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1 Introduction

In real business cycle models that emphasize the role of embodied technolog-

ical change, technological booms are driven by increases in the mean level of

productivity of investment projects. In this paper, we investigate the macroe-

conomic consequences of changes in the variance of productivity of investment

projects. In recent papers, Campbell, Lettau, Malkiel and Xu (2001) and

Goyal and Santa-Clara (2003) demonstrate that the idiosyncratic component

of stock returns, a measure of uncertainty in the return on investment, is sub-

ject to large and highly persistent shifts over time. However, there has been

little study of the effects of such shifts on the aggregate economy. We find

that in the putty-clay model permanent shifts in the distribution of returns

have first-order effects on aggregate investment, hours, and productivity. The

dynamics resulting from such shifts differ sharply from those obtained with

putty-putty capital or from shocks to the mean level of technology.

In an environment where capital is vintage specific and hence irreversible,

increases in idiosyncratic uncertainty provide productivity benefits through

the optimal allocation of variable factors such as labor across project outcomes

that are embodied in fixed factors, such as capital. The size of the productivity

gains and the transition dynamics associated with such productivity gains

depend on the underlying production structure. If production is putty-putty,

as in the benchmark vintage capital model introduced by Solow (1960), an

increase in the variance of project returns has macroeconomic consequences

that are isomorphic to an increase in the mean level of project returns. The

productivity gains associated with the increase in variance occur quickly, and

the subsequent boom in output, hours, and investment is relatively short-lived.

With putty-clay capital the dynamic response to a change in the variance

of project outcomes differs significantly from that of a change to the mean

level of technology. An increase in the variance of project returns extends

the economic life of existing capital relative to new capital and produces a

substantial delay in the arrival of productivity gains. A permanent increase in

the variance of project returns generates a hump-shaped response of the growth

rate of labor productivity with the peak response occurring ten to fifteen years

later; in contrast, the peak response to a permanent increase in the level of
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technology occurs on impact. Overall, these results suggest a new mechanism

whereby variation in the second moment of project returns can have first-order

effects on aggregate quantities.

The Cobb-Douglas production technology has long been a popular choice

in macro-economic research owing to its analytical convenience and empirically

supported long-run balanced-growth properties. However, the malleability of

capital inherent to the Cobb-Douglas framework severely restricts the anal-

ysis of issues related to irreversible investment, including investment under

uncertainty, capacity utilization, and capital obsolescence and replacement.

In particular, a key assumption needed to achieve aggregation with Cobb-

Douglas technology and heterogeneous capital goods is that labor be equally

flexible in the short and the long run. This assumption implies that, absent

modifications such as costs of operating capital, all capital goods are used in

production and that the short-run elasticity of output with respect to labor

equals the long-run labor share of income.

Putty-clay technology, originally introduced by Johansen (1959), provides

an alternative description of production and capital accumulation that breaks

the tight restrictions on short-run production possibilities imposed by Cobb-

Douglas technology and provides a natural framework for examining issues

related to irreversible investment. With putty-clay capital, the ex ante pro-

duction technology allows substitution between capital and labor, but once

the capital good is installed, the technology is Leontief, with productivity de-

termined by the embodied level of vintage technology and the ex post fixed

choice of capital intensity.2 An impediment to the adoption of the putty-clay

framework has been the analytical difficulty associated with a model in which

one must keep track of all existing vintages of capital. While recent research

has made significant progress in incorporating aspects of putty- clay technol-

ogy while preserving analytical tractability, these efforts have not provided a

full treatment of issues related to irreversible investment and capacity utiliza-

tion; see, for example, Cooley, Hansen and Prescott (1995), and Atkeson and

Kehoe (1999).

In Gilchrist and Williams (2000), we develop a general equilibrium model

2Putty-clay capital was studied intensely during the 1960s, but received relatively little
attention again until the 1990s. See Gilchrist and Williams (2000) for further references.
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with putty-clay technology in which aggregate relationships are explicitly de-

rived from the microeconomic decisions of investment, capacity utilization,

and machine replacement. In that paper, we investigated the effects of shifts

in disembodied and embodied technology on the economy. This model has

already proven to be useful in a number of other applications (Gilchrist and

Williams (2001), Wei (2003)). In this paper, we extend this model to incor-

porate time variation in the variability of project returns. We then examine

the steady-state and dynamic relationships between uncertainty, productivity

and investment.

Our analysis contributes to the large theoretical literature that identi-

fies channels through which uncertainty may influence investment. Bernanke

(1983) and Pindyck (1991) stress the negative influence that uncertainty has

in a model where there exists an “option value” to waiting to invest. Because

the uncertainty considered in this paper is resolved only after investment de-

cisions are made, our work is more directly related to the work of Hartman

(1972) and Abel (1983). These authors emphasize the positive effect that in-

creased uncertainty may have on firm-level investment because expected profits

increase with uncertainty. In our framework, increased uncertainty raises ex-

pected profits but reduces the expected marginal return to capital, causing

a reduction in capital intensity at the microeconomic level. As a result, an

increase in idiosyncratic uncertainty reduces investment at the project level

but raises investment in the aggregate. The former result is broadly consistent

with the empirical evidence of a negative relationship between investment and

uncertainty at the firm level (Leahy and Whited 1996).

The remainder of this paper is divided as follows: Section 2 describes the

model and equilibrium conditions. Section 3 shows the equilibrium determi-

nation of utilization rates and provides closed-form expressions for aggregate

economic variables as functions of the equilibrium utilization rate. Section

4 considers the general-equilibrium implications of increased uncertainty on

investment, output and productivity. Section 5 concludes.
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2 The Model

In this section, we describe the putty-clay model and derive the equilibrium

conditions. The underlying ex ante production technology is assumed to be

Cobb-Douglas with constant returns to scale, but for capital goods in place,

production possibilities take the Leontief form: there is no ex post substi-

tutability of capital and labor at the microeconomic level. In addition to

aggregate technological change, we allow for the existence of idiosyncratic un-

certainty regarding the productivity of investment projects, the variance of

which may change over time. To characterize the equilibrium allocation, we

first discuss the optimization problem at the project level and then describe

aggregation from the project level to the aggregate allocation.3

2.1 The Investment Decision

Each period, a set of new investment “projects” becomes available. Constant

returns to scale implies an indeterminacy of scale at the level of projects, so

without loss of generality, we normalize all projects to employ one unit of

labor at full capacity. We refer to these projects as “machines.” Capital goods

require one period for initial installation and then are productive for 1 ≤
M ≤ ∞ periods. The productive efficiency of machine i initiated at time t is

affected by a random idiosyncratic productivity term. In addition, we assume

all machines, regardless of their relative efficiency, fail at an exogenously given

rate that varies with the age of the machine. In summary, capital goods are

heterogeneous and are characterized by three attributes: vintage (age and level

of aggregate embodied technology), capital intensity, and the realized value of

the idiosyncratic productivity term.

The productivity of each machine, initiated at time t, differs according to

the log-normally distributed random variable, θ(i)t, where

ln θ(i)t ∼ N(ln θt − 1

2
σ2
t , σ

2
t ).

The aggregate index θt measures the mean level of embodied technology of

vintage t investment goods, and σ2
t is the variance of the idiosyncratic shock

3This section extends the analysis in Gilchrist and Williams (2000) by incorporating
time-variation in the degree of idiosyncratic uncertainty.
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for capital goods installed of that vintage.4 The mean correction term −1
2
σ2
t

implies that E(θ(i)t|θt) = θt. We assume θt follows a nonstochastic trend

growth process with gross growth rate (1 + g)1−α.

