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ABSTRACT

This paper presents a framework for understanding the limits that exist in optimal policy design in

dynamic contexts. We consider the design of policies in the context of dynamic linear models.

Fundamental design limits exist for policy rules in such environments in the sense that any policy

rule embodies tradeoffs between the magnitudes of different frequency-specific components of the

variance. Hence policies that are effective in eliminating low frequency variance components of a

state variable can only do so at the cost of exacerbating high frequency variance components, and

vice versa. Examples of the implications of such tradeoffs are considered.
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“The role of the economists in discussions of public policy seems to me to 
be to prescribe what should be done in light of what can be done, politics 
aside…” 

 
Milton Friedman (1951, pg. 187) 

 

 

1. Introduction 

 

 This paper studies a number of issues related to the design of optimal policies in 

dynamic contexts.  Issues of policy design have experienced a renaissance in 

macroeconomics over the last decade, driven to a significant extent by the modern 

literature on monetary policy rules, a literature that was to an important extent initiated 

by Taylor (1993); Taylor (1999) contains a wide range of applications.  An important 

feature of the work on Taylor-type monetary policy rules is the importance that has been 

assigned in this literature to understanding how the evaluation of alternative policy rules 

involves assessing tradeoffs between various objectives, such as minimizing inflation, 

interest rates, and output volatility. 

 The analysis in this paper adds to this previous work on policy analysis by 

developing a theory of design limits to optimal policy.  Specifically, we model the effects 

of alternative control rules on a state variable in the frequency domain.  A frequency 

domain approach allows one to identify the frequency-specific components of the overall 

variance of the state variable.1  Our analysis then identifies the ways in which different 

control rules affect the contributions of fluctuations at each frequency to the overall 

variance.  This approach allows us to develop an explicit characterization of the tradeoffs 

that exist between diminishing the variance contribution of one frequency and another.  

Examples of these tradeoffs in the control theory literature are the Bode and Poisson 

integral constraints; despite their importance in understanding the development of 

                                                 
1 Such an interpretation is standard in time series analysis and derives immediately from 
the spectral representation of a time series. 
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optimal policy, these types of constraints do not appear to have been previously exploited 

in the economics literature.  The sorts of abstract arguments we develop have natural 

implications for contexts such as monetary policy design.  Monetary policy rules are 

typically evaluated in terms of their ability to minimize fluctuations in state variables 

such as output and inflation.   

In this context, the design limits we develop imply that policy rules that are 

efficacious in reducing low (high) frequency fluctuations in output and inflation will 

inevitably exacerbate the magnitude of high (low) frequency fluctuations, in a way that 

we make precise.  These tradeoffs do not, of course, by themselves imply any particular 

ordering concerning the relative desirability of different policy rules.  Rather, these 

tradeoffs imply that any ordering must carefully account for how the policymaker 

assesses the frequency-specific components of fluctuations for the outcomes of interest. 

 The design limits we describe are model-specific in the sense that a particular 

model produces a particular characterization of the frequency-specific tradeoffs that exist 

in stabilizing the state variable the policymaker wishes to control.  In other words, 

different models imply different constraints on what a policymaker can achieve.  As such, 

these limits are an important complement to work on policy design in the presence of 

model uncertainty2. Concerns over model uncertainty have motivated much recent 

research on the theoretical foundations of policy analysis; one example is the research 

program on robust policy construction initiated by Hansen and Sargent 

(2001,2002,2003). This work focuses on local model uncertainty, i.e. model uncertainty 

that is local to a given baseline model.  The interactions of policy design and model 

uncertainty in cases where model uncertainty is “global” in the sense that the space of 

potential models contains very different elements is explored in Brock, Durlauf, and West 

(2003).   That paper uses an explicit decision-theoretic formulation which treats the true 

model as an unknown variable and computes expected policy effects by “integrating out” 

the variable. An important next step in studying policy design is the integration of the 

limits we describe here into environments with global model uncertainty; some initial 

discussion along these lines is found in Brock and Durlauf (2003). 

                                                 
2See Brock, Durlauf, and West (2003) and Onatski and Williams (2002) for conceptual 
and operational issues that arise in specifying model uncertainty in economic models.  
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 Our goal in this paper is to focus on basic ideas rather than formalism.  Much of 

the work described here represents research in progress and we have felt free to be 

relatively speculative. Our hope is that the ideas we outline will stimulate others to 

pursue what we believe is an extremely promising research program. 

