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ABSTRACT

Recent attempts to endogenize technology in climate policy models have produced mixed results.

Models including alternative technologies find large gains from induced technological change.

However, technological progress in these models comes through learning-by-doing, which ignores

the potential opportunity costs of technological change. Models using R&D spending as the driver

of technological change address this. However, since these models typically include only a single

representative energy technology, substitution across technologies is not possible. This paper

addresses these shortcomings by including policy-induced energy R&D in a model with a backstop

energy technology. I show that, while induced technological change is important, larger welfare

gains come from simply adding an alternative technology to the model. As in models with a single

technology, opportunity costs of research limit the role induced innovation can play. Moreover,

since the backstop technology improves welfare even without climate policy, accurate policy

analysis depends on a carefully constructed baseline simulation.
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Much debate over climate change policy revolves around the potential costs of such 

policies.  Many economists argue that policy prescriptions such as those proposed by the Kyoto 

Protocol do too much, too quickly.  Advocates of more stringent policies often point to the 

potential of new technologies to reduce the costs of complying with such stringent regulations.  

As much research has shown, environmental policies can be expected to induce technological 

change that makes reducing emissions less costly.1  Nonetheless, until recently, most climate 

policy models did not explicitly link policy to technological improvements. 

Recent attempts to endogenize technological change in climate models have produced 

varying results.  In general, models predicting strong impacts of induced technological change 

(ITC) include several alternative technologies, and model technological improvements through 

learning-by-doing.  Most models finding a limited role for ITC include only a single energy 

technology, and assume technological improvements result from increases in energy research 

and development (R&D) spending.   

Each modeling strategy has potential drawbacks.  While assuming that technology 

evolves via learning-by-doing may fit historical correlations between installed capacity and the 

cost of energy technologies, it treats such learning as a black box.  As a result, learning-by-doing 

models do not address the costs of acquiring new knowledge.  This is important because new 

energy R&D may crowd out other forms of R&D.  Since the social rates of return to R&D are 

high, such crowding out has important macroeconomic effects.  Models including energy R&D, 

such as Popp (2003) and Goulder and Schneider (1999), find that crowding out of other R&D 

limits the potential contributions of ITC. 

                                                           
1 See, for example, Lanjouw and Mody (1996), Jaffe and Palmer (1997), Newell, Jaffe, and Stavins (1999), and 
Popp (2002). 
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Alternatively, models that only include a representative energy technology allow for 

technology to increase energy efficiency, but do not offer the opportunity for new, carbon-free 

energy sources to develop.  Such technologies, which are assumed abundant, and thus available 

at constant marginal cost, are commonly referred to as backstop technologies.  Currently, the 

high costs of technologies such as wind and solar energy limit their potential contribution to 

energy consumption.  However, one would expect climate policies to induce research lowering 

these costs.  For example, Popp (2002) shows a dramatic increase in solar energy patents during 

the energy crisis of the 1970s.  Because these energy technologies allow production to continue 

without increased carbon emissions, research that lowers the costs of such technologies could 

substantially lower the cost of achieving carbon emissions reductions. 

To address these concerns, in this paper I introduce a model including both a backstop 

technology and ITC provided via research and development.  The paper extends the ENTICE 

model (Popp 2003) to include research on both energy efficiency and a carbon-free backstop 

technology.  I find that adding a backstop technology to the model does lower the costs of 

climate policies, and does increase the potential contribution of ITC.  As in Popp (2003), the 

opportunity costs of R&D limit the role that ITC can play.  In fact, the biggest gains come not 

from ITC, but from simply adding a backstop to the model.  That is, even without ITC, the 

presence of a backstop technology lowers the costs of reducing carbon emissions.  Moreover, 

some consumption of backstop energy technologies occurs even without climate policy.  When 

considering the gains from policy, one should only consider the marginal changes in usage of the 

backstop technology that result.  Thus, capturing a baseline scenario that accurately includes 

alternative energy sources is important. 
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I. Literature Review 

Despite the growing evidence that environmental policy influences the direction of 

technological change, few climate change models directly incorporate links between policy and 

technology.  Even fewer include a backstop technology.  Models that include innovation 

typically do so in one of two ways.  Bottom-up models include a detailed specification of energy 

systems, and usually include both traditional fossil fuels and alternative energy technologies.  

However, these models typically do not include detailed modeling of the overall macroeconomy, 

and typically model induced technological change in a learning-by-doing framework, in which 

the costs of various technologies decrease with experience.  Examples include Grübler and 

Messner (1998), Manne and Richels (2002), and Messner (1997).  Because these models 

endogenize technology through learning-by-doing, rather than purposeful R&D investment, they 

miss the potential opportunity costs that may result when energy R&D crowds out other 

inventive activity.  As Popp (2003) shows, ignoring potential crowding out significantly 

overstates the potential role of induced technological change. 

In comparison, top-down models focus on the links between environmental policy and 

macroeconomic performance.  Endogenous technological change in these models typically 

comes through accumulated investment in research and development (R&D).  Examples include 

Popp (2003), Buonanno et al. (2003), Nordhaus (2002), and Goulder and Schneider (1999).  In 

these models, potential crowding out between energy and other types of R&D limit the potential 

of induced technological change.2  The importance of crowding out is explored in Popp (2003).  

That paper includes three simulations with ITC: one with complete crowding out of other R&D, 

one with partial crowding out, and one with no crowding out.  In the base case, with partial 
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(50%) crowding out of other R&D from new energy R&D, ITC improves welfare by 9.4%.  This 

falls as low as 1.9% with full crowding out, and increases to as much as 45.3% without crowding 

out.3 

While these models present a more realistic view of the nature of R&D markets, they do 

not provide realistic alternatives of energy technologies.  Only Goulder and Schneider include 

non-fossil fuel alternative energy sources.  However, as Gerlagh and van der Zwaan (2003) note, 

Goulder and Schneider assume that fossil and non-fossil fuel energy sources are complements, 

rather than substitutes.  This limits the potential role that fuel-switching may play.  Recent work 

by Gerlagh and van der Zwaan addresses this shortcoming by including a backstop technology in 

a top-down modeling framework.  Van der Zwaan et al. (2002) introduces the DEMETER 

model, in which induced technological change affects the non-fossil fuel input via learning-by-

doing that lowers its costs.  This work, as well as Gerlagh and van der Zwaan (2003), finds 

greater potential for ITC than other top-down models. However, since technology improves via 

learning-by-doing, the potential opportunity costs of R&D are ignored.  Thus, it isn’t clear 

whether the gains they observe result from the addition of a backstop technology, or from the 

assumption of learning-by-doing.4  In comparison, this paper includes both a backstop 

technology and technological progress through R&D.  Thus, I am able to explore the role that 

crowding out may play in limiting the gains from ITC.  I find that, while adding alternative 

                                                                                                                                                                                           
2 The exception is Buonanno et al. (2003), which include a single stock of R&D that improves both total factor 
productivity and energy efficiency.  Not surprisingly, this complementary (although unrealistic) relationship 
between energy R&D and other R&D leads to large welfare gains from induced technological change. 
3 Macro level data from the U.S. support the notion of partial crowding out.  For example, a regression of non-
energy R&D on energy R&D provides the following results: 
(standard errors in parenthesis): 

non-energy R&D = -9320.351478 –0.41energy R&D + 19.82GDP + ε 
        (4762.59)     (1.09)                        (0.73) 
4 A recent working paper by Gerlagh and Lise (2003) modifies the DEMETER model to include both learning-by-
doing and R&D spending.  However, that model only includes the energy sector, and thus does not allow for 
potential macroeconomic feedbacks of climate policy. 
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technologies to the model is important, crowding out effects still limit the potential gains from 

ITC. 

 

II. The Model 

This paper extends the ENTICE model of climate change policy (Popp 2003) by adding a 

backstop technology.  Below I present key equations in the revised ENTICE model, referred to 

as ENTICE-BR to note the inclusion of backstop R&D. Appendix A includes a complete list of 

all equations in the model.   

ENTICE is a modified version of the DICE model (Nordhaus 1994, Nordhaus and Boyer 

2000) that includes endogenous links between climate policy and energy innovation.  Like 

DICE, ENTICE is a dynamic growth model of the global economy that includes links between 

economic activity, carbon emissions, and the climate. It includes fossil fuels as an input to 

production, as in the more detailed RICE model (Nordhaus and Yang 1996, Nordhaus and Boyer 

2000).  However, ENTICE retains the global framework of the DICE model, rather than dividing 

the world into separate regions.  Given the limited empirical information available on 

international diffusion of environmental technologies, calibrating a regional model is left for 

future research.   

In both the DICE and ENTICE models, the goal of the model is to maximize per capita 

utility, equation (1), subject to the economic constraints below [equations (2)-(11)].5 

(1)  t

T

t
ttt RLcUV ∑

=

=
0

],[max  

                                                           
5 Environmental equations remain unchanged from the DICE model, and are not presented here.  They are included 
in an appendix available from the author. 
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In this equation, Ut represents utility at time t, ct is per capita consumption, Lt represents 

population, and is also the measure of labor inputs.  Rt is a discount factor to represent the rate of 

time preference.6 

The objective function, (1), is maximized subject to the following constraints.  First, 

production is defined.  Below, Qt represents output produced at time t.  Overall technological 

progress comes through changes in total factor productivity, At. Inputs include labor, Lt, the 

physical capital stock, Kt, and effective energy units, Et.  Effective energy units are a measure of 

the productive capabilities of three possible energy inputs: fossil fuels, Ft, a carbon-free backstop 

technology, Bt, and knowledge pertaining to energy efficiency, HE,t.  pF.t and pB,t represent the 

cost of fossil fuels and the backstop fuel, respectively. Note that both prices vary over time.  The 

cost of these fuels are subtracted from total output in the ENTICE-BR model:7 

(2)  ttBttFttttt BpFpELKAQ ,,
1 −−= −− ββγγ  

Labor is determined by exogenous population growth.  The capital stock, Kt, equals the 

sum of current investment, It, and the previous capital stock, adjusted for depreciation, δ: 

(3)  Kt = It + (1-δ)Kt-1. 

 

                                                           
6 As many economists have recently noted, discount rates that seem appropriate for single-generation projects may 
be inappropriate for long term projects that span several generations.  Although there is no consensus on how to deal 
with this problem, a constantly declining discount factor is consistent with suggestions that a lower discount rate 
should be used for the distant future.  Thus, following Nordhaus, the pure rate of social time preference, R, declines 

over time to capture uncertainty over future conditions, and is given by [ ]
10

0
01)( ∏

=

−+=
t

v

tgreRtR , where gR is a 

parameter defining the growth of R over time.  Portney and Weyant (1999) provide a good review of the current 
debate on discounting for long-term environmental projects. 
7 Energy consumption, represented by fossil fuel usage, F, is measured in tons of carbon.  The price of fossil fuels is 
thus the price per ton of carbon.  Backstop energy units are converted to represent the equivalence of one ton of 
carbon-based energy. 
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A. The Energy Sector 

Effective energy units, Et, uses a nested constant elasticity of substitution (CES) 

framework to aggregate the contributions of fossil fuels, the backstop energy source, and 

knowledge pertaining to energy efficiency.  Popp (2003) uses a similar framework in the 

ENTICE model without backstop energy.  The second nest, between fossil fuels and the backstop 

technology, is introduced in van der Zwaan et al. (2002).  One advantage of using this functional 

form is that it provides a more realistic evolution of the backstop technology over time.  By 

modeling the backstop and fossil fuels are imperfect substitutes, it allows for the possibility of 

“niche markets” for the backstop technology even when the price of the backstop exceeds fossil 

fuel prices.  In each nest, the ease of substitution is represented by ρi.  The case of perfect 

substitution is ρi = 1. The elasticity of substitution is 1/(1–ρi). Given this, effective energy units 

are modeled as: 

(4)  
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Equation (4) states that the total energy requirements for production must be met either 

by the use of fossil fuel or by technological advances that substitute for fossil fuels.  Note that 

technology enters equation (4) in one of two ways. HE,t represents technological advances that 

replace fuels in production, and can thus be thought of as improvements to energy efficiency.  