The idiosyncratic shock to individual machines is not observed until after

the investment decisions are made. We also assume that after the revelation

of the idiosyncratic shock, further investments in existing machines are not

possible. Subject to the constraint that labor employed, L(i)t+j, is nonnegative

and less than or equal to unity (capacity), final goods output produced in

period t+ j by machine i of vintage t is

Y (i)t+j = θ(i)tk(i)
α
t L(i)t+j,

where k(i)t is the capital-labor ratio chosen at the time of installation. Denote

the labor productivity of a machine by

X(i)t ≡ θ(i)tk(i)
α
t .

The only variable cost to operating a machine is the wage rate, Wt. Idle

machines incur no variable costs and have the same capital costs as operat-

ing machines. Given the Leontief structure of production, these assumptions

imply a cutoff value for the minimum efficiency level of machines used in pro-

duction: those with productivity X(i)t ≥ Wt are run at capacity, while those

less productive are left idle. Owing to trend productivity growth and relatively

long-lived capital, the mean labor productivity of the most recent vintage is

substantially higher than that of all other existing machines. Obsolescence

through embodied technical change implies that older vintages have lower av-

erage utilization rates than newer vintages.

To derive the equilibrium allocation of labor, capital intensity, and in-

vestment, we begin by analyzing the investment and utilization decision for

a single machine. Define the time t discount rate for time t + j income by

R̃t,t+j ≡ ∏j
s=1R

−1
t+s, where Rt+s is the one period gross interest rate at time

4The assumption of log-normally distributed idiosyncratic productivity, as in Campbell
(1998), facilitates the analysis of aggregate relationships while preserving the putty-clay
characteristics of the microeconomic structure. In particular, there exists a well-defined
aggregate production function with a short-run elasticity of output with respect to labor
strictly less than that of the Cobb-Douglas alternative. This result is in contrast to that
of Houthakker (1953), who finds that a Leontief microeconomic structure aggregates to a
Cobb-Douglas production function if the distribution of idiosyncratic uncertainty is Pareto.
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t+s. At the machine level, capital intensity is chosen to maximize the present

discounted value of profits to the machine

max
k(i)t,{L(i)t+j}M

j=1

E
{
−k(i)t +

M∑
j=1

R̃t,t+j(1 − δj)(X(i)t −Wt+j)L(i)t+j

}
, (1)

s.t. X(i)t = θ(i)tk(i)
α
t ,

0 ≤ L(i)t+j ≤ 1, j = 1, . . . ,M,

0 < k(i)t <∞,

where δj is the probability a machine has failed exogenously by j periods and

expectations are taken over the time t idiosyncratic shock, θ(i)t.

Because investment projects are identical ex ante, the optimal choice of the

capital-labor ratio is equal across all machines in a vintage; that is, k(i)t =

kt,∀i. Denote the mean productivity of vintage t capital by Xt = θtk
α
t . Given

the log-normal distribution for θ(i)t, the expected labor requirement at time t

for a machine built in period s is given by

Pr(X(i)s > Wt|Wt, θt) = 1 − Φ(zst ),

where Φ (·) is the cumulative distribution function of the standard normal and

zst ≡
1

σs

(
lnWt − lnXs +

1

2
σ2
s

)
.

Letting F (X(i)s) denote the cumulative distribution function of X(i)s, we can

similarly compute expected output to be∫ ∞

Wt

X(i)sdF (X(i)s) = (1 − Φ(zst − σs))Xs,

where the expression on the right-hand side follows from the formula for the

expectation of a truncated log-normal random variable.5 Capacity utilization

of vintage s capital at time t—the ratio of actual output produced from the

capital of a given vintage to the level of output that could be produced when

capital is fully utilized—equals (1 − Φ(zst − σs)).

5If ln(µ) ∼ N(ζ, σ2), then E(µ|µ > χ) = (1−Φ(γ−σ))
(1−Φ(γ)) E(µ) where γ = (ln(χ) −

ζ)/σ (Johnson, Kotz and Balakrishnan 1994). This implies that
∫∞

χ
µdF (µ) = E(µ|µ >

χ) Pr(µ > χ) = (1−Φ(γ−σ))E(µ), where F () denotes the cumulative distribution function
of µ.
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Expected net income in period t from a vintage s machine, πst , conditional

on Wt, is given by

πst = (1 − δt−s)
(
(1 − Φ(zst − σs))Xs − (1 − Φ(zst ))Wt

)
.

Substituting this expression for net income into equation 1 eliminates the

future choices of labor from the investment problem. The remaining choice

variable is kt.

The choice of kt has a direct effect on profitability through its effect on the

expected value of output Xt.
6 The first-order condition for an interior solution

for kt is given by

kt = αEt
M∑
j=1

R̃t,t+j(1 − δj)
(
1 − Φ(ztt+j − σt)

)
Xt. (2)

New machines are put into place until the value of a new machine (the

present discounted value of net income) is equal to the cost of a machine, kt,

kt = Et
M∑
j=1

R̃t,t+j(1 − δj)
(
(1 − Φ(ztt+j − σt))Xt − (1 − Φ(ztt+j))Wt+j

)
. (3)

This is the free-entry or zero-profit condition. The first term on the right-

hand side of equation 3 equals the expected present discounted value of output

adjusted for the probability that the machine’s idiosyncratic productivity draw

is too low to profitably operate the machine in period t+ j. The second term

equals the expected present value of the wage bill, adjusted for the probability

of such a shutdown. Equations 2 and 3 jointly imply that, in equilibrium,

the expected present value of the wage bill equals (1 − α) times the expected

present value of revenue.

6For any given realization of θit, a higher choice of kt raises the probability that a machine
will be utilized in the future. This increase in utilization raises both expected future output
and expected future wage payments. Because the marginal machine earns zero quasi rents,
this effect has no marginal effect on profitability, however; that is,

∂πs
t

∂zs
t

=
1
σs

φ(zs
t − σs)Xs − 1

σs
φ(zs

t )Wt = 0,

where φ(·) denotes the probability density function for a standard normal random variable.
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2.2 Aggregation

Total labor employment, Lt, is equal to the sum of employment from all ex-

isting vintages of capital

Lt =
M∑
j=1

(1 − Φ(zt−jt ))(1 − δj)Qt−j, (4)

where Qt−j is the quantity of new machines started in period t− j. Aggregate

final output, Yt, is

Yt =
M∑
j=1

(1 − Φ(zt−jt − σt−j))(1 − δj)Qt−jXt−j. (5)

In the absence of government spending or other uses of output, aggregate

consumption, Ct, satisfies

Ct = Yt − ktQt, (6)

where ktQt is gross investment in new machines.

2.3 Preferences

To close the model, we posit that the representative household maximizes the

present value of household utility, where preferences are described by

1

1 − γ
Et

∞∑
t=0

βtNt

(
Ct(Nt − Lt)

ψ

Nt

)1−γ
, (7)

where β ∈ (0, 1), ψ > 0, γ−1 > 0 is the intertemporal elasticity of substitution,

and Nt = N0(1 + n)t is the size of the household, the growth rate of which

is assumed to be exogenous and constant.7 Households optimize over these

preferences subject to the standard intertemporal budget constraint. We as-

sume that claims on the profits streams of individual machines are traded; in

equilibrium, households own a diversified portfolio of all such claims.