 

 

2. Design limits in linear systems: basic ideas 

 

 This section considers the construction of optimal policies for systems with a 

scalar state variable tx  and a scalar control tu ; such systems are known as Single Input 

Single Output or SISO systems.  In our analysis, we assume that a policymaker wishes to 

minimize the unconditional variance of the state,  

 

 2
tEx  (1) 

  

The law of motion for the state is  

 

 ( ) 1 1t t t tx A L x bu ξ− −= + +  (2) 

 

where tξ  represents an unobserved zero mean random variable with associated Wold 

moving average representation 

 

 ( )t tW Lξ ν=  (3) 

 

The innovations tν  are assumed to have a common variance 2
tEν ; it is not necessary for 

our analysis that the error variances are constant.  We focus on feedback rules for the 

control, i.e. rules of the form 

 

 ( )1 1t tu F L x− −= −  (4) 
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Given rules of the form (4), the law of motion (1) may be rewritten so that 

 

 
( ) ( ) ( )

( )
( ) ( )

1 1

1

t t t t

t

x A L x bF L x W L

W L
v

LA L bLF L

ν− −= − + =

− +
 (5) 

 

if ( ) ( )1 LA L bLF L− +  is invertible, which we will assume. 

 In evaluating the effects of the control tu  on the state tx , it is useful to contrast 

(1) with the law of motion of the state variable when there is no control, i.e. the control is 

set equal to zero every period; we designate this process as NC
tx .  Eq. (2) of course 

implies that the state variable with no control obeys 

 

 ( ) 1
NC NC
t t tx A L x ξ−= +  (6) 

 

Equation (6) is known in the control literature as the free dynamics of the system.  In 

light of the loss function (1), one may interpret the optimal policy problem as identifying 

that choice of feedback rule that maximizes the difference between the variance of  NC
tx  

and the variance of tx . 

 In order to analyze the system (1)-(4), we will work in the frequency domain.  To 

do this, for any lag polynomial ( )C L  we denote the Fourier transform of its coefficients 

as ( ) ij
j

j

C c e ωω
∞

−

=−∞

= ∑ .  Using the notation ( ) ( ) ( )2
C C Cω ω ω= − , this allows us to 

express the variance of the state as 

 

 
( )

( ) ( )
( )

( ) ( )

2 2
2

2 2
1

2t i i

W f
Ex d d

e A bF e A bF

π πν ξ

π πω ω

ω σ ω
ω ω

π ω ω ω ω− −
= =

− + − +
∫ ∫  (7) 
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where ( )fξ ω  is the spectral density of tξ .3  

Eq. (7) provides a way of identifying how the control rule - ( )F L  affects each of  

the frequency specific components of 2
tEx .  To see this, multiply and divide the 

denominator of the integrand in (7) by ( ) 2ie Aω ω− , so that  

 

 

( )
( ) ( )( ) ( )

( )
( )( ) ( )

2
212

21

NC

t
i i i

x

i i

f
Ex d

e A e b e A F

f
d

e b e A F

π ξ

π ω ω ω

π

π ω ω

ω
ω

ω ω ω

ω
ω

ω ω

− −

− −

= =
− + −

+ −

∫

∫
 (8) 

 

where ( ) ( )
( ) 2NCx i

f
f

e A
ξ

ω

ω
ω

ω
=

−
 by (6).  Defining the function 

 

 ( )
( )( ) ( )1

1
i i

S
e b e A Fω ω

ω
ω ω

−=
+ −

 (9) 

 
(8) may be rewritten as 

 

 ( ) ( )22
NCt x

Ex S f d
π

π
ω ω ω

−
= ∫  (10) 

 

a representation that will prove to be of great use in understanding stabilization policy 

from a frequency domain perspective. 

In control theory, ( )S ω  is known as the sensitivity function (cf. Kwakernaak and 

Sivan (1972), pg. 487).  Equation (10) illustrates how the sensitivity function ( )S ω  plays 

a critical role in understanding policy design. The effects of a policy on a state are 

                                                 
3 The sorts of calculations we make here are standard in the control theory literature; see 
Kwakernaak and Sivan (1972, chapter 6) for an excellent exposition. 
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summarized by the sensitivity function; since ( )NCx
f ω  does not depend on the policy 

rule, all effects of the policy rule are determined by the effect of ( )F L  (and hence 

( )F ω ) on ( )S ω . This means that any restrictions that exist on the ability of the choice 

of ( )F L  to determine the shape of ( )S ω  represent restrictions on how a policy can 

affect the variance of the state.  

Eq. (10) indicates how different choices of the policy rule alter the way in which 

each frequency component of ( )NCx
f ω  is transformed into an element of ( )xf ω  and 

hence how each frequency-specific component of NC
tx  translates into a frequency-specific 

component of tx .  Since ( ) ( )2
NC

NC
t x

E x f d
π

π
ω ω

−
= ∫  and ( )2

t xEx f d
π

π
ω ω

−
= ∫ , this 

transformation illustrates how the sensitivity function alters the frequency-specific 

variance contributions when NC
tx  is transformed into tx  by the feedback rule.  When the 

policy rule has the implication that ( ) 2
1S ω < , then the contribution of fluctuations 

associated with frequency ω  to ( )xf ω  are smaller than their effect on the state variable 

would be if  the control were set equal to zero, i.e. ( )NCx
f ω .  Hence, one way to think 

about policy design is that good policies will reduce the contributions of different values 

that are present in ( )NCx
f ω  as the policy rule transforms this spectral density into ( )xf ω  

in a way to minimize the contributions of those frequencies where ( )NCx
f ω  is relatively 

large. 

