
NBER WORKING PAPER SERIES

SHOULD EXACT INDEX NUMBERS
HAVE STANDARD ERRORS?

THEORY AND APPLICATION TO ASIAN GROWTH

Robert C. Feenstra
Marshall B. Reinsdorf

Working Paper 10197
http://www.nber.org/papers/w10197

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
December 2003

Presented at the CRIW conference “Hard-to-Measure Goods and Services:  Essays in Memory of Zvi
Griliches,” September 19-20, 2003, Bethesda, MD.  We are grateful to Angus Deaton, Jack Triplett and
Charles Hulten for helpful comments.The views expressed herein are those of the authors and not necessarily
those of the National Bureau of Economic Research.

©2003 by Robert C. Feenstra and Marshall B. Reinsdorf.  All rights reserved. Short sections of text, not to
exceed two paragraphs, may be quoted without explicit permission provided that full credit, including ©
notice, is given to the source.



Should Exact Index Numbers Have Standard Errors? Theory and Application to Asian Growth     
Robert C. Feenstra aqnd Marshall B. Reinsdorf
NBER Working Paper No. 10197
December 2003
JEL No. C43, O53

ABSTRACT

In this paper we derive the standard error of a price index when both prices and tastes or technology

are treated as stochastic. Changing tastes or technology are a reason for the weights in the price

index to be treated as stochastic, which can interact with the stochastic prices themselves. We derive

results for the constant elasticity of substitution expenditure function (with Sato-Vartia price index),

and also the translog function (with Töörnqvist price index), which proves to be more general and

easier to implement. In our application to Asian growth, we construct standard errors on the total

factor productivity (TFP) estimates of Hsieh (2002) for Singapore. We find that TFP growth is

insignificantly different from zero in any year, but cumulative TFP over fifteen years is indeed

positive.
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1.  Introduction 

In the stochastic approach to index numbers, prices are viewed as draws from some 

distribution, and the price index is viewed as a measure of the trend change in prices, with an 

estimable standard error.  The most comprehensive treatment of this problem is by Selvanathan 

and Rao (1994), but the idea dates back to Keynes (1909) and earlier writers, such as Jevons and 

Edgeworth.  Keynes points out that the price changes reflect both a common trend (generalized 

inflation) and commodity-specific trends,1 which make the common trend difficult to identify.  

Selvanathan and Rao (1994, pp. 61-67) attempt to solve this problem using purely statistical 

techniques, as we describe in section 2, and the standard error of their price index reflects the 

precision of the estimate of the trend.  Keynes does not offer a solution, but elsewhere he 

observes that changes in the purchasing power of money can occur for three distinct reasons:  

“The first of these reasons we may classify as a change in tastes, the second as a change in 

environment, and the third as a change in relative prices.”2  

The first factor identified by Keynes — changing tastes — can be expected to affect the 

weights in a price index and not just the prices.  Accordingly, we will derive the standard error of 

a price index when both prices and tastes (or technology) are treated as stochastic.  The rationale 

for our treatment of stochastic tastes (or technology) comes from the economic approach to index 

numbers, (e.g. Diewert, 1976), which shows that certain price indexes, known as exact indexes, 

equal the ratio of expenditures needed to obtain a fixed level of utility at two different prices.  

                                                 
1   In Keynes (1909) essay on “Index Numbers,” section VIII deals with the “Measurement of General Exchange 
Value by Probabilities,” which is the stochastic approach.  He writes:  “We may regard price changes, therefore, as 
partly due to causes arising from the commodities themselves raising some, lowering others, and all different in 
degree, and, superimposed upon the changes due to these heterogeneous causes, a further change affecting all in the 
same ratio arising out of change on the side of money.  This uniform ratio is the object of our investigations.” (from 
The Collected Writing of John Maynard Keynes, volume XI, p. 106). 
2   Keynes (1930), cited from The Collected Writing of John Maynard Keynes, volume V, p. 85. 
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This ratio of expenditures depends on the tastes of the consumer, so if the taste parameters are 

stochastic, then the exact index number is also.  Section 3 describes how we allow for both 

random prices and random tastes, thereby integrating the stochastic and economic approaches to 

index numbers. 

We use our integrated approach to stochastic index numbers to derive estimators for index 

number standard errors for two well-known models of tastes or technology.  The first of these is 

the constant elasticity of substitution (CES) expenditure function (for a consumer) or cost 

function (for a firm).  In section 4 we suppose that the CES taste parameters are random, and 

obtain a simple specification for demand that depends on the random parameters and on prices.  

The estimated error from this demand equation can be used to infer the standard error of the 

exact price index.  Inverting the demand equation, we also obtain a simple specification in which 

price changes depend on a trend (the price index) and a component (log changes in expenditure 

shares) that has an average of zero, just as is supposed for the error term in an identical set of 

equations derived under the stochastic approach.  The CES case therefore provides a good 

comparison to the specification used by Selvanathan and Rao (1994).  In section 5 we extend our 

treatment of the CES case to deal with both random prices and random tastes, allowing an 

additional comparison to the Selvanathan and Rao results.  

We next apply our integrated approach to stochastic index numbers to the translog case, 

considering the effects of random tastes in section 6 and the effects of both random tastes and 

random prices in section 7.  The demand equations estimated are the familiar translog 

expenditure share equations, and again, the error in this system of regressions is used to infer the 

standard error of the exact price index.  Although the CES system provides a particularly clear 

comparison with the conventional stochastic approach, a linear relationship between the shares 
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and the taste parameters makes the translog system easier to implement than the non-linear CES 

system, and we recommend the translog for future use.     

 In section 8 we provide an application of our results to Asian productivity growth, and in 

particular, productivity growth in Singapore.  The extent to which the East Asian countries are 

“exceptional” or not in terms of their productivity growth has been a topic of debate between the 

World Bank (1993) and Young (1992, 1995).  Citing the estimates of zero or negative 

productivity growth in Singapore found by Young and also Kim and Lau (1994), Krugman 

(1994) popularized the idea the growth in some East Asian countries is mainly due to capital 

accumulation, and in that respect, is not much different than the former Soviet Union:  certainly 

not a miracle.  Recently, however, Hsieh (2002) has re-examined the productivity performance of 

several East Asia countries using dual measures of total factor productivity (TFP), and for 

Singapore finds positive productivity growth, contrary to Young.  The difference lies in Hsieh’s 

use of “external” rates of return for capital computed from three different sources, which are then 

used in a dual calculation of productivity growth; this contrasts with Young’s calculation of 

primal productivity growth, which implicitly uses an “internal” return on capital.3   

 We use Hsieh’s three different rates of return on capital to compute the standard error of 

that series, and of estimates of TFP, where we also incorporate the error in fitting the translog 

function.  In the results, we find that TFP growth in Singapore is insignificantly different from 

zero for any single year in the sample.  The same holds true when estimating cumulative TFP 

growth over any five-year or ten-year period of the sample.  For the 15-year period, however, we 

find that cumulative TFP growth in Singapore is significantly positive.  Thus, the estimates of 

                                                 
3   That is, the difference between these authors is not in the primal versus dual methodology for computing TFP, but 
in their use of differing rates of return for capital.  We thank Charles Hulten for this observation. 
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Hsieh (2002) are indeed statistically different from those of Young (1992, 1995), provided that 

cumulative TFP over a long enough time period is considered.  

 
2.  The Stochastic Approach to Index Numbers 

An example of the stochastic approach to price indexes is a model where price changes 

satisfy the equation: 

  ln(pit / pit-1)  =  πt + eit,      i =1,..., N, (1) 
 

where the errors are independent and heteroskedastic satisfying E(eit) = 0 and  var(eit) = σ2/wi, 

where wi are some exogenous values that sum to unity, 1 wN
1i i =∑ = .  Under these conditions, an  

unbiased and efficient estimate of trend change in prices πt is, 

  ∑
=

=π
N

1i
t   ˆ wi ln(pit/pit-1), (2) 

which can be obtained by running weighted least squares (WLS) on (1) with the weights iw .  

An unbiased estimate for the variance of tπ̂  is 

  
1N

s
s

2
p2

−
=π , (3) 

where ∑ = π−∆= N
1i

2
titi

2
p )ˆpln(ws .  

