
ESTIMATING THE EFFECTS OF A TIME LIMITED
EARNINGS SUBSIDY FOR WELFARE LEAVERS

David Card
Dean R. Hyslop

Working Paper 10647



NBER WORKING PAPER SERIES

ESTIMATING THE EFFECTS OF A TIME LIMITED
EARNINGS SUBSIDY FOR WELFARE LEAVERS

David Card
Dean R. Hyslop

Working Paper 10647
http://www.nber.org/papers/w10647

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2004

We are grateful to SDRC for research support and for making the SSP data available, and to three anonymous
referees, Costas Meghir, Douglas Tattrie, Ken Chay, Guido Imbens, David Lee, Jack Porter, James Powell,
Charles Michalopoulos, and seminar participants at UC Berkeley, Princeton University, and University
College London for helpful discussions. All conclusions in this paper are solely the responsibility of the
authors, and do not represent the opinions or conclusions of SDRC or the sponsors of the Self Sufficiency
Project. The views expressed herein are those of the author(s) and not necessarily those of the National
Bureau of Economic Research. 

©2004 by David Card and Dean R. Hyslop. All rights reserved. Short sections of text, not to exceed two
paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given
to the source.



David Card and Dean R. Hyslop
NBER Working Paper No. 10647
July 2004
JEL No. I38

ABSTRACT

In the Self Sufficiency Program (SSP) welfare demonstration, members of a randomly assigned

treatment group could receive a subsidy for full time work. The subsidy was available for three

years, but only to people who began working full time within 12 months of random assignment. A

simple optimizing model suggests that the eligibility rules created an "establishment" incentive to

find a job and leave welfare within a year of random assignment, and an "entitlement" incentive to

choose work over welfare once eligibility was established. Building on this insight, we develop an

econometric model of welfare participation that allows us to separate the two effects and estimate

the impact of the earnings subsidy on welfare entry and exit rates among those who achieved

eligibility. The combination of the two incentives explains the time profile of the experimental

impacts, which peaked 15 months after random assignment and faded relatively quickly. Our

findings suggest that about half of the peak impact of SSP was attributable to the establishment

incentive. Despite the extra work effort generated by SSP the program had no lasting impact on

wages, and little or no long run effect on welfare participation.
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1See Plant (1984) for an explicit model of a dynamic welfare trap.  The idea that welfare participation
creates a dependency trap is a very old one. For example, Hexter (1917) analyzed the duration of relief
spells at a private charity and found that people on relief longer had a lower likelihood of leaving.  High
implicit tax rates also create incentives to participate in the underground sector: see Fortin, Fechette, and
Lemieux (1994).

2Phelps (1994) has argued for a general wage subsidy program for all low wage workers.

Over the past decade the United States, Britain, and other countries have reformed their income

support systems to enhance the financial incentives for work (see, e.g., Blundell and Hoynes, 2004). 

Traditional means-tested welfare programs impose high tax rates on program participants, reducing or

even eliminating the payoff to work.  Many analysts have argued that the result is a dynamic welfare trap. 

Once in the system, welfare recipients have little incentive to work, and the subsequent erosion of their

skills and work habits makes it less likely they can leave in the future.1

In the early 1990s the Canadian government funded an innovative demonstration project – the

Self Sufficiency Project or SSP – designed to test whether a time-limited earnings subsidy could help

long term welfare recipients make a permanent break from program dependency. Unlike other subsidy

programs (e.g., the U.S. Earned Income Tax Credit or the U.K. Working Families Tax Credit) SSP was 

only available for full time work.2  Moreover, participants had to take up the subsidy within a year of

being informed of their potential eligibility – otherwise they lost all future eligibility.  Those who met the 

deadline were entitled to receive up to three years of payments, and could move back and forth between

welfare and work, receiving the subsidy whenever they were working full time.  At the end of three years

they returned to the regular welfare environment. 

The SSP evaluation used a randomized design.  One half of a group of long-term welfare

recipients was offered the supplement, while the other half remained in the regular welfare system.  Data

were collected for six years to measure the short-term impacts of the subsidy and any lasting effects once

payments ended.  Comparisons between the treatment and control groups show that SSP had significant

short-term impacts on welfare participation and work, raising the full time employment rate and lowering
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3A complete final report on the experiment is available in Michalopoulos et al (2002).  This is a larger
impact than was observed in other recent welfare reforms experiments in the U.S.  For example,
Hamilton et al (2001) review the five year impacts of eleven alternative welfare-to-work experiments on
employment and welfare outcomes, and report typical impacts on employment and welfare participation
of less than half that reported for SSP.

4To the best of our knowledge, the implications for the dynamic nature of the incentives created by the
time-limited eligibility rule has received little, if any, attention.  For example, there is no discussion of
this issue in the background paper by Greenberg, Meyer, Michalopoulos and Robins (1992) which uses a
static labor supply model to evaluate alternative subsidy parameters.  Similarly, the SSP Implementation
Report by Mijanovich and Long (1995, pp. 28-29) mentions 6 key questions that were addressed in the
design of SSP, but the issue of time-limited eligibility is not discussed.  Nor is the unusual nature of the
incentives created by the time-limited eligibility discussed in the final SSP Recipient report
(Michalopoulos et al, 2002) or any of the earlier reports.

5As noted by Ham and Lalonde (1996), even with a randomly assigned intervention the estimation of
dynamic impacts requires a full specification of the process generating individual welfare histories.

welfare participation by 14 percentage points within the first 18 months of the experiment.3  The effects

of SSP faded over time, however.  By the third year after random assignment, the difference in welfare

participation between the treatment and control groups had fallen to 7.5 percent, and by 69 months (a

year and a half after all subsidy payments ended)  the welfare participation rates of the two groups were

equal. 

The key contribution of this paper is to identify, both theoretically and empirically, the

combination of incentives created by the time-limited eligibility rules of SSP, and to investigate the

impact of SSP on welfare participation in light of these issues.4  We first develop a simple optimizing

model that suggests that the rules of SSP generated both an “establishment” incentive to find a full time

job and leave welfare within a year of random assignment, and an “entitlement” incentive to choose work

over welfare once eligibility was achieved.  Simple experimental comparisons, while valid, confound

these two effects.  Given the insights of this model, we then develop a dynamic econometric framework

that combines the experimental randomization associated with SSP with parametric modeling to identify

the impact of the selection and treatment effects of SSP on welfare transitions.5  

We begin by developing a suitable model of welfare entry and exit behavior among the SSP
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control group.  We show that the control group’s outcomes are reasonably well described by a dynamic

logistic model with second order state dependence and unobserved heterogeneity.  We then augment this

baseline model with treatment effects representing the establishment and entitlement incentives of SSP,

and a model of the eligibility process that accounts for the potential correlation between the probability

of entering or leaving welfare and the probability of attaining SSP eligibility. 

Our empirical results suggest that the unusual time profile of the experimental impacts observed

in the SSP demonstration arose from a combination of the short-term eligibility incentive and the longer-

term entitlement incentives of the program.  Indeed, our estimates attribute over one-half of the peak

impact of SSP to the incentives created by the time-limit on eligibility.  This decomposition helps to

reconcile the large but short-lived peak impacts of the SSP demonstration with the impacts observed in

other experimental welfare reforms.  Our estimates also suggest that members of the program group with

a higher probability of leaving welfare were more likely to establish entitlement for SSP.  As a result,

differences between the observed transition rates of the SSP-eligible subgroup and the control group

overstate the causal effect of the supplement, even in the later years of the experiment.  Finally, our

analysis of wage outcomes shows that SSP no lasting effect on wages, despite the extra work effort

engendered by the program’s incentives.  Thus, while the program generated a short-term reduction in

welfare dependency, it had little or no permanent effect on long term self-sufficiency.

I.   The SSP Demonstration - Description and Overview of Impacts

a.  Income Assistance Programs and the SSP Recipient Experiment

Under the regular welfare system available to low income families in Canada, known as Income

Assistance (IA), payments are reduced dollar-for-dollar for any earnings beyond a modest set-aside
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6The IA program is operated at the provincial level, but all the provincial programs share several
important features, including a dollar-for-dollar benefit reduction rate. See Human Resources and
Development Canada (1993) for a detailed inventory and description of income support programs in
Canada in the early 1990s.

7See Lin et al (1998) for a comprehensive description of the program and results from the first 18 months
of the experiment, Michalopoulos et al (2000) for a summary of results in the first 36 months, and
Michalopoulos et al (2002) for the final report on the experiment.  These reports also provide summary
information on the SSP “Plus” and “Applicant” studies.

8No further limitations were placed on the sample.  Thus, the experimental sample is in principle
representative of the population of IA recipients who had been receiving welfare for a year or more in the
two provinces.  Roughly 90 percent of people who were contacted to participate in the experiment signed
an informed consent decree and completed the baseline survey, and were then randomly assigned (Lin et.
al, 1998, p.8).

amount.6  The implicit 100 percent tax rate on earnings, coupled with the availability of other benefits 

(e.g., free dental services) reduce the incentives for welfare recipients to work more than a few hours per

week.  As in other countries, rising caseloads in the 1980s led to concerns that the Canadian welfare

system was promoting long-term dependency.  Against this backdrop the Self Sufficiency Project was

conceived as a test of a generous time-limited earnings subsidy for long-term welfare recipients.  The

overall project consisted of three separate demonstrations: the SSP “Recipient” study, conducted on long-

term welfare recipients; the SSP “Plus” study, also conducted on long-term recipients but including both

financial incentives and program services; and the SSP “Applicant” study, conducted on new welfare

applicants.  We focus here on the Recipient study and, henceforth, simply refer to it as SSP.7 

Table 1 summarizes the main features of the study, including the eligibility criteria for the

experimental sample and details of the subsidy formula.  The demonstration was conducted in two

provinces – British Columbia and New Brunswick –  with random assignment between late 1992 and

early 1995.  Sample members were drawn from the pool of single-parent IA recipients who were over 18

years of age and had received welfare in at least 11 of the previous 12 months.8  These requirements

meant that nearly everyone in the sample had been on welfare continuously for at least a year.

The SSP subsidy formula is equivalent to a negative income tax with a 50 percent tax rate, a
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9In a conventional negative income tax with constant tax rate t and guaranteed (or minimum) income G,
an individual with earnings y receives a subsidy of  G!ty.  This is equivalent to an earnings supplement
equal to t times the difference between actual earnings and the “break-even” level B = G/t .

“guarantee level” somewhat above average welfare benefits (but independent of family size) and a full-

time hours requirement.9   The formula was designed to provide much stronger work incentives than

regular IA.  For example, in 1994 a single mother with one child in New Brunswick was eligible for a

maximum IA grant of $712 per month.  If she were to leave welfare and take a full time job at the

minimum wage her gross income would be $867 per month -- a gain of $155 per month, or about $1 per

hour of work.  Under SSP, however, the same person would receive an $817 subsidy, raising the relative

payoff for work versus welfare to $972 per month, or $6.50 per hour.  Since SSP payments were taxable,

and also affected subsidized daycare costs, the payoff net of taxes and transfers is about 30 percent

smaller, but still large (see Lin et al, 1998, Table G.1).

A distinguishing feature of SSP is the limited time window to establish the entitlement for

payments.  Since people in the treatment group who failed to initiate a subsidy payment within 12 months

of random assignment lost all future eligibility, they faced a strong incentive to find a full time job within

a year of entering the demonstration.  For a single mother in New Brunswick, for example, SSP

eligibility created an entitlement of up to $29,412 ($817 per month × 36 months) in additional income.

Since some of the behavioral response to the program was arguably attributable to this “establishment”

incentive, the restricted eligibility window acts to confound the interpretation of simple experimental

comparisons of the outcomes of the treatment and control groups.  It also makes it difficult to compare

the experimental impacts of SSP to the effects of other welfare reform programs.  The key goal of our

econometric model is to disentangle the effects of the establishment incentive from the longer term

entitlement incentive among those who achieved eligibility.  Before turning to a more explicit

consideration of the incentive effects of SSP, however, we summarize the key experimental findings from

the demonstration.
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10This restriction eliminates any “initial conditions” problems associated with the second order dynamic
models we consider in the subsequent analysis.  A total of 40 program group members and 27 treatment
group members are excluded by this requirement.  The difference in probabilities between the groups has
a p-value of 10 percent.  Since people did not know there program status (treatment or control) until after
random assignment, we believe that the difference is coincidental.

b. The SSP Sample Characteristics and Basic Impacts on Welfare

The data associated with the SSP experiment were assembled from three separate sources.  IA

data were obtained from provincial welfare records.  SSP participation and receipt data were collected

from SSP administrative records.  Demographic data and labor market outcomes were obtained from

surveys conducted at 18-month intervals, starting with a baseline survey just prior to random assignment. 