What sorts of constraints exist on the choice of ( )S ω  which may be achieved by 

the choice of ( )F L ?  It is intuitive that some such limits must exist, or else the 

policymaker would simply set ( ) [ ]0 ,S ω ω π π= ∀ ∈ −  and produce 2 0tEx = .  (Such a 

rule is of course not realizable since the policymaker cannot condition on tv ) A full 

characterization of the limits that exist in generating ( )S ω  will provide a way of 

characterizing the fundamental limits that exist to feedback policies in this model. 
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Within the control theory literature, there is an important result, known as the 

Bode integral constraint, which characterizes the limits which the state equation imposes 

on the mapping from ( )F ω  to ( )S ω .  A discrete time version of this constraint is due to 

Wu and Jonckheere, (1992). In order to state this constraint, it is necessary to introduce a 

function ( )L z  defined by 

 

 ( ) ( ) ( )( ) 11 1L z bF z z A z
−− −= −  (11) 

 
where for any lag polynomial ( )C L  its associated z-transform ( )C z  is defined by 

( ) j
j

j

C z c z
∞

=−∞

= ∑ .4 We consider the case where ( )F L  and ( )A L  are polynomials of finite 

degree.  By the fundamental theorem of algebra, this function may be written as a ratio of 

polynomials and factored into simple polynomials, therefore 

 

 ( )
( )

( )
1

1

m

ii
n

ii

z z
L z c

z p
=

=

Π −
=

Π −
 (12) 

 

where the constant c  is determined by the requirement that the system defined by (1) to 

(4)  is stable. In the factorization, the quantities iz  are the zeroes and the quantities ip  are 

the poles of the function.  The difference between the number of poles and the number of 

zeroes, n mν = − , is known as the relative degree of ( )L z .  We assume that 1ν ≥ .  This 

background allows us to state the following theorem 

 

Theorem.  Discrete Time Bode Constraint 

 

                                                 
4We have shifted from Fourier to z-transforms in order to allow us to define the function 

( )L ⋅  on the entire complex plane, which is needed in the derivations of some of the 
results we employ. 
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Assume that the controlled system is globally asymptotically stable and that 1ν ≥ . Then, 

there exists a non negative constant BodeK  such that  

 

 ( )( ) ( )2
ln 4 ln

iBode u
i

S d K p
π

π
ω ω π

−
= = ∑∫  (13) 

 

where 
iup  denotes an unstable pole of ( )L z .  

 

Pf. Wu and Jonckheere (1992). 

 

The key features of this theorem are twofold.  First, since 0BodeK ≥  (which 

immediately follows from ( )ln 0
iup ≥  and the second equality in (13)), it is impossible 

for  ( ) [ ]1 - ,S ω ω π π< ∀ ∈ ; otherwise, ( )( )2
ln S d

π

π
ω ω

−∫  would be negative.  From the 

perspective of eq. (7) this implies that it is impossible to design a policy such that 

( ) ( ) [ ] - ,NCx x
f fω ω ω π π≤ ∀ ∈  with strict inequality at some positive measure of 

frequencies.5  In order to achieve ( ) ( )NCx x
f fω ω< for every element of one set of 

frequencies, it is necessary that ( ) ( )NCx x
f fω ω> for elements of some other nontrivial 

set. Since ( )  NCx
f ω represents the frequency-specific variance contributions when the 

control is identically equal to zero, this means that any nontrivial policy must increase the 

variance contributions at certain frequencies relative to the contributions in absence of the 

policy.  Hence, there are fundamental tradeoffs between the variance contributions that 

collectively determine 2
tEx .  An optimal policy may incur higher variance contributions 

at some frequencies in order to reduce variance contributions at others, but such tradeoffs 

are inevitable. 

                                                 
5Hence, the fact that it is impossible to choose a control such that ( ) [ ]0 ,S ω ω π π= ∀ ∈ −  
is a special case of a much stronger set of restrictions on what feedback policies can 
achieve. 
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When will 0BodeK > ?  A positive value for the constraint occurs when the 

polynomial ( )1 LA L−  has roots strictly outside the unit circle. Notice that unit root 

processes are compatible with 0BodeK = .  We will treat 0BodeK =  as a leading case since 

many macroeconomic models are associated with ( )1 LA L−  polynomials whose roots are 

outside or on the unit circle. 