 Diewert (1995) criticizes the stochastic approach and argues that: (a) the common trend π
t
 

in (1) is limiting; (b) the variance assumption var(eit) = σ 2/wi is unrealistic; (c) some choices of 

wi (such as budget shares) will not be exogenous.  In  assessing these criticisms, we believe that a 

distinction should be made between lower-level and higher-level aggregation.  At higher levels, 
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these criticisms seem apt, and simple extensions to the model in (1) are unable resolve them in 

completely satisfactory ways.  In particular, to avoid the assumption of a single common trend 

for all prices, Selvanathan and Rao (1994, pp. 61-67) add commodity-specific trends δi to  

equation (1): 

  ln(pit / pit-1)  =  πt + δi + eit,      i =1, ..., N, (1´) 
 

where again the errors are independent and satisfy E(eit) = 0 and  var(eit) = σ2/wi, with 

1 wN
1i i =∑ = .  For the estimator of the common trend πt to be identified, some assumption is 

needed on δi.  Selvanathan and Rao show that the estimator for πt is still given by (2) under the 

assumption that the commodity-specific trends have a weighted average of zero:4 

  ∑
=

N

1i

 wi δi = 0. (4) 

The justification for (4) is purely statistical, i.e. it allows πt to be identified, though we will 

suggest an economic interpretation in section 4.   

 In contrast, at the lowest level of aggregation, prices from different sellers of the same 

commodity are typically combined into indexes for individual commodities, or for narrow classes 

of closely related commodities.  At this level, the assumption of a common trend, such as πt in 

equation (1), will often be realistic.  The stochastic approach in (1)-(3) can then be used to form 

the elementary indexes that are combined at higher levels of aggregation into indexes for all 

commodities, or for broad classes of commodities.  If the expenditure shares needed to compute 

                                                 
4   The standard error of tπ̂  when the commodity effects are used is less than that in (3), since the residual error of 

the pricing equation is reduced. 
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the weights wi are unavailable for lower-level aggregates, so that wit = 1/N is used, the stochastic 

approach in (1)-(3) amounts to using a simple average of log-changes for prices, and its variance.   

 
3. Integrating the Economic and Stochastic Approaches to Index Numbers 

 Despite Keynes’ early contribution to the literature on the stochastic approach to index 

numbers, he ultimately rejected it.  Keynes wrote, 

 
I conclude, therefore, that the unweighted (or rather randomly weighted) Index-Number 

of Prices — Edgeworth’s indefinite index number — which shall in some way measure 

the value of money as such or the amount of influence on general prices exerted by 

‘changes on the side of money’ or the ‘objective mean variation of general prices’ as 

distinguished from the ‘change in the power of money to purchase advantages’, has no 

place whatever in a rightly conceived discussion of the problems of Price-Levels.5    

 
We also believe that index numbers with weights that reflect expenditure patterns are more 

interesting and informative than index numbers that have a purely statistical motivation.  To 

motivate the incorporation of expenditure information in our index, we assume that the objective 

is to estimate an economic index, which, for the consumer problem, is defined as the ratio of the 

expenditure function evaluated at current period prices to the expenditure function evaluated at 

reference period prices.   

Adopting an economic index as the goal of estimation makes the link between the  

                                                 
5 Keynes (1930, pp. 87-8.)  Keynes’ argument against stochastic price models with independent commodity-specific 
shocks was that linkages between prices in an economy preclude shocks that affect a single price in isolation:  “But 
in the case of prices a movement in the price of one commodity necessarily influences the movement in the prices of 
other commodities.” (p. 86.)  
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stochastic properties of the data and the stochastic properties of the estimator less straightforward 

than when the goal is simply to estimate a mean price change.  Nevertheless, any kind of index 

number calculated from stochastic data is itself stochastic.  Moreover, a model of the stochastic 

processes reflected in the data used to calculate the economic index should allow the derivation 

of an estimator for its standard error.    

Our starting point is the stochastic process for the expenditure shares used to calculate the 

weights in the index.  To estimate an economic index requires an assumption about the form of 

the expenditure function that describes tastes.  (For simplicity, our discussion will be in terms of 

the consumer problem, although the approach is equally applicable to the producer problem.)  

This assumption implies a functional form for the equations relating expenditure shares to prices.  

Since these equations generally do not fit the data on expenditure shares precisely, they imply the 

existence of an error term.  We interpret changes in expenditure shares not explainable by 

changes in prices as arising from stochastic tastes.  If we were able to take repeated draws from 

the distribution of the taste parameters in the expenditure function while holding prices constant, 

we would observe a range of outcomes for expenditure shares:  this is one source of variance in 

an economic index.    

A second source of variance in the price index is sampling error in the price data.6  When 

prices are treated as stochastic, we need to decide whether the expenditure shares are determined 

by observed prices or by expected prices.  Griliches and Grunfeld (1960, p. 7), for example, 

recognize that models of consumer behavior may be specified using either expected prices (and 

income) or observed prices (and income).  We shall take the latter approach, and assume that 

                                                 
6   Sampling error in the expenditure shares changes the interpretation and derivation of the estimator of the index 
standard error, but not the estimator itself.   
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observed prices determine expenditure shares.7  In that case, the error term for prices influences 

the expenditure shares, so a component of the variance of expenditure shares comes from the 

variance of prices.  In our translog results below, we include components representing the 

variance of expenditure shares that comes from the variance of prices (see proposition 7).  

However, for  the non-linear CES model with prices treated as stochastic, we are unable to 

include these components in our variance estimator. 

In addition to the indirect effects arising from the equations relating prices to expenditure 

shares, which are small, price variances have an important direct effect on the index’s variance. 

We therefore extend our results for both the CES model and for the translog model to take 

account of the direct effect on the index of sampling error in the measures of prices used to 

construct the index.  We assume that the lower-level aggregates in the index are price indexes for 

individual commodities, or for narrow categories of items that are homogeneous enough to be 

treated as a single commodity.  Each commodity has its own non-stochastic price trend, but 

rather than summing to zero, as in equation (4), with properly chosen weights these commodity 

price trends sum up to the true index expressed as a logarithm.  As sample estimators of these 

trends, the lower-level aggregates used to construct the index are subject to sampling error.  

Equation (1) describes the process generating the changes in individual price quotes that are 

combined in a lower-level aggregate.  If all the quotes have identical weights and variances, the 

variance of the lower-level aggregate can therefore be estimated by equation (3).   

                                                 
7   Under the alternative hypothesis that expected prices are the correct explanatory variable, regression equations for 
expenditure shares using observed prices must be regarded as having mismeasured explanatory variables.  
Measurement error in the prices used to explain expenditure patterns may imply a bias in the estimates of the 
contribution of the taste variance to the index variance, but it does not necessarily do so.  If sampling error in the 
price variables reduces their ability to explain changes in expenditure shares, too much of the variation in 
expenditure shares will be attributed to changes in tastes, and the estimate of the taste variance will be biased 
upward.  Nevertheless, even if such a bias exists, and it will usually be negligible. 
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Finally, in addition to sampling error in tastes and in estimates of commodity prices, 

another source of inaccuracy in an estimate of a cost of living index is that the model used to 

describe tastes might be misspecified.  This was thought to be an important problem until 

Diewert (1976) showed that by using a flexible functional form, an arbitrary expenditure function 

could be approximated to the second order of precision.  We do not explicitly estimate the effect 

of possible misspecification of the model of tastes on the estimate of the cost of living index, but 

our standard error estimator does give an indication of this effect.  An incorrectly specified model 

of tastes will likely fit the expenditure data poorly, resulting in a high estimate of the component 

of the index’s variance that comes from the variance of tastes.  On the other hand, our estimator 

will tend to imply a small standard error for the index if the model fits the expenditure data well, 

suggesting that the specification is correct, or if growth rates of prices are all within a narrow 

range, in which case misspecification does not matter.    

One source of misspecification that can be important is an incorrect assumption of 

homotheticity.  (Diewert’s approximation result for flexible function forms does not imply that 

omitting an important variable, such as income in nonhomethetic cases, is harmless.)  In the 

economic models considered in this paper, homotheticity is assumed for the sake of simplicity.   