This stock of knowledge responds endogenously to changes in policy, through an invention 

possibilities frontier that is described below.  αH is a scaling factor that determines the level of 

energy savings resulting from new knowledge.   Technology also enters exogenously through Φt, 

which represents exogenous changes in the ratio of carbon emissions per unit of carbon services.  
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Φt decreases over time as defined below, where gt
z is the (negative) growth rate of Φt per decade, 

and δz is the rate of decline of this growth rate.   

(5)  ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Φ t

g z
z

z
t

t δ
δ

exp1exp  

The parameters defining Φt are first calibrated to match the emissions path of the DICE model in 

a model without R&D. αΦ represents the percentage of this exogenous technological change that 

remains once R&D is added to the ENTICE model.   

This remaining technological change is retained so that emissions in the baseline (no 

policy) simulation with R&D replicate the results of the DICE model without R&D.  The R&D 

modeled in ENTICE-BR captures purposeful short-term efforts to improve energy efficiency or 

lower the costs of the backstop technology.  However, such R&D is not the only way in which 

carbon intensity falls over time.  Examples of other potential influences on carbon intensity 

include changes in consumption patterns and switching to less carbon intensive fuels (e.g. from 

coal to oil to natural gas) over time.  Because the DICE model and its variants are a one-sector 

macroeconomic growth model, such changes are not explicitly modeled.  Since Nordhaus 

calibrates exogenous technological change based on historical rates of decarbonization, it is 

impossible to separate out these effects from the effects of R&D in his rate of exogenous 

technological change.  As a result, long-run emissions simulated without any exogenous decline 

in carbon-intensity are unrealistically high.8 

Because differences in the costs of fossil fuels and the backstop technology will affect 

their relative usage, defining the costs of each is important.  Following Nordhaus and Boyer 

                                                           
8 Fortunately, sensitivity analysis suggests that the percentage of exogenous technological change remaining does 
not affect the net economic impact of induced technological change.  The intuition is that it is the level of R&D 
induced between an exogenous and endogenous R&D simulation that affects this difference.  Changing the scaling 
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(2000), the price of carbon is the sum of the marginal cost of carbon extraction, qF,t, and a 

markup that captures the difference between consumer prices and the marginal costs of 

extraction.  Nordhaus notes that this markup includes transportation costs, distribution costs, and 

current taxes.  For ENTICE, I use a weighted average of regional markups from RICE, weighting 

by each region’s share of total carbon consumption in the base year.  This value equals 163.29. 

(6) PF,t = qF,t + 163.29 

Following Nordhaus, the marginal cost function, qF,t, takes the following form: 

(7) 4
, *]/[700113 CumCCumCq ttF +=  

CumCt represents cumulative carbon extraction up to year t, and CumC* represents the 

maximum possible extraction.  In this equation, the marginal cost independent of exhaustion is 

$113 per ton.  Marginal costs increase as extraction increases. Note that the price equation is 

extremely convex – the carbon price equation is relatively elastic in the short run.9 

Backstop technologies are, by definition, technologies for which scarcity is not a concern.  

Thus, cumulative extraction does not affect the price of the backstop technology.  Rather, the 

price falls over time as technology advances.  Defining HB,t as the stock of knowledge pertaining 

to the backstop, and using η to represent the relationship between new knowledge and prices, the 

backstop price is: 

(8)    
η

tB

B
tB

H

P
p

,

0,
, =  

                                                                                                                                                                                           
factor only changes the level of emissions in each simulation, but not the difference between them.  This is discussed 
more thoroughly in the sensitivity analysis presented in Popp (2003). 
9 A more detailed discussion of the derivation of these parameters can be found in Nordhaus and Boyer (2000). 
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This specification is similar to that used in experience curves, (see for example, Ibenholt, 2002).  

In this specification, 1-2-η provides the cost reduction that occurs from a doubling of the 

knowledge stock.  This calculation is commonly referred to as the progress ratio. 

 

B. Modeling Technological Change 

Technological change enters the model through the two knowledge stocks defined above.  

Technological advances can improve energy efficiency (HE,t) or lower the costs of using the 

backstop technology (HB,t).  Similar to a physical capital stock, these knowledge stocks are 

created by the accumulation of previous research and development (R&D) in the manner 

described below. 

(9)  ( ) 1,,, 1)( −⋅−+= tiHtiti HRhH δ ,    i = E,B 

Equation (9) states that the stock of knowledge, HE,t, increases due to increases in R&D 

net depreciation of old knowledge.  The function h(Ri,t) is the innovation possibility frontier.  It 

models the process by which energy R&D, Ri,t, creates new knowledge.  The parameter δH 

allows for the possibility of knowledge decay over time.10 

To define the innovation possibility frontier, I begin with the assumption that there are 

diminishing returns to energy R&D over time.  The assumption implies that since energy R&D is 

specialized within a given field, it becomes more and more difficult to find new inventions as the 

knowledge frontier moves out.  Popp (2002) provides supporting evidence.  Thus, any functional 

form for the innovation possibility frontier must have the following properties.  First, the 

derivative of h with respect to R should be positive, but the second derivative should be negative, 

so that there are diminishing returns to research at any given time.  In addition, the derivative 

                                                           
10 Sensitivity to the decay rate is explored in Popp (2003).  As in the base model in that paper, I assume a zero decay 
rate here, as this best replicates the expected patterns of energy R&D and energy savings in the base model. 
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∂2H/∂R∂H should be negative, so that there are diminishing returns to research across time 

periods.  One functional form that satisfies these assumptions is a constant elasticity relationship 

between research and knowledge: 

(10)  h(Ri,t) =  aRbii,tHφii,t,    i = E,B 

A similar innovation possibilities frontier is often used in the endogenous growth literature.11  

Equation (10) satisfies the two assumptions regarding diminishing returns to R&D as long as 

both bi and φi are between 0 and 1. 

Because of the public goods nature of knowledge, the role of market failures in R&D 

must be considered.  Virtually all empirical studies of R&D find that the social returns to R&D 

are greater than the private returns to R&D.12  Since firms will invest until the private rates of 

return to R&D are equal to the rates of returns on other investments, underinvestment in R&D 

will occur.  To model the positive externalities that result from the creation of new knowledge, 

the return on R&D investment is constrained to be four times that of investment in physical 

capital.13  Omitting such market failures implicitly assumes that government policies, such as 

R&D subsidies, will sufficiently augment private R&D efforts to correct market failures.  Popp 

(2003) shows that such an assumption nearly doubles the potential gains from ITC. 

Finally, we need to account for the opportunity cost of R&D.  This is important because 

empirical work suggests that at least some energy R&D will replace other forms of R&D.  

Research activities are carried out by highly-trained scientists and engineers.  Since years of 

                                                           
11 See, for example, Jones (1995) and Porter and Stern (2000).  Romer’s (1990) original specification of the 
endogenous growth model is a special case of this where φ = 1.  By setting φ = 1, Romer generates increasing 
returns to knowledge over time.  While this may be appropriate for macro-level R&D, for more specific R&D in a 
given field, it is reasonable to assume that the returns fall over time as the pool of potential ideas in the field dries up 
(see, for example, Griliches (1989, p. 317)). 
12 There is a large body of empirical work that verifies the social returns to R&D are greater than the private returns.  
Examples include Griliches (1995), Hall (1995), Jaffe (1986), Mansfield (1977, 1996), and Pakes (1985). 
13 This is done by calculating the marginal products of physical capital investment and energy R&D, and 
constraining the latter to be four times higher than the former. 
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training are needed to enter the field, the supply of scientists and engineers available at any one 

time is inelastic – it cannot quickly increase when new research needs arise.  For example, 

Goolsbee (1998) finds that one of the chief beneficiaries of R&D tax subsidies are scientists and 

engineers, who receive larger wages when subsidies are increased.   

To proceed, note that all output is devoted to either consumption, investment in physical 

capital, or R&D: 

(11)  Qt = Ct + It + RE,t + RB,t 

However, this simple accounting ignores the potential effects of crowding out.  The opportunity 

cost of a dollar of energy R&D is that one less dollar is available for any of three possible 

activities: consumption, physical investment, or investment in other R&D.14  The opportunity 

costs of the first two are simply valued at one dollar.  However, since the social rate of return on 

R&D is four times higher that of other investment, losing a dollar of other R&D has the same 

effect as losing four dollars of other investment.  Thus, the cost of any research that crowds out 

other research is four dollars. 

To implement this, four dollars of private investment are subtracted from the physical 

capital stock for each dollar of R&D crowded out by energy R&D, so that the net capital stock 

is: 

(3’)  Kt = {It – 4*crowdout*(RE,t + RB,t)}+(1-δ)Kt-1, 

where crowdout represents the percentage of other R&D crowded out by energy R&D.  Based on 

footnote 3, in the base case I assume new energy R&D crowds out 50% of other R&D. 

                                                           
14 Here, I am referring to R&D designed to increase productivity in other sectors.  Accounting for the opportunity 
cost of this research is important, since it is not explicitly included in the model. 
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C. Calibration 

Calibration of the R&D sector of the ENTICE-BR model is based on results from the 

empirical literature on induced innovation.  This section focuses on calibration of the backstop 

technology and its associated R&D.  Details of calibration of energy efficiency R&D are 

discussed both in Popp (2003) and appendix B of this paper.   

To begin, initial values for backstop R&D and backstop energy consumption are needed.  

Based on data in Anderson (1997), the initial value of backstop energy research, is set to equal 

10 percent of energy efficiency R&D, or 1 billion dollars.15  Following van der Zwaan et al. 

(2002), who use results from Nakicenovic et al. (1998), 4 percent of all energy consumption in 

1995 comes from the backstop technology, for an initial value of 0.25 equivalent tons of carbon. 