The Bode integral constraint, in turn, provides a way of characterizing the optimal 

policy problem in the frequency domain.  Let ( )p ω = ( ) 2
S ω .  The optimal policy rule 

implicitly chooses the ( )p ω  that minimizes 2
tEx  subject to the constraint (13). Hence the 

optimal policy is determined by the   

 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
min ln

ln

NC

NC

Bodep x

Bode x

p f d K p d

K p f p d

π π

ω π π

π

π

ω ω ω λ ω ω

λ ω ω λ ω ω

− −

−

+ − =

+ −

∫ ∫

∫
 (14) 

  

The first order necessary condition for this problem implies that for each 

frequency ω  the optimal ( )*p ω fulfills 

 

 ( ) ( ) ( ) ( )*
*NC NCx x

f f p
p

λω ω ω λ
ω

= → =  (15) 

  

Eq. (15), in turn implies that the Fourier transform of the optimal feedback rule 

( )*F L− , ( )*F ω− , is implicitly defined by  

 

 ( ) ( ) ( )
( ) ( )

2 2
*

2*
NCx i

W
p f

e A bF
ν

ω

ω σ
ω ω λ

ω ω
= =

− +
 (16) 

 

which in turn implies that the optimal feedback rule is  
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 ( ) ( ) ( )( )* 1 1 1F L b L W L L A L− − −− = − −  (17) 

 

 The optimal policy rule has a simple interpretation.  Eq. (13) states the optimal 

policy rule shapes the function ( )*p ω  so that ( ) ( )*
NCx

f pω ω  is constant across 

frequencies.  Recalling that ( ) ( ) 2
p Sω ω=  and that ( ) ( ) ( )2

NCx x
f S fω ω ω= , this 

means that the optimal policy rule converts the initial process NC
tx  into a white noise 

process.  In other words, any predictability in the state is eliminated under an optimal 

policy.  This is precisely what one would expect from feedback rules of the form (3); 

predictability in the state is completely offset by the control. 

 Finally, we would note an intriguing implication of the Bode integral constraint 

for the analysis of policies in the presence of model uncertainty.  The value of the 

constant BodeK  is model-specific, as indicated by eq. (12).  Models with unstable poles 

will thus produce different constraints on policy design than those where such poles are 

not present.  This suggests a new avenue across which model uncertainty can affect 

optimal policy design as a policymaker will need to pay particular attention to the 

implications of a policy for those models where 0BodeK >  as such models imply that the 

cost of reducing variance at certain frequencies will be particularly high in the sense of 

creating especially large increases in variance at other frequencies.  

 

 

3. Applications  

 

 In this section we apply the basic ideas associated with optimal policy design in 

the presence of the Bode integral constraint to illustrate some of the insights that may be 

produced by this framework. 

 

 

i. tradeoffs between low and high frequency fluctuations 
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Suppose that a policymaker wishes to design a policy that works well when 

( )NCx
f ω  has the typical “Granger” spectral shape (Granger (1966), Sargent (1987)) so 

that ( )NCx
f ω  is decreasing in ω  with the possible exception of some local maxima and 

associated local increases around business cycle and seasonal frequencies.  This spectral 

density shape suggests that a policymaker might want to design a feedback rule that is 

designed to reduce the variance contributions of frequencies in some interval [ ],ω ω−  

that makes a relatively large contribution to the overall value of 2
tEx .  A strategy for 

doing this is to choose a feedback rule such that 

 

 ( ) [ ]1 ,S Mω ω ω ω≤ < ∀ ∈ −  (18) 

 

Following eq. (10), such a policy means that the variance contribution of the frequencies 

in the interval [ ],ω ω−  to 2
tEx  is 

 

 ( ) ( ) ( )2 2
NC NCx x

S f d M f d
ω ω ω ω

ω ω ω ω ω
≤ ≤

≤∫ ∫  (19) 

 

How will such a policy perform in light of the Bode integral constraint?  We 

focus on the case 0BodeK = .  The sort of strategy described by (18) provides good control 

with respect to those frequencies that contribute the most power to 2
tEx  under the 

assumption of the typical Granger spectral shape.  However, this property comes at a 

price in the sense that it trades off good performance at low frequencies for poor 

performance at high frequencies.   

 The magnitude of the potential cost may be given a lower bound. If 0BodeK = , 

then by the Bode integral formula, 

 

 ( )( ) ( ) ( )( )[ ],

10 ln 2 ln ln
2 BodeK S d M S d

π

π ω ω ω
ω ω ω ω ω

− ∉ −
= = ≤ +∫ ∫  (20) 
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which implies 
 

 [ ] ( )( ),sup 1S M
ω

π ω
ω ω ω ω

−
−

∉ − ≥ >  (21) 

  

Equation (21) illustrates the critical implication of the Bode integral constraint 

that  ( ) 1S ω >  is unavoidable for some frequencies and thus shows how the success of a 

policymaker in controlling variance due to high spectral power at one frequency band 

requires exacerbation of the variance contribution of another frequency band.  As a result, 

if we consider the variance contribution of frequencies outside the interval [ ],ω ω−  to 

2
tEx ,  

 

 ( )
[ ]