Table 2 gives an overview of the characteristics of the SSP sample.  Columns 1 and 2 of the table show

the mean characteristics of the control and program groups of the experiment, while the third and fourth

columns distinguish between individuals in the program group who were either successful or

unsuccessful in establishing eligibility.  A small number of people selected for the sample left IA before

they could be contacted for the baseline interview and randomly assigned.  To simplify our empirical

analysis, we ignore these people and focus on the 5,617 observations who were on IA in the two months

before random assignment.10  Income assistance records are available for 69 months following random

assignment – 18 months after the last SSP recipient stopped receiving subsidy payments.

Random assignment of the treatment and control groups ensures that the “pre-assignment”

characteristics of the two groups are statistically indistinguishable.  The sample is mainly comprised of

single mothers, with a mean age of 32 and an average of 1.5 children.  Sample members show many of

the characteristics associated with poor labor market outcomes,  including a low rate of high school

graduation (45 percent versus roughly 70 percent in the adult population of Canada), and a high

probability of being raised by a single parent.  Nevertheless, average work experience is relatively high

(7.3 years), and about 20 percent of the sample were working at random assignment.  Overall, 33.8

percent of the program group managed to establish eligibility for SSP payments.   The two right-hand
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11Some individuals may have left their original province and entered welfare in another province.  These
individuals would be coded as having 0 welfare benefits.  SSP payments were available to people who
left their original province.

12It is possible that SSP had offsetting long run impacts on the eligible and ineligible subgroups of the
program group.  Based on the nature of the program, however, we believe this is extremely unlikely.

columns of the table report the characteristics of the eligible and ineligible subgroups.  As one might

expect, the eligible subgroup was younger, better-educated, and more likely to be working just prior to

random assignment.

The lower panel of Table 2 reports welfare participation rates at 6 month intervals after random

assignment.11   The control group (column 1) shows a steady decline in welfare participation, ending up

with a 45% participation rate at the end of the sample period. Relative to this counterfactual trend the

program group shows a faster initial drop.  The decline is especially rapid for the SSP-eligible subgroup

(column 3), but much slower for those who failed to establish eligibility (column 4), presumably

reflecting both the incentive effects of SSP and the selective nature of the eligibility process.  The impact

of selectivity is particularly clear in the last month of the sample.  At this point the average IA

participation rates of program and control groups are equal, suggesting that SSP had no permanent

impact.12  But the welfare participation rate of the eligible subgroup is far below the average of the

control group, while the rate of the ineligible subgroup is far above.  Evidently, eligibility was more

likely for those with a lower long run probability of remaining on welfare.

More insights into the impacts of the program and the behavior of the eligible subgroup are

provided in Figures 1a-1c and 2a-2b.  Figure 1a shows average IA participation rates in each month after

random assignment, along with the estimated program impact (the difference in means between the

program and control groups).  SSP’s impact peaked at !14 percentage points in month 15, declined

steadily to !7 percentage points in month 36, and continued to decline further as people who were
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13There is some slippage in the measurement of the date of SSP eligibility, discussed below, though most
of those who became eligible did so between 2 and 15 months after random assignment 

14The initial peak in the difference in IA exit rates at months 3-4 corresponds with the exit of program
groups members who were working full time at random assignment.  The later peak (months 14-16)
corresponds with the exit of program group members near the end of their eligibility window.

eligible for subsidy payments came to the end of their 3 year eligibility period.13  By month 53 all SSP

payments had ended: at that point the gap in welfare participation between the program and control

groups was 2.5% (standard error 1.3%).  The gap continued to close for the remainder of the sample

period, converging to 0 by month 69. 

Figures 1b and 1c plot the welfare exit and entry rates of the control and program groups in each

month after random assignment.  Because of the selective risk sets for these conditional probabilities,

differences in the entry and exit rates between the program and control group do not necessarily represent

the causal effects of the program on transition rates.  That said, the exit rate of the program group was 1-

2 percentage points higher in the first 15 months of the experiment, then about half a point higher over

the period from 15-48 months after random assignment (while program group members could receive

SSP payments), and finally about equal to the rate for the controls in the period after the end of SSP-

eligibility.14  Conversely, welfare entry rates of  the program group were 2-4 percentage points below

those of the controls in the first 15 months after random assignment, about half a point lower in the

period from 18 to 48 months after random assignment, and about equal to those of the control group in

months 50 and later.  The program group also had relatively high welfare entry rates 15-18 months after

random assignment, perhaps reflecting the decision of some program group members to take a

unattractive job near the end of the eligibility window, establish an entitlement for SSP, and then quit and

return to welfare.

Figures 2a and 2b focus on the behavior of the eligible program subgroup at the start and end of

their eligibility period.  Figure 2a shows monthly IA participation rates, full time employment rates, and
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15SSP recipients were required to mail their pay stubs to an administrative office to verify their
employment. Delays in mailing and processing would be expected to generate at least a month delay
between the actual commencement of full time work and the issuance of the first SSP check.  

16This was implemented by having SSP staff notify the appropriate Income Assistance office that an
individual was about to begin receiving subsidy payments. 

17There is a small number of cases that received checks 37 or even 38 months after the first check date. 
We attribute this to errors in the dating of the checks and other measurement problems.

the fraction of people receiving SSP payments around the date of the first SSP check (month “0" on the

graph).  Following the jump associated with the first subsidy check, the SSP recipiency rate gradually

declines to about 60 percent.  As expected given the eligibility rules, the rate of full time employment

rises prior to the date of the first SSP check, reaching a maximum of about 80 percent in the month

before the check. (We attribute the fact that the rate never reaches 100 percent to recall errors in the labor

market data – see below).   Assuming that people in the program group became eligible once they started

working full time, there is about a 1 month delay between eligibility and the dating of the supplement

check.15   SSP rules required supplement takers to leave IA, creating a mechanical link between the

initiation of SSP eligibility and subsequent IA participation.16   Eligibility for welfare is based on

retrospective income flows, however, leading to the 1-2 month delay between the start of SSP and the

end of IA shown in the figure.

Figure 2b shows welfare behavior and supplement recipiency rates near the close of the

eligibility period.   Again, we have aligned the data relative to the month of the first SSP check.  Just

before the end of eligibility about 50 percent of the eligible group were still receiving subsidy checks. 

The rate drops sharply at 37 months, reflecting the 3 year maximum eligibility rule.17  The end of subsidy

eligibility was associated with a spike in IA entry rates and a roughly 4 percentage point rise in IA

participation, suggesting that some people who were SSP-eligible returned to IA as soon as their

eligibility ended.



10

18 The distribution of response patterns to the 18, 36, and 54 month surveys is fairly similar for the
program and control groups  (chi-squared statistic = 11.4 with 7 degrees of freedom, p-value=0.12). 
However, a slightly larger fraction of the program group have complete labor market data for 53 months
– 85.4% versus 84.0% for the controls.  Moreover, the difference in mean IA participation between the
treatment and control groups in month 53 is a little different in the overall sample (2.5%) than in the
subset with complete labor market histories (3.3%).

c.  Impacts on Labor Market Outcomes

The SSP study included surveys at approximately 18, 36, and 54 months after random

assignment that collected labor market outcomes of the treatment and control groups.  Unfortunately,

these data have some critical limitations relative to the administratively-based Income Assistance data. 

Most importantly, they are only available for 53 months after random assignment.  Since some program

group members were still receiving subsidy payments as late as month 52, this time window is too short

to assess the long run effects of the program.  Indeed, looking at Figure 1a, there is still an impact on IA

participation in month 53 that does not fully dissipate until month 69.  Second, because of non-responses

and refusals, labor market information is only available for 85 percent of the experimental sample (4,757

people).18  Third, there appear to be relatively large recall errors and seam biases in the earnings and

wage data.  Nevertheless, the labor market outcomes provide a valuable complement to the

administratively based welfare participation data.

Figures 3a and 3b show average monthly employment rates and average monthly earnings of the

program and control groups, along with the experimental impacts on these two outcomes.  After random

assignment the employment rate of the control group shows a steady upward trend.  Relative to this trend

the program group shows a faster rise in the first year of the experiment, reaching 40 percent by month

13 and stabilizing thereafter.  The estimated program impact peaks at about 14 percentage points in

month 13, declines to about 6 percentage points by month 36, and fall to 0 by month 53.  The earnings

data show a  similar time profiles, although there are notable “jumps” for both the program and control
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19Each of the three post-random assignment surveys asked people about their labor market outcomes in
the 18 months months since the previous survey.  Many people report constant earnings over the recall
period, leading to a pattern of measured pay increases that are concentrated at the seams, rather than
occurring more smoothly over the recall period.

20The wage data appear to be quite noisy, but the density of reported wages is highest right around the
minimum wage.  Assuming this is also true of the density of true wages, and that misclassification errors
are symmetric, the observed fraction of workers earning near the minimum wage understates the true
fraction.  Formally, let p(j) represent the true fraction of workers earning wages in interval j, let jN denote
the interval that includes the minimum, assume that p(jN) > p(j) for all other intervals j, and assume that
an individual with a wage in interval j has probability 1-q of being correctly classified in that interval,
probability q/2 of being classified in interval j+1, and probability q/2 of being classified in interval j-1. 
Then the observed fraction of people in interval jN is (1-q)p(j’) + (p(jN-1)+p(jN+1))q/2 < p(jN).  Similar
reasoning applies if misclassification errors extend to 2 or more intervals on either side of the truth.

groups around months 18 and 36 attributable to the seams between surveys.19  

A key issue for interpreting the observed impact of SSP is the quality of the jobs taken by

members of the program group who would not have been working in the absence of the program.  Figure

4 shows that most of these jobs paid close to the minimum wage.  The upper line in the graph is the

difference in the fractions of the program and control groups with a reported wage in each month.  This is

approximately equal to the difference in monthly employment rates.  The dotted line in the figure

represents the difference in the fraction of people who report an hourly wage within 25 cents of the

province-specific minimum wage for the appropriate calendar month.  (Note that the denominator of this

fraction includes everyone in the program or control group, not just those who report a wage).   Because

of measurement errors in wages this is arguably an underestimate of the fraction of extra workers in the

program group that earned close to the minimum.20   The middle line (with open square markers) shows

the excess fraction of the program group earning no more than $1 per hour above the minimum wage. 

Again, this is probably an underestimate of the true fraction.  Even with potential attenuation biases,

however, 60-80 percent of the extra wage earners in the program group were paid within $1 per hour of

the minimum wage.

Under two key assumptions – that SSP had no effect on wages for people who would have been
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21The assumption that ) hit $0 is identical to the monotonicity assumption required for the interpretation
of  local average treatment effects in an instrumental variables context (Angrist and Imbens, 1994).  The
full time hours limit for SSP was imposed to prevent the kinds of hours reductions often attributed to
negative income tax programs.  In light of this rule, and the fact that sample members are all single
parents, we believe that the assumption of positive hours effects is reasonable.

working in the absence of the program, and only positive effects on labor supply – the ratio of the

differences in earnings and hours of the program and control groups provides a consistent estimate of the

average rate of pay earned during the extra hours of work attributable to SSP.  To see this, let h0
it

represent the hours of work of  individual i in month t in the absence of SSP, let h1
it represent hours of

work of i in month t if she is assigned to the program, let )hit = h1
it !  h0

it denote the treatment effect on

hours for individual i, and let w0
it and w1

it represent average hourly earnings in the absence or presence of

SSP.  Because of random assignment, the difference in average monthly hours of the program and control

groups in month t is a consistent estimate of E[) hit ].  Likewise, the difference in average monthly

earnings is a consistent estimate of 

E [  w1
it h

1
it ! w0

it h
0

it ] = E [ w1
it ) hit +  h0

it )wit ] ,

where )wit = w1
it ! w0

it .  Thus, the ratio of the difference in mean earnings of the program and control

groups to the corresponding difference in mean hours is a consistent estimate of

mt    /    E [ w1
it ) hit +  h0

it )wit ] /   E[) hit ] .

If wages for people who would have worked in the absence of SSP were unaffected by the presence of

the program, then E[ h0
it )wit] = 0, and 

mt    =    E [ w1
it ) hit ] /   E[) hit ] .