In applications to producers, or in applications to consumers whose income changes by about the 

same amount as the price index, this assumption is likely to be harmless, but when consumers 

experience large changes in real income, the effects on their expenditure patterns are likely to be 

significant.  If a model that assumes homotheticity is used and changes in real income cause 

substantial variation in expenditure shares, the estimate of the variance of the index’s weights is 

likely to be elevated because of the lack of fit of the model.  Knowing that the estimate of the 

economic index has a wide range of uncertainty will help to prevent us from having too much 
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confidence in results based on an incorrect assumption, but relaxing the assumption would, of 

course, be preferable.8   

 
4.  The Exact Index for the CES Model with Random Technology or Tastes 

A.  Exactness of the Sato-Vartia Index in the Non-Random Case 

 Missing from the stochastic approach is an economic justification for the pricing equation 

in (1) or (1´), as well as the constraint in (4).  It turns out that this can be obtained by using a CES 

utility or production function, which is given by, 

  f(xt,at) = 
)1(N

1i

/)1(
itit xa

−η
η

=

η−η
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ , 

where xt = (x1t,…xNt) is the vector of quantities, and at = (a1t,…aNt) are technology or taste  

parameters that we will allow to vary over time, as described below.  The elasticity of  

substitution η > 0 is assumed to be constant. 

 We will assume that the quantities xt are optimally chosen to minimize ∑ =
N

1i itit xp , 

subject to achieving f(xt, at)=1.  The solution to this optimization problem gives us the 

corresponding unit-cost function , 

                                                 
8   Caves, Christensen and Diewert (1982) find that the translog model that we discuss below can be extended to 
allow the log of income to affect expenditure patterns and that the Törnqvist index still measures the cost of living 
index at an intermediate utility level.  However, to model non-homothetic tastes for index number purposes, we 
recommend the use of Deaton and Muellbauer’s (1980) “Almost Ideal Demand System (AIDS).”   Feenstra and 
Reinsdorf (2000) show that for the AIDS model, the predicted value of expenditure shares at the average level of 
logged income and logged prices must be averaged with the Törnqvist index weights (which are averages of 
observed shares from the two periods being compared) to obtain an exact price index for an intermediate standard of 
living.  However, the variance formulas that we derive below for the translog model can still be used to approximate 
the variance of the AIDS index as long as logged income is included among the explanatory variables in the 
regression model for expenditure shares. 

 



  

 

11 

  c(pt, bt) = 
)1(

1
N

1i

1
itit pb

η−

=

η−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ , (5) 

where pt = (p1t,…pNt) is the vector of prices, and  bit ≡ η
ita  > 0, with bt = (b1t,…bNt).   

Differentiating (5) provides the expenditure shares sit implied by the taste parameters bt: 

 

  η−−η=∂∂= 1
itit

1
ttitttit pb),(cpln/),(clns bpbp .  (6) 

 

 Diewert (1976) defines a price index formula whose weights are functions of the 

expenditure shares sit-1 and sit as exact if it equals the ratio of unit-costs.  For the CES unit-cost 

function with constant bt, the price index due to Sato (1976) and Vartia (1976) has this property.  

The Sato-Vartia price index equals the geometric mean of the price ratios with weights wi:  

 

  =∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= −

N

1i

w

1it

it
i

p

p
 

),(c

),(c

t1t

tt

bp

bp

−
, (7)  

 
where the weights wi are defined as: 

 

  
∑ = −−

−−

−−
−−

=
N

1j 1itit1itit

1itit1itit
i

)slns/(ln)ss(

)slns/(ln)ss(
w  . (8) 

 
The weight for the ith commodity is proportional to (sit – sit-1) / (ln sit – ln sit-1), the logarithmic 

mean of sit and sit-1, and the weights are normalized to sum to unity.9  Provided that the 

                                                 
9   The logarithmic mean of the expenditure shares in the two periods approximately equals an average of their 

arithmetic and geometric means with a 2/3 weight on the geometric mean.  If sit-1 equals sit, then the logarithmic 

means is defined as sit. 
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expenditure shares are computed with constant taste parameters bt, the Sato-Vartia index on the 

left side of (7) equals the ratio of unit-costs on the right, also computed with constant bt.  In 

addition to its ability to measure the change in unit-costs for the CES model, the Sato-Vartia 

index is noteworthy for its outstanding axiomatic properties, which rival those of the Fisher 

index (Balk, 1995, p. 87).  

 
B.  Effect of Random Technology or Tastes 

 As discussed above, we want to allow for random technology or taste parameters bit, and 

derive the standard error of the exact price index due to this uncertainty.  First, we must 

generalize the concept of an exact price index to allow for the case where the parameters bt 

change over time, as follows:10   

 

Proposition 1 

Given bt-1 ≠ bt,  let siτ denote the optimally chosen shares as in (6) for these taste parameters, τ = 

t-1, t,  and define ∏≡
=

τττ
N

1i

w
iii

ibb  b , using the weights wi  computed as in (8).  Then there exists 

ib
~

 between  1itb − and itb such that, 

 

  
iw

1it

it
N

1i p

p
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−=
∏  =  

)
~

,(c

)
~

,(c

1t

t

bp

bp

−
 .  (9) 

 

 This result shows that the Sato-Vartia index equals the ratio of unit-costs evaluated with  

                                                 
10   The proofs of all Propositions are in an Appendix, at: http://www.econ.ucdavis.edu/faculty/fzfeens/papers.html . 
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parameters ib
~

 that lie between the normalized values of the bit in each period.  Therefore, the 

Sato-Vartia index is exact for this particular value b
~

 of the parameter vector, but the index will 

change as the random parameters bt-1 and bt change.  The standard error of the index should 

reflect this variation.  The following proposition shows how the variance of the log Sato-Vartia 

index is related to the variance of the ln bit, denoted by 2
βσ : 

 
Proposition 2 

Suppose that  ln biτ are independently and identically distributed with variance 2
βσ  for i = 1,…,N 

and τ = t–1 or t.  Using the weights wi as in (8), denote the log  Sato-Vartia index b y  πsv ≡ 

∑ =
∆N

1i iti plnw .  Then conditional on prices, its variance can be approximated as: 

  var πsv  ≈ ws)pln(w 2
p

2
2
1

N

1i

2
svit

2
i

2
2
1

β
=

β σ=π−∆σ ∑ , (10) 

 

where ∑∑ == π−∆π−∆≡ N
1i

2
sviti

N
1i

2
svit

2
i )pln(w/)pln(ww is a weighted average of the wi with 

the weights proportional to  wi(∆ ln pit – πsv)2, and ∑ = π−∆≡ N
1i

2
sviti

2
p )pln(ws  is the weighted 

variance of prices. 

  

 Equation (10), which is conditional on the observed prices, shows how the variance of the 

Sato-Vartia index reflects the underlying randomness of the taste parameters bt and bt-1.  In 

effect, we are computing the variance in the price index from the randomness in the weights wi in 

(8) rather than from the randomness in prices used in the conventional stochastic approach.   
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 To compare (10) to (3), note that w  equals 1/N when the weights wi also equal 1/N.   In 

that case, we see that the main difference between our formula (10) for the variance of the price 

index and formula (3) used in the conventional stochastic approach is the presence of the term 

2
2
1

βσ .  This term reflects the extent to which we are uncertain about the parameters of the 

underlying CES function that the exact price index is intended to measure.  It is entirely absent 

from the conventional stochastic approach.  We next show how to obtain a value for this 

variance. 

 

C.  Estimators for 2
βσ  and for the Index Variance 

 To use equation (10) to estimate the variance of a Sato-Vartia price index we need an 

estimate of 2
βσ .  Changes in expenditure shares not accounted for by the CES model can be used 

to estimate this variance.  After taking logarithms, write equation (6) in first-difference form as:  

 
  itittit bln  pln)1(  cln)1(  sln ∆+∆−η−∆−η=∆ , (11) 

 

where ∆ln ct ≡ ln[c(pt,bt)/c(pt-1,bt-1)].  Next, eliminate the term involving ∆ln ct by subtracting 

the weighted mean (over all the i) of each side of equation (11) from that side.  Then using the 

fact that ∑ = 0 =∆N
1i iti slnw , equation (11) becomes, 

 
  itittit    pln)1(   sln ε+∆−η−α=∆ ,   i =1,…,N, (12) 

where, 

  ∑ ∆−η=α =
N

1i itit plnw)1(  , (13) 

and, 

  ∑ ∆−∆=ε =
N

1i itiitit blnw bln   . (14) 
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 Equation (12) may be regarded as a regression of the change in shares on the change in 

prices, with the intercept given by (13) and the errors in (14).  These errors indicate the extent of 

taste change, and are related to the underlying variance of the Sato-Vartia index.   