The first-order condition with respect to consumption is given by

Uc,t = βEtRt,t+1Uc,t+1, (8)

7Note that we assume that per capita utility is weighted by the size of the household.
The following analysis would be nearly unchanged if instead we assumed that preferences
were not weighted by the size of the household.
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where Uc,t+s denotes the marginal utility of consumption. The first-order con-

dition with respect to leisure/work is given by

Uc,tWt + UL,t = 0, (9)

where UL,t denotes the marginal utility associated with an incremental increase

in work (decrease in leisure).

3 The Steady State

Our goal in this paper is to analyze the effect of changes in project uncertainty

on output, productivity, and capacity both in the long-run and along the tran-

sition path. To determine the long-run effect of an increase in uncertainty, we

first characterize the steady-state conditions of the economy and show how

the steady-state conditions depend on the level of idiosyncratic uncertainty.

In analyzing the effects of changes in uncertainty, we first consider the firm’s

employment and output decisions in partial equilibrium and then proceed to

consider the investment and capacity decisions in a general equilibrium anal-

ysis.

We begin with the case of no technological or population growth. This

case is analytically tractable and allows us to prove the uniqueness of the

steady-state equilibrium utilization rate and to derive closed-form solutions

for the steady-state values of all variables as functions of this utilization rate.

The case of positive growth is taken up in later in the section. For the positive

growth case, we provide a set of sufficient conditions for there to exist a unique

non-stochastic balanced growth path.

3.1 The Zero-Growth Economy

The zero-growth economy is obtained by setting g = n = 0. For further

simplicity, we assume M = ∞ and δj = 1 − (1 − δ)j−1 for some depreciation

rate δ > 0. Letting lower case letters denote steady-state per capita quantities

and suppressing time subscripts, we define z = (1/σ)[ln(w) − ln(θkα) + 1
2
σ2].

Equation 4 then implies that steady-state labor equals the steady-state capital

utilization rate times the total stock of machines, q/δ ,

l = (1 − Φ(z))(q/δ), (10)
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while equation 5 implies that steady-state output is equal to the steady-state

capacity utilization rate times potential output

y = (1 − Φ(z − σ))θkα(q/δ). (11)

For a given capital-labor ratio and stock of machines, labor and output are

increasing in the rate of utilization.

Equations 10 and 11 provide an implicit relationship between labor and

output that may be interpreted as the short-run production function for this

economy (holding k and q fixed). Taking the ratio of partial derivatives, ∂y
∂z
/ ∂l
∂z
,

we obtain an expression for the marginal product of labor (MPL),

MPL =
φ(z − σ)

φ(z)
θkα. (12)

Taking second derivatives, we obtain ∂MPL
∂l

= −σMPL, which implies strict

concavity of the short-run production function.

Combining equations 10 , 11, and 12, the elasticity of output with respect

to labor may be expressed as

∂ ln y

∂ ln l
=
h(z − σ)

h(z)
(13)

where h(x) ≡ φ(x)/(1−Φ(x)), the hazard rate for the standard normal. This

ratio plays a key role in determining the equilibrium rate of capital utilization.

Combining equations 2, 10, and 11 and solving for the capital-labor ratio

per machine yields

k =
(

α

r + δ
(1 − Φ(z − σ))θ

) 1
1−α

, (14)

where r = β−1 − 1 is the steady-state equilibrium real interest rate. Except

for the adjustment for capacity utilization (1−Φ(z− σ)), this is the standard

expression for the steady-state capital-labor ratio in a zero-growth economy.

The adjustment factor implies that the optimal capital-labor ratio for new

machines is increasing in the capacity utilization rate.

In equilibrium, the wage rate equals the marginal product of labor or,

equivalently, the efficiency level of the marginal machine. The first-order con-

dition for the labor-leisure decision, equation 9, and the aggregate resource

constraint, equation 6, yield
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w = ψ
c

1 − l
, (15)

and

c = y − kq. (16)

To close the model and solve for the equilibrium rate of capital utilization,

we first express the zero-profit condition as a monotonic function of z. In

steady state, per-period profits (net of capital expenditures) are given by

Π = (1 − Φ(z − σ))θkα − (1 − Φ(z))w − (r + δ)k, (17)

where (r + δ)k equals per-period capital expenditures. Using equation 14,

we may alternatively express per-period capital expenditures by α(1 − Φ(z −
σ))θkα. Net profits may then be written

Π = (1 − Φ(z))[(1 − α)
y

l
− w].

The free-entry condition requires that expected net profits equal zero, so

that, in equilibrium, labor’s share of output equals the wage bill: (1−α)y = wl,

just as in the neoclassical vintage model with Cobb-Douglas production. In

the vintage model, this equality is achieved by allocating more labor to high-

efficiency machines and less to low-efficiency machines so that the marginal

product of labor is equal across machines. Each factor (labor and capital) is

paid its share of output so that net profits are zero. In the putty-clay model,

marginal products are not equalized across individual machines. Instead, a

worker employed on a highly efficient machine is more productive than one

employed on a low efficiency machine. Free entry of new machines then deter-

mines the utilization rate consistent with zero equilibrium net profits.

To see the link between free entry and utilization, we use the equilibrium

condition that the wage rate equals the productivity of the marginal machine to

obtain ∂ ln y
∂ ln l

= wl
y

. Equation 13 combined with the free-entry condition then

determines the steady-state value of z and thereby the steady-state capital

utilization rate (1 − Φ(z)). We state this result in the following proposition

(proofs of all propositions appear in the appendix).
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Proposition 1 For the zero-growth economy, there exists a unique equilibrium

value of z that satisfies:

1 − α =
h(z − σ)

h(z)
, (18)

where h(x) = φ(x)/(1 − Φ(x)) is the hazard rate for the standard normal.

To complete the description of the model, we combine equations 11, 14,

15, and 16 and use the free entry condition to solve for steady-state labor

l =
(1 − α)

1 − α+ ψ(1 − αδ/(r + δ))
. (19)

Note that steady-state labor is independent of z and σ, the degree of idiosyn-

cratic uncertainty. As in the case of the standard Solow vintage model, a

mean-preserving spread to idiosyncratic productivity acts like an aggregate

disembodied productivity shock with respect to the labor allocation decision

and thus has no effect on steady-state labor. (The Solow vintage capital model

is described in the appendix.) Equilibrium values for all remaining aggregate

variables are then computed from z and l.

An implication of Proposition 1 is that the steady-state capacity utiliza-

tion rate is decreasing in σ.8 The degree of idiosyncratic uncertainty and the

resulting distribution of unused capacity determine the short-run response of

the economy to shocks. In the very short run, during which the distribution of

machines is fixed, an expansion of output is achieved through the utilization

of marginal machines, and the sensitivity of the marginal product of labor

to increases in output depends on the density of machines available on the

margin. Letting (1/w) denote the inverse of the real wage, we can obtain the

short-run elasticity of supply by taking logs and then, using the definition of

z, differentiating equation 11 with respect to w to obtain:

− ∂ ln y

∂ ln(1/w)
=
h(z − σ)

σ
.

The hazard rate h(z − σ) measures machine efficiency for machines in use,

relative to overall machine efficiency. Because the degree of idiosyncratic un-

certainty determines the equilibrium utilization rate, it also influences the

8See the proof of Proposition 4.
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slope of the aggregate supply curve. For a low level of σ, the equilibrium ca-

pacity utilization rate is high, implying that the marginal machine is in the

upper tail of the productivity distribution. In this region of the distribution,

machine quality falls off rapidly and marginal cost rises sharply as output ex-

pands. Thus, a low degree of idiosyncratic uncertainty implies a low elasticity

of supply and a steep supply curve.