To determine the initial price of the backstop technology, two issues arise.  First is that a 

wide range of possible prices exist.  For example, the cost of wind energy varies depending on 

local conditions.  In ideal conditions, the price of electricity from wind is nearing competitive 

levels.  Burtraw et al. (1999) report the cost of wind energy to be 44% higher than that of energy 

from fossil fuels.  This yields an initial price of $400 per carbon ton equivalent (CTE) of 

backstop energy.  Gerlagh and Lise (2003) report prices for alternative energy sources ranging 

from 2 to 5 times that of fossil fuels.  Using the upper range of this as a second alternative, I 

consider an initial price of $1200 as a second option. Second, because fossil-fuels and the 

backstop are imperfect substitutes, their relative prices determine the elasticity of substitution 

between energy sources.  Unfortunately, the resulting elasticity of substitution using the prices 

                                                           
15 The $10 billion figure for energy efficiency R&D is discussed in Popp (2003), and represents two percent of all 
R&D done in OECD countries in 1995.   
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mentioned above yield very high elasticities of substitution.16  Thus, I also consider a starting 

price of $2000 CTE.   This provides more reasonable elasticities of backstop energy R&D, as the 

resulting elasticity of substitution is similar to that for energy efficiency R&D.17 

Next, a value for η, which relates human capital to backstop price decreases, is chosen.  

Again, no good empirical estimates exist.  Results for two values, 0.4 and 1.0, are presented.  

These yield progress ratios of 24 and 50 percent respectively.  A 50 percent progress means that 

a doubling of the knowledge stock reduces the backstop price by 50 percent.  More importantly, 

under realistic base case R&D scenarios, the share of energy consumption resulting time paths 

for backstop energy R&D are comparable to other studies.  Such rapid progress is comparable to 

changes in patenting and prices during the past 20 years.  The 24 percent progress ratio yields 

slightly lower shares of backstop energy than comparable scenarios.  However, as shown in the 

results section, the marginal returns to R&D are more realistic.  Thus, a 24 percent progress ratio 

is used for the base case. 

Finally, the parameters of the inventions possibilities frontier are chosen as before.  Key 

goals of the calibration include: 

• Based on Popp (2002), the elasticity of energy R&D with respect to changes in energy 

prices is inelastic, with a target value of 0.35.  

• As noted earlier, there are diminishing returns to energy R&D.  Thus, the inducement 

effect of energy prices will fall over time. 

• Both the response of energy R&D to price changes and the energy savings resulting 

from these new technologies occur quickly.  Popp (2002) finds that mean lag for the 

                                                           
16 This is important because, as shown later, high elasticities of substitution result in unrealistically high levels of 
policy-induced R&D.  
17 Although high, keep in mind that, for the elasticity of substitution, what matters is the price of the last backstop 
energy unit consumed.  One would expect this to be higher than prices for technologies in ideal environments. 
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effect of energy prices on energy patenting is 3.7 years, and the median lag is 4.9.  In 

addition, the energy savings resulting from new patents occur quickly.  Popp (2001) 

finds that it takes just three years for a new energy patent to have its maximum effect 

on energy consumption.  Since the responses are fairly quick, and since each time 

period in the ENTICE model represents one decade, I assume that the full effects of 

price changes on energy R&D occur within each decade. 

To preserve these assumptions for energy efficiency R&D, the parameters a and b for 

energy efficiency R&D change slightly in simulations with and without a backstop technology, 

so that base case R&D is comparable in each.  Table 1 lists the parameter values used for each 

assumption regarding the initial backstop price and the progress ratio. 

 

III. Policy Simulations 

With the completed ENTICE-BR model in hand, I proceed to simulate the results of 

imposing a carbon emissions policy on the global economy.  There are two main questions to be 

explored: (1) what impact does adding a backstop technology (and its associated R&D) have on 

the model, and (2) does the role of induced technological change increase when a backstop is 

considered?  The results suggest that the role of ITC does increase somewhat when a backstop is 

considered, but the largest welfare gains come not from endogenizing technological change, but 

rather from simply adding the backstop in the first place. 

Results are considered for three possible scenarios, with three separate simulations 

contained with each scenario.  The three scenarios are: 

1) a business as usual (BAU) case that includes no policy constraints, 
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2) an optimal policy scenario in which the marginal costs of carbon abatement equal the 

marginal environmental benefits of reduced carbon emissions, and 

3) a more restrictive command-and-control policy in which emissions are restricted to 

1995 levels.18 

Within each policy scenario, I consider three separate simulations: 

1) ENTICE: this is the model from Popp (2003) that endogenizes energy R&D but does 

not include a backstop technology, 

2) ENTICE-B: a backstop technology is added, but with a constant price over time, and 

3) ENTICE-BR: a backstop technology is added, along with R&D that lowers the 

backstop price over time. 

Furthermore, for each of the two policy simulations, I re-run the ENTICE-BR model with R&D 

fixed at BAU levels.  Comparing this to the full ITC run provides the gains resulting from ITC 

under each of the two policies.  I calculate the net economic impact of a policy as the present 

value of consumption under the policy minus the present value of consumption in the base case, 

in which carbon emissions are uncontrolled. 

 

A. Business as Usual 

One goal of this paper is to ascertain the impact of adding a backstop technology to the 

ENTCIE model.  Thus, before examining the effect of the backstop technology under various 

policy scenarios, it is important to consider how the presence of a backstop technology alters the 

baseline simulation.  Two important considerations are the rate at which the backstop price falls 

                                                           
18 The more restrictive policy is included because most climate policies proposed in the policy arena aim for far 
greater restrictions than called for in an optimizing economic model. For example, the Kyoto Protocol requires 
industrialized country emissions to be reduced by 5 to 8 percent below 1990 levels.  Since the DICE model is global, 
capturing regional differences, such as the lack of restrictions on developing countries, is not possible.  Thus, I use a 
slightly higher global emissions constraint to allow for higher emissions from developing countries. 
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and the contribution that the backstop technology plays in energy markets.  Figures 1 and 2 

illustrate each, respectively.  For reference in the next section, values for the optimal policy 

simulation are also included in Figure 2.19 

Considering costs first, note that these fall from 4 to 8% by 2025, 8 to 20% by 2055, and 

14 to 30% by 2105.  With a low initial price, the backstop price falls below the price of fossil 

fuels by 2065.  To compare this to other projections, van der Zwaan et al. (2002) project cost 

decreases of 12% by 2025, and 40% by 2105.  Messner (1997) projects cost decreases ranging 

from 35% to 60% for solar thermal to 45% to 58% for wind between 1990 and 2050.  A study by 

the IEA (2002) predicts cost decreases of 30-40% for solar thermal and wind between 2000 and 

2030.  One reason why ENTICE-BR predicts slightly lower cost savings than these other studies 

is that it is the only one in which technological advances are explicitly modeled through R&D.  

As a result, it is the only model explicitly considering the opportunity costs of obtaining these 

advances. 

Comparing the contribution of the backstop technology to total energy consumption, we 

find that, even without policy, the backstop contributes between 5 and 13% in 2025, 6 to 29% in 

2055, and 8 to 64% in 2105.20  In comparison, van der Zwaan et al. (2002) predict a share of 

about 7% by 2025, 12% by 2055, and 30% by 2105.21  By 2050, Messner (1997) predicts shares 

of just 1% for solar and wind in a static model, and shares of 19% and 10% respectively under 

learning-by-doing.  The EIA International Energy Outlook (2003) projects that hydropower and 

other renewable resources will contribute 7.8% of energy consumption by 2025.  Thus, the short-

                                                           
19 Changes in price for the optimal policy scenario are not included, as they are very small (less than 1%). 
20 Although these ranges seem large, the big difference is between the low price scenario and the other two.  The 
share of the backstop technology rises quickly in the low price scenario because the backstop price falls below the 
fossil fuel price by 2065.  This scenario is likely overly optimistic about the potential contribution of a backstop 
technology, but is presented to illustrate the model’s sensitivity to a range of assumptions. 
21 These figures are approximate, as they are extrapolated from figures in van der Zwaan et al. (2002). 
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run projections of the ENTICE-BR model are similar to other studies, and the long-run 

projections are slightly more conservative. 

 

B. Optimal Policy 

Because the DICE model and its variants incorporate environmental damages into the 

model, it is possible to calculate an optimal carbon policy, in which the marginal costs of carbon 

abatement equal the marginal benefits of lower emissions.  Typically, simulations involving 

these models find that the optimal policy is to go slow.  Since carbon emissions remain in the 

atmosphere for several hundred years, the marginal damages resulting from any new emissions 

are modest.  Thus, gradually phasing in carbon reduction lowers the opportunity cost of reducing 

emissions without having much impact on the global climate.  As an example, Nordhaus and 

Boyer (2000) calculate an optimal carbon tax in 2005 of $9.13 per ton.  In comparison, 

restricting emissions to 1990 levels would require a carbon tax of $52.48. 

Table 2 and Figure 3 summarize the welfare gains for the optimal policy scenario.  Figure 

3 illustrates the welfare gain for each of the three backstop price assumptions.  Here, the 

comparison is between an optimal policy and BAU simulation with similar assumptions about 

the backstop technology.  The welfare gains for the medium and high price scenario are 

comparable.  Simply adding a backstop at a constant price enhances welfare by nearly 15%, and 

considering R&D that lowers the backstop price increases welfare by another 6-8%.  In both 

cases, simple factor substitution is most important, as the major gains come from a model 

without a backstop technology.  Gains are higher in the low price scenario, both with and without 

R&D, as the low initial price enables the backstop technology to become competitive even under 

a policy of moderate carbon taxes. Thus, the share of renewable energy increase more 

dramatically.  As a result, adding both a backstop and backstop R&D increases welfare by over 
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60%, although again the largest gains come from simply adding a backstop technology to the 

model.   

Table 2 provides more detail, and presents two separate welfare comparisons.  First, the 

number in each cell on the left provides the welfare gain compared to a BAU simulation with no 

backstop technology.  For example, with a medium backstop price, adding a backstop increases 

welfare by $4.87 billion compared to the BAU without a backstop, and adding a backstop with 

R&D increases welfare by $9.36 billion compared to the BAU without a backstop.  These 

numbers illustrate the important effects of simply adding a backstop to a model.  However, it is 

not right to say that the welfare gains from an optimal policy are $11.67 trillion when backstop 

R&D is added, because the appropriate comparison is across scenarios with similar assumptions 

under the policy and in the BAU scenario.  Thus, reading across, one obtains the gain from an 

optimal policy under each of the three simulations, as presented in Figure 3.  This is calculated as 

the difference between welfare gains from the no backstop base in the BAU and optimal 

scenarios.  For example, with a medium backstop price, welfare increases by $1.88 trillion with 

no backstop, by $2.15 trillion with a constant price backstop, and by $2.31 trillion with a 

backstop and backstop R&D.  The fifth column shows that simply adding a backstop increases 

welfare by 14.2%, and adding backstop R&D increases welfare an additional 8.6%   

Finally, to show the gains from induced R&D, Table 2 also presents results for a policy 

simulation that holds both energy R&D and the backstop R&D at BAU levels.  Comparing the 

welfare gains here to the gains with endogenous R&D shows that induced innovation improves 

welfare by 6.8% in the medium backstop price case.  This is lower than the 9.4% increase found 

in Popp (2003) in a model without a backstop.  Note that, in each case, the welfare gains from an 

optimal policy in an exogenous R&D model are nearly identical to the welfare gains for a model 
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with a backstop technology without R&D.  When ignoring the additional R&D induced by 

climate policy, the gains from innovation are offset by the opportunity costs of R&D. Moreover, 

the relative prices between the backstop and fossil fuels help determine the value of policy-

induced R&D. Although the gain from ITC is similar for the medium and high price case, it is 

twice as high in the low price case.  