( )2

,
NCx

S f d
ω ω ω

ω ω ω
∉ −∫  (22) 

 
it is clear that this contribution can be quite large, especially if ( )NCx

f ω  has a local 

maximum in the set ω ω>  as might occur, for example, via the Christmas cycle stressed 

by Barsky and Miron (1989).  The implication of our analysis is that while policies of the 

form (18) would seem to be a natural implication of the assumption of the Granger 

spectral shape, such policies can prove to be ineffective (and even, at least in principle, 

counterproductive) if the implied costs of the policy in terms of increasing the variance 

contributions of frequencies [ ],ω ω ω∉ −  are such as to magnify local maxima in the 

spectral density of NC
tx    

 

 

ii. local robustness analysis 

 

 Within macroeconomics, one important new area of policy analysis has focused 

on the design of robust policies.  Following the seminal contributions of Hansen and 

Sargent (2001,2002,2003), this research addresses the question of how a policymaker can 
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design policies  that account for uncertainty about the model of the economy.  Important 

recent contributions include Giannoni (2002), Massamiliano and Salmon (2002), Onatski 

and Stock (2002) and Tetlow and von zur Muehlen (2001).  

 Brock and Durlauf (2003) provide an analysis of local robustness for the system 

we have described in Section 2.  We summarize their basic argument.  Suppose that there 

exists model uncertainty with respect to the temporal structure of the innovations, tξ .  

We do this by introducing uncertainty about the spectral density ( )fξ ω .  Specifically, 

relative to a baseline ( )fξ ω , the true spectral density lies in the set defined by  

 

 ( ) ( )( )2 2f f d
π

ξ ξπ
ω ω ω ε

−
− ≤∫  (23) 

 

Let ( )*fξ ω  denote (for the policymaker) the least favorable model in this set. 

When ε  is small, arguments in Brock and Durlauf (2003) show that the least 

favorable model can be determined by identifying the marginal effect of an increase in 

( )fξ ω  on (23) and allocating the changes in a such a way that the ratio of the changes is 

equal to the ratio of the marginal effects on 2
tEx .6  The marginal effect of a change in the 

value of ( )fξ ω  at a given frequency on 2
tEx , is ( ) ( ) 2* ip e Aωω ω− ; this follows 

immediately from the frequency definition of the variance and the envelope theorem.  

Combining this with eq. (16), which describes the policymaker’s feedback rule at the 

baseline spectral density, Brock and Durlauf (2003) show that the least favorable spectral 

density must fulfill 

 

 ( ) ( ) ( )
( )

( )
1

*
1

f
f f o

f
ξ

ξ ξ
ξ

ω
ω ω ε ε

ω

−

−
= + +  (24) 

 

                                                 
6 This is an indirect way of saying the ratio of the costs in changing ( )fξ ω  as embodied 
in (24) must equal the ratio of the benefits of the changes, and so is hardly a surprise from 
the perspective of basic price theory! 
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Eq. (24) means that the least favorable model with respect to the baseline has the property 

that the difference between the baseline and the least favorable model is smaller when the 

baseline spectral density is relatively larger; conversely, the differences between the 

baseline and the least favorable model are larger when the baseline spectral density is  

relatively small.  The intuition from this finding is driven by the logic of the optimal 

policy problem as affected by the Bode constraint.  Those frequencies against which the 

optimal policy provides the smallest downweighting are those where the marginal harm 

of additional power is greatest.  The example illustrates how the use of the Bode integral 

can facilitate calculations of robust versions of optimal policies. 

 

 

iii. policy design with uncertain policy effects 

 

While robustness analysis focuses on local model uncertainty, in the sense that the space 

of possible models represents a shroud around an initial baseline model, many forms of 

model uncertainty are clearly not local.  One example of this occurs in the context of 

policy analysis when the effects of the control are uncertain.  This type of problem is 

represented by Milton Friedman’s (Friedman (1948)) famous criticism of activist 

monetary rule on the grounds that the effects of monetary policy are subject to “long and 

variable lags.”  We can formalize Friedman’s idea in the context of a state equation of the 

form 

 

 ( ) ( )1 1t t t tx A L x B L u ξ− −= + +  (25) 

 

and analyzing control design when ( )A L  and ( )fξ ω  are known but ( )B L  is unknown.  

Following our earlier strategy, we will exploit the fact that ( )NCx
f ω  does not depend on 

( )B L .  Let Θ  denote the set of potential values of ( )B L  with respect to which the 

policymakers seeks to design a “good” control.  
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Suppose that ( )NCx
f ω  displays the typical Granger spectral shape.  Define a set of 

frequencies [ ],ω ω−  such that ( )f eξ ω ≤  for [ ],ω ω ω∉ −  where e is small positive 

number.  Suppose that a policymaker designs a control so that the associated sensitivity 

function ( )S ω  has the property 

 

 ( ) [ ] ( )1 ,  and  S B Lω ω ω ω< ∀ ∈ − ∀ ∈Θ  (26) 

 
Such a control implies 
 

 
( ) ( )

( ) ( )
[ ]