Figure 1 plots the log of the inverse of the wage against the log of output

for the Solow vintage model and two choices of σ for the putty-clay model. In

each case, the stock of capital goods is held fixed at its steady-state level, and

each curve is computed by varying the amount of labor input. In log-terms,

the slope of the supply curve is equal to the inverse of the elasticity of supply.

In the Solow vintage model, the elasticity of supply is constant and equal to
1−α
α

, and therefore the supply curve is log-linear. In the putty-clay model, the

elasticity of supply, h(z−σ)
σ

, is decreasing in utilization, implying that the slope

of the supply curve increases as output increases. For any given σ, the slope of

the supply curve is increasing at an increasing rate as lower and lower quality

machines are brought on line.

At the steady-state equilibrium, the slope of the short-run aggregate supply

curve is negatively related to the degree of idiosyncratic uncertainty and is

always greater than the slope implied by the Solow vintage model. These

results are summarized in the following proposition.

Proposition 2 For the zero-growth putty-clay economy, the slope of the ag-

gregate supply curve holding capital fixed, ∂ ln(1/w)
∂ ln y

= σ
h(z−σ)

, is increasing and

convex in ln y. Evaluated at the steady-state equilibrium, the slope of the ag-

gregate supply curve is decreasing in the level of idiosyncratic uncertainty and

is bounded below by α
1−α .

Proposition 2 implies that the short-run response of the economy to shocks

to technology depends on σ, the degree of idiosyncratic uncertainty. For low

levels of σ, production is relatively inflexible in the short-run and marginal

costs rise rapidly as output expands. Owing to such sharply rising marginal

costs, an increase in θ, the mean level of technology, leads to only a modest

increase in output, hours, and investment in the short-run. Over time, as more

investment occurs, capacity expands and the economy can increase output
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Figure 1: Aggregate Supply Curve
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the real wage and output for the putty-clay model with σ = 0.4. The dashed
line shows the same for the economy with σ = 0.2. The dotted line shows this
relationship for the Solow vintage model. These calculations are based on the
steady-state values of k, q, and θ.

at lower cost. Transition dynamics are more prolonged for low σ economies

than high σ economies. As documented in Gilchrist and Williams (2000), for

sufficiently low levels of σ, the model is capable of generating hump-shaped

output dynamics in response to persistent shocks to technology.9

3.2 The Balanced Growth Economy

Generalizing the results obtained above for the case of positive growth is com-

plicated by the fact that the economy can no longer be summarized by a single

vintage of capital and associated hazard rate, but instead depends on a set of

hazard rates that vary across vintages of capital. Nonetheless, we are able to

obtain conditions under which a unique balanced growth path exists. We also

obtain similar results regarding how the shape of the short-run supply curve

9Campbell and Fisher (2000) provide an alternative analysis of the relationship between
idiosyncratic uncertainty and aggregate dynamics.
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depends on σ, the degree of idiosyncratic uncertainty.

Along the balanced growth path, per capita output, consumption, and

investment grow at rate g, and labor and labor capacity grow at rate n. We

use lower case letters to indicate steady-state values of variables, normalized by

appropriate time trends, and k̃ to indicate the normalized steady-state capital-

labor ratio. We define the growth-adjusted discount rate β̃ ≡ β(1 + g)−γ.

Let z denote the difference between the average efficiency of the leading edge

technology and the current wage rate in steady state, z ≡ (lnw−ln x+ 1
2
σ2)/σ,

and let z(i) denote the difference between the average efficiency of vintage i

and the current wage rate z(i) ≡ z + (i/σ) ln(1 + g).

On the balanced growth path, the normalized levels of output, consump-

tion, labor, and the wage rate are given by

y = qx
M∑
j=1

((1 + g)(1 + n))−j(1 − δj)
(
1 − Φ(z(j) − σ)

)
, (20)

c = y − k̃q, (21)

l = q
M∑
j=1

(1 + n)−j(1 − δj)
(
1 − Φ(z(j))

)
. (22)

w =
(1 + g)−jxφ(z(j) − σ)

φ(z(j))
, j = 1, . . . ,M. (23)

Note that y/q, c/q, l/q, and w depend only on the values of k̃ (directly and

indirectly through x = k̃α) and z. The first-order condition for k̃ and the

zero-profit condition yield two equations in z and k̃

k̃ = α
M∑
j=1

β̃j(1 − δj)
{(

1 − Φ(z(j) − σ)
)
x
}
, (24)

k̃ =
M∑
j=1

β̃j(1 − δj)
{(

1 − Φ(z(j) − σ)
)
x− (1 + g)j

(
1 − Φ(z(j))

)
w
}
.(25)

By combining these last three equations, we obtain the balanced growth equi-

librium condition for z.

As in the zero-growth economy, an equilibrium value of z is determined

by setting utilization rates so that a weighted average of vintage labor shares

equals 1−α. In the case of positive growth, however, these weights are not fixed

constants as in the zero-growth case, but instead depend on z. As a result, with
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positive growth one cannot rule out a priori the existence of multiple steady-

state values of z without additional assumptions, as stated in the following

proposition.

Proposition 3 Let

v(z(j)) =
β̃j(1 − δj)(1 − Φ(z(j) − σ))∑M
i=1 β̃

i(1 − δi)(1 − Φ(z(i) − σ))
, (26)

define a set of weights such that
∑M
j=1 v(z(j)) = 1, then there exists at least

one steady-state value of z that satisfies

(1 − α) =
M∑
j=1

v(z(j))
h(z(j) − σ)

h(z(j))
. (27)

A sufficient condition for uniqueness of the equilibrium is that the sum
∑M
j=1 β̃

j(1−
δj)(1 − Φ(z(j) − σ)) be log-concave in z.

Note that the possibility of multiple balanced growth equilibria exists only

in the case of nonzero trend technological growth. This potential for multi-

ple steady states distinguishes this model from its putty-putty counterpart.

Nonetheless, numerical analysis of the model suggests that multiple equilibria

occur only in “unusual” regions of the parameter space, for example, when the

trend growth rate of technology is extremely large and the value of α lies in

a limited range. Further discussion of these issues appears in the appendix.

In the following analysis, the parameterized version of the model possesses a

unique steady state.

4 Reallocation Benefits, Investment, and Un-

certainty

In this section, we consider the general equilibrium effects of a permanent in-

crease in uncertainty. We first analyze the effect of an increase in σ on the

long-run properties of the model. We then characterize the transition dynam-

ics as the economy moves from a less flexible, low idiosyncratic uncertainty

economy to a more flexible, high idiosyncratic uncertainty economy. This ex-

ercise is of interest for theoretical reasons – in our model, a mean preserving
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spread to project outcomes has first-order effects on both transition dynamics

and steady-state levels. It is also of interest for empirical reasons – recent

evidence shows that the idiosyncratic variance associated with the return to

capital at the firm level has doubled over the postwar period and explains

a large fraction of the total volatility of stock market returns (Campbell et

al. 2001).

4.1 The steady-state effect of an increase in uncertainty

We start by considering the effect of an increase in σ on the steady-state

of the putty-clay model. To obtain analytical results we focus on the zero-

growth economy. As in the Solow vintage model, an increase in idiosyncratic

uncertainty increases productivity by allowing labor to be reallocated from

low productivity to high productivity projects. In the putty-clay model, this

reallocation is limited by the Leontief nature of production however.10 A

complete characterization of the effect of an increase in σ on the steady-state

equilibrium is summarized in the following proposition.