To help evaluate the R&D parameter assumptions, Table 3 presents the value of an 

additional $1 billion of energy R&D and backstop energy R&D for each set of assumptions 

under an optimal policy regime.  For energy efficiency R&D, an additional billion dollars 

increases welfare by nearly $5 billion.  This nearly 5:1 ratio is consistent with the notion that the 

social returns to R&D should be significant, due to the public goods nature of research, and is 

similar to results in Popp (2003). For backstop R&D, only the returns for the high price 

assumption and 24% progress ratio are near same figure.  For all other sets of backstop R&D 

assumptions, the returns to backstop R&D are higher.  As a result, I focus on the high price 

assumption in detailed discussion of the results below.  In most cases, the pattern of results do 

not differ substantially across backstop price assumptions.  Those differences that do exist are 

discussed in the sensitivity analysis presented in section IV. 

Table 4 summarizes key variables for the base scenario.  The table shows results for the 

base ENTICE model, as well as for runs with a backstop technology and with backstop R&D.  

Simulations denoting exogenous R&D eliminate the effects of policy-induced R&D by 

constraining R&D in the policy scenarios to the levels of the BAU scenario. Turning first to 

R&D, note that the patterns for both energy R&D and backstop R&D are similar to the patterns 

found for energy R&D in Popp (2003).  Adding backstop R&D to the model results in a small 

decrease in other energy R&D.  However, this change occurs in both the BAU and policy 
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scenarios, so the elasticity of energy R&D across the scenarios remains similar.22 Based on the 

results of Popp (2002), the model is calibrated so that the elasticity of energy in the base 

ENTICE model equals 0.35 in 2005. Because diminishing returns to energy research reduce the 

inducement effect over time, the elasticity of energy R&D falls over time.23  Thus, diminishing 

returns to research have the effect of lowering energy R&D somewhat in the long-run.  For 

backstop energy R&D, the resulting elasticity is somewhat higher, although it too falls in the 

long-run due to diminishing returns.  

Turning to emissions, note that neither ITC nor the presence of a backstop technology has 

a significant impact on emissions reduction.  In fact, emissions are initially somewhat higher 

when a backstop is considered.  Figure 4 presents the emissions control rates over time for the 

first 100 years.  Control rates (and also carbon taxes) do increase slightly when a backstop is 

introduced.  However, they are higher when backstop R&D is exogenous, rather than 

endogenous.  The intuition here is that additional policy-induced R&D hastens the rate at which 

traditional fossil fuels become obsolete. As a result, consuming more fossil fuels in the short-run 

makes sense.   

Not surprisingly, the small effect on emissions results in small changes in the mean 

global temperature as well.  This is illustrated in Figure 5, which shows deviation from 1900 

global mean temperature levels over time for both the optimal policy scenarios and the restrictive 

emissions policy. The top group of lines shows temperature in the BAU scenarios.  The middle 

group shows temperature under an optimal climate policy, and the bottom line shows 

temperature under the restrictive emissions policy.  In either the BAU or the optimal policy, 

                                                           
22 The elasticities presented here are calculated for each year based on the difference in both energy R&D and 
carbon prices in simulations with and without policy. 
23 To account for the effect of economic growth, all elasticities are calculated using the ratio of energy R&D to 
output. 
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adding a backstop technology has almost no impact on atmospheric temperature. This suggests 

an important policy lesson: simply relying on alternative technologies is not sufficient to limit 

the increases in global temperature – restrictive policy measures will also be needed.  

 

C. Restricting Emissions to 1995 Levels 

Compared to the optimal policy scenario, adding a backstop to the ENTICE model is 

more important under more restrictive policy scenarios, such as restricting emissions to 1995 

levels.  Table 5 and Figure 6 present the welfare gains (or losses) for the three backstop price 

assumptions from the restrictive emissions policies.  As found in Popp (2003), without a 

backstop technology, the restrictive policy reduces welfare by $8.2 trillion.  Adding a backstop 

reduces this loss.  The change is small for the high price assumption, as welfare increases by just 

9.1%.  However, for the low price assumption, the more restrictive policy increases welfare by 

over 100%, so that the net economic impact is now positive, although less than $1 trillion. 

Adding backstop R&D is also important, although not as significant as adding the 

backstop technology itself.  Compared to a constant backstop price scenario, adding backstop 

R&D enhances welfare by an additional 10.7% to 27.3%.  Policy-induced R&D increases 

welfare from 4.7% to 22.6%.  These results are of particular interest, as they are opposite those 

found in the ENTICE model without a backstop technology.  There, the potential of induced 

innovation was smaller under a restrictive emissions policy, as the opportunity costs of the 

increased R&D were significant.  Here, the potential welfare gains from using the backstop 

technology more quickly appear to offset that somewhat, so that induced R&D is more important 

under the restrictive policy for both the low and medium price case. 

The increased importance of both the backstop technology itself, as well as backstop 

R&D, occurs under a restrictive emissions reduction policy because the level of carbon taxes 
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necessary to implement such a policy make the backstop competitive with fossil fuels sooner.  

Even in the high backstop price scenario, the backstop is competitive with fossil fuels by 2045.  

By allowing an option for emissions reduction that can maintain energy use, adding an 

alternative energy technology lowers the costs of complying with restrictive emissions 

reductions.  Thus, incorporating a backstop technology into climate change models is important, 

as most proposals considered by policy makers are considerably more restrictive than the optimal 

policy presented in the previous section. 

Furthermore, the potential of ITC increases in the restrictive policy case because of 

changes to the level of energy efficiency R&D.  Whereas most backstop energy R&D is new 

R&D in the optimal policy simulation, here some backstop energy R&D substitutes for energy 

efficiency R&D.  Thus, the opportunity costs of this additional energy efficiency research are 

avoided.  For example, compared to the restricted policy scenario with no backstop technology, 

energy efficiency R&D is 6% lower by 2055, and 8% lower by 2105.  By comparison, energy 

efficiency R&D for each of these years falls by just 1% when backstop R&D is added to the 

optimal policy scenario.   

Table 6 shows how other variables change when backstop energy R&D is considered.24  

By lowering the cost of alternative technologies, backstop R&D lowers the cost of compliance, 

and thus reduces carbon taxes.  This is more significant in the short run, where carbon taxes fall 

by nearly 10%. Unlike the optimal policy, emissions do not change after induced innovation is 

included in the model, since this is a command and control policy.  Thus, the changes in the 

carbon tax provide a guideline as to how much tax rates could potentially fall in the optimal 

scenario if the level of emissions did not change.   

                                                           
24 Once again, only results from the high backstop price case are shown. 
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IV. Sensitivity Analysis 

In developing a model such as the ENTICE model, several key assumptions must be 

made.  Popp (2003) explores the implications of several of these on the base ENTICE model.  

Here, I examine two assumptions unique to the ENTICE-BR model: the elasticity of substitution 

between fuels and the progress ratio.  Also, since Popp (2003) demonstrates the importance of 

market imperfections on the effects of R&D, I look at two key assumptions about R&D markets: 

deviation between private and social rates of return and potential crowding out of other R&D.  

Readers interested in a discussion of other parameters are referred to Popp (2003). 

 

A. Elasticity of Substitution Between Fuels 

As illustrated in section III, the initial backstop price has a large impact on the model 

results.  One reason, of course, is that lower prices mean that the backstop becomes competitive 

with fossil fuels more rapidly.  However, changing the initial backstop price has another 

important effect.  To be consistent with initial conditions, changes in the initial backstop price 

imply different rates for the elasticity of substitution between fuels.  This elasticity of 

substitution ranges from 1.6 in the high price scenario, to 2.2 in the medium scenario, to 8.7 in 

the low price scenario.   

This has important implications for the model.  In particular, higher elasticities of 

substitution induce more backstop R&D.  This is illustrated in Figure 7, which plots the elasticity 

of backstop R&D across time under each scenario.  Popp (2002) estimates an elasticity of energy 

R&D and energy prices of 0.35.  In each case, the elasticity begins above that level.  More 

importantly, it stays well above that level when the elasticity of substitution is high, suggesting 

that such a case does not accurately reflect R&D markets.   
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Another interesting variation under a high elasticity of substitution is that global 

temperature change is moderated significantly.  Figure 8 plots the global mean temperature for 

each optimal scenario, as well as for the BAU run in the low price scenario.  The figure also 

illustrates temperature under a restrictive emissions policy.  Note that, with a high elasticity of 

substitution, the temperature in both the BAU and optimal policy runs is lower than the 

restrictive policy.  Optimistic assumptions about backstop technologies not only imply that the 

costs of dealing with climate change are lower, but that climate change itself is less of a problem! 

 

B. Progress Ratio 

The other new parameter introduced in the ENTICE-BR model is the progress ratio 

between new knowledge and backstop prices. In the base case, this is nearly 24%.  Such a level 

produces realistic behavior for R&D, but is lower than suggested by historical data, and could 

result in the backstop technology having less impact than assumed in other studies.  However, 

changing the progress ratio does not have much impact on the model.  The welfare gains from 

backstop R&D are only two to six percent higher with a progress ratio of 50%.  A higher 

progress ratio does result in a greater share of backstop energy in the long run.  However, 

because of the cumulative nature of R&D, the short-run increase in backstop usage resulting 

from a higher progress ratio are minimal.  Because this benefit does not come until far into the 

future, and because backstop energy itself is a small part of the overall economy, increasing the 

progress ratio leads to little change in other variables.  The nature of energy R&D markets 

appears more important than the effect of new technology on backstop prices. 
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C. The Opportunity Cost of R&D 

By crowding out other types of R&D investments, policy-induced energy research may 

have negative impacts elsewhere in the economy. As demonstrated in Popp (2003), assumptions 

about the opportunity cost of R&D affect the magnitude of the role induced technological change 

can play.  Differences in this assumption help explain variation in results across models.  Models 

that ignore crowding out, such as Buonanno et al. (2003) are much more optimistic about the 

potential for ITC than models including crowding out.   

Moreover, models implementing technological change via learning-by-doing also ignore 

potential crowding out effects.  At the same time, most models using learning-by-doing are 

bottom-up models that feature several different technologies, such as Gerlagh and van der Zwaan 

(2002) and Manne and Richels (2003).  These models consistently find that technological change 

plays an important role.  For example, Gerlagh and van der Zwaan report that welfare improves 

by a factor of three when learning-by-doing is included, and Manne and Richels find that cost 

fall from 42-72 percent when learning-by-doing is considered.  While ignoring opportunity costs 

offers one explanation for such results, the presence of an alternative technology must also help. 

Thus, here I explore the effect of opportunity costs of R&D in a model with a backstop 

technology.   

Recall that the base model assumes 50% of energy R&D comes at the expense of other 

research opportunities.  To examine the importance of this assumption, I consider a low 

opportunity cost case with no crowding out, and a high opportunity cost case with complete 

crowding out.  In doing so, it is important to note that changing the opportunity cost of R&D 

changes the level of energy R&D.  However, the model is designed to be calibrated to actual 

values of energy R&D.  Thus, I present lower bound and upper bound values for the sensitivity 

to potential crowding out effects.  The upper bound scenario allows R&D to adjust as a result of 
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changes in the opportunity cost.  This, for example, could be thought of as the maximum gains 

possible from government policy that was able to alleviate potential crowding out effects.25  As a 

lower bound, I run the model changing the opportunity cost of R&D, but constrain energy R&D 

in each case to equal energy R&D in the corresponding base case scenario.  Here, for example, 

welfare gains in the low opportunity cost case should be interpreted as the gains from removing 

the assumption of partial crowding out.  They are not the gains that would result if the 

government intervened to remedy the problem of partial crowding out.  