2
2

2

,

1
2

NC

NC

t x

x

Ex S f d

Mf d e S d

π

π

ω

ω ω ω ω

ω ω ω

ω ω ω ω
π

−

− ∉ −

= ≤

+

∫

∫ ∫
 (27) 

 
From the perspective of design limits, the question is how a policy which fulfills (26) 

performs relative to the last two terms in (27).  Under the assumption that the system is 

stable for all lag structures in Θ  (so that 0BodeK = ) and letting [ ] ( ),supS Sω π π ω∞ ∈ −= , 

the Bode integral constraint implies that  

 

 
( )( )

( )[ ]
( ) ( )

,

0 ln

ln ln 2 ln 2 2 ln

S d

Md S d M S

π

π
ω

ω ω ω ω

ω ω

ω ω ω π ω
−

∞ ∞− ∉ −

= ≤

+ = + −

∫
∫ ∫

 (28) 

 
which means 

 

 S M
ω

π ω
−

−
∞ ≥  (29) 

 

 This formula illustrates how the strategy described by (26) can expose the 

policymaker to a large sensitivity peak; the inequality in (29) represents a lower bound on 

the weight assigned to some frequencies given the control rule.  In parallel to our earlier 

arguments, from the perspective of designing good controls, the issue in minimizing 
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frequencies in the way described by (26) is the effect of the control on 

( )
[ ]

( )2

,
NCx

S f d
ω ω ω

ω ω ω
∉ −∫ . Eq. (29) places a lower bound on this term, i.e. 

 

 ( )
[ ]

( ) ( )
[ ]

2

, ,
NC NCx x

S f d M f d
ω

π ω
ω ω ω ω ω ω

ω ω ω ω ω
−

−
∉ − ∉ −

≥∫ ∫  (30) 

 
so, policy rules that account for the uncertainty in the effects of the control on the state in 

minimizing low frequency fluctuations can potentially involve serious problems at higher 

frequencies. 

 

 

iv. measurement error 

 

 The theory of design limits may also be applied to study how to design good 

controls in the presence of measurement error.  Problems of this type naturally arise in 

monetary policy contexts, for example, where measurement of relevant variables such as 

potential output or the natural rate of unemployment can be problematic; see Orphanides 

and Williams (2002) for a recent example. 

 To see how design limits apply to measurement error, suppose that the true state 

variable tx  obeys the process described by eq. (2) but that state is unobservable; the 

measured level of the state,  m
tx  is 

 

 m
t t tx x n= +  (31) 

 

where tn  is measurement error. Control equations can of course only be constructed as 

functions of observables so the control takes the form 

 

 ( ) m
t tu F L x= −  (32) 
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To understand how measurement error affects the choice of control rule, we 

assume that tξ  is zero.7 In this case, the variance of the state is 

 

 ( ) ( )
2

2 1t nEx S f d
π

π
ω ω ω

−
= −∫  (33) 

 
which indicates that the control should be chosen so that ( ) 1S ω −  is relatively small 

when ( )nf ω  is relatively large.  Notice that relative to the earlier formulas one is now 

concerned with the spectral density of the measurement error and not the true state.  Also, 

the weighting scheme is no longer ( ) 2
S ω  but ( ) 2

1S ω − . The difference in these 

weights reflects the fact that the policy rule wishes to damp out the effects of the 

measurement error in inducing volatility in tx  because of the feedback rule, not because 

of volatility that is intrinsic to NC
tx . 

 

 

v. non-time separable preferences 

 

 The frequency domain perspective on policy limits provides some interesting 

insights into the design of optimal policies in the presence of non-time separable 

preferences (NTS).  As argued in recent work such as Otrok (2001), Otrok, Ravikumar, 

and Whiteman (2002), the standard time separable preferences used in macroeconomics 

may fail to properly account for the fact that economic actors are sensitive to the 

frequency of shocks. Accounting for this may have important macroeconomic 

implications. For example, Otrok, Ravikumar, and Whiteman (2002) show how non-time 

separability can explain the equity premium puzzle.  We apply the analysis of Section 2 

to the design of policies in the presence of NTS preferences. We do this by contrasting a 

standard set of time separable preferences  

                                                 
7 One might object that if ( ) [ ]0 ,fξ ω ω π π= ∀ ∈ − , there is no control problem that needs 
to be addressed.  Our purpose in this assumption is to highlight an implication of 
measurement error, not to provide a realistic stabilization problem. 
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 ( ) 2

0

1 j
t j

j

xβ β
∞

+
=

− ∑  (34) 

 

with non-time separable preferences of the form 

 

 ( ) ( )2

1
0

1 j
t j t j

j

x xβ β δ
∞

+ + −
=

− −∑  (35) 

 
 These alternative preference structures illustrate that the difference between the 

payoffs under time separable and non-separable cases is determined by the difference 

between 2
tEx  and ( )2

1t tE x xδ −− .  From eq. (7), it is immediately the case that 

( )2
1t tE x xδ −− = ( )( )2

1 tE L xδ−  may be expressed as 

 

 

( )

( ) ( )

( ) ( )( )
( )

2
1

22

2

2

NC

t t

i
x

i

i

E x x

e S f d

e
f d

e A bF

π ω
π

ω
π

ξπ ω

δ

δ ω ω ω

δ
ω ω

ω ω

−

−

−

− =

− =

−

− −

∫

∫

 (36) 

 

where we have used the identities ( ) 22
1 i i ie e eω ω ωδ δ− −− = −  and 

2
1ie ω− = . It is 

straightforward to verify, using the analysis underlying (16) and (17) that 

( ) ( )1F L b A L−=  when 0δ = .  