Proposition 4 For the zero-growth economy, dz
dσ
> 1, the steady-state capital-

labor ratio per machine, k, and capacity utilization are strictly decreasing in

σ. Output, consumption, total investment, and the wage rate are increasing in

σ, with elasticity d ln y
d lnσ

= σh(z). By comparison, in the Solow model, d ln y
d lnσ

=
1
α
> σh(z).

The long-run elasticity of output with respect to σ in the Solow model can be

deduced directly from equation 29 by computing the equivalent variation in

θ implied by variation in σ, and noting that the long-run elasticity of output

with respect to θ is unity.

In the case of strictly positive growth, we still obtain the result that dz
dσ
> 1

and dk
dσ

< 0. With growth, changes in σ influence the effective depreciation

rate. As a result, labor is not independent of σ and the aggregate effects are

10In the Solow vintage model, project-level capital expenditures are irreversibly tied to a
specific realization of idiosyncratic productivity θ(i)t but labor can be costlessly reallocated
across projects after the realization occurs. A mean-preserving spread causes a reallocation
of labor from low productivity to high productivity machines, equalizing the marginal prod-
uct of labor across machines. This reallocation increases productivity in proportion to σ
and raises the return to capital, causing investment and output to increase.
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difficult to characterize analytically. Numerical calculations indicate that the

results in proposition 4 generalize to the case of positive growth for relevant

values of σ.

Proposition 4 implies that an increase in idiosyncratic uncertainty reduces

investment at the project level but increases aggregate investment. Project

managers pay k and in effect buy an option to produce in the future. The

option is exercised (production occurs) if the ex post realization of revenues

exceeds wage costs.11 Ceteris paribus, an increase in uncertainty raises the

value of the option and increases expected profits. Although expected profits

per machine increase with σ, the partial equilibrium effect (holding wages

fixed) on k is ambiguous and depends on the utilization rate.12 In general

equilibrium, higher profits induce new entry. New entry drives up the wage

rate, thereby reducing utilization and eroding profits. The increase in the wage

rate causes a reduction in k. The additional investment that occurs through

the extensive margin more than offsets the reduction in investment that occurs

through the intensive margin, and aggregate investment unambiguously rises

in response to an increase in idiosyncratic uncertainty.

The productivity gains associated with an increase in σ depend on the

extent to which the economy can reallocate labor from low productivity to high

productivity projects. The elasticity of output with respect to σ captures the

benefits from this reallocation of labor. In steady state, ln(X(it) = ln(θ(i)tk
α)

is normally distributed with variance σ2. The standard formula for a truncated

normal implies

d ln y

d ln σ
= σh(z) = E(ln(X(i)t)|X(i)t > W ) − E ln(X(i)t). (28)

11Pindyck (1988) also considers the option value associated with machine shutdown. In his
framework, holding constant the option value associated with waiting to invest, an increase
in uncertainty raises investment. This result contrasts with that described below.

12In the putty-clay model, the relationship between k and profits—given by equation 17—
combines both the standard concave relationship owing to diminishing returns to capital and
the effect of k on expected utilization rates. The expected marginal product of capital (i.e.
the derivative of gross profits with respect to k) is given by MPK = α(1 − Φ(z − σ))kα−1.
The derivative of the marginal product of capital with respect to σ, holding wages fixed,
equals ∂MPK

∂σ = φ(z − σ)αkα−1 z
σ . For z < 0, that is, at steady-state capital utilization

rates exceeding 50%, a mean-preserving spread reduces capacity utilization and the optimal
choice of k.
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Thus the size of the reallocation benefits depends on the difference between

the average efficiency of machines in use relative to the mean-efficiency of all

machines.13

This result has important implications for the transition dynamics de-

scribed below. A permanent increase in σ causes the real wage to rise. In

the initial periods following the rise in σ, the real wage reflects the existing

distribution of capital however and is low relative to the new steady-state.

Low real wages imply only limited reallocation benefits in the short-run. Over

time, as real wages rise, so do the reallocation benefits associated with the

increase in σ. Thus, relative to an increase in the mean-level of productivity,

increases in the variance of productivity are expected to have delayed effects

on output, hours and investment.

4.2 The Dynamic Effects of Increases in Uncertainty

We now consider the transition dynamics associated with an increase in id-

iosyncratic uncertainty. Using numerical simulations of the log-linearized

model, we examine the effect of a one-time permanent increase in idiosyn-

cratic uncertainty for the growth economy described above.

We calibrate our model to match standard long-run properties of the post-

war U.S. data, including average capacity utilization. We set α = 0.3, β =

0.98, δ = 0.08, γ = 1 and ψ = 3. In steady state, the capital utilization rate of

capital goods that are i periods old equals (1 − Φ(z + (i/σ) ln(1 + g))). From

this formula we see that the two key determinants of the vintage utilization

schedule are the long-run growth rate of embodied technology and the degree

of idiosyncratic uncertainty.

The primary effect of positive trend productivity growth on machine re-

placement is to shorten the useful life of capital goods. Owing to more rapid

growth in real wages, an increase in g speeds up the process of machine re-

placement, shifting the utilization schedule forward in time. The degree of

idiosyncratic uncertainty, on the other hand, mainly affects the shape of the

13For x ∼ N(µ, σx),

E(x|x > ω) = E(x) + σxh

(
µ − ω

σx

)

where h(z) = φ(z)/(1 − Φ(z)).
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Figure 2: Steady-State Capacity Utilization
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Notes: The figure plots the steady-state capacity utilization for a given vin-
tage rate as a function of the age of capital in the vintage for economies with
different parameterizations of σ.

utilization schedule. In the case of low idiosyncratic uncertainty, the depre-

ciation schedule is close to that of the “one-hoss shay” whereby machines of

any given vintage have essentially the same economic lifespan. For high σ,

the depreciation schedule resembles exponential decay.14 Figure 2 shows the

steady-state capital utilization rates for different values σ.15 In order to match

the 82 percent average capacity utilization rate of the manufacturing sector of

the U.S. economy over the period 1960-2000, we choose σ = 0.2.

Figures 3 and 4 compare the dynamic responses from an increase in σ to

that of an increase in the mean level of embodied technology, θ.16 In each

14The pattern of scrapping relates to the potential presence of “replacement echoes” of
the type studied by Boucekkine, Germain and Licandro (1997), where an initial investment
surge leads to recurring spikes in investment as successive vintages are retired. In the
context of our putty-clay model, pronounced replacement echoes occur only in the absence of
mechanisms that lead to the smoothing of capital goods replacement over time. Specifically,
necessary conditions for replacement echoes to exist in our putty-clay model are a low degree
of idiosyncratic uncertainty and a high intertemporal elasticity of consumption.

15For the examples shown in figure 2, we assume there is no “exogenous” capital depre-
ciation (δ = 0).

16Total factor productivity (TFP) is constructed using the standard Solow formula:
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Figure 3: Dynamic Responses of Hours, Output, and Productivity
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Notes: The left-hand panels show the impulse responses to an unanticipated
permanent one percent increase in the mean level of productivity, θ. The
right-hand panels show the impulse responses to a permanent increase in the
idiosyncratic variance of productivity, σ2. The scale of the increase in σ is
chosen so that the long-run increase in output is the same (one percent) as in
the shock to the mean level of productivity. All results are shown as percentage
point deviations from steady-state; time periods correspond to years.

case, we calibrate the size of the shock to produce a 1 percent increase in the

steady-state level of output. In the case of a shock to σ, this corresponds to an

increase in σ of about 0.04, which implies a 20 percent increase in the standard

deviation of returns. Such a 20 percent increase in volatility is conservative

relative to the range of low frequency movements in idiosyncratic volatility

documented by Campbell et al. We focus on a permanent increase in σ based

on the finding by Campbell et al. (2001) that the idiosyncratic component of

stock returns exhibits near unit root behavior.