 Denote by tα̂  and η̂  the estimated coefficients from running weighted least-squares on 

(12) over i =1,…,N, using the weights wi.  Unless the supply curve is horizontal, the estimate of 

η may well be biased because of a covariance between the error term (reflecting changes 

preferences and shifts in the demand curve) and the log prices.  We ignore this in the next result, 

however, because we treat the prices as non-stochastic so there is no correlation between them 

and the errors εit.  We return to the issue of stochastic prices at the end of this section, and in the 

next.   

 The weighted mean squared error of regression (12) is useful in computing the variance 

of the Sato-Vartia index, as shown by the following result:   

 

Proposition 3 

Define ∑= =
N

1i
2
iww  as the weighted average of the wi , using wi from (8) as weights, with w  as 

in Proposition 2.  Also, denote the mean squared error of regression (12) by ∑ ε= =ε
N

1i
2
iti

2 ˆws , 

with ittitit pln)1ˆ(ˆslnˆ ∆−η+α−∆=ε .  Then an unbiased estimator for 2
βσ  is: 

  .
)ww1(2

s
s

2
2

−−
= ε

β
   (15) 
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 To motivate this result, notice that the regression errors εit in (14) depend on the changes 

in the ln bit minus their weighted mean.  We have assumed that the ln bit are independently and 

identically distributed with variance 2
βσ .  This means that the variance of 1ititit blnbln bln −−=∆  

equals 22 βσ .  By extension, the mean squared error of regression (12) is approximately twice the 

variance of the taste parameters, so the variance of the taste parameters is about one-half of the 

mean squared error, with the degrees of freedom adjustment in the denominator of (15) coming 

from the weighting scheme.   

 Substituting (15) into equation (10) yields a convenient expression for the variance of the  

Sato-Vartia index, 

 .
)ww1(4

wss
var

2
p

2

sv −−
≈π ε   (16) 

 

If, for example, each wi equals 1/N, the expression for var πsv becomes )2N(4/ss 2
p

2 −ε .  By 

comparison, the conventional stochastic approach resulted in the index variance )1N/(s2
p −  in 

(3), which can be greater or less than that in (16).   In particular, when )1N/()2N(4s2 −−<ε  

then conventional stochastic approach gives a standard error of the index that is too high, as will 

occur if the fit of the share equation is good.   

 To further compare the conventional stochastic approach with our CES case, let us write 

regression (12) in reverse form as, 

  it
1

it
1

svit )1(   sln)1(   pln ε−η+∆−η−π=∆ −− , (12´) 

where, 

  ∑ ∆=π =
N

1i itisv plnw  , (13´) 
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and the errors are defined as in (14).  Thus, the change in prices equals a trend (the Sato-Vartia 

index), plus a commodity-specific term reflecting the change in shares, plus a random error 

reflecting changing tastes.  Notice the similarity between (12´) and the specification of the 

pricing equation in (1´), where the change in share is playing the role of the commodity-specific 

terms δi.  Indeed, the constraint in (4) that the weighted commodity-specific effect sum to zero is 

automatically satisfied when we use (12´) and the Sato-Vartia weight wi in (8), because then 

∑ = 0 =∆N
1i iti slnw .  Thus, the CES specification provides an economic justification for the 

pricing equation (1´) used in the stochastic approach. 

 If we run WLS on regression (12´) with the Sato-Vartia weights iw , the estimate of the 

trend term is exactly the log Sato-Vartia index, ∑ ∆=π =
N

1i itisv .plnw  ˆ   If this regression is run 

without the share terms in (12´), then the standard error of the trend is given by equation (3) as 

modified to allow for heteroskedasticity by replacing N with 1/w–.  The standard error is 

somewhat lower if the shares are included.  Either of these can be used as the standard error of 

the Sato-Vartia index under the conventional stochastic approach. 

 By comparison, in formula (16) we are using both the mean squared error 2sε of the 

“direct” regression (12), and the mean squared error 2
ps  of the “reverse” regression (12´) (run 

without the share terms).  The product of these is used to obtain the standard error of the Sato-

Vartia index, as in (16).  Recall that we are assuming in this section that the taste parameters are 

stochastic, but not prices.  Then why does the variance of prices enter (16)?  This occurs because 

with the weights wi varying randomly, the Sato-Vartia index ∑=π = −
N

1i 1ititisv )p/pln(w   will vary 
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if and only if the price ratios (pit/pit-1) differ from each other.  Thus, the variance of the Sato-

Vartia index must depend on the product of the taste variance, estimated from the “direct” 

regression (12), and the price variance, estimated from the “reverse” regression (12´) without the 

share terms. 

 We should emphasize that in our discussion so far, regressions (12) or (12´) are run 

across commodities i =1,…,N, but for a given t.  In the appendix, we show how to generalize 

Proposition 3 to the case where the share regression (12) is estimated across goods i =1,…,N and 

time periods t =1,…,T.   In that case, the mean squared error that appears in the numerator of (15) 

is formed by taking the weighted sum across goods and periods.  But the degrees of freedom 

adjustment in the denominator of (15) is modified to take into account the fact that the weights 

wi in (8) are correlated over time (since they depend on the expenditure shares in period t-1 and 

t).  With this modification, the variance of the taste parameters is still relatively easy to compute 

from the mean squared error of regression (12), and this information may be used in (10) to 

obtain the variance of the Sato-Vartia index computed between any two periods.  

 Another extension of Proposition 3 would be to allow for stochastic prices as well as 

stochastic taste parameters.  This assumption is introduced in the next section under the condition 

that the prices and taste parameters are independent.  But what if they are not, as in a supply-

demand framework where shocks to the demand curve influence equilibrium prices:  then how is 

Proposition 3 affected?  Using the mean squared error 2sε  of regression (12) in equation (15) to 

compute the variance of the taste disturbances, or in equation (16) to compute the variance of the 

index, will give a lower-bound estimate.  The reason is that running WLS on regression (12) will 

result in a downward biased estimate of the variance of tastes: 22 s))ww1(2/s(E βε ≤−−  if taste 
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shocks affect prices, because the presence of taste information in prices artificially inflates the 

explanatory power of the regression.  

 
5.  Variance of the Exact Index for the CES Function with Stochastic Prices   

 Price indexes are often constructed using sample averages of individual price quotes to 

represent the price of goods or services in the index basket.11  In these cases, different rates of 

change of the price quotes for a good or service imply the existence of a sampling variance.  That 

is, for any commodity i, ∆ln pit will have a variance of 2
iσ , which can be estimated by 2

is , the 

sample variance of the rates of change of the various quotes for commodity i.  The variances of 

the lower-level price aggregates are another source of variance in the index besides the variances 

of the weights considered in Proposition 3.12   

 In the special case where the commodities in the index are homogeneous enough to 

justify the assumption of a common trend for their prices and the log changes in commodity 

prices all have the same variance, an unbiased estimator for this variance is ),w1/(s2
p −  where 2

ps  

is defined in Proposition 2.13  This special case yields results that are easily compared with the 

results from the conventional stochastic approach.   

 In the more general case, no restrictions are placed on the commodity-specific price  

                                                 
11 Even if every price quoted for a good is included in the sample, we can still adopt an infinite population 
perspective and view these prices as realizations from a data-generating process that is the object of our 
investigations. 
12 Estimates of the variance of the Consumer Price Index (CPI) produced by the Bureau of Labor Statistics have long 
included the effects of sampling error in the price measures used as lower-level aggregates in constructing the CPI.  
Now they also include the effects of the variances of the weights used to combine these lower-level aggregates, 
which reflect sampling error in expenditure estimates.  See U.S. Bureau of Labor Statistics (1997), p. 196. 
13 The denominator is a degrees of freedom correction derived as follows.  Assume for simplicity that E[∆ ln pit – E(∆ 
ln pit)]

2 =1.  Then E(∆ ln pit – π t )
2 = E(∆ ln pit –  ∑ wj∆ ln pjt )

2  = E[(1–wi)∆ ln pit –  ∑j≠i wj ∆ ln pjt ]
2 = (1– wi)

2 + ∑j≠i wj
2 

= 1– 2wi + ∑j wj
2.  The weighted average of these terms, ∑i wi [1– 2wi + ∑j wj

2], is 1– ∑i wi
2 = 1– w– . 
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trends, but we do assume that the price disturbances are independent of the weight disturbances.  

