMSE ratios relative to an AR(1) for systems with the
short rate, a term spread (of varying maturity), and GDP growth. The out-of-
sample period is 1990:Q1-2001:Q4.
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Table 12: Subsample Analysis

1964:Q1 - 1970:Q4 1971:Q1 - 1989:Q4 1990:Q1 - 2001:Q4
Horizon Short 5-year GDP Short 5-year GDP Short 5-year GDP
k-qtrs Rate Spread Growth Rate Spread Growth Rate Spread Growth
1 −1.37 −2.35 0.04 −0.27 0.53 0.25 −0.75 −0.27 0.34

(0.56) (1.48) (0.22) (0.21) (0.39) (0.11) (0.14) (0.41) (0.12)
4 −1.69 −0.05 −0.01 −0.22 0.93 0.06 −1.00 −0.43 0.08

(0.64) (1.23) (0.12) (0.22) (0.40) (0.07) (0.30) (0.33) (0.07)
8 −2.16 −0.94 −0.07 −0.06 0.97 −0.06 −0.55 −0.51 −0.02

(0.45) (0.73) (0.04) (0.19) (0.35) (0.04) (0.13) (0.28) (0.03)
12 −1.56 −1.42 0.03 0.11 0.83 −0.05 −0.25 −0.12 0.03

(0.23) (0.54) (0.02) (0.17) (0.29) (0.03) (0.09) (0.19) (0.04)

NOTE: Unconstrained OLS predictive regressions over various sample periods. Ho-
drick (1992) standard errors are in parentheses.
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Table 13: Forecasting GDP Growth

Horizon VAR with Inflation and Real Rate Yield-Curve Model
k-qtrs Inflation Real Rate Spread GDP Nom. rate Spread GDP
1 −0.33 −0.17 0.21 0.24 −0.27 0.32 0.26

(0.14) (0.15) (0.34) (0.08) (0.13) (0.33) (0.09)
4 −0.32 −0.20 0.24 0.07 −0.28 0.25 0.08

(0.13) (0.15) (0.29) (0.04) (0.14) (0.31) (0.04)
8 −0.26 −0.18 0.18 0.03 −0.25 0.14 0.04

(0.12) (0.13) (0.22) (0.02) (0.13) (0.24) (0.03)
12 −0.21 −0.16 0.13 0.02 −0.22 0.08 0.02

(0.11) (0.12) (0.18) (0.02) (0.12) (0.19) (0.02)

NOTE: The table reports predictive coefficients from a 4-variable VAR (left panel)
and from the yield-curve model (right panel) for forecasting GDP over various
horizons. Standard errors (in parentheses) are computed by the delta-method for
the model-implied coefficients. We compute standard errors for the long-horizon
VAR coefficients using GMM on the 1-step ahead VAR moment conditions and
then applying the delta method.
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Table 14: Comparison with Other Predictors

Forecasting Horizon
1-qtr 4-qtr 8-qtr 12-qtr

Short Rate and GDP 1.043 0.980 0.827 0.710
Short Rate, Spread and GDP 1.059 1.014 0.888 0.750
Consensus Forecasts 0.992 1.035 − −
Stock-Watson XLI 0.966 0.907 0.795 0.803
Stock-Watson XLI-2 0.938 0.851 0.828 0.866
Default Spread 1.092 1.083 1.175 1.382
Commercial Paper Spread 1.095 1.026 0.859 0.828
Stock Returns 1.124 0.998 0.850 0.812
Housing Starts 1.060 1.015 0.930 0.922
Residential Investment Growth 1.003 0.920 0.836 0.817
Help-Wanted Ads 1.093 1.049 1.029 1.015
3 Principal Components of Yields 1.283 1.225 1.243 1.185
Hamilton Regime-Switching Model 1.022 0.997 0.892 0.859

NOTE: Table entries are RMSE ratios relative to an AR(1). The in-sample period
starts at 1964:Q1, unless otherwise indicated in the Appendix. The out-of-sample
period is 1990:Q1-2001:Q4.
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Table A-1: Parameter estimates for the Latent-Factor Model