∆ln TFPt = ∆ ln(Yt) − α∆ln(Kt) − (1 − α)∆ ln(Nt), where capital is measured using the
perpetual inventory method Kt = (1 − δ)Kt−1 + It.
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The dynamic response of the economy to an increase in the mean level of

technology embodied in capital is discussed in Gilchrist and Williams (2000).

An increase in θ represents a reduction in the cost, in terms of foregone con-

sumption, of new capital goods. Owing to the associated increase in investment

demand, investment spending, labor, and output all increase upon impact of

the shock. The economy continues to display high levels of investment (rel-

ative to output) and high levels of employment for a number of years after

the shock. Output rises, while the investment rate (I/K) and employment fall

monotonically along the transition path. Productivity growth – both labor

and total-factor productivity – is highest at the onset of the shock, when the

newer, more productive capital is small relative to the existing stock of old

capital. Consequently, the growth rates of both labor and total-factor produc-

tivity fall monotonically over time. In percentage terms, the productivity gains

associated with the new investment fall as the existing capital stock embodies

a larger fraction of new capital relative to old capital.

The transition dynamics associated with an increase in the idiosyncratic

variance differ dramatically from those associated with an increase in the mean

level of embodied technology. While the main transition dynamics of an in-

crease in θ occur in the first five years after the shock, an increase in σ produces

a transition dynamic whose peak effect occurs ten to fifteen years after the ini-

tial innovation. In the long run, an increase in variance raises output, labor

productivity, and real wages, and causes an increase in aggregate investment.

In the short run, an increase in σ has little effect on output, employment, or

investment. Over time, output and employment rise, with employment peak-

ing nearly ten years after the shock. The investment rate (I/K) peaks even

later. Although total-factor productivity growth is highest at the onset of the

shock, the growth rate of labor productivity rises for ten years. Overall, the

increase in the variance of idiosyncratic returns produces a medium-run boom

in labor hours, investment, and labor-productivity growth.17

An increase in the variance of project outcomes yields a substantial delay

17While Gilchrist and Williams (2000) document the fact that the putty-clay model with
low sigma produces a hump-shaped response of labor hours to permanent increases in the
mean level of embodied technology, neither the standard real business-cycle model nor the
putty-clay model produces a hump-shaped response of labor productivity growth to perma-
nent increases in either embodied or disembodied technology.
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Figure 4: Investment Dynamics
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in the investment response and productivity gains. This delay occurs for two

reasons. First, the productivity gains associated with an increase in variance

depend on the extent of reallocation. As discussed above, the extent of real-

location is tied to the real wage. Prior to the increase, the current real wage

reflects the existing capital stock whose distribution is determined by the ini-

tially low level of σ. At the onset of the shock, new investment is small relative

to existing capital, and the increase in variance has very little impact on the

real wage. Because wages are low relative to the new steady state, utilization

rates on new machines are relatively high, and there is very little reallocation of

labor within the new vintages. Over time, as the existing capital stock reflects

the higher level of σ, real wages rise and the economy experiences a higher rate

of machine shutdown and reallocation. Because reallocation benefits are slow

to arrive, there is little incentive to increase aggregate investment in the short

run. The pace of investment reflects the benefits to reallocation. As a result,
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the economy displays strong co-movement among the investment-output ratio,

labor hours, and labor productivity growth.

The second reason for the delay is that an increase in the variance of project

outcomes for new machines extends the effective life of existing capital and

slows down the rate at which new machines are introduced to the economy. An

increase in variance implies a lower level of capital intensity for new machines

relative to old machines. As figure 4 shows, capital intensity of new machines

falls immediately to near its new long-run steady-state value. The drop in

machine intensity is offset by a surge in investment at the extensive margin,

resulting in a relatively stable investment-to-output ratio. However, existing

machines are more capital intensive than is optimal relative to the new steady

state. The relatively high capital intensity of old machines implies a higher

mean efficiency level for old machines relative to new machines and a lower

probability of shutdown for existing capital than would have occurred with

no change in variance. As the scrappage rate of existing machines falls, the

economy has less incentive to invest in new machines in the short-run. Over

time, old machines are eventually scrapped, and investment picks up.

5 Conclusion

In this paper, we investigate the macroeconomic consequences of changes in

idiosyncratic uncertainty of project returns in a putty-clay model of capital

accumulation. The model that we develop provides a set of microeconomic

foundations for the analysis of investment under uncertainty, capacity utiliza-

tion, and machine retirement in a general equilibrium framework. Aggregation

over heterogeneous capital goods results in a well-defined aggregate production

function that preserves the putty-clay microeconomic structure. The aggregate

production function takes an intermediate form between that of Cobb-Douglas

and that of Leontief, depending on the degree of idiosyncratic uncertainty.

In this environment, an increase in idiosyncratic uncertainty reduces in-

vestment at the project level but raises aggregate labor productivity and in-

vestment. Relative to an increase in the mean level of technology, an increase

in idiosyncratic variance also has important implications for transition dynam-

ics. In the putty-clay model, an increase in variance results in a pronounced
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expansion in output, hours and investment, whose combined effect produces

a sustained increase in trend labor productivity growth over a ten-to-fifteen

year period.

The long-lasting expansion following an increase in variance is a result of

two opposing forces – a decrease in the desired capital-to-labor ratio at the

machine level and an increase in the desired number of machines in the aggre-

gate. Because existing machines have high capital-to-labor ratios relative to

new machines, the rate of economic depreciation on existing machines falls and

the overall rate of investment is diminished relative to an expansion triggered

by an increase in mean productivity. More generally, the putty-clay model

implies that expansionary forces that reduce desired capital-to-labor ratios at

the machine level have long lasting transition dynamics. In the putty-clay

model, the desired capital-to-labor ratio at the machine level is a decreasing

function of the rate of technological change. We therefore expect that tran-

sition dynamics to a new steady-state growth rate are much slower in the

putty-clay model relative to the more standard putty-putty alternative. By

the same logic, our results also suggest that permanent reductions in labor

income taxes imply substantially slower dynamic adjustment in the putty-clay

model. We leave a full exploration of these issues to future research.
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Appendix

Results regarding the hazard rate of the standard normal
distribution:

In the following, let h(x) denote the hazard rate for the standard normal

distribution, h(x) ≡ φ(x)/(1 − Φ(x)). From the definition of the hazard rate,

we know h(x) = E(y|y > x), y ∼ N(0, 1), which implies that h(x) > 0 and

h(x) > x, for all x.

Result 1: h(x) is monotonically increasing in x, with limx→−∞ h′(x) = 0 and

limx→+∞ h′(x) = 1.

Proof: Taking the derivative of h(x), we have h′(x) = h(x)(h(x) − x) > 0,

where the inequality follows directly from the definition of the hazard rate of

the standard normal. To establish the lower limit of h′(x), first note that

limx→−∞ h(x) = 0. Then, limx→−∞ h′(x) = − limx→−∞ xh(x) = − limx→−∞ xφ(x) =

0, where the final equality results from applying l’Hopital’s rule. To establish

the upper limit, note that application of l’Hopital’s rule yields limx→+∞ h′(x) =

limx→+∞ h(x)/x. Applying l’Hopital’s rule yields limx→+∞
h(x)
x

= limx→+∞(1+
1
x2 ) = 1, which establishes the result.