Although allowing ∆ln pit to have a non-zero covariance with the wi would be appealing if 

positive shocks to bit are thought to raise equilibrium market prices, this would make the 

expression for var πsv quite complicated.  With the independence assumption, we obtain 

Proposition 4: 

 
Proposition 4   

Let prices and weights wi in (8) have independent distributions, and let 2
is  be an estimate of the 

variance of ∆ ln pit, i =1,…,N.  Then the variance of the Sato-Vartia price index can be  

approximated by: 

  2
i

N

1i

2
i

2
i

2
2
12

p
2

2
12

i

N

1i

2
isv )w1(wsswssswvar −++≈π ∑∑

=
ββ

=
, (17) 

 

where 2sβ
  is estimated from the mean squared error of the regression (12) as in (15).  In the 

special case when every price variance may be estimated by )w1/(s2
p − ,  (17) becomes, 

   2
i

N

1i

2
i

2
p

2
2
12

p
2

2
12

psv )w1(w)]w1/(s[swss)w1/(wsvar −−++−≈π ∑
=

ββ . (17´) 

 

 This proposition shows that the approximation for the variance of the price index is the  

sum of three components:  one that reflects the variance of prices, another that reflects the 

variance of preferences and holds prices constant, and a third that reflects the interaction of the 

price variance and the taste variance.  The first term in (17) or (17´) is similar to the variance 

estimator in conventional stochastic approach.  If each wi equals 1/N, the first term in (17´) 
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becomes )1N/(s)w1/(ws 2
p

2
p −=− , just as in (3).  The second term in (17) or (17´) is the same as 

the term that we derived from stochastic tastes, in Proposition 2.  The third term is analogous to 

the interaction term that appears in the expected value of a product of random variables (Mood, 

Graybill and Boes, 1974, p. 180, Corollary to Theorem 3).  The presence of this term means that 

the interaction of random prices and tastes tends to raise the standard error of the index.  If each 

wi equals 1/N, then the second term in (17´) becomes )2N(4/ss 2
p

2 −ε  and the third term becomes    

[ ] [ ]N/11)2N(4/ss 2
p

2 −−ε . 

 
6.  Translog Function 

 We next consider a translog unit-cost or expenditure function, which is given by: 

 

  jtitij

N

1j

N

1i

N

1i
itit0tt plnpln 

2

1
 pln    ),(cln γ∑∑+∑α+α=

===
αp , (18) 

 
 

where we assume without loss of generality that γij = γji.  In order for this function to be linearly 

homogeneous in prices we must have 1 N
1i it =α∑ =  and 0N

1i ij =∑ γ= .  The corresponding share 

equations are, 

  jt

N

1j
ijitit pln    s ∑

=
γ+α=  ,   i=1,…,N. (19) 

 
 We will treat the taste or technology parameters α

it
 as random variables, but assume that 

the γij are fixed.  Suppose that αit = αi + εit, where the constant coefficients αi satisfy ,1 N
1i i =α∑ =  

while the random errors εit satisfy .0 N
1i it =ε∑ =   Using this specification, the share equations are, 
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  itjt

N

1j
ijiit pln    s ε+γ+α= ∑

=
 ,   i=1,…,N. (20) 

We assume that εit is identically distributed with E(εit)=0 for each equation i, though it will be 

correlated across equations (since the errors sum to zero), and may also be correlated over time.  

Since the errors sum to zero the autocorrelation must be identical across equations.  We will 

denote the covariance matrix of the errors by E(εt εt′ ) = Ω, and their autocorrelation is then  

E(εt εt -1′ )  = ρΩ. 

 With this stochastic specification of preferences, the question again arises as to what a 

price index should measure.  In the economic approach, with αit constant over time, the ratio of 

unit-costs is measured by a Törnqvist (1936) price index.  The following result shows how this 

generalizes to the case where αit changes: 

 
Proposition 5 
 
Defining ( ) 2/    it1iti α+α=α − , and ( ) 2/s  s  w it1itit += − , where the shares siτ are given by (19) 

for the parameters αiτ, τ = t-1, t,  then, 

  
itwN

1i 1it

it

p

p∏
= −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
) ,(c

) ,(c
 

1t

t

αp

αp

−
= . (21) 

 
 

 The expression on the left of (21) is the Törnqvist price index, which measures the ratio 

of unit-costs evaluated at an average value of the taste parameters αit.  This result is suggested by 

Caves, Christensen and Diewert (1982), and shows that the Törnqvist index is still meaningful 

when the first-order parameters αi of the translog function are changing over time. 
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 The variance of the Törnqvist index can be computed from the right side of equation (21) 

expressed in logs. Substituting from equation (18), we find that the coefficients  iα multiply the 

log prices.  Hence, conditional on prices, the variance of the log-change in unit-costs will depend 

on the variance of ( ) ( ) 2/  2/    it1itiit1iti ε+ε+α=α+α=α −− .  The covariance matrix of these taste 

parameters is 2/)1(  )')((E Ωαααα ρ+=−− .  This leads to the next result: 

 
Proposition 6 

Let the parameters αit  be distributed as αit = αi + εit,  with E(εt εt′ ) = Ω and E(εt εt -1′ )  = ρΩ,  

and denote the log Törnqvist index by πt ≡ .plnwN
1i itit∑ = ∆  Then, conditional on prices, the  

variance of  πt  is: 

tt2

1
t ln'ln)1(var pΩp ∆∆ρ+=π . (22) 

 

 Since the errors of the share equations in (20) sum to zero, the covariance matrix Ω is 

singular, with Ωι = 0 where ι is a (Nx1) vector of one’s. Thus, the variance of πt is equal to, 

 

]ln[']ln)[1(var ttttt 2

1 π−∆π−∆ρ+=π pΩp . (23) 

 

The variance of the Törnqvist index will approach zero as the prices approach a common 

growth rate, and this property also holds for the variance of the Sato-Vartia index in Proposition 

2 and the conventional stochastic approach in (3).  But unlike the stochastic approach in (3), the 

variance of the Törnqvist index will depend on the fit of the share equations.  Our formula for the 

variance of the Törnqvist index is more general than the one that we obtained for the Sato-Vartia 
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index, because Proposition 6 does not assume that the taste disturbances are all independent and 

identically distributed.  

The fit of the share equations will depend on how many time periods we pool over, and 

this brings us to the heart of the distinction between the stochastic and economic approaches.  

Suppose we estimated (20) over just two periods, t-1 and t.  Then it is readily verified that there 

are enough free parameters αi and γij to obtain a perfect fit to the share equations.  In other words, 

the translog system is flexible enough to give a perfect fit for the share equation (20) at two 

points.  As we noted in section 3, such flexibility is a virtue in implementing the economic 

approach to index numbers: indeed, Diewert (1976) defines an index to be superlative if it is 

exact for an aggregator function that is flexible.14  But from an econometric point of view, we 

have zero degrees of freedom when estimating the share equations over two periods, so that the 

covariance matrix Ω cannot be estimated.  How are we to resolve this apparent conflict between 

the economic and stochastic approaches? 

We believe that a faithful application of the economic approach requires that we pool 

observations over all available time periods when estimating (20).  In the economic approach, 

Christensen and Diewert (1982a,b) allow the first-order parameters αit of the translog unit-cost 

function to vary over time (as we do above), but strictly maintain the assumption that the second-

order parameters γij are constant (as we also assume).  Suppose the researcher has data over three 

(or more) periods.  If the share equations are estimated over periods one and two, and then again 

                                                 
14  Diewert (1976) defines an aggregator function to be flexible if it provides a second-order approximation to an 
arbitrary function at one point, i.e. if the parameters can be chosen such that the value of the aggregator function, and 
its first and second derivatives, equal those of an arbitrary function at one point.  We are using a slightly different 
definition of flexibility:  if the ratio of the aggregator function, and the value of its first and second derivatives, equal 
those of an arbitrary function at two points. 
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over periods two and three, this would clearly violate the assumption that γij are constant.  Since 

this is an essential assumption of the economic approach, there is every reason to use it in our 

integrated approach.  The way to maintain the constancy of γij is to pool over multiple periods, 

which allows the covariance matrix Ω to be estimated.  Pooling over multiple periods is also 

recommended for the CES share equations in (12), to satisfy the maintained assumption that η is 

constant, even though in the CES case we do not obtain a perfect fit if (12) is estimated over a 

single cross-section (provided that N > 2). 