As in the base ENTICE model, assumptions about potential crowding out have important 

effects.  Table 7 shows how the gains from ITC change as assumptions about the opportunity 

cost of R&D change.  With partial crowding out, ITC improves welfare by 6.0% under an 

optimal policy, compared to a model with exogenous technological change.  When crowding out 

is ignored, this increases to a range of 12.2 to 30.5%.  Similarly, assuming a high opportunity 

cost of R&D results in policy-induced R&D having almost no additional effect.  Nearly identical 

effects are found for the restrictive emissions policy.  These results are similar to those found in 

Popp (2003).  Even with alternative technologies available as emission reduction options, the 

opportunity cost of R&D remains an important limitation to the potential of ITC.  Models 

ignoring these potential costs, including those modeling technological change via learning-by-

doing, likely provide overly optimistic estimates of the potential of innovation to lower the costs 

of reducing carbon emissions. 

                                                           
25 In these simulations, energy R&D levels change in both the base case and in the policy scenarios.  The effect of 
policy that addressed opportunity costs only in conjunction with a climate policy will fall in between the upper and 
lower bounds. 
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D. R&D Subsidies 

The base model constrains the social rate of return on R&D to be four times greater than 

that of the return on other investment.  This assumption is consistent with the empirical finding 

that firms underinvest in research, as they are unable to capture the entire social returns.  

However, the problem of underinvestment could be addressed by subsidies to energy R&D, if 

government investments in R&D are set so that all social returns are captured.  Models that do 

not include market failures, such as Buonanno et al. (2003) implicitly assume that government 

R&D subsidies are sufficient to correct all market failures. 

Popp (2003) finds that R&D subsidies can have an important impact.  Table 8 

summarizes the results found there, as well as new results using ENTICE-BR.  Results are 

presented for the high backstop price case only.26  In the model without a backstop, energy 

efficiency R&D subsidies improve welfare by 6.7%.  With a constant price backstop, energy 

R&D subsidies increase welfare by 4.4%.  Finally, in the model with both energy efficiency and 

backstop energy R&D, backstop energy R&D subsidies have little effect, increasing welfare by 

only 0.9%.  Adding energy efficiency subsidies as well increases welfare by an additional 4.0%. 

Similar results are found in the restrictive policy case.    While R&D subsidies remain important, 

they are slightly less important than in the original ENTICE model.  A backstop technology 

provides an additional option for reducing carbon emissions, and thus provides more flexibility 

with or without R&D subsidies. 

Finally, to illustrate the importance of having a policy in place, the last row of Table 8 

presents results from a simulation including optimal R&D subsidies for both energy efficiency 
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and backstop energy R&D, but without a carbon tax in place.  Note that the welfare gains here 

are trivial.  As shown in section III, even in a model with induced technological change, factor 

substitution still plays an important role in reducing emissions.  R&D subsidies alone will not 

address the climate problem, as they do not offer incentives for factor substitution. 

 

V. Discussion 

These results suggest that estimates of the costs of complying with climate policies do 

fall when alternative technologies are considered.  This is particularly significant for policies 

placing a cap on emissions.  Thus, adding a backstop technology to climate models is important.  

Policy-induced innovation on this backstop technology is also important, but its potential is 

limited by the effects of crowding out of other productive R&D.  The welfare gains from simply 

adding a backstop technology to ENTICE are nearly double the gains from then endogenizing 

R&D on that technology. 

One important modeling lesson that can be derived from these results is the importance of 

getting the baseline right.  Although there are dramatic improvements to welfare when a 

backstop is added to the model, the appropriate comparison is between business as usual and 

policy in a model making the same assumptions about technology.  In models with optimistic 

assumptions about potential technological progress, climate change will be less of a problem 

even under business as usual.   

In addition, the results support the notion that the opportunity costs of R&D are 

important, even when alternative energy technologies are considered.  As in the base ENTICE 

model, removing the assumption of partial crowding out of energy R&D dramatically increases 

                                                                                                                                                                                           
26 Results for other assumptions are similar, with one exception.  Backstop energy R&D subsidies improve welfare 
by nearly 16% in the low backstop price scenario.  Since the technology is already competitive, the additional R&D 



ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models 30 

the potential of ITC.  Thus, models ignoring these opportunity costs, including models in which 

technology proceeds by learning-by-doing, overestimate the potential gains from technological 

innovation.  Given this important limitation, more research on both the magnitude of any 

crowding out that may occur, as well as policies that could help alleviate crowding out, would 

both be helpful. 

Finally, limitations of the ENTICE-BR model must be discussed.  First, by modeling the 

world as a single region, the ENTICE model simplifies policy dramatically.  Expanding these 

results to a regional model, based on Nordhaus’ RICE model, would be beneficial.  However, to 

do so would require research on how innovative effects vary by region, and how technology 

diffuses across regions.  In general, new innovations are developed in the industrialized world 

and diffuse slowly to developing countries.  For example, of the $500 billion spent on R&D in 

the 28 OECD countries in 1997, 85% occurred in just 7 countries (National Science Board, 

2000).   

Second, the ENTICE-BR model does not include uncertainty.  As markets for renewable 

energy are not yet well-developed, the potential role that renewable energy may play is still 

unclear.  As shown in both this and other papers, the range of possibilities is large.  Adding 

endogenous technological change to a model allowing for uncertain climate effects, such as 

Nordhaus and Popp (1997), would help provide guidance as to how policy should proceed in the 

face of this uncertainty. 

                                                                                                                                                                                           
has a larger impact on the share of backstop energy consumed. 



ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models 31 

References 

Anderson, D. (1997), Renewable Energy Technology and Policy for Development, Annual 
Review of Energy and the Environment, 22, 187-215. 

Buonanno, P., C. Carraro, and M. Galeotti (2003), Endogenous induced technical change and the 
costs of Kyoto, Resource and Energy Economics, 25, 11-34. 

Burtraw, D, J. Darmstadter, K. Palmer, and J. McVeigh (1999), Renewable energy: Winner, 
loser, or innocent victim? Resources, 135, 9-13. 

Energy Information Administration (2003), International Energy Outlook 2003, Washington, 
DC. 

Gerlagh, R. and W. Lise (2003), Induced technological change under carbon taxes, FEEM 
working paper #84.2003. 

Gerlagh, R. and B.C.C.v.d. Zwaan (2003), Gross world product and consumption in a global 
warming model with endogenous technological change, Resource and Energy Economics, 
25, 35-57. 

Goolsbee, A. (1998), Does government R&D policy mainly benefit scientists and engineers? 
American Economic Review, 88(2), 299-302. 

Goulder, L.H. and S.H. Schneider (1999), Induced technological change and the attractivenes of 
CO2 emissions abatement, Resource and Energy Economics, 21, 211-253. 

Griliches, Z. (1995), R&D and productivity: econometric results and measurement issues, in: P. 
Stoneman (Ed.), Handbook of the Economics of Innovation and Technological Change, 
Blackwell Publishers, Cambridge, MA, 52-89. 

Griliches, Z. (1989), Patents: recent trends and puzzles, Brookings Papers on Economic Activity: 
Microeconomics, 291-330. 

Grübler, A. and S. Messner (1998), Technological change and the timing of mitigation measures, 
Energy Economics, 20, 495-512. 

Hall, B. (1995), The private and social returns to research and development,” in B. Smith, C. 
Barfield (Eds.), Technology, R&D, and the Economy, Brookings Institute, Washington, 
D.C., 1995, 140-183. 

Ibenholt, K. (2002), Explaining learning curves for wind power, Energy Policy, 30, 1181-1189. 

International Energy Agency (2002), World Energy Outlook, OECD, Paris. 

Jaffe, A.B. (1986), Technological opportunity and spillover of R&D: evidence from firms’ 
patents, profits, and market value, American Economic Review, 76, 984-1001. 



ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models 32 

Jaffe, A.B. and K. Palmer (1997), Environmental regulation and innovation: a panel data study, 
Review of Economics and Statistics, 79, 610-619. 

Jones, C. (1995), R&D based models of economic growth, Journal of Political Economy, 103 
739-784. 

Lanjouw, J.O. and A. Mody (1996), Innovation and the international diffusion of 
environmentally responsive technology, Research Policy, 25, 549-571. 

Manne, A.S. and R.G. Richels (2002), The impact of learning-by-doing on the timing and costs 
of CO2 abatement, Working Paper 02-8, AEI-Brookings Joint Center for Regulatory 
Studies, Washington, DC. 

Mansfield, E. (1996) Microeconomic policy and technological change, in: J.C. Fuhrer, J. 
Sneddon Little (Eds.), Technology and Growth: Conference Proceedings, Federal Reserve 
Bank of Boston, 183-200. 

Mansfield, E. (1977) Social and private rates of return from industrial innovations, Quarterly 
Journal of Economics, 91, 221-240. 

Messner, S. (1997), Endogenized technological learning in an energy systems model, Journal of 
Evolutionary Economics, 7, 291-313. 

Nakicenovic, N.A., Grübler, A., and McDonald A. (1998), Global Energy Perspectives, IIASA-
WEC, Cambridge University Press, Cambridge, UK. 

National Science Board (2000), Science and Engineering Indicators – 2000, National Science 
Foundation, Arlington, VA (NSB-00-1). 

Newell, R.G., A.B. Jaffe, and R.N. Stavins (1999), The induced innovation hypothesis and 
energy-saving technological change, Quarterly Journal of Economics, 114, 941-975. 

Nordhaus, W.D. (2002) Modeling induced innovation in climate-change policy, in: A. Grübler, 
N. Nakicenovic, W.D. Nordhaus (Eds.), Technological Change and the Environment, 
Resources for the Future, Washington, DC, 182-209. 

Nordhaus, W.D. (1994), Managing the Global Commons: The Economics of the Greenhouse 
Effect, MIT Press, Cambridge, MA. 

Nordhaus, W.D. and J. Boyer (2000), Warming the World: Economic Models of Global 
Warming, MIT Press, Cambridge, MA. 

Nordhaus, W.D. and D. Popp (1997), What is the value of scientific knowledge? An application 
to global warming using the PRICE model, Energy Journal, 18, 1-45. 

Nordhaus, W.D. and Z.. Yang (1996) A regional dynamic general-equilibrium model of 
alternative climate change strategies, American Economic Review, 886, 741-765. 



ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models 33 

Pakes, A. (1985), On patents, R&D, and the stock market rate of return, Journal of Political 
Economy, 93, 390-409. 

Popp, D. (2003), ENTICE: Endogenous backstop technology in the DICE model of global 
warming, forthcoming in Journal of Environmental Economics and Management. 

Popp, D. (2002), Induced innovation and energy prices, American Economic Review, 92 (2002) 
160-180. 

Popp, D. (2001), The effect of new technology on energy consumption, Resource and Energy 
Economics, 23, 215-239. 