To see how non-time separable preferences affect optimal policy, we consider the 

special case where ( ) 0A L a=  and ( ) 1
2

fξ ω
π

= ; we also normalize so that 1b =  .  For 

this case, the optimal feedback rule takes the form 

 

 ( )*
1 1t tu F xδ− −= −  (37) 
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where the coefficient ( )F δ  reflects the dependence of the feedback parameter on δ .  To 

understand this dependence, (25) implies that for each choice of the feedback parameter 

F  

 

 
( )

( )

( ) ( )

2

2
1 2

0

2

2
0 0

1 2 cos
1 2 cos

i

t t i

e
E x x d

e a F

d
a F a F

ω
π

π ω

π

π

δ
δ ω

δ ω δ ω
ω

− −

−

−
− = =

− −

− +
− − + −

∫

∫
 (38) 

 
Hence, the effects of habit persistence on optimal policy are determined by the behavior 

of 21 2 cosδ ω δ− + .  This function is monotonically decreasing in ω  if 0δ > .   

 In order to solve for ( )F δ , we proceed as follows.  The second integral in (38) 

may, using a formula in Gradshteyn and Ryzhik (2000, formula 2.554(2), pg. 169) be 

rewritten as 

 

 
( ) ( )

( )( )
( )

2

2
0 0

2
0
2

0

1 2 cos
1 2 cos

1 2

1

d
a F a F

a F

a F

π

π

δ ω δ ω
ω

π δ δ

−

− + =
− − + −

+ − −

− −

∫
 (39) 

 
Differentiation of (39) with respect to δ  produces a quadratic equation.  Setting this 

quadratic equal to 0 in order to minimize (39)  and choosing the relevant root leads to the 

formula 

 

 ( ) 0F aδ δ= −  (40) 

 
To understand the intuition behind this formula, consider a feedback rule ( )F L−  such 

that   
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 ( ) ( )A L bF L δ− =  (41) 

 
When tξ  is uncorrelated, this rule implies that all correlation in 1t tx xδ −−  has been 

eliminated by the feedback rule.  Following the analysis of (17), this means the rule is 

optimal.   

 

 

4. Multivariate systems 

  

 Our discussion thus far has focused on SISO models.  There is also a rich 

literature on multiple input multiple output (MIMO) systems that is of particular 

importance in contexts where the policymaker wishes to control several state variables, as 

occurs for a monetary authority who cares about output and inflation volatility.  The 

theory of design limit for MIMO systems is relatively less developed than for SISO 

systems; important contributions include Chen (1995) and Chen and Nett (1995).  We 

consider the case where there are two states and one control. 

 We consider a system for two state variables 1,tx  and 2,tx . The equations for these 

states are  

 

 1, 11 1. 1 12 2, 1 1 1 1,t t t t tx a x a x b u ξ− − −= + + +  (42) 

 
and  
 

 2, 21 1. 1 22 2, 1 2 1 2,t t t t tx a x a x b u ξ− − −= + + +  (43) 

 

which in matrix form is  

 

 1 1t t t tx Ax bu ξ− −= + +  (44) 

 

Models of this type are common in the macroeconomics literature.  For example, 

Onatski and Stock (2001) consider a model of this type in which a policymaker attempts 
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to stabilize inflation and the output gap using a short run interest rate as the control. 

Onatski and Stock restrict their analysis to evaluate policies that lie in a set of Taylor 

rules.  In our context, this would mean that policies are taken from the set T defined by 

 

 1 1, 2 2,{  such that }t t t t tT u u g x g x g x′= = + =  (45) 

 
Our objective is to derive some comparisons with the SISO case we have already 

discussed. To do this, one first considers the matrix generalization of the sensitivity 

function.  The 2 2×  sensitivity matrix ( )S ω  is defined as 

 

 ( ) ( )( )( ) 11iS I I e I A bgωω
−−

′= + + −  (46) 

 
where I  is the identity matrix.   