Once we pool the share equations over multiple periods, it makes sense to consider more 

general specifications of the random parameters αit.  In particular, we can use αit = αi + tβi + εit, 

where the coefficients βi on the time trend satisfy .0 
N

1i i =β∑ =  Then the share equations become, 

  itjt

N

1j
ijiiit pln t   s ε+γ+β+α= ∑

=
 ,   i=1,…,N; t =1,…,T . (24) 

 

We make the same assumptions as before on the errors εit.  Proposition 5 continues to hold as 

stated, but now the  iα are calculated as ( ) ( ) 2/  2/2/    it1itiiit1iti ε+ε+β+α=α+α=α −− .  The 

variance of these is identical to that calculated above, so Proposition 6 continues to hold as well.  

Thus, including time trends in the share equations does not affect the variance of the Törnqvist 

index. 

 
7.  Translog Case with Stochastic Prices 
 
 As in the CES case, we would like to extend the formula for the standard error of the 

price index to include randomness in prices as well as taste parameters.  For each commodity i 

we suppose that ∆ln pit is random with variance of 2
iσ , which can be estimated by 2

is , the sample 
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variance of the rates of change of the various quotes for item i.  These “lower level” sampling 

errors are assumed to be independent across commodities, and are also independent of error εit in 

the taste or technology parameters, αit = αi + εit.  Then the standard error in Proposition 6 is 

extended as: 

 
Proposition 7 

Let ∆ ln pit, i =1,…,N, be independently distributed with mean 0 and variances estimated by 2
is , 

and also independent of the parameters αit = αi + εit .  Using the weights ( ) 2/s  s  w it1itit += − ,  

the variance of the log Törnqvist index is approximated by: 

var(π)  ≈  ∑ wit
2 si

2 +  14 ∑i  ∑j  (∆ ln pit)(∆ ln pjt) [∑k  γ$ikγ$jk sk
2]  

+   12 (1 + ρ$ )( ∆ ln pt)′ Ω$ ( ∆ ln pt)
 +  14 ∑i (si

2)[∑j  γ$ij
2sj

2]  +  12 (1 + ρ$ )[∑ Ω$ ii si
2].  (25) 

In the case where all prices have the same trend and variance, we can estimate σi
2 by  

sp
2/(1 – w–) for all i and (25) becomes: 

var(π)  ≈  sp
2 w– /(1 – w–) +  14 [sp

2/(1 – w–)]{∑i  ∑j  (∆ ln pit)(∆ ln pjt) [∑k  γ$ikγ$jk]}   

  +  12 (1 + ρ$ )( ∆ ln pt)′ Ω$ ( ∆ ln pt)  +  14 [sp
2/(1 – w–)]2 [∑i  ∑j  γ$ij

2]   

  +  12 [sp
2/(1 – w–)](1 + ρ$ )[∑i  Ω$ ii] (25´) 

 

 Thus, with stochastic prices the variance of the Törnqvist index includes five terms.  The 

first term in (25) contains the product of the squared weights times the price variances, the 

second term reflects the effect of the price variance on the weights, the third term reflects the 
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variance of the weights that comes from the taste shocks, the fourth term reflects the interaction 

of the price variance component and the component of the weight variance that comes from the 

price shocks, and the fifth term reflects the interaction between the price variance and the 

component of the weight variance that comes from the taste shocks.   The expression for the 

variance of the Sato-Vartia index in equation (17) also includes the analogous expressions for the 

first, third and fifth terms in (25).  The terms in (25) reflecting the effect of the price shocks on 

the weight variance are new, however, and arise because the linearity of the Törnqvist index 

allow use to include them; they were omitted for the sake of simplicity in the CES case.  These 

terms can be omitted from the estimator of the index variance if the model of consumer behavior 

is specified with expected prices, rather than realized prices, as explanatory variables. 

 
8.  Application to Productivity Growth in Singapore 
 
 We now consider an application of our results to productivity growth in Singapore.  As 

discussed in the introduction, Hsieh (2002) has recently computed measures of total factor 

productivity (TFP) for several East Asian countries, and obtains estimates higher than Young 

(1992, 1995) for Singapore.  The question we shall address is whether Hsieh’s estimates for 

productivity growth in Singapore are statistically different from those obtained by Young.   

 Hsieh uses three different measures of the rental rate on capital for Singapore.  They are 

all motivated by the Hall-Jorgenson (1967) rental price formula, which Hsieh writes as: 

 

   )p̂i(
p

p

p

r
jk

k
jj δ+−= , (26) 

 

where k
jp  is the nominal price of the jth type of capital, p is the GDP deflator, i is a nominal  
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interest rate, kp̂  is the overall inflation rate for capital, and δj is the depreciation rate for the jth 

type of capital.  For the real interest rate )p̂i( k− , Hsieh uses three different measures:  (i) the 

average nominal lending rate of the commercial banks, less the overall inflation rate for capital 

kp̂ ; (ii) the earnings-price ratio of firms on the stock market of Singapore; (iii) the return on 

equity from firm-level records in the Singapore Registry of Companies.  These are all plotted in 

Figure 1 (reproduced from Hsieh, 2002, Figure 2), where it can be seen that the three rates are 

substantially different. 

 To compute the real rental price, capital depreciation is added to all three series in Figure 

1, after which the calculation in (26) is made using the investment price deflators for five kinds 

of capital for k
jp .  Hsieh weights these five types of capital by their share in payments to obtain 

an overall rental rate corresponding to each interest rate.  We will denote these by k
tr , k=1,2,3, 

depending on the three interest rates used.  The plot of the real rental prices (not shown) looks 

qualitatively similar to Figure 1.  In Figure 2 we show the percent change in the rental prices 

(computed as the change in the log of (26), times 100), where it is evident that the dip in the 

commercial bank lending rate in 1974 has a dramatic effect on that rental price.  Hsieh (2002, p. 

509) regresses the average growth of rentals on a constant and time-trend, and the coefficient of 

the time trend over each sample – representing the average growth of each rental – is reported in 

Part A of Table 1.   

 On the wage side, Hsieh distinguishes eight types of workers, by gender and four 

educational levels.  He uses benchmark estimates for wages and employment in 1966, 1972, 

1980 and 1990 and annual data on income and employment from labor market surveys beginning 
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in 1973 to calculate the annual growth rates of wages.  The average growth of wages over various 

times periods is shown in part A of Table 1.15 

 The labor share of 0.511 shown in part A is taken from Young (1995), and is held 

constant.  Then dual TFP growth is computed by the weighted average of the annual growth in 

the wage and rental price of capital, using the constant labor share as the weight on labor.  This 

results in dual TFP growth ranging from 1.76 percent to 2.46 percent per year, as shown in the 

second-last column of Table 1.  These estimates are comparable to the estimates for other Asian 

countries, but they contrast with the negative estimates of primal TFP for Singapore from Young 

(1995), shown in the final column.   

 The question we wish to address is whether the Hsieh’s estimates in the second-last 

column of part A are significantly different from Young’s estimates in the last column.  Hsieh 

(Table A2, p. 523) computes confidence intervals on the average growth of each of the real 

rental prices in part A using the standard errors from the coefficient on each time trend.  For two 

of the three alternative measures, the 95 percent confidence interval includes a decline of nearly 1 

percent per year.  Hsieh uses the bounds of these confidence intervals for rental price growth to 

calculate confidence intervals for TFP growth.  The confidence intervals for TFP growth all lie  

above 1 percent per year, so according to his calculations, TFP growth is significantly greater 

than zero.   

 We would argue that this procedure fails to convey the true uncertainly associated with 

the TFP estimates, for two reasons.  First, and most important, we should treat each interest rate 

– and associated rental prices on capital – as an independent observation on the “true” rate, and 

                                                 
15   These results are somewhat higher than reported in Hsieh (2002, p. 509), because we have corrected a slight 
inconsistency in his calculation. 
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pool across these to compute the standard error of the rentals.  Second, we should distinguish this 

standard error in any one year from that over the entire sample period.  Hsieh’s procedure is to 

compute average TFP over the entire sample, along with its standard error, but this does not tell 

us whether TFP growth in any one year (or shorter period) is significantly positive.  We now 

proceed to address both these points. 