State dynamics Xt = µ+ ΦXt−1 + Σεt
µ Φ Σ

factor 1 0.936 100.000
(0.035) (0.000)

factor 2 0.156 0.744 100.000
(0.072) (0.071) (0.000)

GDP growth 0.585 −0.001 0.001 0.264 0.238 0.035 0.770
(0.113) (0.000) (0.001) (0.110) (0.137) (0.163) (0.049)

Risk premia λt = λ0 + λ1Xt Std dev of errors Ω
λ0 λ1 1-yr yield 2-yr yield

factor 1 0.00 -0.10 2.12 0.084 0.059
(0.04) (0.05) (4.96) (0.010) (0.007)

factor 2 −0.14 0.10 -0.16 −3.95
(2.54) (0.12) (0.13) (50.85) 3-yr yield 4-yr yield

GDP Growth 13.14 0.28 0.53 150.56 0.041 0.031
(49.64) (2.54) (3.76) (1069.78) (0.004) (0.002)

NOTE: Parameters µ, Σ and standard deviations of measurement errors are mul-
tiplied by 100. Standard errors (in parentheses) are computed using the Hessian.
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Figure 1: Four-Quarter GDP Growth.

FIGURE 1 NOTE: The figure plots 4-quarter GDP growth together with the 20-
quarter term spread (upper panel) and the 1-quarter short rate (lower panel) lagged
four quarters. For example, in 1990 we plot GDP growth from 1989-1990 together
with the term spread (short rate) at 1989.
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Figure 2: Model and OLS R2.
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FIGURE 2 NOTE: In the top panel, GDP growth is regressed on the term spread;
in the middle panel, the regressors are the term spread and lagged GDP growth;
and in the last panel, we have a trivariate regression on the short rate, term spread
and lagged GDP growth. On the x-axis, we plot the term spread maturity. For the
maturity corresponding to one quarter, we plot the R2 from a regression involving
the short rate. The R2s from OLS regressions are superimposed as empty squares,
with one OLS standard error bound given by the black squares. For the regressions
with the short rate, we plot the theoretical R2s implied from the model as a gray
cross and one standard error bounds are shown as black crosses. For 2- to 20-
quarter spreads, the theoretical R2s are shown as solid lines with one standard
error bounds plotted as dotted lines.
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Figure 3: Model and OLS Regression Coefficients.
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FIGURE 3 NOTE: Each panel of shows the term spread coefficients for a different
forecasting horizon (1-, 4-, 8- or 12-quarters ahead). On the x-axis, we show the
maturity of the term spread from two to twenty quarters. The solid line plots the
coefficients implied from the yield-curve model with two standard errors bounds
as dotted lines. The cross corresponding to x = 1, represents the model-implied
coefficient for regressing GDP growth onto the 1-quarter short rate. The OLS
coefficients are shown as empty squares, with two standard error bounds denoted
by solid squares.

56



Figure 4: Latent and Observable Yield Curve Model Predictive Coefficients
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FIGURE 4 NOTE: We graph the implied coefficients from a predictive GDP regres-
sion with short rate, term spread and lagged GDP regressors, as given by equation
(10). In the left (right) hand column we show the coefficients for a forecast horizon
of k = 1 quarter (4 quarters). In each plot, the x-axis denotes the maturity of the
term spread used in the regression. For example, the coefficients β(10)1,1 for the short

rate, β(10)1,2 for the 10-quarter term spread and β
(10)
1,3 for GDP shown in the top,

middle and bottom panels on the left column, respectively, correspond to using a
term spread maturity of n = 10 quarters for a forecasting horizon of k = 1 quarter.
The thin solid line represents the implied predictive coefficients from the latent
yield-curve model. The implied coefficients from the observable yield-curve model
are shown as diamonds. The dotted lines represent two standard deviation bounds
computed using the delta-method from the latent yield-curve model.
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