Porter, M.E. and S. Stern (2000), Measuring the ‘ideas’ production function: evidence from 
international patent output, Working Paper No. 7891, National Bureau of Economic 
Research, Cambridge, MA. 

Portney, P.R. and J.P. Weyant (Eds.) (1999), Discounting and Intergenerational Equity, 
Resources for the Future, Washington, D.C.. 

Romer, P.M. (1990) Endogenous technological change, Journal of Political Economy, 98, S71-
S102. 

van der Zwaan, B.C.C., R. Gerlagh, G. Klaassen, and L. Schrattenholzer (2002), Endogenous 
technological change in climate change modeling, Energy Economics, 24, 1-19. 

 

 



ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models 34 

Figure 1 – Backstop Price in BAU  
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Figure shows changes in the price of the backstop technology over time in the BAU simulation for each of three initial price 
assumptions.  Also shown is the price of fossil fuels.  Note that only with a low initial price does the backstop ever become cheaper 
than fossil fuels. 
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Figure 2 – Percentage Contribution of Backstop Technology  
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Figure shows the share of energy consumption provided by the backstop technology over time in both the BAU and optimal policy 
simulations for each of three initial price assumptions.  
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Figure 3 – Backstop Technology Contribution to Welfare – Optimal Policy 
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The figure shows the welfare gains from an optimal climate policy with and without a backstop technology.  Note that the largest 
gains come from factor substitution.  Also, simply adding a backstop to the model increases welfare more than considering backstop 
R&D. 



ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models 37 

Figure 4 – Emissions Control Rates Under an Optimal Carbon Policy 
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Figure shows the carbon emission control rates for each technology assumption.  Control rates are highest with exogenous backstop 
R&D.  When backstop R&D is endogenous, a small increase in emissions makes sense in the short run, as increased technological 
progress will make fossil fuels obsolete more quickly. 
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Figure 5 – Mean Global Temperature  
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The figure shows the departure of mean global temperature from 1990 levels, reported in degrees Celsius.  Note that neither induced 
R&D nor adding a backstop technology have little effect on temperature. 
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Figure 6 – Backstop Technology Contribution to Welfare – Restricted Emissions Policy 
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The figure shows the welfare gains from a policy restricting emissions to 1995 levels with and without a backstop technology.  Note 
that adding a backstop technology reduces the welfare costs of complying with such a policy, and that the welfare improvements from 
the backstop technology are more substantial than under an optimal climate policy. 
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Figure 7 – Backstop Energy R&D Elasticity Over Time – Sensitivity to the Elasticity of Substitution 
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The figure shows how the elasticity of backstop R&D to energy prices changes over time for each of the three assumptions about the 
elasticity of substitution between fossil fuels and the backstop technology.  In each case, diminishing returns causes the elasticity to 
fall over time.  Nonetheless, the elasticity is unrealistically high when assuming a high elasticity of substitution 
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Figure 8 – Temperature Over Time – Sensitivity to the Elasticity of Substitution 
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The figure shows the departure of mean global temperature from 1990 levels, reported in degrees Celsius, under the optimal policy 
scenario for each elasticity of substitution between fossil fuels and the backstop technology.  It also shows the temperature for the 
BAU scenario with a high elasticity of substitution, as well as temperature under a policy restricting emission to 1995 levels.  Note 
that temperature is lowest with a high elasticity of substitution. 



ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models 42 

Figure 9 – Share of Backstop Energy Over Time – Sensitivity to the Progress Ratio 
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The figure illustrates sensitivity to the progress ratio of the share of total energy for the backstop fuel.  For each initial backstop price 
assumption, a dashed line represents the share with a higher progress ratio.  Because of the cumulative nature of R&D, doubling the 
progress ratio has almost no effect on the share in the first 100 years.  As a result, there is also little change in other variables. 
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Table 1 – Summary of Parameter Values  

backstop parameters  calculated parameters  
Revised energy efficiency 

IPF parameters 

initial 
price 

effect of 
technology 

on 
backstop 
price: η IPF: a IPF: b IPF: φ  

sub between 
backstop/fossil 

fuels 

sub elas 
backstop/fossil 

fuels  

Share of 
energy in 

production: 
β  IPF: a IPF: b IPF: φ 

400 0.4 0.0155 0.0525 0.55  0.885 8.672 0.074  0.0286 0.2 0.55 
1200 0.4 0.0122 0.1 0.54  0.542 2.185 0.082  0.0264 0.2 0.54 
2000 0.4 0.0075 0.105 0.53  0.383 1.621 0.089  0.0255 0.22 0.53 
400 1 0.0073 0.032 0.55  0.885 8.672 0.074  0.0286 0.2 0.55 

1200 1 0.00505 0.073 0.54  0.542 2.185 0.082  0.0264 0.2 0.54 
2000 1 0.0033 0.075 0.53  0.383 1.621 0.089  0.0255 0.22 0.53 

 
 

The table presents parameter values for the ENTICE-BR model.  The center columns are calculated based on the initial 
backstop price and level. 
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Table 2 – Welfare Gains from Optimal Climate Policy 

    

Welfare gains 
compared to BAU 

case without 
backstop:   Gain from optimal policy 

low backstop price  BAU Optimal  

Gain from 
optimal 
policy 

% gain to 
optimal policy 
from adding 

backstop 

% gain 
from 

induced 
R&D 

No Backstop  N/A 1.880  1.880   
Backstop w/constant price  2.605 5.305  2.701 43.7%  
Backstop w/R&D  17.645 20.701  3.057 62.6%   
Backstop w/exogenous R&D  N/A 20.346  2.702   13.1% 

medium backstop price  BAU Optimal  

Gain from 
optimal 
policy 

% gain to 
optimal policy 
from adding 

backstop 

% gain 
from 

induced 
R&D 

No Backstop  N/A 1.880  1.880   
Backstop w/constant price  4.871 7.019  2.148 14.2%  
Backstop w/R&D  9.356 11.665  2.309 22.8%   
Backstop w/exogenous R&D  N/A 11.518  2.162   6.8% 

high backstop price  BAU Optimal  

Gain from 
optimal 
policy 

% gain to 
optimal policy 
from adding 

backstop 

% gain 
from 

induced 
R&D 

No Backstop  N/A 1.880  1.880   
Backstop w/constant price  5.788 7.947  2.159 14.8%  
Backstop w/R&D  9.680 11.955  2.275 21.0%   
Backstop w/exogenous R&D   N/A 11.825  2.145   6.0% 

Note: all figures in trillions of 1990 US dollars. 

The table shows the net economic impact, measured by the difference in the present value of 
consumption between an optimal climate policy and a no policy (BAU) simulation, for each 
assumption about the initial backstop price.  The figures on the left show the gain from a BAU 
scenario without a backstop technology.  Thus, reading down for each price assumption, one 
obtains the gains from adding a backstop to the model in both the BAU and optimal policy cases.  
The right set of figures show the gains from an optimal policy, holding assumptions about 
technology constant.  This is obtained by reading across each row.  While R&D on the backstop 
technology is important, simply adding a backstop to the model has a larger effect. 
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Table 3 – Returns to Marginal R&D 

 

24% Progress Ratio 
energy 

efficiency R&D backstop R&D 
low backstop price 4.96 26.00 
medium backstop price 4.93 6.76 
high backstop price 4.74 4.85 
50% Progress Ratio   
low backstop price 4.22 37.85 
medium backstop price 5.02 8.08 
high backstop price 4.77 6.06 

Note: all figures in billions of 1990 US dollars. 

 

The table shows the welfare gains from an additional $1 billion of R&D for each R&D 
type.  Figures are in billions of 1990 U.S. dollars.   
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Table 4 – Key Variables – Optimal Policy 

  1995 2005 2015 2025 2055 2105
Carbon Tax ($/ton)       
     Endogenous R&D: no backstop N/A $10.19 $14.61 $19.54 $36.89 $70.21
          & Backstop N/A $10.40 $15.00 $20.13 $38.25 $73.17
          & Backstop R&D N/A $10.42 $15.03 $20.19 $38.41 $73.65
     Exogenous R&D: no backstop N/A $10.20 $14.62 $19.55 $36.89 $70.19
          & Backstop R&D N/A $10.40 $14.99 $20.13 $38.29 $73.44
     % ∆ Endog vs. Exog.: no backstop N/A -0.10% -0.07% -0.05% 0.00% 0.03%
          & Backstop R&D N/A 0.19% 0.27% 0.30% 0.31% 0.29%
Energy R&D -- billions 1990 US dollars      
     Endogenous R&D: no backstop 10.00 13.33 17.07 20.03 27.26 39.85
          & Backstop 10.00 13.37 17.18 20.17 27.34 39.94
          & Backstop R&D 10.00 13.30 17.07 20.03 27.08 39.36
     Exogenous R&D: no backstop 10.00 13.13 16.83 19.71 26.59 38.55
          & Backstop R&D 10.00 13.08 16.91 19.82 26.62 38.52
     Elasticity: no backstop N/A 0.35 0.24 0.22 0.22 0.23
          & Backstop R&D N/A 0.39 0.15 0.13 0.15 0.18
Backstop Energy R&D -- billions 1990 US dollars     
Endogenous R&D 1.00 1.35 1.59 1.82 2.47 3.70
Exogenous R&D 1.00 1.31 1.54 1.76 2.40 3.67
Elasticity N/A 0.81 0.57 0.43 0.23 0.11
Emissions -- billion tons       
     No Policy or Backstop 6.187 7.173 8.015 8.774 10.904 14.156
          & Backstop 6.187 7.186 8.099 8.925 11.261 14.829
          & Backstop R&D 6.187 7.212 8.129 8.951 11.255 14.734
     Endogenous R&D: no backstop 6.187 6.947 7.675 8.303 9.921 12.01
          & Backstop 6.187 6.925 7.703 8.376 10.106 12.337
          & Backstop R&D 6.187 6.951 7.734 8.402 10.099 12.229
     Exogenous R&D: no backstop 6.187 6.947 7.677 8.308 9.931 12.026
          & Backstop R&D 6.187 6.914 7.68 8.339 10.017 12.14
     % ∆ Endog vs. Exog.: no backstop 0.00% -0.03% -0.06% -0.10% -0.13%
          & Backstop R&D   0.54% 0.70% 0.76% 0.82% 0.73%
Output -- trillions $1990 US dollars      
     No Policy or Backstop 22.61 30.00 36.94 43.72 63.55 95.19
          & Backstop 22.61 29.93 37.05 44.00 64.34 96.96
          & Backstop R&D 22.61 29.93 37.08 44.06 64.52 97.46
     Endogenous R&D: no backstop 22.61 30.01 36.92 43.68 63.42 94.95
          & Backstop 22.61 29.93 37.03 43.95 64.20 96.71
          & Backstop R&D 22.61 29.94 37.06 44.01 64.39 97.23
     Exogenous R&D: no backstop 22.61 30.01 36.91 43.65 63.35 94.77
          & Backstop R&D 22.61 29.94 37.05 43.98 64.30 97.04
     % ∆ Endog vs. Exog.: no backstop 0.00% 0.03% 0.06% 0.12% 0.19%
          & Backstop R&D   0.00% 0.05% 0.08% 0.15% 0.19%
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Table 5 – Welfare Gains from Restricted Emissions Policy 
 

    

Welfare gains 
compared to BAU 

case without 
backstop:   Gain from climate policy 

low backstop price  BAU Optimal  

Gain from 
climate 
policy 

% gain to 
welfare policy 
from adding 

backstop 

% gain 
from 

induced 
R&D 

No Backstop  N/A -8.219  -8.219   
Backstop w/constant price  2.605 3.556  0.952 111.6%  
Backstop w/R&D  17.645 20.845  3.200 138.9%   
Backstop w/exogenous R&D  N/A 20.256  2.611   22.6% 

medium backstop price  BAU Optimal  

Gain from 
climate 
policy 

% gain to 
welfare policy 
from adding 

backstop 

% gain 
from 

induced 
R&D 

No Backstop  N/A -8.219  -8.219   
Backstop w/constant price  4.871 -0.846  -5.717 30.4%  
Backstop w/R&D  9.356 5.606  -3.750 54.4%   
Backstop w/exogenous R&D  N/A 5.197  -4.159   9.8% 

high backstop price  BAU Optimal  

Gain from 
climate 
policy 

% gain to 
welfare policy 
from adding 

backstop 

% gain 
from 

induced 
R&D 

No Backstop  N/A -8.219  -8.219   
Backstop w/constant price  5.788 -1.684  -7.473 9.1%  
Backstop w/R&D  9.680 3.085  -6.595 19.8%   
Backstop w/exogenous R&D  N/A 2.758  -6.923   4.7% 

Note: all figures in trillions of 1990 US dollars. 