 
8.1  Error in Annual TFP 

 Before we can construct our estimate of the standard error of dual TFP, we first need to 

re-measure productivity using annual data on labor shares, wages, and the rental price.  These 

results are shown in part B of Table 1.  Annual data for wages and labor shares are available 

beginning in 1973, and the annual data for all three rentals continues until 1992, so that becomes 

our sample period.   We first aggregate the eight types of labor using a Törnqvist price index, and 

then compute dual TFP growth using a Törnqvist index over the real wage index and real rental 

price of capital: 

  )p/rln()ss()p/wln()ss(TFP t
k
t1KtKt2

1
tt1LtLt2

1k
t ∆++∆+≡∆ −− , (27) 

 

where sLt is the labor share in period t, sKt is the capital share with sLt + sKt =1, wt is the wage 

index, and rt is the rental price on capital.  The labor shares are computed from Economic and 

Social Statistics, Singapore, 1960-1982, and from later issues of the Yearbook of Statistics, 

Singapore.  These shares range from 0.36 to 0.47 over 1973-1992, and average 0.418, which is 

less than the labor share shown in part A of Table 1 and used by Young (1995) and Hsieh.   

 In addition to the average labor share, we report in part B the average growth rates of the 

rentals prices and wage index, as well as the computed dual TFP.  The average rental price 
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growth differs substantially between parts A and B.  This reflects the use of different formulas: as 

noted above, Hsieh uses a regression-based method to compute the growth rate, whereas we use 

the average of the difference in logs of (26), times 100.  Hsieh states that his method is less 

sensitive to the initial and end points of the sample period, whereas the average of the difference 

in log rentals certainly does depend on our sample period.  It is evident from Figure 2 that the 

rental price computed with the average bank-lending rate falls by about 200 percent from 1973-

74, and then rises by about 300 percent from 1974-75, and these values are the largest in the 

sample.  If instead of using 1973-1992 as the sample period, we use 1975-1992, then the average 

growth in the rental price computed with the commercial bank lending rate falls from 2.5 percent 

per year to –1.4 percent per year!   

 The growth rates of wages reported in Parts A and B also differ slightly because of 

differences in sample periods and in formulas used.16  Dual TFP based on the Törnqvist index, 

reported in part B, shows higher growth for two of the rental price measures, and lower growth 

for one measure, than dual TFP based on average growth rates, reported in part A.  Using the 

mean of the three alternative rental price estimates, the growth of dual TFP based on the 

Törnqvist index is 2.48 percent per year over 1973-1992.  Yet this falls dramatically to 1.37  

percent per year if 1973-1974 (when one of the rental prices moved erratically) is omitted. 

 Our goal is to compute the standard error of the Törnqvist index in (27), where this error 

arises from two sources:  (i) error in measuring the rental prices of capital, based on the three 

alternative real interest rates used; (ii) error because the annual data will not fit a translog cost 

function perfectly.  Under the hypothesis that the homothetic translog cost function model 

                                                 
16   As discussed above, we use a Törnqvist price index constructed over the eight types of labor, whereas Hsieh uses 
an averaging procedure. 
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describes the process generating the data, the Törnqvist price index exactly summarizes the 

change in the cost function.  Thus, we assume that changes in expenditure shares represent 

responses to changes in wages and rental prices in accordance with the translog model, plus 

effects of random shocks to expenditures.  Ceteris paribus, the greater the variance of the share 

changes that is unexplainable by the translog model, the greater the variance of the random 

shocks that affect the weights in the Törnqvist index.   

 Beginning with error (i), we first construct the mean rental price: 

   k
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t rln
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where k=1,2,3 denotes the three rental prices.  Then the sample variance of the change in mean 

rental price, denoted by 2
ts , is,   

  2
1tt

k
1t

k
t

3

1k

2
t )]r/rln()r/r[ln(

6

1
s −−

=
−≡ ∑ . (29) 

 In Figure 3 we plot mean TFP growth in each year,  
 

             )p/rln()ss()p/wln()ss(TFP tt1KtKt2
1

tt1LtLt2
1

t ∆++∆+≡∆ −− , (30) 

 

and the 95 percent confidence interval (with 2 degrees of freedom) constructed as ±∆ tTFP  

2
t1KtKt2

9.2 s)ss( −+ .   We can see that the confidence interval on mean TFP growth over 1973-

1995 is extremely wide, but this is not surprising given the erratic data on rentals shown in 

Figure 2.   In Table 1, we report in parentheses the average standard deviation of the change in 
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rental prices, and the average standard error of mean TFP growth, over the 1973-1992 period.  

Consistent with Figures 2 and 3, both these are extremely large. 

 Furthermore, even when we restrict attention to the shorter period  of 1975-1992 shown 

in Figure 4, the confidence interval of mean TFP growth still includes zero in every year.  This 

can also be seen from Table 1, where we report the average standard deviations of the change in 

rental prices, and mean TFP growth over 1975-1992.  The average value of mean TFP growth is 

1.4 percent, but it has an average standard error of 5 percent.  Accordingly, in every year we 

cannot reject the hypothesis that mean TFP growth is zero or negative.  Thus, on an annual basis, 

we would be hard pressed to conclude that the positive productivity estimates of Hsieh are 

significantly different than the negative estimates of Young (1995). 

 
8.2  Error in Cumulative TFP 

 Nevertheless, our interest is not in the hypothesis that TFP growth in each year is 

positive, but rather, that cumulative TFP growth is positive.  An erratic movement in a rental 

price one year might very well be reversed the next year, resulting in a negative autocorrelation 

that reduces the variance of long-run rental growth.  To assess the implications of this, we instead 

consider longer differences in TFP, such as 15-year growth, 
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The standard error of this can be measured using the variance of measurement error in the long-

difference of rental prices, 
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 In Figure 5 we plot the mean 15-year TFP growth ending in the years 1988-1992, along 

with the 95 percent confidence interval ±∆ 15,tTFP  2
15,t15KtKt2

9.2 s)ss( −+ .   We have five 

observations for the 15-year cumulative TFP growth, and in four out of five cases the cumulative 

growth is significantly greater than zero.  The only exception is 1989, where the erratic 

movement in the mean rental from 1974, and its large standard error, makes that observation on 

TFP growth insignificantly different from zero.  In all other end years the confidence intervals on 

cumulative TFP growth exclude zero.  This can also be seen from part C of Table 1, where we 

report the mean values of the growth in wages, mean rental, and mean TFP growth over the 15-

year period, along with their standard deviations.  Cumulative TFP growth of 21.8 percent 

(averaged over the end-years 1990-92) vastly exceeds its standard error of 3.8 percent.  Notice 

that this standard deviation is actually smaller than the standard deviation of the annual change 

in TFP growth in part B, indicating some negative correlation in the measurement error of rental 

price changes.17  Accordingly, we cannot reject that hypothesis that 15-year mean TFP growth is  

positive, except in 1989. 

8.3  Error from Fitting the Translog Function 

 We still need to check the second source of error in the index, which arises because a 

translog cost function does not fit the data perfectly.  We proceed by estimating the share 

equations for the translog cost function, using the mean rental price tr  and the Törnqvist wage 

                                                 
17 The standard deviation of the change in rental prices first increases with the lag length, and then falls.  That is, let 

2
T,ts  denote the variance of the change in rental prices as in (7), but with a lag length of T.  For T=1,2,3,5,10,15, the 

standard deviation of 2
T,ts  (averaged over end-years 1990-1992) equals  5.0, 7.5, 8.7, 18.8, 8.8, 6.6%. 
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index wt.
18  Dropping one share equation (since shares sum to unity), we are left with estimating 

the capital share equation: 

  KtttKLttKKLKt )p/wln()p/rln(s ε+γ+γ+α= , (33) 

 

where sKt is the capital share.  We allow for first-order autocorrelation ρ in the error εKt when 

estimating this equation.  So losing one observation to allow for estimation of ρ, the sample 

period becomes t =1974,…,1992, or t =1976,…,1992 when we exclude the erratic change in 

rentals.  Results for both periods are shown in Table 2. 

 Over the 1974-1992 period, we obtain significant estimates for both γKK and γKL in the 

first regression (row) in Table 2, but with these estimates we strongly reject the homogeneity 

restriction that γKK + γKL = 0.  If we go ahead and impose this constraint, then the results, shown 

in the second regression of Table 2, are quite poor:  γKK = –γKL is insignificant, and most of the 

explanatory power comes from the autocorrelation ρ = 0.91.  This is likely caused by the erratic 

movement in the mean rental price over 1973-74, so instead we consider estimation over 1976-

1992.  In that case, unconstrained estimation in the third regression leads to estimates of γKK and 

γKL that are opposite in sign, and the homogeneity restriction γKK = –γKL is borderline between 

being accepted and rejected at the 95 percent level.  Using this restriction, we obtain the 

estimates in the final regression, with γKK = 0.10, ρ = 0.10, and a standard error of the regression 

equal to 0.012.  We shall use these estimates in the calculations that follow. 