Assuming that ) hit $ 0 for all i,  mt  is a weighted average of the wages earned by the people in the

program group in month t, with weights proportional to the increase in hours caused by the SSP

program.21  

Figure 5 plots estimates of this ratio, along with a 95 percent confidence interval (estimated by

the delta method).  To account for differences in the minimum wage over time and across the two
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22If SSP causes people who would have worked anyway to select jobs with different wage rates, the
interpretation of the average marginal wage is more complicated.  Arguably, SSP provides an incentive to
take a more stable job, or one with higher hours.  If these jobs pay lower wages, the estimated average
marginal wage will be negatively related to the fraction of people in the program group who are choosing
different jobs (but would have worked anyway).  The fact that the estimated marginal wage is roughly
constant over the entire 53 month period suggests that any impact on wages of those who would have
worked regardless of SSP is small.

23Wages for the labor market as a whole are 20-30% higher in Vancouver than in the areas included in
the New Brunswick sample.  The minimum wage varies by province, and is typically 25 percent higher in
British Columbia than New Brunswick – e.g., $5.00 per hour in New Brunswick in 1993 versus $6.00 per
hour in British Columbia. 

provinces, we have divided the measured wage of each individual in each month by the prevailing

minimum wage.  The wage measure is therefore expressed in “minimum wage units”, with a value of 1

implying that the average marginal wage is equal to the minimum wage.  Inspection of the graph suggests

that the average marginal wage is very close to the minimum wage, with no obvious trend, although the

confidence intervals are rather wide after about month 30 (reflecting the small denominator of the ratio). 

This reinforces the conclusion from Figure 4 that the extra hours of the SSP program group were paid at

wages very close to the minimum wage.22 

The absence of a trend in the average marginal wage relative to the minimum wage is important

because it suggests that the SSP program group experienced little or no relative gain in potential wages

over the course of the experiment.  This is confirmed by the analysis in Table 3 of labor market outcomes

in the last available month (month 53).  Recognizing the higher average level of wages in one of the two

provinces (British Columbia) we present data for the overall sample and separately by province.23  By

month 53 there is no significant gap between the program and control groups in the fraction of people

working or reporting a wage.  Indeed, in one province the program group has a slightly lower

employment rate than the control group, while in the other the pattern is reversed, although in neither

case is the difference significant.  Mean wages are also very similar in the program and control groups. 

This may seem a little surprising given the extra work effort by the program group over the previous 52
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24As noted in Ahn and Powell (1993), conventional models imply that the selection bias in the observed
mean for a censored outcome is a monotonic function of the degree of censoring, conditional on the
exogenous covariates.  We evaluated the similarity of the characteristics of program and control group
members who reported a wage in month 53 by running a regression model among wage reporters to
predict program group status.  The model included 24 pre-random assignment characteristics and
interactions.  The model has insignificant explanatory power (probability-value of F-test=0.94)
suggesting there are no differences in the observed characteristics of the two groups.

months.  Indeed, as shown in the table, we estimate that program group members worked a total of 0.28

years more than control group members between random assignment and month 53.   Recall however that

the sample had about 7 years of work experience at random assignment.  Evidence on the returns to

experience for less skilled female workers suggest the  marginal impact of 0.2–0.3 years of work

experience for such a group is small -- on the order of 1-2 percent (Gladden and Taber, 2000) – and

probably undetectable.

The bottom panel of Table 3 presents results from a series of regression models that evaluate the

impacts of being in the SSP program group on wages and cumulative work experience in the 53rd month

of the experiment.  These models are fit to the subsamples of control and program group members with

wage data in month 53, and include time dummies, province dummies (in the models that pool the two

provinces) and a set of covariates representing pre-random assignment characteristics.  A possible

concern with the models is selectivity bias, since the sample is conditioned on reporting a wage in month

53.  However, given equality in the fractions of the program and control groups with a wage, and the

similar characteristics of the employed subgroups, a conventional control function for selectivity bias

would have the same mean value in the two groups, and is therefore orthogonal the the program group

dummy.24  The estimates in row (a) of the lower panel show that the difference in mean log wages

between the program and control groups is small and statistically insignificant.  By comparison, the

estimates in row (b) show that among those working in month 53, members of the program group have

significantly greater cumulative work experience than members of the control group.  

In rows (c) and (d) we present models in which cumulative work experience is included as an
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additional explanatory variable for wages in month 53.  As shown in row (c), a model that ignores the

potential endogeneity of cumulative experience yields a relatively large and precisely estimated effect of

work experience, on the order of 5% per year.  When program group status is used as an instrument for

cumulative work experience, however, the estimated effect becomes slightly negative but insignificant. 

Since the IV estimate is numerically equal to the ratio of the coefficients in rows (a) and (b), this is just a

restatement of the fact that although the program group had greater cumulative work experience, they had

marginally lower wages.

We have also examined the entire distributions of wages in month 53 for the program and control

groups, and found no significant differences between them.   The 10th, 25th, 50th, 75th, and 90th percentiles

of the two distributions are quite similar, and statistically indistinguishable.  Likewise, a non-parametric

rank test for equality of the distributions is insignificant.  Overall, the work experience attributable to

SSP appears to have had no detectable effect on wage opportunities.  As we noted earlier, this is not very

surprising given the mean level of experience among the single mothers in the experimental sample and

existing evidence on the modest returns to added experience for lower-skilled women.

II.  Interpreting the Impact of SSP on Welfare

As noted earlier, the time limit to establish eligibility for subsidy payments suggests that SSP had

different incentive effects before and after the establishment of eligibility.  Furthermore, for those who

established eligibility, the date of  entitlement potentially varies non-randomly.  Consequently, although

standard experimental comparisons between the treatment and control groups remain valid, the

interpretation of such impacts is confounded by the different treatment effects associated with these two

sets of incentives.  In this section we focus on modeling the impact of SSP on welfare participation with

the objective of disentangling these effects.

Our approach has three components.  First, to help clarify the incentive effects of SSP and guide
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25A more complete description of the model is presented in Appendix 1.

the formulation of our empirical model, we outline a simple dynamic model of work and welfare

participation in the presence of SSP.  Second, to provide a baseline model for welfare participation in the

absence of SSP, we estimate a set of dynamic logistic models for the SSP control group that include

unobserved heterogeneity and state dependence.  Third, we combine the insights from the theoretical

model with the baseline empirical model for welfare participation to develop an econometric model for

estimating and interpreting the impacts of SSP.  To account for possible selectivity of the SSP eligible

subgroup, we model welfare participation and the determination of eligibility for SSP payments jointly. 

Crucial to this formulation is the maintained assumption, based on the randomization of SSP participants

into the treatment and control groups, that the distribution of unobserved heterogeneity is the same across

these groups.  This assumption allows us to identify the treatment effects associated with establishing

eligibility and the on-going entitlement by comparing the treatment group participation outcomes,

conditional on the date at which eligibility is established, with the control group outcomes controlling for

the common unobserved heterogeneity distribution across the two groups.

a.  A Simple Benchmark Model for the Behavioral Impacts of SSP

We begin by presenting a simple dynamic model of work and welfare participation in the

presence of SSP.25  The model is a standard discrete time search model (e.g., Mortensen, 1977, 1986) in

which a single parent has two options: full time employment or welfare participation.  Welfare pays a

monthly benefit $b and yields a flow payoff of b.  Full time employment at a monthly wage of $w yields

a flow payoff of w!c, where c reflects the disutility of work relative to welfare (including child care

costs, work expenses, the value of foregone leisure, and potential stigma effects).  Individuals maximize

expected future income using a monthly discount rate of r.  To keep the model as simple as possible, we

assume that each month an individual receives a single job offer with probability 8, and that the arrival
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26If on-the-job and off-the-job search are equally productive, there is no reason to turn down a job
yielding flow value (w-c) greater than the flow value of welfare (b).  Hence the reservation wage is the
income equivalent of welfare, b+c.

rate of offers is the same for workers and nonworkers.  Wage offers are drawn from a stationary

distribution with density f(w) and cumulative distribution F(w).  Finally, we assume a constant rate of job

destruction *, which applies to new as well as existing jobs.

A key simplifying assumption is that wage opportunities do not depend on previous work effort. 

Based on the results in Table 3 we believe this assumption is reasonable.  In fact, the evidence in Figures

4 and 5 suggests that, for most people who were offered SSP, the key issue was whether to accept a

minimum wage job or not.

In this model optimal behavior in the absence of a wage subsidy program is characterized by a

stationary value function U(w) that gives the discounted expected value associated with a job paying

wage w, and a value V0 of non-work (i.e., welfare participation).  People who are employed at a wage w

accept any offer paying more than w.  People who are on welfare follow a reservation wage strategy and

accept any job paying more than R, the (fixed) reservation wage satisfying U(R)=V0.  Under the

assumptions of the model it is readily shown that the optimal reservation wage is R=b+c.26

This model predicts that welfare transitions in the absence of SSP are determined by a

combination of the arrival rate of job offers, the rate of job destruction, the level of welfare benefits, the

distribution of wages, and the pecuniary and non pecuniary costs of work.  Specifically, the exit rate from

welfare is 8(1!*)×(1!F(b+c)), while the entry rate is *.  Individual heterogeneity in welfare exits arises

from variation in 8, *, c, and in the location of the wage offer distribution relative to the welfare benefit

level.  Individual differences in welfare entry rates arise from heterogeneity in *.   

If an SSP subsidy is made available at time 0 an individual currently on welfare has to evaluate

three separate value functions: Vi(t), the value of not working in month t, conditional on not yet having

established eligibility;  Ue(w,d), the value of a job paying a wage w conditional on SSP-eligibility with d
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27Since s(w)$0 the reservation wage for SSP-eligibles is below the reservation wage R in the absence of
the program.  Indeed since R=b+c, we have that Re+s(Re) = R. Note that Re could be well below the
minimum wage.  However, SSP rules required participants to earn at least the minimum wage.

months of elapsed eligibility; and Ve(d), the value of not working conditional on eligibility and d months

of elapsed eligibility.  The rules of SSP provide a link between these functions and the value functions in

the absence of the program.  In particular, Vi(t)=V0 for t$13, since those who fail to find full time work

within 12 months of being offered the subsidy lose all future eligibility.  In addition, Ue(w,d) = U(w) for

all d>36, since subsidy payments are only available for three years, while Ve(d) = V0 for all d$36.  A

revealed preference argument establishes that Ue(w,d) > U(w) for all w and any d#36, since the subsidy

paid to a worker earning a wage w is strictly positive.  From this it follows that Vi(t) is decreasing in t

(since the passage of time leaves less time to establish eligibility) and that Ue(w,d) and Ve(d) are both

decreasing in months of elapsed eligibility (since the entitlement period is finite).

As is true in the absence of the subsidy, people who are working and eligible for the supplement

accept any job offer that pays more than their current wage, while those who are on welfare with d

months of elapsed eligibility follow a reservation wage strategy with a reservation wage Re(d), with Ve(d)

= Ue(Re(d), d).   Since people can quit jobs that are no longer acceptable once their SSP eligibility ends it

is straightforward to show that the optimal reservation wage for an SSP-eligible nonworker equates the

net income from a reservation-wage job to the flow value of welfare, b+c.  Since b and c are fixed, Re is

independent of d and is defined by the equality Re+s(Re) = b+c, where s(w) is the subsidy for working at

a wage rate w.27

Individuals who are still on welfare in month t and not yet SSP-eligible have a reservation wage

R(t) satisfying the condition Vi(t) = Ue(R(t), 1).  From this equality, and the fact that Vi(t) is decreasing in

t, it follows that the reservation wage R(t) is decreasing in t: individuals with fewer months of potential

eligibility left will accept lower wage jobs.  Moreover, the reservation wage in the first month of

potential eligibility, R(1), is strictly less than the reservation wage once eligible, since a full-time job for



19

someone who is not yet eligible provides the same flow benefits as for someone who is eligible, and in

addition guarantees future eligibility.  Thus,  Re > R(1) $ R(2) .... $R(12).

The effects of SSP on the welfare/work decision can be summarized by the difference between

the reservation wage profiles of a representative welfare recipient in the presence or absence of SSP. 

Figure 6a shows the sequence of reservation wages for a person who is offered SSP but fails to establish

eligibility, along with the (constant) reservation wage R=b+c  in the absence of the program.  During the

12-month window that individuals have to establish eligibility the reservation wage is below R and

declining.  At the close of the window those who failed to find a job revert to the reservation wage in the

absence of the program.  Figure 6b shows the sequence of reservation wages for a  person who is offered

SSP and establishes eligibility in month te #12.  Prior to te the reservation wage is declining.  At te the

reservation wage jumps up and remains constant until the end of the entitlement period at a value

satisfying the condition Re+s(Re)= b+c.  After SSP entitlement ends in month te+36 the reservation wage

reverts to b+c. 