Result 2: h(x) is log-concave, that is, ln(h(x)) is strictly concave in x.18

Proof: To prove log-concavity, we need to show that ∂ ln(h(x))
∂x

= h′(x)
h(x)

is

decreasing in x, which is true if h′(x) < 1. Consider h′′(x)

h′′(x) = h(x)[(h(x) − x)2 + (h′ (x) − 1)]

which is strictly positive if h′(x) ≥ 1. Suppose h′(x∗) ≥ 1 for some x∗. Then,

h′(x) is increasing at x∗, implying h′(x) > 1 and h′′(x) > 0 for all x > x∗, a

result which contradicts limx→+∞ h′(x) = 1, established in Result 1. Alterna-

tively, it is straightforward to show that for the standard normal distribution

Var(y|y > x) = 1 − h′(x), which implies h′(x) < 1 for all x.

Result 3: h(x) is strictly convex in x.

Proof: Let g(x) = [(h(x) − x)2 + (h′ (x) − 1)]; then, h′′(x) > 0 iff g(x) >

0. Given the limiting results established above, it is straightforward to obtain

18Bagnoli and Bergstom (1989) provide some results on properties of log-concave distri-
bution functions, including a proof that the reliability function 1 − Φ(x) is log-concave. We
require, however, that the hazard rate itself be log-concave.
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limx→−∞ g(x) = ∞ and limz→+∞ g(x) = 0. Now, consider g′(x)

g′(x) = 2(h(x) − x)(h′(x) − 1) + h(x)g(x)

which is strictly negative if g(x) ≤ 0. Suppose g(x∗) ≤ 0 for some x∗, implying

that g′(x∗) < 0. This then implies that g(x) < 0 and g′(x) < 0 for all x > x∗,

a result which contradicts limx→+∞ g(x) = 0.

Result 4: For a given constant c > 0, h(x−c)
h(x)

is monotonically increasing in

x with limx→−∞
h(x−c)
h(x)

= 0 and limx→+∞
h(x−c)
h(x)

= 1.

Proof: To prove that h(x − c)/h(x) is monotonically increasing in x, we

compute

∂(h(x− c)/h(x))

∂x
=
h(x− c)

h(x)

{
h(x− c) − (x− c) − (h(x) − x)

}
.

which is positive if the term in brackets is positive. We therefore need to show

that h(y) − y > h(x) − x for y < x which is true if h′(x) < 1, that is, if h(x)

is log-concave, which is proven in Result 2 above. To show the lower limit,

we note that h(x−c)
h(x)

=
(
e(2xc−c2)/2

) (
1−Φ(x)

1−Φ(x−c)
)

and take limits. To establish the

upper limit, we use the mean value theorem to obtain h(x) = h(x−c)+ch′(x∗)

for x − c < x∗ < x. We then use x∗ < x and h′′(x) > 0 to obtain the bounds

1 > h(x−c)
h(x)

> 1 − h′(x)
h(x)

c. Result 1 implies limx→+∞
h′(x)
h(x)

= 0, which establishes

the result.

Result 5: For a given constant c > 0, c (h(x− c) − (x− c)) (h(x) − x) >

h(x− c) − h(x) + c.

Proof: Let

f(x) = c[ω(x− c)ω(x)] + [ω(x) − ω(x− c)],

where ω(x) = h(x) − x > 0. Taking limits we obtain limx→−∞ ω(x) = ∞,

limx→+∞ ω(x) = 0, implying limx→−∞ f(x) = ∞ and limx→+∞ f(x) = 0. Tak-

ing derivatives, we have ω′(x) = h′(x) − 1 < 0 and ω′′(x) = h′′(x) > 0. Since

ω(x) is decreasing and strictly convex in z, we have ω′(x) < ω′(x− c) and

f ′(x) = c[ω′(x− c)ω(x) + ω(x− c)ω′(x)] + [ω′(x) − ω′(x− c)] < 0.

Given that limx→−∞ f(x) = ∞ and limx→+∞ f(x) = 0, f ′(x) < 0 implies

f(x) > 0 for all x.
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Proof of proposition 1: Result 4 implies that for any given σ > 0, h(z −
σ)/h(z) is monotonically increasing with limz→−∞

h(z−σ)
h(z)

= 0 and limz→+∞
h(z−σ)
h(z)

=

1. Hence, there is a single value of z that satisfies equation 18.

Proof of proposition 2: Let η = ∂ ln y
∂ ln(1/w)

= h(z−σ)
σ

denote the elasticity

of supply. From Result 1, we know that h(z) is log-concave which implies

h(z−σ)−(z−σ) > h(z)−z and h′ (z − σ) < 1 . Using h′(z) = h(z)(h(z)−z),
and taking partial derivatives, we have: ∂η

∂ ln y
= −

(
h(z−σ)−(z−σ)

σ

)
< 0 and

∂2η

∂(ln y)2
= (h′(z−σ)−1)

σh(z−σ)
< 0 implying that the slope of the supply curve, η−1 , is

increasing and convex in ln(y). To show η−1 is decreasing in σ, we note

that in equilibrium η = (1−α)h(z)
σ

. Taking derivatives, we obtain

dη

dσ
= (

h′(z)
h(z)

dz

dσ
− 1

σ
)η

and totally differentiating equation 18 we obtain dz
dσ

= h(z−σ)−(z−σ)
h(z−σ)−h(z)+σ > 1 where

the inequality again follows from log-concavity of h(z) . Combining these

expressions we have

dη

dσ
=

[
(h(z − σ) − (z − σ)) (h(z) − z)

h(z − σ) − h(z) + σ
− 1

σ

]
η.

Result 5 relies on convexity of h(z) to show that the term in brackets is strictly

positive for any σ > 0 . This establishes that dη
dσ
> 0 , and the slope of the

supply curve is strictly decreasing in σ at the steady-state equilibrium. To

establish the lower bound for the slope of the supply curve, in equilibrium, we

note that h(z− σ) = (1−α)h(z) and h(z− σ)− (z− σ) > h(z)− z implies

αh(z) < σ and therefore η = (1−α)h(z)
σ

< 1−α
α

.

Proof of proposition 4: Equation 18 defines z as an implicit function of σ

with dz
dσ
> 1 following immediately from the increasing hazard property of the

standard normal distribution (see the proof of proposition 3). Differentiating

the capital-labor ratio k with respect to σ, and using equation 18 we obtain
d ln k
dσ

= −h(z)( dz
dσ

− 1) < 0. Because steady-state labor is independent of σ,

the flow of new machines is proportional to the inverse of the capital utiliza-

tion rate. Thus, an increase in σ leads to a fall in the steady-state capital

utilization rate proportional to the increase in the number of new machines:
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d ln q
dσ

= h(z) dz
dσ
> 0 . Combining d ln k

dσ
with d ln q

dσ
, we obtain the result that in-

vestment kq is increasing in σ: d ln(kq)
dσ

= h(z) > 0. Equations 11 and 14 imply

that output is linear in investment: y = 1−β(1−δ)
αβ

kq so that d ln y
dσ

= h(z) > 0.