The table shows the net economic impact, measured by the difference in the 
present value of consumption between a climate policy restricting emissions to 
1995 levels and a no policy (BAU) simulation, for each assumption about the 
initial backstop price.  The figures on the left show the gain from a BAU scenario 
without a backstop technology.  Thus, reading down for each price assumption, 
one obtains the gains from adding a backstop to the model in both the BAU and 
optimal policy cases.  The right set of figures show the change in welfare from 
climate policy, holding assumptions about technology constant.  This is obtained 
by reading across each row.  Adding a backstop technology reduces the costs of 
achieving these emissions reductions. 

 

 



ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models 48 

Table 6 – Key Variables – Restricted Emissions Policy 

  1995 2005 2015 2025 2055 2105
Carbon Tax ($/ton)       
     Endogenous R&D: no backstop N/A $375.08 $775.20 $1,168.54 $2,342.75 $4,194.19
          & Backstop N/A $324.59 $697.33 $1,062.46 $2,149.59 $3,873.84
          & Backstop R&D N/A $362.51 $740.49 $1,099.84 $2,146.80 $3,769.18
     Exogenous R&D: no backstop N/A $377.69 $779.35 $1,175.33 $2,360.07 $4,234.74
          & Backstop R&D N/A $320.25 $686.63 $1,043.85 $2,096.94 $3,733.24
     % ∆ Endog vs. Exog.: no backstop N/A -0.69% -0.53% -0.58% -0.73% -0.96%
          & Backstop R&D N/A 13.20% 7.84% 5.36% 2.38% 0.96%
Energy R&D -- billions 1990 US dollars      
     Endogenous R&D: no backstop 10.00 14.08 18.35 21.82 30.58 45.91
          & Backstop 10.00 13.90 18.02 21.28 29.23 43.22
          & Backstop R&D 10.00 13.82 17.90 21.12 28.89 42.36
     Exogenous R&D: no backstop 10.00 13.13 16.83 19.71 26.59 38.55
          & Backstop R&D 10.00 13.08 16.91 19.82 26.62 38.52
     Elasticity: no backstop N/A 0.09 0.08 0.08 0.10 0.12
          & Backstop R&D N/A 0.07 0.05 0.05 0.06 0.08
Backstop Energy R&D -- billions 1990 US dollars     
Endogenous R&D 1.00 1.47 1.71 1.96 2.82 4.58
Exogenous R&D 1.00 1.31 1.54 1.76 2.40 3.67
Elasticity N/A 0.15 0.09 0.09 0.11 0.15
Emissions -- billion tons       
     No Policy or Backstop 6.187 7.173 8.015 8.774 10.904 14.156
          & Backstop 6.187 7.186 8.099 8.925 11.261 14.829
          & Backstop R&D 6.187 7.212 8.129 8.951 11.255 14.734
     Endogenous R&D: no backstop 6.187 6.187 6.187 6.187 6.187 6.187
          & Backstop 6.187 6.187 6.187 6.187 6.187 6.187
          & Backstop R&D 6.187 6.187 6.187 6.187 6.187 6.187
     Exogenous R&D: no backstop 6.187 6.187 6.187 6.187 6.187 6.187
          & Backstop R&D 6.187 6.187 6.187 6.187 6.187 6.187
     % ∆ Endog vs. Exog.: no backstop 0.000% 0.000% 0.000% 0.000% 0.000%
          & Backstop R&D   0.000% 0.000% 0.000% 0.000% 0.000%
Output -- trillions $1990 US dollars      
     No Policy or Backstop 22.61 30.00 36.94 43.72 63.55 95.19
          & Backstop 22.61 29.93 37.05 44.00 64.34 96.96
          & Backstop R&D 22.61 29.93 37.08 44.06 64.52 97.46
     Endogenous R&D: no backstop 22.61 29.98 36.71 43.26 62.25 92.66
          & Backstop 22.61 29.92 36.84 43.55 63.07 94.52
          & Backstop R&D 22.61 29.92 36.87 43.62 63.29 95.16
     Exogenous R&D: no backstop 22.61 29.98 36.69 43.21 62.12 92.35
          & Backstop R&D 22.61 29.92 36.85 43.58 63.17 94.90
     % ∆ Endog vs. Exog.: no backstop 0.00% 0.06% 0.11% 0.21% 0.34%
          & Backstop R&D   0.00% 0.06% 0.11% 0.19% 0.27%
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Table 7 – Effect of Crowding Out 
 

A. Optimal Policy     

   
Gain from 

optimal policy 
Compare to 
exog R&D Gains from ITC 

Backstop w/R&D  2.275 2.145 6.0% 
     low opportunity cost -- lower bound  2.414 2.152 12.2% 
     low opportunity cost -- upper bound  2.445 1.874 30.5% 
     high opportunity cost -- lower bound  2.123 2.155 -1.5% 
     high opportunity cost -- upper bound  2.227 2.200 1.2% 
     
B. Restrict Emissions to 1995 Levels     

   
Gain from 

policy 
Compare to 
exog R&D Gains from ITC 

Backstop w/R&D  -6.595 -6.922 4.7% 
     low opportunity cost -- lower bound  -6.467 -6.918 6.5% 
     low opportunity cost -- upper bound  -6.263 -7.152 12.4% 
     high opportunity cost -- lower bound  -6.868 -6.910 0.6% 
     high opportunity cost -- upper bound  -6.843 -7.048 2.9% 

Note: all figures in trillions of 1990 US dollars. 

 
The table shows how the welfare gains from induced technological change vary as 
assumptions about the opportunity cost of R&D vary.  To illustrate the gains from 
ITC, the first column presents the net economic impact of policy with ITC, and 
the second column presents the net economic impact of policy with exogenous 
energy R&D. 
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Table 8 – Effect of R&D Subsidies 
 

A. Optimal Policy   

  
Gain from 

BAU 

% gain from 
optimal 

policy/no 
backstop 

No Backstop 1.880  
     with R&D subsidies 2.006 6.7% 
Backstop w/constant price 2.159 14.8% 
     with R&D subsidies 2.241 19.2% 
Backstop w/R&D 2.275 21.0% 
     with backstop R&D subsidies only 2.292 21.9% 
     with R&D subsidies 2.367 25.9% 
     R&D subsidies only -- no tax 0.177   
   
B. Restrict Emissions to 1995 Levels   

  
Gain from 

BAU 

% gain from 
optimal 

policy/no 
backstop 

No Backstop -8.219  
     with R&D subsidies -7.964 3.1% 
Backstop w/constant price -7.473 9.1% 
     with R&D subsidies -7.319 11.0% 
Backstop w/R&D -6.595 19.8% 
     with backstop R&D subsidies only -6.597 19.7% 
     with R&D subsidies -6.459 21.4% 

Note: all figures in trillions of 1990 US dollars. 

 
The table shows how the welfare gains change when R&D subsidies are used 
along with climate policy. 
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Appendix A – Equations of the ENTICE Model 

This appendix presents the complete equations of the ENTICE model. 

Exogenous variables and parameters 
 
t = time 
Lt = population at time t, also equal to labor inputs 
L0 = initial population level 
gL,t = growth rate of population 
gL,0 = initial value of the growth rate of population 
dL = rate of decline of gL,t 
Rt = pure time preference discount factor 
r0 = initial value of the pure rate of social time preference 
gr = growth rate of the social time preference 
At = total factor productivity 
A0 = initial value of total factor productivity 
gL,t = growth rate of total factor productivity 
gL,0 = initial value of the growth rate of total factor productivity 
dL = rate of decline of gA,t 
γ = elasticity of output with respect to capital 
β = elasticity of output with respect to energy/carbon inputs 
Φt = ratio of carbon emissions per unit of carbon services 
gz

t = growth rate of Φt per decade 
δz

 = rate of decline of gz
t 

ζ1, ζ2, ζ3 = parameters of the long-run carbon supply curve 
markup= energy services price markup 
CumC* = Total carbon resources available 
δ = rate of depreciation of the physical capital stock 
δH = rate of depreciation of energy knowledge stock 
crowdout = percentage of overall R&D crowded out by energy R&D 
a, b, φ = parameters of the innovation possibilities curve 
η = effect of backstop energy knowledge on backstop price 
αH = scaling factor for the stock of energy knowledge 
αΦ = percentage of exogenous carbon intensity reduction 
ρH = substitution parameter for energy and knowledge 
ρB = substitution parameter between fossil fuels and backstop energy 
LUt = Land-use carbon emissions 
LU0 = Initial land-use carbon emissions 
δLU = Rate of decline of land-use carbon emissions 
φ11, φ12, φ21, φ22, φ23, φ32, φ33 = Parameters of the carbon transition matrix 
Ot = Increase in radioactive forcing over preindustrial levels due to exogenous anthropogenic 

causes 
σ1, σ2, σ3 = Temperature dynamics parameters 
θ1, θ2 = Parameters of the damage function 
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4.1/λ = Climate sensitivity – equilibrium increase in temperature from a doubling of CO2 
concentrations) 

 
Endogenous Variables 
 
Ut = utility in period t 
ct = per capita consumption 
Qt = output (trillions of 1990 US dollars) 
Ωt = damages from climate change 
µt = emissions control rate in DICE model 
Kt = physical capital stock (trillions of 1990 US dollars) 
Et = energy inputs 
pF,t = price of fossil fuels 
pB,t = price of backstop energy 
Ft = fossil fuel/carbon inputs, also equal to CO2 emissions 
Bt = backstop energy, in carbon ton equivalents (CTE) 
qF = marginal cost of fossil fuel extraction 
CumCt = cumulative carbon extractions by year t 
It = investment in physical capital 
Ct = total consumption 
HEt = stock of energy efficiency knowledge 
HBt = stock of backstop energy knowledge 
REt = energy R&D 
EMt = Carbon emissions 
MA,t = Atmospheric CO2 concentration 
MU,t = Upper oceans/biosphere CO2 concentration 
ML,t = Lower oceans CO2 concentration 
FORCEt = Radioactive forcing, increase over preindustrial level 
Tt = Atmospheric temperature, increase over 1900 level  
TLt = Lower ocean temperature, increase over 1900 level  

 

The ENTICE model maximizes per capita utility, defined in equation (A 1) below, 

subject to a set of environmental and economic constraints.  Economic constraints are 

represented by equations (A 2) – (A 17).  Equations (A 18) – (A 27) are the environmental 

constraints. 