The path of the optimal reservation wage illustrates the two different incentive regimes

experienced by those exposed to SSP.  During the pre-eligibility period (up to the establishment of

eligibility in month te, or 12 months after random assignment for those who don’t establish eligibility),

members of the treatment group have a low and declining reservation wage, leading to a faster rate of

transition from welfare to work than would be expected in the absence of SSP.  Those who establish

eligibility then adopt a somewhat higher reservation wage, but still lower than the one in the absence of

the program, implying that they are more likely to leave welfare and re-enter work than otherwise similar

members of the control group.  The jump in the reservation wage at te implies that some people who

accepted low-paying jobs to gain eligibility would be expected to quit and return to welfare almost

immediately.  Once SSP eligibility ends (36 months after establishing eligibility, or starting in month 12

for those who don’t establish eligibility), the reservation wage returns to its level in the absence of the
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program and the behavioral effects of SSP disappear.  Again, as a result of the jump in the reservation

wage at the close of eligibility, people holding jobs paying less than the reservation wage in the absence

of SSP would be expected to quit and re-enter welfare (consistent with the patterns in Figure 2b).

While this stylized model provides a guide to the potential effects of SSP, it is clearly

oversimplified.  For example, the model assumes that the cost of work (c) is constant.  More realistically,

work costs vary over time (e.g., if a child becomes sick), leading people to revise their reservation wages

and quit some jobs that were previously acceptable.  An earnings subsidy widens the range of cost

fluctuations that can be tolerated at any wage, leading to a reduction in the flow from work back to

welfare.  Another limitation is the assumption that people either work full time or receive welfare.  In

fact some people leave welfare without entering full time work.  In our empirical model, we therefore

have to distinguish between leaving welfare and becoming SSP-eligible.  The model also ignores the

possibility that the cost of work  is affected by previous work experience.  A habit persistence model, for

example, might imply that individuals who work more when SSP is available eventually lower their

reservation wages.  While endogenous taste formation is sometimes mentioned as a welfare trap

mechanism,  the evidence from the SSP experiment is not particularly favorable to this story, since by

month 53, just a few months after the end of subsidies, the employment rate of the program group had

converged to the rate of the control group.  The model also ignores wealth effects and intertemporal

substitution effects which could lead to a negative impact on the probability of work in the period

immediately after the end of SSP.

b.   Models of Welfare Participation in the Absence of SSP

We begin our empirical analysis by estimating a series of models of welfare participation for the

SSP control group.  Our objective here is to formulate a statistical model for welfare participation in the

absence of SSP that will provide a suitable baseline counterfactual for comparing welfare outcomes
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28Chay and Hyslop (2001) have found that logistic models with state dependence and unobserved
heterogeneity fit welfare behavior about as well as more computationally demanding multivariate Probit
models that allow for serial correlation in the transitory component of welfare participation.  Also, as
discussed above, because everyone in our sample received IA in the two months prior to random
assignment (periods 0 and !1), yi0 = yi,!1 = 1, we do not have to model the distribution of initial
conditions.

29As noted by Butler and Moffitt (1982), the likelihood for models in the class of equation (1) when f( ) is
the normal density have  the form Ig(x) exp(!x2) dx, which can be approximated by the sum: 3I wi g(xi),
where g is evaluated at a fixed set of N points (xi), and the sum is formed with a fixed set of weights (wi). 
We use N=10 points: see Abramowitz and Stegum (1965, p. 924).

under the SSP program.  We adopt a panel data approach rather than a hazard modeling approach

because of the high incidence of multiple spells in our data (over half the sample have 2 or more spells

on welfare), and the need to specify a tractable (low dimensional) model of the effects of unobserved

heterogeneity on welfare transition rates and SSP eligibility.

Let yit represent an indicator that equals 1 if person i receives IA in month t (where t runs from 1,

the first month after random assignment, to T=69), and let xi1, ..., xiT represent a sequence of observed

covariates for individual i.  We consider models in the following class:

(1)    P(yi1, .... yiT | xi1, ... xiT )  =   I{  Jt L( "i + xit$ + (1yit!1 + (2yit!2 + (3yit!1 yit!2 )   }  f("i) d"i ,

where L( ) represents the logistic distribution function and f("i) represents the density of unobserved

heterogeneity among the experimental population.28   We consider two alternative specifications for f(.). 

In the first case we assume that f("i) = N( @ ; F"), the normal density with mean 0 and standard deviation

F".  The integral on the right hand side of equation (1) can then be approximated by the method of

Gaussian quadrature.29   As an alternative, we assume that f(.) is a discrete distribution with a small

number of mass points, and estimate the location of the mass points and their relative probabilities.

Equation (1) describes a logistic regression model with second order state dependence and a

random effect.  Although our benchmark theoretical model suggests a first order state dependence

specification, we show below that a second order specification leads to a considerable improvement in
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30An alternative would be to ignore 1 month spells by “smoothing” over such spells. 

31We have fit a variety of models that include fixed baseline covariates such as province, education, and
gender, as well as time varying indicators for calendar time.  In these models several of the covariates are
statistically significant and absorb some of the variance attributed to the random effect.  However, the
ability of models with a controls for observable heterogeneity to fit the distribution of observed welfare
histories is insignificantly different from models that treat all heterogeneity as unobserved. 

model fit.  There are a surprising number of single-month spells on or off welfare, and the key

assumption of a first order model – that exit or entry rates are independent of the length of the current

spell – is clearly violated.  A second order specification allows the transition rate in the first month of a

spell to differ from the transition rate in subsequent months and is more consistent with the data.30

The first three columns of Table 4 present estimation results and diagnostic statistics for versions

of equation (1) with normal heterogeneity.  The only covariates are a fourth order polynomial in time

since random assignment.31  The model in column (1) assumes first order state dependence, while the

model in column (2) allows second order dependence.  The second order terms are highly significant, and

their pattern implies that, after controlling for the permanent component of welfare participation, welfare

transition rates are higher for those who have only been in their current state for one month than for those

who have been in the state for 2 or more months.  The model in column (3) further generalizes the

specification by allowing the state dependence parameters to vary linearly with the random effect (i.e., (k

= (k0 +  (k1 "i,  for k=1,2,3).  This specification relaxes the “linear in log odds” assumption of the logistic

functional form and permits the degree of state dependence to vary by whether individuals have a higher

or lower long-run propensity to participate in welfare.  The interaction terms are statistically significant

and their addition leads to a noticeable improvement in the likelihood of the model.  The sign pattern of

the interactions implies that the state dependence effects are larger for those who are less likely to be on

welfare in the long run.

How well do these models explain observed welfare outcomes?  As a description of average IA
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32The idea of comparing predicted and actual frequencies from multinomial probability models is
discussed in Moore (1977), and is used in Card and Sullivan (1988) and Chay and Hyslop (2001).  We
construct predicted cell fractions by simulating each model with 10 replications per sample member.

33We constructed the standard Pearson statistic: 3j (Oj !Ej)
2 / Ej, where Oj is the number of observed

cases in cell j=1..J and Ej is the expected number.  Since the expected number is based on a model fit to
the same data, the statistic does not necessarily have a chi-squared distribution with J-1 = 49 degrees of
freedom.  We interpret the goodness of fit statistics as informal summary measures of fit.

participation rates, the answer is very good.  The time path of welfare participation predicted by any of

the models is fairly close to the actual path. This is not surprising, however, given that the models include

a fourth order polynomial trend, and that the control group’s welfare profile is fairly smooth.  A more

difficult challenge is to predict the distribution of welfare histories among the control group.32  To

evaluate the models on this dimension we compare the predicted and actual fractions of the control group

in a set of mutually exclusive cells defined by the total months on IA since random assignment, the

number of welfare transitions, and whether the number of transitions is odd (in which case the individual

ends up off IA) or even (in which case she ends up on IA).  The cells used in our comparisons, along with

the actual and predicted numbers of observations from the SSP control group in each cell, are shown in

Table 5.  We selected the cells to yield reasonable cell sizes: thus, we grouped welfare histories with 0-2,

3-8, 9-14, .... total months on IA, with separate cells for 68 or 69 months on IA.  Overall, we collapsed

the 269 possible welfare histories into 50 cells.  

For each of the models in Table 4 we constructed a chi-squared statistic based on the deviation

between the predicted and actual number of observations in each cell.33    Allowance for second order

state dependence leads to a considerable improvement in the ability of the model to predict the

distribution of welfare histories (compare fit statistics in column (1) and column (2)).  By comparison the

addition of the interaction terms in column (3) leads to only a modest additional improvement in fit.

The upper panel of Table 5 compares the actual (in bold) and predicted (in italics) distributions

of the SSP control group across the 50 cells, using the model from column (3) of Table 4.  A prominent
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feature of the data is the large number of people (604 = 21.7 percent of the group) who were on IA

continuously.  The model under-predicts the size of this group (predicted number =546.8).  The control

group also includes a relatively large number of people who left welfare for one month and then returned

(these are the 189 = 6.8 percent of the sample with 68 months on IA and 2 transitions).  The model

actually over-predicts the size of this group (predicted number = 211.7).  Looking down the two right

hand columns, a second order model with normal heterogeneity provides reasonably accurate predictions

for the distribution of total months on IA, with the exception of the last three groups (63-67 months on

IA, 68 months on IA, and 69 months on IA).  The model over-predicts the fractions with 63-67 or 68

months on IA and under-predicts the fraction with 69 months on welfare.

A computationally feasible alternative to normally distributed heterogeneity is the assumption

that the random effects have a point mass distribution.  Column (4) of Table 4 shows estimation results

for one such model, with 4 mass points.  We also computed models with 5 and 6 mass points, but found

relatively little improvement in either the log likelihood or the goodness of fit statistics relative to the 4

mass point model.  Interestingly, the estimates of the state dependence coefficients are relatively similar

in columns (3) and (4), although the mass point model has a somewhat higher log likelihood.  

In comparing different mass-point models, we observed that once we allow for 3 or more points

of support, one of the mass points tends to infinity (i.e., a value of 16 or more).   Taken literally this

means there is a subgroup of “pure stayers” in the data who never leave welfare.  This feature leads to an

improvement in the ability of the model to fit the distribution of welfare histories, as shown by the chi-

squared statistics in Table 6, and by the comparison of the actual and predicted distributions of welfare

histories from this model in the lower panel of Table 5.

Another set of diagnostic statistics for the different models is presented in the bottom rows of

Table 4.  These are the estimated means, variances, and 1st - 5th order autocorrelations of the generalized

residuals from the different specifications.  The generalized residual for person i in month t, evaluated at
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34Let R(y|") denote the likelihood for the sequence of welfare outcomes, conditional on a value of the
random effect, the covariates, and the other parameters, and let f(") denote the marginal distribution of
the random effects.  The posterior distribution of the random effects for a person with outcomes y is 
f("|y) = R(y|") f(") /  I R(y|"N) f("N) d"N . 

a given value of the random effect, is:

rit (")  = (yit  ! pit ) / [  pit (1!pit ) ] 
½ ,

where pit = pit (";  $, (,  xit, yit!1, yit!2) is the predicted probability of welfare participation, conditional on

xit, yit!1, yit!2, the parameters $ and (, and the value of random effect.  Note that if the model is correctly

specified, at the true value of the random effect for person i,  E[rit("i)]=0, E[rit("i)
2 ]=1, and

E[rit("i)rit!j("i)]=0.  Thus a potential specification check is to compute the sample analogue of one of

these statistics (averaging over i and t) and compare the result to the expected value under the null

hypothesis of a correctly specified model.  The true value of the random effect for any given person is

unknown.  However, given the likelihood function, the marginal distribution of the random effects, and 

the observed sequence of data for individual i, we can compute the posterior distribution for the random

effect for that individual.34  We therefore evaluate the expectations using this posterior, and average the

values of the resulting statistic across the entire sample.  For the mass point heterogeneity model the

posterior has only 4 points of support and the calculation is straightforward.  For the normal

heterogeneity models, we use a simulation approach, drawing 20 values of the random effect for each

person, and computing the posterior distribution for a given person over this set.

The residual statistics for the first order model in column (1) show clear evidence of

misspecification: the average variance is 1.11, rather than 1, and the 1st order autocorrelation is -0.07. 

The statistics for the other models are considerably better, although all three show a small negative value

for the second order autocorrelation.  These results suggest that models with unobserved heterogeneity

and second order state dependence provide a reasonably good description of the welfare participation

data, with relatively little serial correlation in the prediction errors from the models.
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35We discuss the actual measurement of this date in Appendix 2.  As discussed in the appendix, we allow
the eligibility window to last for 14 months rather than the 12 months specified in the SSP rules, due to
processing delays, dating errors and/or leniency in the application of the rules.