We have been unable to uncover an explicit formula for the Bode integral 

constraint for multivariate discrete time systems that represents a direct generalization of 

(13), although there are a number of results available that consider design limits in such 

systems (cf. Chen and Nett (1993,1995) and Chen (1995)). We conjecture that the 

multivariate analog of the sensitivity formula is  

 

 ( )( )( ) ( )2
ln det 4 ln

iBode u
i

K S d p
π

π
ω ω π

−
= = ∑∫  (47) 

 
 In this case, the terms 

iup  represent unstable roots of the matrix A  in eq. (44) . Letting 

( )S z  denote the z-transform that corresponds to the sensitivity matrix defined by (46) 

 

 ( ) ( )
( )

det i

i

z p
S z

z z
Π −

=
Π −

 (48) 
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While we are in the process of attempting to develop a proof of (47), we emphasize that 

we have not done so.8  At the same time, the arguments we make below can be readily 

modified if we turn out to be incorrect in this conjecture and so we proceed on the basis 

that (47) holds in order to illustrate the design limits ideas. 

 In order to see how (47) constrains the design of policy, we employ the 

relationship 

 

 ( )( ) ( )( )( )
2 22

1 1
ln det ln k

k k
S d S d

π π

π π
ω ω σ ω ω

− −
= =

=∑ ∑∫ ∫  (49) 

 

where, for a fixed ω , ( )( )k Sσ ω  denotes the singular values of ( )S ω .9  Let the norm 

S
∞

 be defined as the largest singular value of ( )S ω  where ω  is allowed to vary 

between π−  and π .  In analogy to (18), one can consider the effects of policies that 

impose 

 

 [ ],S M ω ω ω
∞

≤ ∀ ∈ −  (50) 

 

This expression is more complicated than (18) because we are now working with a 

sensitivity matrix function.  If one combines (47) and (50),  

 

 ( )( )( ) [ ] ( )( )( )
2

2,
1

0 ln 2 ln supBode k
k

K S d S
π π

ω π ππ π
σ ω ω σ ω∈ −− −

=

≤ = ≤∑∫ ∫  (51) 

 

which implies 

 

                                                 
8 The continuous time analog to (48) is readily available in the control literature, cf. 
Skogestad and Postlethwaite (1996, eq. 6.3, pg. 215). 
9 The singular value of a complex valued 2 2×  matrix S  are the square roots of the 
eigenvalues of the matrix HSS  where HS  is the complex transpose of S , cf. Skogestad 
and Postlethwaite (1996, pg. 503).  The singular values are ordered so that for each ω , 

( )( ) ( )( )1 2S Sσ ω σ ω≤ . 
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 ( )0 2 ln 2 2 lnM Sω π ω
∞

≤ + −  (52) 

 

since [ ] ( )( )2,supS Sω π π σ ω∈ −∞
= .  Therefore, it is the case that 

  

 S M
ω

π ω
−

−
∞

≥  (53) 

 

This bound indicates how the basic principles we have described for univariate 

systems apply to multivariate systems, namely, reduction of variance associated with low 

frequencies can produce high variance contributions from high frequencies. In principle, 

it should be possible to obtain tighter bounds on the effect of strategy (50) on the 

magnification of high frequency components using methods such as those developed in 

Zhou, Doyle, and Glover (1998, chapter 6); we leave this to future work. 

While the basic principles of design limits extend naturally from SISO to MIMO 

systems, there are interesting differences because design limits apply to frequency-

specific components of variance both within and across the state variables.  Put 

differently, in the SISO case, design limits always expose a policymaker to undesirable 

effects outside the range of frequencies which are targeted by the policymaker. In the 

MIMO case these undesirable effects themselves will embody tradeoffs with respect to 

the different state variables.  This issue is well exposited in Skogestad and Postlethwaite 

(1996, chapter 6).10 

 

 

                                                 
10There are also important technical differences between SISO and MIMO systems. First, 
in the SISO case, if the controlled system is stable, then ( )( )ln S ω  is harmonic outside 

the unit disk, whereas in MIMO systems, even if ( )S ω  is analytic, ( )( )ln S ω  is not 

harmonic in general where, for the case of matrix ( )S ω , ( )S ω  denotes the largest 

singular value of ( )S ω  at ω  (Hara and Sung (1989, pg. 890)).  Second, both the 
locations of unstable poles and zeros as well as their directions affect the constraints in 
MIMO systems (Hara and Sung (1989, pg. 890)).  Similar differences are discussed in 
Chen (1995) and Chen and Nett (1993, 1995). 
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5. Summary and conclusions 

 

This paper has attempted to outline some basic issues that arise in the design of 

optimal policies in dynamic economic systems.  Borrowing ideas from the control 

engineering literature, it is possible to precisely delineate the limitations that a 

policymaker faces in designing feedback policies.  These limits, which are summarized 

by a remarkable formula known as the Bode integral constraint, illustrate how any 

feedback policy is forced to make tradeoffs among the frequency-specific components of 

the state variables that a policymaker wishes to stabilize.   We have suggested how these 

tools can elucidate policy design issues that arise in the presence of local and global 

model uncertainty as well as in the face of measurement error.  These applications 

represent only a hint of the potential of these methods for understanding policy design in 

macroeconomics and other areas of economics.  
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