(A 1)  t

T

t
tt RLcUV ∑

=

=
0

],[max  

Economic Constraints 

(A 2)  )/log( tttt LCLU =  
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(A 5)  Kt = {It – 4*crowdout*(RE,t + RB,t)} + (1-δ)Kt-1. 

(A 6)  Lt = L0exp(gL,t) 

(A 7)  gL,t = (gL,0/dL)*(1-exp(-dL*t)) 

(A 8)  At = A0exp(gA,t) 

(A 9)  gA,t = (gA,0/dA)*(1-exp(-dA*t)) 
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(A 11)  PF = qF + markup 

(A 12)  
3*]/[21

ζζζ CumCCumCq tF +=  

(A 13)  CumCt = CumCt-1 + 10*Ft 

(A 14)  Ft < 0.1 * (CarbMax – CumCt)/10 

(A 15)  Hi,t = h(Ri,t) + (1–δH)Hi,t-1,  i = E,B 

(A 16)  h(Ri,t) =  aRb
i,tHφ

i,t,   i = E,B 

(A 17)  Qt = Ct + It + REt + RBt 

 

 

Environmental Constraints 

(A 18)  LUt = LU0(1-δLU)t
 

(A 19)  EMt = Ft + LUt 

(A 20)  MA,t = 10*EMt + φ33ML,t-1 + φ23MU,t-1 

(A 21)  ML,t = φ11MA,t-1 + φ21MU,t-1 

(A 22)  MU,t = φ12MA,t-1 + φ22MU,t-1 + φ32ML,t-1 

(A 23)  FORCEt = 4.1*{log(MA,t/596.4)/log(2)} + Ot 

(A 24)  Ot = -0.1965 + 0.13465t,  t < 11 
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  Ot = 1.15,    t ≥ 11 

(A 25)  Tt = Tt-1 + σ1{FORCEt - λTt-1 - σ2(Tt-1 – TLt-1)} 

(A 26)  TLt = TLt-1 + σ3(Tt-1 – TLt-1) 

(A 27)  Ωt = 1/(1 + a1 + Tt + a2*Tt
2) 
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Appendix B – Calibration of the ENTICE-BR Model 

This appendix describes the steps taken to calibrate the ENTICE-BR model.  I begin by 

summarizing calibration of the ENTICE model without a backstop technology, followed by a 

discussion of changes necessary to incorporate the backstop technology. 

As a global macroeconomic model, ENTICE uses Nordhaus’ DICE model (1994, 

Nordhaus and Boyer 2000) as its basic building block.  Since the current version of Nordhaus’ 

DICE model does not include carbon emissions as an input, but rather simply models emissions 

as a byproduct of output requiring control, the first step to constructing the model is to add a 

fossil fuel sector that mimics the behavior of the original DICE model.  I do this using the same 

modeling structure as Nordhaus’ RICE model, except that I apply the equations at a global, 

rather than regional, level. Key equations of the economic sector of the DICE model, along with 

the modifications necessary to include carbon emissions as an input, are included in the 

modeling appendix.  I calibrate this basic model, with no energy R&D, so that the results are 

comparable to Nordhaus’ DICE model.  To begin, I take the initial value of F from the latest 

version of the DICE model.  I then solve for initial values of A and K that reproduce the initial 

output found in the DICE model.  Next, I calculate the elasticity of output to with respect to 

energy, β, as the percentage of output spent on fossil fuels in the initial period, using the 1995 

price of carbon based on equations (6) and (7).27  Finally, the growth rate of Φ, gz (-15.49), and 

the rate of decline of this growth rate, γz (23.96), are chosen to produce an emissions path as 

close as possible to the DICE model.  These values represent the rate of exogenous decline in 

carbon intensity without any energy R&D in the model.  Figures B1 and B2 compares the 

emissions and output that result from this calibration. 

                                                           
27 References to equation numbers refer to equations in the text of the main paper.  
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Having added carbon fuels as an input to production in the DICE model, the next step is 

to add induced technological change to the ENTICE model.  The modeling for this stage is 

described the main text of the paper.  Calibration requires choosing values for the following 

parameters: 

• the initial value of energy research, RE0.   

• ρ, the substitution parameter in equation (10), 

• parameters in the invention possibilities frontier (9): a, b, and φ, and 

• the initial level of energy human capital, HE0,28
 

• αΗ , the scaling factor for the effect of this human capital, and 

• αΦ , the percentage of exogenous technological change remaining. 

To calibrate the energy R&D sector, three goals must be met.  First, R&D levels should 

be consistent with historical levels.  A starting value of $10 billion is chosen for the base year of 

1995.  To get this value, I begin with an estimated level of total global spending on R&D of $500 

billion.  This figure is based largely on data from OECD countries.  Energy R&D data is not 

available on a global basis.  However, it is available for the United States.  In the U.S., two 

percent of R&D spending in 1995 went to energy-related R&D.  The $10 billion figure used in 

this paper is simply two percent of the global level of R&D.  This figure is also close to the 

initial value of R&D used by Nordhaus (2002). 

Second, the behavior of energy R&D should be consistent with empirical studies both 

across time and across policy dimensions.  Based on Popp (2002), I use an elasticity of energy 

R&D with respect to energy prices of 0.35 for the base model.  As the price of carbon rises over 

time, the time path of energy R&D should follow the path predicted by this value as closely as 
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possible.29  In addition, elasticities of energy R&D calculated on differences in the carbon price 

with and without a carbon tax in the optimal policy simulation should also equal 0.35.  Since the 

goal of this paper is to explore the consequences of omitting endogenous technological change 

from earlier climate change models, when these two goals are incompatible, the second takes 

precedence.  Furthermore, since Popp (2002) also notes that energy R&D experiences 

diminishing returns over time, the calibrated elasticity should fall over time.  Figure B3 shows 

the calibrated levels of energy R&D and what would be predicted by a constant elasticity over 

time of 0.35. 

Finally, Popp (2001) estimates a 4:1 ratio on the returns to energy R&D.  Thus, each 

dollar of energy R&D should lead to a four dollar reduction in energy savings.  The model is 

calibrated so that a weighted average of energy savings each period (weighted by the discount 

factors used in the model) produce a 4:1 ratio of energy savings to energy R&D. 

Using these goals as guidelines for choosing the parameters, I first choose the value of 

HE0 to approximate baseline emissions in early years of the simulation.  Next, I choose ρ to 

approximate the elasticity of energy R&D between the no-policy and optimal policy simulations.  

Third, the value of the scaling factor αH is chosen to yield the appropriate rate of return on 

energy R&D.  To calibrate the inventions possibility frontier, the value a is chosen so that the 

change in energy R&D between 1995 and 2005 in the optimal policy simulation is consistent 

with the elasticity of 0.35. Values of b and φ are chosen so that future elasticities fit the desired 

time path – falling slowly in the near future due to diminishing returns to R&D.  Once the 

desired time path of R&D is calibrated, the scaling factor αΦ can be adjusted to change the level 

                                                                                                                                                                                           
28 Note that, since human capital enters the invention possibilities frontier multiplicatively, the initial value cannot 
be zero. 
29 Note that, to account for growth in the level of economic activity, all elasticities are calculated based on a ratio of 
energy R&D to global output.   
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of baseline emissions as appropriate.  A value of 0.8 is used in the base model, meaning that 80 

percent of exogenous technological change remains in the ENTICE model.  As a result, 

purposeful R&D efforts to improve energy efficiency are only a small portion of the changes that 

take place over time to reduce energy intensity.  Table 1 in Popp (2003) presents a complete list 

of the parameter values chosen for both the base model and various sensitivity analysis 

scenarios. 

When adding a backstop, the first critical piece of information is the initial conditions.  

Based on Nakicenovic et al. (1998), the backstop technology is assumed to contribute four 

percent of total energy in 1995.  This yields an initial backstop level of 0.25 carbon ton 

equivalents (CTE).  The parameter β from the production function, which equals the share of 

energy expenses taken from output, is adjusted accordingly, as the share of production costs 

going to energy is now greater.  To be consistent with R&D data (Anderson 1997), the initial 

level of backstop energy R&D is ten percent of energy efficiency R&D, or $1 billion.  The initial 

stock of backstop knowledge, HB,0 is normalized to 1.   

As with energy efficiency R&D, the value of ρB has a significant impact on the elasticity 

of backstop energy R&D.  However, its value is not set independently.  Based on the first-order 

conditions for energy demand, ρB is determined by initial energy consumption and the relative 

prices of fossil fuels and the backstop technology.  Unfortunately, a wide range of possibilities 

for the starting price exists.  For example, in appropriate conditions, the price of electricity from 

wind is nearing competitive levels.  Burtraw et al (1995) report the cost of wind energy to be 

44% higher than that of energy from fossil fuels.  This yields an initial price of $400 per carbon 

ton equivalent (CTE) of backstop energy.  Gerlagh and Lise (2003) report prices for alternative 

energy sources ranging from 2 to 5 times that of fossil fuels.  Using the upper range of this as an 
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alternative, I consider an initial price of $1200 as a second option. Unfortunately, the resulting 

elasticity of substitution yields very high elasticities of R&D in each case.  Thus, I also consider 

a starting price of $2000 CTE.   This provides more reasonable elasticities of backstop energy 

R&D, as the resulting elasticity of substitution is similar to that for energy efficiency R&D. 

Next, a value for η, which relates human capital to backstop price decreases, is chosen.  

Again, no good empirical estimates exist.  Results for two values, 0.5 and 1.0, are presented.  

These yield progress ratios of 24 and 50 percent respectively. A 50 percent progress means that a 

doubling of the knowledge stock reduces the backstop price by 50 percent.  More importantly, 

under realistic base case R&D scenarios, the share of energy consumption resulting time paths 

for backstop energy R&D are comparable to other studies.  Such rapid progress is comparable to 

changes in patenting and prices during the past 20 years.  The 24 percent progress ratio yields 

slightly lower shares of backstop energy than comparable scenarios.  However, as shown in the 

results section, the marginal returns to R&D are more realistic.  Thus, a 24 percent progress ratio 

is used for the base case. 

Finally, the parameters of the inventions possibilities frontier are chosen as before.  At 

the same time, the parameters a and b for energy efficiency R&D are changed slightly so that 

base case R&D is comparable in simulations with and without a backstop technology.  Table 1 in 

the paper provides a list of the new parameters needed for the ENTICE-BR model. 
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Figure B1 – Industrial Emissions in the ENTICE & RICE Models 
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Figure B2 – Output  in the ENTICE & RICE Models 
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Figure B3 – Predicted and Actual Energy R&D 
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