36Appendix 2 discusses the rationale for choosing 3 months for the transition period duration.

c.  Models of Welfare Participation for the SSP Program and Control Groups

We now turn to the specification of a model for the SSP program group.  Building on the insights

of the simple theoretical model and the rules of the SSP program, we include two separate treatment

effects in the dynamic welfare participation model.  The first is the essentially mechanical effect on

welfare participation associated with the rules for establishing eligibility for SSP that required recipients

to leave IA.  The second effect is caused by the fact that members of the eligible subgroup have a greater

incentive to choose work over welfare in any given month of their entitlement period.  The key to

distinguishing these effects is the date that SSP eligibility is established, te
i.

35

For any member of the program group we identify up to four distinct phases: (1) the pre-

entitlement period, ending at te
i-1 for those who establish eligibility in month te

i, and at the close of the

eligibility window for those who do not; (2) the transitional period for those who establish eligibility,

lasting for three months after the establishment of eligibility,36 when SSP program rules required newly

eligible members of the program group to leave IA; (3) the entitlement period, lasting from the end of the

transitional period to te
i+36; and (4) the post-entitlement period, when supplement payments were no

longer available, beginning at te
i+37 for those who became eligible for SSP, and at the close of the

eligibility window for those who did not achieve eligibility.

Let Eit represent an indicator for the event that individual i is eligible for SSP as of the start of

month t.  Note that the sequence {Eit} makes at most a single transition from 0 to 1, and that this occurs

in the eligibility month te
i  (i.e.,  te

i = min t {Eit=1}).  We assume that IA participation and the SSP

eligibility indicators are correlated through their joint dependence on the unobserved heterogeneity
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37The assumption that eligibility is independent of IA histories would be satisfied if people always stayed
on IA until finding a full time job, and if all full time jobs satisfied the SSP eligibility conditions (as
assumed in our theoretical model).  In fact, some people leave IA without moving to full time work – for
example, those who move in with a partner.  A more complete model might deal with partnering as a
“competing risk” that absorbs some welfare leavers.   On average, the hazard of becoming eligible for
SSP is lower for people who are off IA, or have previously left IA. 

component "i :

 (2)    P(yi1, .... yiT,   Ei1,...EiT | xi1, ... xiT ) 

=    I   {  Jt  P(yit, Eit | yit!1, yit!2, ...  Eit!1, Eit!2, ..., xit, "i )   } f("i ) d"i . 

Using the fact that treatment status is randomly assigned, we also assume that the distribution of

unobserved heterogeneity is the same for the program and the control groups.

Conditional on "i and the covariates xit we assume that Eit is determined independently of current

or lagged IA status, while yit depends on current eligibility, how long an individual has been eligible, and

on 2 lags of previous IA status.37  Specifically, we assume:

(3)  P(yit, Eit | yit!1, yit!2, ...  Eit!1, Eit!2, ..., xit, "i ) 

=  P(Eit | Eit!1, Eit!2, ..., xit, "i ) × P(yit | yit!1, yit!2, Eit, Eit!1, ...,  xit, "i) . 

We adopt the specifications in columns (3) and (4) of Table 4 as the baseline models for the control

group, and assume that IA participation of the program group follows this model with the addition of a

set of treatment effects that depend on which of the four phases the individual is currently occupying. 

Specifically, we assume that

(4) P(yit | yit!1, yit!2, Eit,  t
e
i,, xit, "i) 

   =  L( "i + xit$ + ((10+(11"i)yit!1 + ((20+(21"i)yit!2 + ((30+(31"i)yit!1 yit!2 +  J(t, Eit, t
e
i,  yit!1) ) ,

where L(.) represents the logistic distribution function, and J(t, Eit, t
e
i,  yit!1) is the behavioral impact of

SSP.  We assume that the SSP establishment and entitlement treatment effects are confined to the
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38This assumption is consistent with the convergence of the IA participation rates of the program and
controls groups after SSP payments ended, and is implied by the search model.

transitional and the entitlement periods respectively,38 and are constant within each of these periods, but

allow separate effects depending on whether the individual was on or off IA in the previous month.  We

begin with specifications that assume the treatment effects are constant across individuals:

 J(t, Eit, t
e
i,  yit!1)    =     Eit × 1(   te

i # t  #  te
i+J-1 ) {  R0 1(yit!1=0)  +  R1 1(yit!1=1) }

                     +  Eit × 1(    te
i+J # t  #  te

i+35 ) {  80 1(yit!1=0)  +   81 1(yit!1=1) } ,

where J (=3) is the duration of the transition period; the parameters R0 and R1 measure the

“establishment” effects of SSP eligibility during the transitional period on individuals who were off or on

IA in the previous month, respectively; and the parameters 80 and 81 measure the corresponding incentive

effects during the entitlement period.  Later, we consider specifications that allow the treatment effects to

vary linearly with the random effect.

Given the nature of the eligibility process, a natural model for Eit is a hazard model for the event

of establishing eligibility in month t, conditional on not establishing it earlier.  We assume that the hazard

of eligibility depends on the individual heterogeneity effect "i and on the time since random assignment:

(5) P(Eit | Eit!1, Eit!2, ..., xit, "i )

=  M[ d(t) ! k("i) ]   if Eit!1 = 0  &   t # Te ,

=  1   if  Eit!1 = 1 ,

=  0   if  Eit!1 = 0  &  t > Te   ,

where M is the standard normal distribution function,  d(t) is a function of time, Te is the duration of the

“establishment” period (14 months), and k("i) is a simple function of the random effect.  For the case of

normally distributed heterogeneity, we assume that k("i) is linear (i.e., k("i) = k0 "i).  For the case of

mass point heterogeneity, we adopt a more flexible specification and assume that k("i) takes on a

different value for each mass point (with one value normalized to 0).   Note that if the probability of
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establishing eligibility is independent of the individual-specific determinants of welfare participation,

then k("i) will be constant for all values of the random effect.  Based on the comparisons of welfare

outcomes near the end of the sample period in Table 2, however, we expect k("i) to be positively

correlated with "i.  

Although the causal effects of the entitlement incentives on welfare transition rates are directly

identified in this model through the parameters 80 and 81, the effects of the establishment incentives are

embedded in the eligibility model and the establishment treatment effects, and are not directly identified.  

Since we observe the IA outcomes of the control group, however, we can infer the net effect of these

incentives.  In essence the eligibility model and the establishment period treatment effects provide a joint

model of the selection process leading to the entitlement period data for members of the treatment group

(including SSP-eligibility status, the date of entitlement te and the IA participation state in month te+3),

and of the deviation between the welfare outcomes of the treatment and control groups in the early

months of the demonstration. 

d. Estimation Results for Combined Models

Table 6 presents estimates of alternative specifications of equations (1)-(5).  All the models

adopt the baseline specification used in Table 4, columns (3) and (4), including second order state

dependence,  interactions between the state dependence effects and the random effects, and a fourth order

trend in the IA participation model.  The specifications in columns (1)-(4) assume normally distributed

random effects (corresponding to column (3) of Table 4) while the specification in column (5) uses a 4

mass point specification (corresponding to column (4) of Table 4).  As a reference point, the model in

column (1) ignores any correlation between SSP eligibility and the random effect, while the other

specifications include an eligibility model based on equation (5), with a trend function d(t) = d0 + d1(t-1)
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39The 1/(t-2) term is included to capture the fact that the hazard of eligibility falls from 6 percent in
month 3 to around 2.5 percent in months 4-10. 

+ d2/(t-2).39   The specifications in columns (1) and (2) assume that the treatment effects are constant

across individuals, while the specifications in columns (3)-(5) allow the treatment effects to vary linearly

with the random effects.  Finally, the models in columns (4) and (5) allow for individual heterogeneity in

the trend in IA participation by including interactions of the random effect with a quadratic in months

since random assignment.

The models in Table 6 yield estimates of the state dependence parameters that are similar to the

estimates obtained for the control group alone.  The estimated treatment effects are roughly similar

across specifications, with large negative estimates of the transition-period establishment-effects and

smaller but significantly negative entitlement-period effects.  A comparison of the treatment effects in

columns (1) and (2), however, shows that the implied entitlement-period effects are about 30 percent

larger when eligibility is treated is exogenous (column (1)) than when it is modeled as endogenous

(column (2)).  This is the pattern that would be expected if people with a lower probability of IA

participation are more likely to become SSP-eligible.  That is, in the model in column (2) some of the

differential in entitlement-period transition rates between the eligible and ineligible program subgroups is

attributed to the selectivity of eligibility status, whereas in the model in column (1) all of the difference is

assigned to a causal effect of SSP.  Consistent with this interpretation, the estimates of the parameter k0

from the eligibility model are positive and highly significant in columns (2)-(4).  The implication is that

the distribution of the random effects among those who became eligible is much different than the

distribution among the ineligibles.  For example, simulations from the model in column (2) of Table 5

show that the median of the "i’s for the eligible program group is !0.98, while the median for the

ineligible group is 0.36.   (By assumption the mean and median of the "i’s is 0 for the overall population).

The bottom rows of Table 6 show goodness of fit statistics summarizing each model’s ability to
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40The models in columns 2-5 of Table 6 all give very accurate predictions for the fraction of the program
group who achieved eligibility.  Plots of the actual and predicted eligibility hazards from the models also
show a good fit apart from the last 2 months. The models under-predict the hazard in month 14 and over-
predict the hazard in month 15.  The root mean squared prediction error from the model in column 4, for
example, is 0.37% (relative to an average hazard rate of 2.89%).  Excluding the last two months the root
mean squared error is 0.08%.  

predict the distributions of the control and program groups across the 50 cells used in Table 5.  Perhaps

unsurprisingly, the specification in column (1), which treats eligibility status as exogenous, provides a

slightly better fit than the specification in column (2), which treats it as endogenously determined,

although the eligibility model is flexible enough to provide an accurate prediction of the fraction who

achieved eligibility, and a reasonable fit to the distribution of months to eligibility.40

The model in column (3) generalizes the specification in column (2) by allowing the SSP

treatment effects to vary with the random effects.  The interaction term is especially large for the

transitional period effect on IA exits, and implies that SSP eligibility raised the log-odds of leaving

welfare more for people with higher values of the individual effect "i (i.e., those who were less likely to

leave in the absence of the program).  Indeed, the predicted probabilities of leaving IA from this more

general model are roughly the same for people with different values of the "i’s.  Since most people who

became eligible for SSP were off IA for at least a month in the transitional period, the generalized model

gives a better description than one that assumes a homogeneous effect on the log odds.

 The specification in column (4) introduces an additional degree of flexibility by including

interactions of "i with a quadratic in months since random assignment.  We developed this model out of

concern that imposing a homogeneous trend might inadvertently bias our estimated treatment effects,

since the eligible program group has a non-random distribution of "i’s.  As with the other interaction

terms, the trend interactions are statistically significant, although their introduction has little effect on the

size of the estimated treatment effects.  The specification with trend interactions provides a slightly better

goodness of fit for the program group than a comparable model without these terms, but implies very
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similar treatment effects.

Finally in column (5) we adopt the same specification as in column (4), but replace the

assumption of a normal distribution for the random effects with the assumption of a 4 mass point

distribution.  For each mass point we estimate a value for "i, a value for the constant in the eligibility

model, and the fraction of the population associated with the point.  As was true for models fit to the

control group only, the normal heterogeneity and 4 mass point models provide relatively similar

parameter estimates, although the goodness of fit statistics are somewhat better for the mass point model. 

Again one of the estimated mass points is essentially infinite, implying that some fraction of the

population never leave welfare.  Interestingly, SSP had a significant effect on the relative size of the

“never-leaver” group, reducing it from 21.7% of the control group to 17.1% of the program group.  This

creates something of a problem for the mass point model, which over-predicts the fraction of never

leavers in the program group and under-predicts the fraction in the control group.

By including separate intercepts in the eligibility model for each mass point, the selection model

in column (5) is considerably more general than the “one factor” model in columns (2)-(4).  However, the

estimated mass points in the welfare participation and eligibility models are very highly correlated

(correlation = 0.94 across the 4 mass points) suggesting that the restriction embedded in our normal

heterogeneity models may be relatively innocuous.

Table 7 compares the predictions from the models in columns (4) and (5) for the distribution of

welfare histories of the program group.  Overall the fits are similar, though the goodness of fit statistic is

a little better for the mass point model.  The two models also give very similar predictions for  mean

levels of IA participation in each month of the SSP experiment.  In view of similarities between the

estimates and predictions from the two models, we have reasonable confidence that our estimates are

insensitive to the parameterization of heterogeneity.