Thus, output and investment rise by the identical h(z) percent in response to

a unit increase in σ, and the investment share of output is invariant to the

degree of idiosyncratic uncertainty. Finally the result that, at the equilibrium,

the selasiticity σh(z) < 1
α

is established in the proof of proposition 2.

The Economy with Growth

Proof of proposition 3: Let Ψ(z) ≡ ∑M
j=1 β̃

j(1−δj)(1−Φ(z(j)−σ))h(z(j)−σ)
h(z(j))

,

and Γ(z) ≡ ∑M
j=1 β̃

j(1−δj)(1−Φ(z(j)−σ)). Then Ψ(z)
Γ(z)

=
∑M
j=1 v(z(j))

h(z(j)−σ)
h(z(j))

and the balanced growth equilibrium condition may be written

(1 − α) =
Ψ(z)

Γ(z)
.

Following the proof of result 2, it is straightforward to show that limz→−∞
Ψ(z)
Γ(z)

=

0 and limz→+∞
Ψ(z)
Γ(z)

= 1. Thus, by continuity of Ψ(z)
Γ(z)

, there exists at least one

value of z that satisfies the equilibrium condition.

To prove that log-concavity of Γ(z) implies uniqueness of the equilibrium

we show that ∂2 ln Γ(z)
∂z2

< 0 implies Ψ(z)
Γ(z)

is monotonically increasing in z. Tak-

ing derivatives and using the facts that Ψ′(z) = σΨ(z) + Γ′(z) and Γ′(x) =

−∑M
i=1 β̃

j(1 − δj)φ(z(j) − σ), we obtain

∂Ψ(z)
Γ(z)

∂z
= σ

Ψ(z)

Γ(z)
+

(
1 − Ψ(z)

Γ(z)

)
∂ ln Γ(z)

∂z
.

Taking second derivatives we obtain

∂2 Ψ(z)
Γ(z)

∂z2
=

(
σ − Γ′(z)

Γ(z)

)
∂Ψ(z)

Γ(z)

∂z
+

(
1 − Ψ(z)

Γ(z)

)
∂2 ln Γ(z)

∂z2

If ∂2 ln Γ(z)
∂z2

< 0 then the second term in this expression is negative. Given

Γ′(x) < 0 we have
(
σ − Γ′(z)

Γ(z)

)
> 0, so that

∂
Ψ(z)
Γ(z)

∂z
< 0 implies that the first

term is also negative. Now suppose
∂

Ψ(z∗)
Γ(z∗)

∂z
< 0 for some z∗. Then we have

31



∂2 Ψ(z∗)
Γ(z∗)

∂z2
< 0, implying that 0 < Ψ(z∗)

Γ(z∗)
< 1 and Ψ(z)

Γ(z)
is strictly decreasing on

(z∗,∞) , a result that contradicts limz→+∞
Ψ(z)
Γ(z)

= 1.

Uniqueness of equilibrium depends on log-concavity of Γ(z). In the remain-

der of this section of the appendix, we provide some analysis of the conditions

needed to guarantee the log-concavity of Γ(z) ≡ ∑M
j=1 β̃

j(1− δj)(1−Φ(z(j)−
σ)). We also consider what set of parameter values may lead to multiple

equilibria.

To begin, consider the function Γ′′(z)Γ(z) − Γ′(z)2 which, if negative,

guarantees log-concavity of Γ(z) and hence uniqueness of the equilibrium. We

know that the reliability function (1 − Φ(x)) is log-concave and Γ(z) is the

weighted sum of such functions, which, while not sufficient to guarantee log-

concavity, suggests that it may be difficult to produce circumstances under

which it does not obtain. Let ωj = β̃j(1 − δj) and zj = z(j) − σ. After some

manipulation we obtain

Γ′′(z)Γ(z) − Γ′(z)2 =
M∑
j=1

M∑
k=1

ωjωkφ(zj)[(zj)(1 − Φ(zk) − φ(zk)]

=
M∑
j=1

M∑
k=1

ωjωkφ(zj)φ(zk)

(
zj

h(zk)
− 1

)

=
M∑
j=1

M∑
k=1

ωjωkφ(zj)φ(zk)

(
zk

h(zk)
− 1

)

+
M∑
j=1

M∑
k=1

ωjωkφ(zj)φ(zk)

(
zj − zk
h(zk)

)
.

The first term in this expression is clearly negative. The second term may

be positive if for some j, k we have large productivity differentials between

vintages j and k.

Because zj is linearly increasing in machine age, a large productivity differ-

ential is likely to occur when vintage j is substantially older and less produc-

tive than vintage k. In this case, however, the contribution of this term to the

sum is relatively small owing to discounting, both explicitly through the term

β̃j(1 − δj) and implicitly through a low value of φ(zj). Furthermore, for any

positive term (zj − zk)/h(zk) > 0 there is an equally weighted negative term

(zk − zj)/h(zj) < 0. This suggests that only under extreme parameterizations
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can we have large productivity differentials that yield positive values of any

magnitude for

ωjωkφ(zj)φ(zk)

(
(zj − zk)

h(zk)
+

(zk − zj)

h(zj)

)
,

the weighted sum of these components. In turn, these positive values must be

large enough to offset the negative sum in the first component of Γ′′(z)Γ(z)−
Γ′(z)2.

Note that log-concavity of Γ(z) is a sufficient, not necessary, condition for

a unique steady-state value of z. Indeed, it is not necessary that Ψ(z)/Γ(z) be

monotonically increasing, as long as it crosses (1 − α) only once. Numerical

experiments suggest that multiple equilibria only occur when both the trend

productivity growth rate is exorbitantly high, so that productivity differentials

across vintages are large, and when discounting through the real interest rate

and depreciation is very low. For example, we obtain multiple equilibria in

the model when σ = 0.1, δj = 0, j = 1, . . . ,M , γ = 0.1, g = 0.6 (60 percent

per annum), and β = 0.999. These parameter values imply that z2 − z1 >

5. Relatively small adjustments in parameter values result in the number of

equilibria collapsing to one. We have found no evidence of multiple equilibria

using more conventional parameterizations that would typically characterize

the capital accumulation process in a general equilibrium model calibrated

based on empirical moments of industrialized economies.

The Solow Vintage Model

By relaxing the restriction that ex post capital-labor ratios are fixed, the model

described above collapses to the putty-putty vintage capital model initially

introduced by Solow (1960), modified to allow for time-varying idiosyncratic

uncertainty. For the Solow vintage model, define the capital aggregator, Kt,

by

Kt ≡
M∑
j=1

(
θt−je

(1−α)σ2
t−j

2α

)1/α

(1 − δj)It−j, (29)

where It denotes gross aggregate capital investment in period t. The two terms

that multiply investment flows measure the level of embodied technology at

the time of installation of the capital good, θ, and the scale correction that
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results from aggregating across machines with differing levels of idiosyncratic

productivity, subject to the marginal product of labor being equal across all

machines. Aggregate production in period t is given by

Yt = Kα
t L

1−α
t . (30)

If we assume that δj = 1 − (1 − δ)j−1 and M = ∞, we obtain the following

capital accumulation equation:

Kt = (1 − δ)Kt−1 +
(
θt−1e

(1−α)σ2
t−1

2α

)1/α
It−1.

Note that in this economy with putty-putty capital, a mean-preserving spread

to idiosyncratic productivity is equivalent to an increase in embodied produc-

tivity at the aggregate level. Both of these factors enter the model through

the capital accumulation equation and are equivalent to a reduction in the

economic cost of new capital goods.
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