                                                 
18   The second error can be assessed by either fitting a translog unit-cost function to the data on rental prices and the 
Törnqvist wage index (2 factors), or to the data on the rental prices and wages for each type of labor (9 factors of 
production).  For convenience, we have uses just 2 factors. 
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   To construct the standard deviation of 15-year TFP growth due to the translog error, we 

re-write the term on the right of (22) as, 
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where ωKK is the standard error of the capital-share regression.  We obtain (34) from (22) by 

using the simple structure of the covariance matrix 
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KKΩ , which follows since 

the errors in the capital and labor share equations sum to zero. 

 With autocorrelation of ρ = 0.10, the term ρ15
 is negligible.  So taking the square root of 

(34), the standard error of 15-year TFP growth becomes KK15tt15tt2

1 )r/rln()w/wln( ω− −− .  

The 15-year rise in the wage/rental ratio is quite large:  68% from the values in part C of Table 1.  

part C of Table 1.  But then multiplying by the standard error of the capital-share equation, which 

is 0.012, and dividing by 2 , we obtain the small standard error of 0.6 percent shown in 

parentheses in part C.  This is about one-sixth the size of the standard error due to measurement 

error in the rentals, so the imprecision in fitting the translog function does not add very much to 

the standard error of the productivity index in this case.   

 Next, we need to check the various interaction terms between the measurement error in 

the rentals and in error in fitting the translog function; these are the second, fourth and fifth terms 

on the right of (25).  Computing these for the 15-year changes in factor prices, and using the 

estimated coefficient γKK = 0.10, we obtain an additional standard error of 0.1%, also shown in 

parentheses in part C.  Summing the squares of these various sources of error in the TFP index, 
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and taking the square root, we obtain the total standard deviation of the 15-year TFP growth of 

3.9%.  The 95% confidence interval for 15-year growth (averaged over 1990-1992) is then 

(10.6%, 33.1%), which easily excludes zero.  Therefore, we conclude the even taking into 

account the errors in computing the dual Törnqvist index, cumulative productivity growth in 

Singapore has indeed been significantly greater than zero.  

9.  Conclusions 

The problem of finding a standard error for index numbers is an old one, and in this paper 

we have proposed what we hope is a useful solution.  We have extended the stochastic approach 

to include both stochastic prices and stochastic tastes.  The variance of the taste parameters, 

which affect the weights in the price index formula, is obtained by estimating a demand system.  

Our proposed method to obtain the standard error of prices indexes therefore involves two steps:  

estimating the demand system, and using the standard error of that regression (or system), 

combined with estimates of the sampling error in the prices measures themselves, to infer the 

variance of the price index. 

While our methods extend the stochastic approach, they also extend the economic 

approach to index numbers by integrating the two approaches.  It is worth asking why standard 

errors have not been part of the economic approach to indexes.  Consider, for example, the 

problem of estimating a cost of living index.  We could estimate the parameters of a model of 

preferences from data on expenditure patterns and then use these estimates to calculate a cost of 

living index. Yet, if the data fit the model perfectly, the cost of living index calculated from the 

parameter estimates would have the same value as an exact index formula that uses the data on 

expenditure patterns directly.  Moreover, Diewert’s (1976) paper showed that the types of 
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preferences or technology that can be accommodated using the exact index approach are quite 

general.  As a result, econometric modeling was no longer thought to be necessary to estimate 

economic index numbers.  

A consequence of the lack of econometric modeling is that estimates of economic index 

numbers are no longer accompanied by standard errors, such as those that appear, for example, in 

Lawrence (1974).  Nevertheless, if the model that underlies an exact index number formula has 

positive degrees of freedom, an error term will usually need to be appended to the model to get it 

to fit the data perfectly.  This will certainly be the case if the consumption or production model is 

estimated over a panel data set with multiple commodities and years, which is our presumption.  

Indeed, we would argue that the assumption of the economic approach that taste parameters are 

constant between two years, when applied consistently over a time series, means that the 

parameters are constant over all years of the panel.  This will certainly mean that the demand 

system must have an error appended, and as a result, the taste parameters and exact price index 

are also measured with error.  We have derived the formula for this error in the CES and translog 

cases, but our general approach can be applied to any functional form for demand or costs. 

In our application to Asian growth, we have contrasted the TFP estimate of Hsieh (2002) 

to those of Young (1992, 1995).  Hsieh argues that the available evidence on returns to capital 

from financial sources do not show the decline that is implicit in the work of Young.  Hsieh 

considers three different measures of the return to capital, and their associated rental prices.  

While the rentals differ markedly from each other in some years, the error in measuring the true 

rental is not enough to offset the underlying fact that their decline is much less than the 

cumulative rise in real wages:  a 6.8 percent cumulative decline in the average rental over 15 

years, as compared to a 61 percent increase in the real wage.  Even when including the additional 



  

 

39 

error from fitting a translog function to the data for Singapore, the error on 15-year cumulative 

TFP growth remains low enough so that its confidence interval is entirely positive.  Taken over 

this sufficiently long time-period, there is compelling evidence that Singapore has enjoyed 

positive productivity growth, in contrast to the conclusions of Young. 
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Table 1: Dual Total Factor Productivity Growth in Singapore 
 

    
                      Growth Rate (Percent):  
      Labor   Real  Real Dual  Primal 
      share Rental Wages TFP  TFPa 

                               
 
Part A:  Revised from Hsieh (2002) 

Real interest rate used: 
Return on equity (1971 – 1990)  0.511 –0.20  3.64 1.76 –0.69 
Bank lending rate (1968 – 1990)  0.511   1.64  2.86 2.26 –0.22 
Earnings-price ratio (1973 – 1990)  0.511 –0.50  4.44 2.02 –0.66 
            
 
Part B:  Computed with annual data, Törnqvist index 

Real interest rate used: 
Return on equity (1973 – 1992)  0.418 –0.85  4.33 1.24 
Bank lending rate (1973 – 1992)  0.418   2.50  4.33 3.35 
Earnings-price ratio (1973 – 1992)  0.418   1.62  4.33 2.85 
 
Average rental price (1973 – 1992)   0.418   1.09  4.33  2.48 
      Ave. stand. dev. (1973 – 1992)    (17.4)  (10.5) 
 
Average rental price (1975 – 1992)   0.424 –0.58  4.02  1.37 
      Ave. stand. dev. (1975 – 1992)     (8.7)   (5.0) 
            
 
Part C:  Computed with 15-year changes, Törnqvist index 

Real interest rate used: 
Average rental price (end-years 1990–92)  0.422 –6.82  61.0  21.8 
Ave. stand. dev. due to error in rentals    (6.6)   (3.8) 
 
Ave. stand. dev. due to translog error       (0.6) 
Stand. dev. due to interaction between errors     (0.1) 
Total standard deviation b       (3.9) 
            
 
Notes: 
a  Calculated by Hsieh from primal estimates in Young (1995), which depend on the sample 
period used. 
b  Computed as the square root of the sum of squared standard deviations listed above. 
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Table 2:  Translog Estimation, 
Dependent Variable – Capital Share 

 
    
 

Sample  Constant  ln(Real ln(Real    ρ S.E. of R
2
, N 

      Rental)  Wage)  regression 
              
 
1974 – 1992: 
     0.63  -0.020  -0.14  0.50 0.010 0.92, 19 
    (0.02)  (0.011) (0.022) (0.23) 
 
constrained:*    0.50  -0.015  0.015  0.91 0.015 0.81, 19 
    (0.08)  (0.014) (0.014) (0.10) 
 
 
1976 – 1992: 
     0.65   0.005  -0.14  0.44 0.011 0.89, 17 
    (0.02)  (0.048) (0.027) (0.23) 
 
constrained:*    0.72    0.10  -0.10  0.10 0.012 0.87, 17 
    (0.02)  (0.011) (0.011) (0.27) 
 
              
 
*  The constraint used is that the coefficients of the log real rental and real wage should be equal 
but opposite in sign.  This constraint is rejected over the 1974-1992 period, but not rejected over 
1976-1992.
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Figure 2:  Change in the Rental Prices (Percent)
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Figure 1:  Real Interest Rates in Singapore (Percent)
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Figure 4: Annual TFP Growth (Percent)
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Figure 3: Annual TFP Growth (Percent)
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Figure 5: 15-Year TFP Growth (Percent)
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