Figure 7 shows predicted and actual IA participation rates for the program and control groups in
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the 69 months after random assignment, based on the normal heterogeneity model in column (4) of Table

6.  (Predictions from the mass point heterogeneity model are nearly identical).  Overall, the predictions

are fairly accurate, although the model slightly over predicts welfare participation of the program group

in the period around the close of the eligibility window (months 13-15), and also over predicts IA

participation rates of both groups in months 43-50.  The model explains over 99 percent of the variance

in average monthly IA participation of both the program and control groups, with root mean squared

prediction errors of 0.6 and 0.9 percent, respectively.   (The corresponding figures for the mass point

model in column (5) are 0.7 and 0.9 percent).

Further insight into the accuracy of the model is provided in Figure 8, which shows predicted and

actual welfare participation rates for the eligible and ineligible program groups.  The predictions for the

ineligible group are relatively accurate (root mean squared error of 1.5 percent), while those for the

eligible group are a little less so (root mean squared error 2.6 percent), particularly in months 13-18.  The

model has particular difficulty reproducing the “dip” in welfare participation just after the close of the

eligibility window.  A closer look at the data around this point suggests that a relatively high fraction of

those who achieved SSP eligibility near the end of the eligibility window returned to IA within a few

months.  Such behavior is consistent with our theoretical model, which predicts that some people will

take a relatively unattractive job to gain eligibility, and then quit immediately.  Although our empirical

model allows a  bigger effect on welfare participation in the first 3 months after initial eligibility than in

the subsequent entitlement period, it is evidently too restrictive to fully capture the phenomenon. 

Another problem for the model is the trend in welfare participation of the eligible program group

18-36 months after random assignment.  During this period the participation rate of the eligible group is

very stable, whereas the model predicts a decline, particularly after month 24.  The predicted trend

essentially tracks the trends in the control group and the ineligible program group: both show steady

declines in IA participation during months 18-36.  Even allowing for heterogeneity in the trends for
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different values of the random effect, the best fitting model cannot explain the absence of a parallel trend

for the eligible program group.  The same problem is evident in the predictions from the model with mass

point mixing. 

Finally, it is interesting to examine the fit of the model in months 54-69, when the treatment

effects are all assumed to be zero.  In this interval, the average predicted welfare participation rate for the

program group is a little below the actual rate, though the predicted and actual levels are nearly identical

at month 69.   To probe this further, we fit a model that allowed a fraction 2 of the entitlement period

treatment effects to persist after the expiration of SSP.  For a specification parallel to the one in column

(4) of Table 6 the estimate of 2 is 0.43 (with a standard error 0.05), suggesting that an important fraction

of the treatment effect persisted.  Simulations of this model show that it does a better job of predicting IA

participation of the eligible program group in months 55-64, but a worse job in months 65-69, under-

predicting the rise in IA participation of the eligible program subgroup at the end of the follow up period. 

Based on this poor fit, and the evidence in Figure 1a of convergence in welfare participation, we believe

that models that set the post expiration effects to zero provide a more robust description of the data. 

e.  Decomposing SSP’s Effects

By simulating the models in Table 6 with the various treatment effects turned on or off it is

possible to gain some additional insights into the behavioral responses of the program group, and in

particular into the “hump shaped” pattern of SSP impacts on IA participation rates shown in Figure 1a. 

Figure 9 uses the model in column 4 of Table 6 to decompose the predicted monthly welfare participation

rates of the eligible program group into selection effects, establishment effects during the transitional-

period, and entitlement effects during the entitlement-period, while Figure 10 shows the predicted and

actual SSP impacts on IA participation, with a decomposition of the predicted impacts into establishment

and entitlement effects.
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Beginning with Figure 9, we first describe the selection effect associated with the SSP-eligible

program group.  As a point of reference, the solid line represents the predicted path of IA participation

for the control group.  The dotted line shows the predicted welfare participation rate of the eligible

program group in the absence of SSP.  The divergence of this path from the solid line reflects the

selective nature of the eligible program group.  For example, in month 36 the model predicts a 46 percent

IA participation rate for the eligible program group in the absence of any treatment effects, versus a 66

percent rate for the control group.  Next, we plot the path of the eligible program group, taking account

only of the establishment treatment effects associated with finding work and leaving IA during the

eligibility window (plotted as a dotted line with squares).  Although the establishment treatment effects

peak just after the close of the eligibility window, they persist far longer because of the high degree of

state dependence in welfare participation.  Finally, the fourth line in Figure 9 (with solid squares)

represents the predicted IA participation rate, taking account of selection and the transitional and

entitlement period effects of SSP on IA behavior.  

Comparisons of the various paths in figure 9 show that in the first year and a half of the

experiment (months 6-18) most of the overall treatment effect for the eligible program group derived

from the establishment effects.  Over the period from the 18th to 36th month this effect gradually

dissipated and the entitlement effects dominated.  Starting in month 36 and continuing through month 52

members of the eligible program group gradually exhausted their three years of supplement eligibility,

and the treatment effect faded out.  Finally, after month 52 all treatment effects ended, and the eligible

program group gradually returned to their path in the absence of any treatment.  Although not shown in

Figure 9, we have also decomposed the entitlement-period effects on IA participation into a component

due to faster IA exits, and a component due to slower IA entry.  Roughly three quarters of the overall

entitlement-period effect is attributable to faster welfare exit rates, while one-quarter is attributable to

reduced welfare entry rates.
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We have conducted simulations of the other models in Table 6 and decomposed the predicted

treatment effects from these models using the same approach as in Figure 9.  The results are fairly similar

across specifications.  In particular, the models in columns 4 and 5 lead to very similar predictions for the

various combinations of treatment effects.  All the models suggest that the time profile of the SSP impact

on IA participation on the eligible program group was driven by the combination of the one-time

establishment incentive associated with the eligibility rules, and the longer run entitlement effect on

welfare entry and exit rates that ended once individuals’ SSP eligibility expired.  The establishment-

incentive impact reached a peak of about !20 percentage points at 15 months after random assignment,

accounting for 55 percent of the overall impact on the eligible program group at that point.  By three

years after random assignment, this effect had faded and accounted for 15 percent or less of the total

impact on welfare participation.  The impact of the entitlement-period effects peaks at about !20

percentage points by two years after random assignment, and is fairly stable over the next year before

dissipating as people come to the end of their three-year supplement entitlement window.

Figure 10 presents a decomposition of SSP’s predicted impacts on the overall behavior of the

program group relative to the control group, along with a comparison of the predicted and actual 

differences in IA participation of the two groups (using the model in column 4 of Table 6).  The

distinctive “V-shaped” profile of the predicted impacts is attributed to the combination of the two SSP

incentive effects.  Overall, the predicted and actual impacts are fairly close, although as noted earlier our

model has some difficulty tracking the negative trend in impacts between months 24 and 36.  The pattern

of predicted and actual treatment effects in months 54-69 is also worth emphasizing.  In the first part of

this interval our model tends to under predict SSP’s impact on IA participation of the program group

relative to the controls, while by month 64 the predictions are very close.  On average in the post-

eligibility period, then, the predicted treatment effects are slightly too small.  This explains why a

specification that allows a post-eligibility treatment effect shows some evidence of persistence.  
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41In reality there is not much of a “spike” in eligibility near the end of the establishment period.  The
hazard rate is 2.7 percent in the last 2 months, compared with a rate of 2.8 percent in the preceding 3
months.

f.  Evaluating Alternative Programs

Although our model of SSP is not structural, it can be used to help evaluate the impacts of

alternative subsidy programs.  For example, Figure 11 compares the time profile of simulated treatment

effects for the actual SSP program and two variants.  The first alternative has 48 months of subsidy

eligibility.  In our simulation, we assume that the extended entitlement period has no effect on the

eligibility process: thus, we simply “turn on” the entitlement period treatment effects for an 12 extra

months.  Arguably, this is a lower bound on the impact of the alternative program, since a longer

entitlement period would, presumably, involve a larger option value and encourage more people to

become eligible for SSP.  Even ignoring any effect on eligibility, however, our results suggest that an

extended entitlement period would have led to a treatment effect on the order of 7 percent in months 48-

54, roughly double the observed impact.

The second alternative has a slightly relaxed eligibility rule: in particular, the establishment

period is extended by 3 months.  We simulate this alternative by modifying the time limit parameter Te in

the eligibility model (equation (5)).  This has no effect on the timing of eligibility for people who would

have been become eligible under the original program, and simply continues the eligibility process for 3

more months, raising the predicted fraction of the treatment group who achieve eligibility from 33.8% to

39.2%.  This simulation presumably overstates the impact of the extension, since some people who

actually achieved eligibility near the close of the establishment window might have waited longer if the

deadline was extended.41  That said, the simulation suggests that allowing more time for people to

establish eligibility would have led to at most a 20 percent larger program impact in months 18-45, and

would have also shifted the peak program impact to the right somewhat.  While these results show that
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our model can provide some insights into alternative subsidy programs, they also underscore the fact that

a complete structural model is needed to fully evaluate even minor variants of the actual SSP program.  

III.  Conclusions

The SSP experiment produced one of the largest impacts on welfare participation ever recorded

in the experimental evaluation literature.  At peak,  SSP generated a 14 percentage point reduction in 

welfare participation.  The impact of the program faded relatively quickly, however.  Within 18 months

of the peak impact, the gap in welfare participation between the treatment and control groups of the

experiment had closed by 50%, and by the end of the follow-up period the welfare participation rates of

the two groups were equal.

In this paper we offer an explanation for this pattern of impacts.  Unlike other experimental

incentive programs, the SSP treatment group was not automatically eligible for the financial treatment. 

Instead, eligibility was limited to those who initiated subsidy payments within a year of random

assignment.  Program group members faced a powerful incentive to find a job within the time limit in

order to establish their eligibility for up to three more years of subsidy payments.   Since the program

rules required subsidy recipients to leave welfare, this establishment incentive generated a transitory

reduction in welfare recipiency in the program group.   Members of the program group who achieved

eligibility faced a continuing incentive to choose work over welfare throughout their entitlement period. 

We conclude that the combination of these two incentives provides a parsimonious explanation for both

the large size and distinctive time profile of the SSP impact. 

A second and related finding is that the additional work effort by the program group had no

lasting impact on wages.  Most of the extra hours were at jobs paying close to the minimum wage, and

there was no upward trend in wages associated with the extra hours.   By 53 months after random

assignment, when subsidy payments had ended, the employment rates of the program and control groups
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were equal and the distributions of wages of the two groups were also essentially identical.  Since the

marginal gain in work experience was relatively small (less than one-third of a year, on average), and

members of the experimental population had significant work experience before the experiment, the lack

of wage growth is consistent with other evidence on the effects of work experience on wages of less

skilled workers.  

Overall, the findings from SSP suggest that welfare recipients respond to dynamic incentives in a

manner remarkably consistent with the predictions from a simple optimizing model.  On the other hand,

the lack of effects on wages or long run welfare participation offers little support for the idea that

temporary wage subsidies can have a permanent effect on program dependency.
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Appendix 1: A Simple Model of Work and Welfare Participation

a. Model in the Absence of SSP

We consider a discrete time search model with time measured in months.  Individuals are risk neutral and
discount the future at the monthly interest rate r.  Net income if on welfare is b (which is paid at the end
of the month). Net income if working at the wage w is w!c, which is accrued at the end of the month. 
Each month, an individual receives a single job offer with probability 8, drawn from a distribution with
density f(w) and cumulative density F(w), with R#w#m.  The job destruction rate is *.  Optimal behavior
is characterized by a value function U(w), representing the value of holding a job that pays w, and by a
value V0 of unemployment.  To derive U(w), note that for an individual who is currently holding a job
with wage w, the expected return next month is:

    8(1!F(w)){ (1!*) E[ U(T) |  T>w] + *V0 } + (1 !8(1!F(w)) {  (1-*)U(w) + *V0  } .

The first term in this expression represents the outcome if an offer is obtained (which occurs with
probability 8) and it pays more than the current wage (which occurs with probability 1!F(w)).  In this
case, with probability (1-*) the job survives to the end of the month, and with probability * it ends right
away.  The second term represents the outcome if no acceptable offer is obtained, in which case with
probability 1!* the existing job survives and with probability * it ends.  With some re-arrangement, this
expression becomes

 *V0 +  (1-*)U(w) +  8 (1-*)  Iw
m ( U(T) ! U(w) ) f(T) dT .

Thus, 

U(w) = (w!c)/(1+r)   +  1/(1+r) {  *V0 +  (1-*)U(w) +  8 (1-*)  Iw
m (U(T) ! U(w) ) f(T) dT } ,

or 
 
(A1)     U(w) =  (w!c)/(r+*)  +   */(r+*)V0  +  8(1!*)/(r+*)  Iw

m (U(T) ! U(w) ) f(T) dT .

To derive the value of unemployment, note that if an individual is currently unemployed, and will accept
a job paying at least R, then (using the same arguments as above) expected value next month is:

        8(1!F(R)){ (1!*) E[ U(T) |  T>R] + *V0 } + (1 !8(1!F(R)) V0  .

This can be re-written as 

V0  +  8(1!*) IR
m ( U(T) ! V0 ) f(T) dT .    

Thus, 

V0 =  b/(1+r) +  1/(1+r) { V0  +  8(1!*) IR
m ( U(T) ! V0 ) f(T) dT  } ,

or 
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(A2)   V0 = b/r +  8(1!*)/r   IR
m { U(T) ! V0 } f(T) dT .

The reservation wage R has the property that U(R)=V0.  Comparing A1 and A2 shows that R=b+c.

b.  Model with SSP

In the presence of SSP there are three value functions: Vi(t), the value of welfare participation if not yet
SSP-eligible, t months after assignment; Ue(w,d), the value of a job paying a wage w if SSP-eligible with
d months of elapsed eligibility; and Ve(d), the value of not working if SSP-eligible with d months of
elapsed eligibility.  From revealed preference arguments we have the following inequalities:

Vi(t) $ Vi(t+1) $ V0 , with Vi(13) = V0 ,
 

Ue(w, d) $ Ue(w, d+1) $ U(w),  with Ue(w, 37) = U(w) , 

Ve(d) $ Ve(d+1) $ V0 , with Ve(36) = V0 .

The value of non-employment while still SSP eligible is

(A3)   Ve(d) = b/(1+r) + 1/(1+r) Ve(d+1) +  8(1!*)/(1+r)  IRe(d)
m { Ue(T,d+1) ! Ve(d+1) } f(T) dT ,

where Re(d) is the reservation wage for an SSP-eligible person with d months of elapsed eligibility.  The
value of non-employment for those who are not yet eligible for SSP is

(A4)   Vi(t) = b/(1+r) + 1/(1+r) Vi(t+1) + 8(1!*)/(1+r) IRi(t)
m { Ue(T,1) ! Vi(t+1) } f(T) dT ,

where Ri(t) is the reservation wage in month t for people who are offered SSP but not yet eligible.

To derive Ue(w,d), we proceed backward from period 36.  We first show that in the final month of
payment eligibility, the reservation wage is below R, the reservation wage in the absence of SSP.  To see
this, note that for a job paying a wage w$R, the individual will not quit once SSP ends.  Thus, for w$R,

(A5)    Ue(w, 36) =    (w!c+s(w))/(1+r)  

                       +    1/(1+r) {  *V0 +  (1-*)U(w) +  8 (1-*)  Iw
m (U(T) ! U(w) ) f(T) dT } 

       =    U(w) + s(w)/(1+r) .

Evaluating this expression at w=R, and using the fact that U(R)=V0=Ve(36), (A5) shows that 
Ue(R, 36) =  Ve(36) + s/(1+r), which implies that the minimum acceptable wage in month 36 is strictly
less than R.   Now consider the value of accepting a wage w<R in month 36.  Knowing that she will quit
the job in month 37, the value is

Ue(w, 36) = (w!c+s(w))/(1+r)  +  1/(1+r) {  *V0 +  8 (1-*)  IR
m (U(T) ! U(w) ) f(T) dT } 

    =  (w!c+s(w))/(1+r)  +  V0  ! b/(1+r)
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    =  (w!c!b+s(w))/(1+r) + Ve(36) .

The reservation wage at month 36, Re(36), has the property that Ue(Re(36), 36) = Ve(36).  Using this fact,
the previous expression implies that Re(36)+s(Re(36)) = b+c = R.

Finally, we show that in earlier months, the reservation wage of SSP-eligible people is Re(d)=Re(36)=Re. 
Consider month 35.  For any w$Re, the value of a job paying wage w in month 35 is

(A6) Ue(w, 35) = (w!c+s(w))/(1+r) 

  +  1/(1+r) {  * Ve(36) +  (1-*)Ue(w, 36)  +  8 (1-*)  Iw
m (Ue(T, 36) ! Ue(w, 36) ) f(T) dT } 

Also

(A7)   Ve(35) = b/(1+r) + 1/(1+r) Ve(36) +  8(1!*)/(1+r)  IRe(35)
m { Ue(T,36) ! Ve(36) } f(T) dT .

It is straightforward to show that when Re(35)=Re, equations (A6) and (A7) imply Ue(Re, 35)=Ve(35).  
The same argument can be applied to months 34, 33, ....  Thus Re is the optimal reservation wage during
all months of SSP eligibility.
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Appendix 2: Dating SSP Eligibility

The actual date that different individuals achieved SSP eligibility is not recorded.  Based on the
patterns in Figure 2a , we estimate the date of SSP eligibility as the earliest of three possible dates: (1)
the first month of full-time employment; (2) the first month of SSP receipt, minus 1 month for the delay
in processing; (3) 14 months after random assignment.   The assumption that the duration of the
eligibility window was 14 months, rather than 12 as stated in the SSP rules, reflects the presence of
delays in processing and administrative laxity.  There are only a handful of eligible program group
members for whom the minimum of the first month of full-time employment and the first month of SSP
receipt (minus 1) is greater than 14.

Using these dates, about 18 percent of the eligible program subgroup achieved eligibility in the
first month after random assignment, 9 percent became eligible in each of the second and third months,
and roughly 6 percent became eligible in each of the next 10 months.  Just under 3 percent became
eligible in the last possible month (month 14).  Recognizing the delay between the start of SSP eligibility
and leaving IA (Figure 2a) we then add 2 months to these dates for our analysis of welfare dynamics. 
The resulting distribution of adjusted eligibility dates ranges from 3 to 16 months after random
assignment.   A final decision, also made with reference to the patterns in Figure 2a, was to set the
duration of the transition period to 3 months.  



Table 1:  Key Features of the SSP Recipient Demonstration

A.  Program Eligibility

A Eligibility limited to single parents who have received Income Assistance (IA) for at
least 12 months.

A Sample members drawn from IA registers in British Columbia and New Brunswick,
with random assignment between November 1992 and February 1995.

A 2,858 single parents assigned to the program group, 2,826 assigned to the control group.

B.  Program Features

A Subsidy payments available to program group members who work at least 30 hours per
week (over a four-week or monthly accounting period), and earn at least the minimum
wage

A Subsidy recipients become ineligible for IA.

A Subsidy equals one-half of the difference between actual earnings and an earnings
benchmark, set at $2,500 per month in New Brunswick and $3,083 per month in British
Columbia in 1993, and adjusted for inflation in subsequent years.

A Subsidy payments are unaffected by unearned income or the earnings of a
spouse/partner, and are treated as regular income for income tax purposes.

A Subsidy payments are available for 36 months from time of first payment.  Payments are
only available to program group members who successfully initiate their first supplement
payment within one year of random assignment.

A Once eligible, program group members can return to IA at any time.  Subsidy is re-
established when an eligible person begins working full time again.

A Employers are not informed of SSP status.  Program group members apply for subsidy
payments by mailing copies of payroll forms.



Table 2: Characteristics of SSP Experimental Sample

Program Group, by SSP
Eligibility Status:

Controls Programs Eligible Ineligible

In British Columbia (%) 52.6 53.2 50.9 54.4
Male (%) 4.7 5.2 4.6 5.5
Mean Age 31.9 31.9 31.1 32.4
Age 25 or Less (%) 17.8 17.1 18.5 16.3
Never Married (%) 48.1 48.3 48.0 48.5
Average Number Kids < 6 0.7 0.7 0.7 0.7
Average Number Kids 6-15 0.8 0.8 0.8 0.8

Immigrant (%) 13.8 13.3 12.2 13.9
Grew Up with 2 Parents (%) 59.7 59.4 62.1 58.1
High School Graduate (%) 44.6 45.7 56.9 39.9
Means Years Work Exp 7.4 7.3 8.6 6.7
Working at Baseline (%) 19.0 18.2 31.5 11.4

Months on IA Last 3 Years 29.6 30.1 29.2 30.6
IA Continuously Last 3 Yrs. (%) 41.5 43.8 36.3 47.7

Percent on IA by Months Since Random Assignment:
Month 6 90.8 83.1 62.8 93.5
Month 12 83.7 72.4 39.1 89.4
Month 18 77.9 65.9 27.2 85.6
Month 24 73.0 63.3 26.5 82.1
Month 36 65.4 58.8 27.6 74.8
Month 48 56.7 53.5 29.3 65.9
Month 60 50.6 48.4 28.5 58.5
Month 69 45.0 45.0 25.4 55.0

Number Observations 2,786 2,831 957 1,874
Note: Sample includes observations in SSP Recipient Experiment who were on IA in
the two months prior to random assignment. Eligible program group is subset who received at
least one SSP subsidy payment.



Table 3: Summary of Labor Market Outcomes 53 Months After Random Assignment

Both British New
Provinces Columbia Brunswick

Control Group Outcomes in Month 53:
Percent Employed 41.56 39.19 44.08

(1.02) (1.41) (1.48)
Percent with Reported Wage 38.26 35.63 41.08

(1.01) (1.38) (1.46)
Mean Log Hourly Wage 2.17 2.36 1.99

(0.01) (0.02) (0.02)
Cumulative Employment Since 1.41 1.33 1.49

Random Assignment (in Years) (0.03) (0.04) (0.05)

Program Group Outcomes in Month 53:
Percent Employed 41.69 37.73 46.05

(1.00) (1.36) (1.47)
Percent with Reported Wage 39.45 35.04 44.31

(0.99) (1.34) (1.47)
Mean Log Hourly Wage 2.15 2.34 1.99

(0.01) (0.02) (0.02)
Cumulative Employment Since 1.68 1.55 1.82

Random Assignment (in Years) (0.03) (0.04) (0.05)

Difference: Program Group - Control Group
Percent Employed 0.13 -1.46 1.97

(1.43) (1.96) (2.08)
Percent with Reported Wage 1.19 -0.58 3.23

(1.41) (1.92) (2.07)
Mean Log Hourly Wage -0.02 -0.02 -0.01

(0.02) (0.03) (0.02)
Cumulative Employment Since 0.28 0.22 0.33

Random Assignment (in Years) (0.04) (0.06) (0.07)

Regression Models for Outcomes in Month 53:
Reduced Form Equations:
Program Group Effect in Model for Log Wage -0.01 -0.02 0.00

(0.02) (0.03) (0.02)
Program Group Effect in Model for Cumulative Work 0.37 0.28 0.46

(fit to subsample with reported wage) (0.05) (0.08) (0.07)

Effect of Cumulative Work on Wage in Month 53:
Estimated By OLS 0.049 0.046 0.051

(0.007) (0.012) (0.009)
Estimated by IV, using Program Group Status -0.032 -0.088 -0.004
as Instrument (0.045) (0.099) (0.046)

Notes: Standard errors in parentheses. Sample includes 2,339 in control group and 2,418 in program
group with complete employment data for 53 months after random assignment. Regression models
in bottom panel are fit to subgroups of 895 control group members and 954 program group members
with reported wage in month 53. Other covariates in regression models include year dummies,
education, experience, high school completion dummy, immigrant status, age, indicators for
working or looking for work at random assignment, and indicators for physical or emotional problems
that limit work (measured at random assignment). See text.



Table 4: Estimated Dynamic Models for IA Participation of Control Group

Model with Mass
Models with Normally Distributed Point Distribution

Random Effect: of Random Effect
(1) (2) (3) (4)

Coefficient of:
y(t-1) 5.22 5.19 4.76 4.65

(0.03) (0.07) (0.06) (0.10)

y(t-2) -- 2.19 2.03 1.84
(0.05) (0.05) (0.07)

y(t-1) x y(t-2) -- -1.39 -0.89 -0.87
(0.08) (0.08) (0.09)

y(t-1) x a(i) -- -- -0.70 -0.93
(0.07) (0.02)

y(t-2) x a(i) -- -- -0.28 -0.58
(0.04) (0.03)

y(t-1) x y(t-2) x a(i) -- -- 0.81 0.61
(0.08) (0.04)

Standard Deviation of 1.64 1.32 1.57 4 mass pts
Random Effect (0.03) (0.03) (0.06)

Log Likelihood -28,276.0 -27,225.6 -27,202.6 -27,067.4

Goodness of Fit 752.6 260.3 253.0 175.8

Generalized Residuals:
Mean -0.02 0.00 0.00 0.00
Variance 1.11 0.95 0.97 0.98
1st Order Correlation -0.07 0.01 0.00 0.00
2nd Order Correlation 0.03 -0.02 -0.02 -0.03
3rd Order Correlation 0.03 0.00 0.00 0.00
4th Order Correlation 0.04 0.01 0.01 0.00
5th Order Correlation 0.03 0.01 0.01 0.00

Notes: Standard errors in parentheses. See text for model specifications. All models
include fourth order trend. Models in columns 1-3 are estimated by maximum likelihood
using Gaussian quadrature with 10 points. Model in column 4 has four mass points.
Goodness of fit and diagnostic tests for generalized residuals explained in text.



Table 5: Summary of IA Participation Patterns of Control Group, with Comparisons to Model Predictions

Number of Transitions:

3+ 4+
0 1 2 Even Sum Odd Sum TOTAL

Months Actual and Predicted Cell Fractions from Model in Table 4, Column 3 (normal heterogeneity):
on IA:

0-2 0 0 38 58.2 0 0.3 3 5.9 0 0 41 64.4
3-8 0 0 125 100.3 2 1.6 40 45.0 0 0.2 167 147.1
9-14 0 0 87 71.7 5 1.7 52 71.1 3 1.1 147 145.6
15-20 0 0 72 49.5 2 2.0 64 83.1 6 3.0 144 137.6
21-26 0 0 66 43.0 5 2.7 72 93.6 7 5.7 150 145.0
27-32 0 0 70 32.9 3 4.5 83 92.2 13 9.7 169 139.3
33-38 0 0 59 32.2 7 6.4 90 99.1 18 15.5 174 153.2
39-44 0 0 58 29.5 8 8.4 87 97.9 29 20.2 182 156.0
45-50 0 0 55 28.1 18 11.5 83 96.2 29 32.7 185 168.5
51-56 0 0 41 35.0 10 23.5 82 97.3 33 45.8 166 201.6
57-62 0 0 40 35.4 30 42.5 77 77.9 53 75.9 200 231.7
63-67 0 0 37 45.1 67 95.6 40 49.0 113 135.2 257 324.9
68 0 0 11 12.6 189 211.7 0 0.0 0 0 200 224.3
69 604 546.8 0 0 0 0 0 0.0 0 0 604 546.8

Total 604 546.8 759 573.5 346 412.4 773 908.3 304 345.0 2786 2786.0

Actual and Predicted Cell Fractions from Model in Table 4, Column 4 (mass point heterogeneity):

Actual Predict. Actual Predict. Actual Predict. Actual Predict. Actual Predict. Actual Predict.
0-2 0 0 38 46.6 0 0.1 3 2.5 0 0 41 49.2
3-8 0 0 125 97.6 2 1.8 40 23.7 0 0.8 167 123.9
9-14 0 0 87 94.6 5 2.5 52 41.5 3 1.2 147 139.8
15-20 0 0 72 85.9 2 3.2 64 58.6 6 3.1 144 150.8
21-26 0 0 66 75.4 5 4.2 72 73.1 7 8.0 150 160.7
27-32 0 0 70 66.7 3 5.6 83 86.7 13 12.2 169 171.2
33-38 0 0 59 51.4 7 7.1 90 97.7 18 19.9 174 176.1
39-44 0 0 58 51.9 8 8.7 87 111.6 29 25.9 182 198.1
45-50 0 0 55 42.1 18 9.2 83 106.0 29 34.4 185 191.7
51-56 0 0 41 35.4 10 11.8 82 95.7 33 47.3 166 190.2
57-62 0 0 40 29.3 30 18.5 77 76.8 53 94.7 200 219.3
63-67 0 0 37 19.1 67 28.3 40 40.1 113 116.3 257 203.8
68 0 0 11 6.6 189 184.1 0 0.0 0 0 200 190.7
69 604 620.4 0 0 0 0 0 0.0 0 0 604 620.4

Total 604 620.4 759 702.6 346 285.1 773 814.0 304 363.9 2786 2786.0

Note: Bold entries represent number of observations with the number of months on IA given in the row heading and the number of transitions
off or on IA given in the column heading. Italics entries represent the predicted number of observations with the same IA participation history.



Table 6: Estimated Dynamic Models for IA Participation for Control and Program Groups

Model with Mass
Models with Normally Distributed Random Effect: Point Distribution

of Random Effect
(1) (2) (3) (4) (5)

State Dependence Parameters:
y(t-1) 4.78 4.72 4.68 4.69 4.60

(0.04) (0.04) (0.04) (0.04) (0.06)

y(t-2) 1.90 1.86 1.84 1.84 1.69
(0.03) (0.03) (0.03) (0.03) (0.04)

y(t-1) x y(t-2) -0.87 -0.80 -0.79 -0.82 -0.77
(0.05) (0.05) (0.05) (0.05) (0.06)

y(t-1) x α -0.74 -0.90 -0.77 -1.11 -0.93
(0.04) (0.04) (0.04) (0.07) (0.03)

y(t-2) x α -0.40 -0.35 -0.33 -0.40 -0.55
(0.03) (0.03) (0.03) (0.04) (0.02)

y(t-1) x y(t-2) x α 0.76 0.79 0.74 1.09 0.61
(0.05) (0.05) (0.04) (0.08) (0.03)

Treatment Parameters:
Transitional Period

ψ1 (exit) -3.02 -2.76 -3.26 -3.10 -2.82

(0.06) (0.06) (0.07) (0.07) (0.06)

ψ0 (entry) -1.92 -1.63 -1.84 -1.75 -1.68

(0.13) (0.13) (0.14) (0.14) (0.14)

ψ1 x α -- -- -0.53 -0.61 -0.10

(0.06) (0.07) (0.02)

ψ0 x α -- -- -0.27 -0.22 -0.26

(0.09) (0.15) (0.05)
Eligibility Period

λ1 (exit) -1.35 -1.10 -1.08 -1.11 -0.86

(0.04) (0.05) (0.04) (0.04) (0.05)

λ0 (entry) -0.86 -0.51 -0.69 -0.72 -0.45

(0.05) (0.05) (0.05) (0.05) (0.06)

λ1 x α -- -- -0.03 -0.07 0.35

(0.04) (0.06) (0.05)

λ0 x α -- -- -0.26 -0.35 -0.06

(0.04) (0.07) (0.05)

Note: table continues.



Table 6, continued.

Model with Mass
Models with Normally Distributed Random Effect: Point Distribution

of Random Effect
(1) (2) (3) (4) (5)

Selection Parameters:
constant -- -2.23 -2.23 -2.22 -2.01

(0.06) (0.06) (0.06) (0.07)

linear trend -- 0.19 0.18 0.18 0.18
(0.04) (0.06) (0.06) (0.06)

1/t -- 0.55 0.55 0.55 0.57
(0.08) (0.08) (0.08) (0.08)

k = loading on α -- 0.21 0.21 0.29 mass-point
(0.01) (0.02) (0.02) specific

Interaction of Random Effect and Trend
Linear trend x α -- -- -- 0.30 0.01

(0.04) (0.01)

Quadratic trend x α -- -- -- -0.33 -0.01
(0.06) 0.01

Standard Deviation of 1.75 1.76 1.86 1.18 4 mass points
Random Effect (0.04) (0.04) (0.04) (0.06)

Log Likelihood -57,018 -61,116 -61,032 -60,960 -60,779

Goodness of Fit
Controls 277.1 285.8 283.3 262.5 158.1
Programs 194.1 232.6 233.8 233.7 209.8

Notes: Standard errors in parentheses. See text for model specifications. All models include fourth
order polynomial trend. Models in columns 1-4 are estimated by maximum likelihood using Gaussian
quadrature with 10 points. Model in column 5 has four mass points, with unrestricted mass points in
selection model. See text for further description of model.



Table 7: Summary of IA Participation Patterns of Program Group, with Comparisons to Model Predictions

Number of Transitions:

3+ 4+
0 1 2 Even Sum Odd Sum TOTAL

Actual and Predicted Cell Fractions from Model in Table 6, Column 4 (normal heterogeneity):
Months
on IA: Actual Predict. Actual Predict. Actual Predict. Actual Predict. Actual Predict. Actual Predict.

0-2 0 0 85 70.6 0 0.3 9 7.1 0 0 94 78.0
3-8 0 0 198 159.7 3 2.8 58 87.2 1 1.3 260 251.0
9-14 0 0 120 108.3 4 4.4 104 134.8 2 5.5 230 253.0
15-20 0 0 48 44.3 3 4.3 103 119.4 14 10.3 168 178.3
21-26 0 0 33 27.1 4 3.0 83 97.9 21 13.4 141 141.4
27-32 0 0 39 20.9 5 5.3 78 95.0 25 21.5 147 142.7
33-38 0 0 38 19.6 7 5.8 86 88.1 26 25.6 157 139.1
39-44 0 0 49 15.8 5 6.9 77 77.3 25 30.6 156 130.6
45-50 0 0 39 20.3 18 8.9 65 82.0 37 44.7 159 155.9
51-56 0 0 41 21.6 17 15.3 58 80.5 62 59.2 178 176.6
57-62 0 0 31 23.9 37 35.0 56 63.4 90 90.5 214 212.8
63-67 0 0 26 28.6 72 99.9 24 42.0 141 155.9 263 326.4
68 0 0 9 8.6 172 188.0 0 0.0 0 0 181 196.6
69 483 448.6 0 0 0 0 0 0.0 0 0 483 448.6

Total 483 448.6 756 569.3 347 379.9 801 974.7 444 458.5 2831 2831.0

Actual and Predicted Cell Fractions from Model in Table 6, Column 5 (mass point heterogeneity):

Actual Predict. Actual Predict. Actual Predict. Actual Predict. Actual Predict. Actual Predict.
0-2 0 0 85 79.4 0 0.1 9 9.4 0 0 94 88.9
3-8 0 0 198 177.6 3 2.5 58 65.5 1 0.8 260 246.4
9-14 0 0 120 142.0 4 4.7 104 97.6 2 4.3 230 248.6
15-20 0 0 48 71.5 3 6.4 103 96.5 14 8.5 168 182.9
21-26 0 0 33 47.3 4 6.5 83 90.7 21 15.2 141 159.7
27-32 0 0 39 36.0 5 5.7 78 90.8 25 23.8 147 156.3
33-38 0 0 38 31.8 7 5.6 86 87.8 26 30.7 157 155.9
39-44 0 0 49 27.8 5 6.6 77 89.8 25 38.3 156 162.5
45-50 0 0 39 23.1 18 9.0 65 78.7 37 44.7 159 155.5
51-56 0 0 41 22.6 17 10.7 58 70.1 62 52.8 178 156.2
57-62 0 0 31 17.5 37 14.8 56 62.6 90 86.0 214 180.9
63-67 0 0 26 12.8 72 35.5 24 30.5 141 138.0 263 216.8
68 0 0 9 6.9 172 166.4 0 0.0 0 0 181 173.3
69 483 547.1 0 0 0 0 0 0.0 0 0 483 547.1

Total 483 547.1 756 696.3 347 274.5 801 870.0 444 443.1 2831 2831.0

Note: Bold entries represent number of observations with the number of months on IA given in the row heading and the number of transitions
off or on IA given in the column heading. Italics entries represent the predicted number of observations with the same IA participation history.



Figure 1a: Monthly Income Assistance Participation Rates
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Figure 1b:  Exit Rates from Income Assistance
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Figure 1c: Entry Rates into Income Assistance
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Figure 2a:  Program Participation and Full Time Work Around First Month of 

SSP Receipt
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Figure 2b: Supplement Receipt and IA Participation Around End of SSP 
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Figure 3a: Monthly Employment Rates
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Figure 3b: Average Monthly Earnings
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Figure 4: Distribution of Added Employment in Program Group
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Figure 5: Average Wages Associated with Excess Earnings of Program Group
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Figure 6a.  Reservation Wage of Ineligible Program Group 

Member
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Figure 6b:  Reservation Wage of Eligible Program Group Member
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Figure 7: Actual and Predicted IA Rates for Control and Program 

Groups
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Figure 8: Actual and Predicted IA Rates for Eligible and Ineligible Program 

Groups
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Figure 9: Decomposition of Predicted IA of Eligible Treatments
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Figure 10: Actual and Predicted Treatment Effects on Probability 

of IA Participation
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Figure 11: Simulated Treatment Effects of SSP Program and 2 Alternatives
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