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I. INTRODUCTION

Suppose that the government is planning to build a canal through

Everglades National Park. What is the appropriate way to perform a cost—

benefit analysis? Clearly, one calculates the benefit from building the

canal, and computes the direct cost of constructing it. An additional cost is

the foregone benefit of the park as a recreational area. It would be

incorrect, however, to simply compare these costs and benefits and then

undertake to build the canal if benefits exceed costs.

The decision to build is essentially irreversible; the ecology of the

Everglades will have been irreparably damaged. The decision to defer building

is, however, reversible. This asymmetry, when properly taken into account,

leads to a rule which says build the canal only if benefits exceed costs by a

certain positive amount.

This point has been recognized by Krutilla (1967) and others (e.g., Henry

(1974) and Greenley, Walsh and Young (1981)) and is also implicit in most

investment models. The investment rule in the original Jorgenson (1963)

formulation relies on the complete reversibility of investment; the more

sophisticated adjustment—cost models lead to lower capital stocks, because it

is recognized that investment cannot in the future be costlessly and

instantaneously undone.

Although this point is known, it is often not dealt with.1 The correct

calculation involves comparing the value of investing today with the (present)

value of the option of investing at all possible times in the future.2 This

is a comparison of mutually exclusive alternatives.

In this paper, we explicitly calculate a formula for the value of the

option to invest in an irreversible project and study its properties. The
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model has applicability to a wide range of problems in both the public and

private sectors; examples are discussed in Section II. tn Section III we

solve the valuation problem for three cases: where the present value of

benefits from the project (were it undertaken today) follows geometric

Brownian motion, where the present value of both benefits and the investment

cost follow such a process, and where the present value of benefits almost

always follows a Wiener process, but can jump discretely to zero, at that

point making the option to invest worthless. In every case we assume that the

option is infinitely—lived.

The first of our cases is formally identical to the problem of valuing an

infinitely—lived call option on a dividend—paying stock. This correspondence

is not surprising, as a stock option gives its owner the right to pay a fixed

cost to (irreversibly) invest in a stock. This problem was solved for stock

options by Samuelson and McKean (1970). What may be surprising is that the

two models have different interpretations, and behave differently in response

to parameter changes. In effect, the sensible ceteris paribus assumptions for

the option to invest are different than those for a stock option.

It may be objected that the case of an infinitely—lived option to invest

is uninteresting, since many real—life investment opportunities expire or

become valueless at some point. We deal with this by allowing the present

value of the benefit from undertaking the project to have an average downward

drift, or by allowing the present value to jump to zero. In the latter case,

the option eventually becomes valueless, but at an unknown date. The

important omission in our model is the case where the option to invest expires

at a known date in the future. A finitely—lived patent, for example, would in

effect give the holder an option to invest with a known expiration date, and

would be worth less than an infinitely—lived patent. It is typically not
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possible to solve analytically for the option value in this case. The

omission is presumably less important in cases where the present value of

benefits from the project is expected to decline at a rapid rate.

Our principal results, discussed in Section IV, are:

1) The rule: "invest now if the net present value of investing

exceeds zero" is only valid if the variance of the present value of future

benefits is zero or if the expected rate of growth of the present value is

minus infinity. For surprisingly reasonable parameter values, it can be

optimal to defer investing until the present value of the benefits from a

project is double the investment cost.

2) In a world with risk—neutral investors, an increase in the

variability of the present value of benefits from the project increases both

the value of the investment opportunity and the amount by which the present

value of benefits must exceed the investment cost for it to be optimal to

invest immediately. Increases in the risk—free rate of interest have the

opposite effect. The introduction of risk—averse investors (using, for

example, the Capital Asset Pricing Model) however, can reverse these results,

as is discussed in Section V.

3) If the present value of future benefits can discretely jump to

zero, an increase in the probability of the jump has the same effect as

increasing the risk—free rate of interest.

II. THE INVESTMENT PROB LEM

We study the investment decision of a firm which is considering the

following investment opportunity: at any time t (up to a possible expiration

date T), the firm3 can pay a fixed cost, Ft, in order to install an investment
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project, where future net cash flows conditional on undertaking the project

have a present value V. We emphasize that Vt is a present value and not the

cash flow itself. It represents the appropriately discounted expected cash

flows, given the information avaiable at time t. For the firm, V represents

the market value of a claim on the stream of net cash flows that arise from

installing the investment project at time t. The fixed cost, Ft, can be

thought of as known with certainty, or as stochastic. The installation of

capacity is irreversible, in that the capacity can only be used for this

specific project.

The present value of future net cash flows is stochastic. In the

simplest form of our model, this present value follows geometric Brownian

motion of the form.

(la) ct dt +a dz
V v v v

where is a standard Wiener process, with an expected value of zero. Thus

the firm knows the present value of future net cash flows if it installs the

project today. It is not sure, however, how new information will affect the

present value if the capacity is installed in the future.4 We also consider

the possibility that at some (random) time in the future, the present value of

net cash flows drops at once to zero.5 Finally, we admit the possiblity that

the cost of installation, Ft, is random. In that case, we assume that Ft

follows

(ib) = afdt + OfdZf

In all of these cases the geometric Brownian motion assumption is crucial for
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the derivation of the formulas below.

The problem we study here is the timing of the installation of the

capacity when the firm has the option of delaying installation. If the

capacity were installed today, the net gain from undertaking the project would

be its net present value V0 — F0. By delaying, the firm forgoes the rents on

installed capacity. However, this cost is offset by a gain from waiting. By

not (irreversibly) exercising the investment option, the firm retains the

right to gain from favorable movements in V — F, yet it is protectd from

unfavorable movements because it also retains the option to forego the

investment if it turns out that V K F. The irreversibility of the investment

gives value to waiting. If the investment cost could always be recovered for

certain, then waiting would have no value. It is optimal to invest when the

cost of the foregone rents from delaying the investment exceed this gain from

waiting.

There are at least four situations which this model can represent. We

discuss each in turn, developing the first case, the franchise monopolist, in

most detail.

A) Franchise Monopoly

A franchise monopolist6 has an investment opportunity such that once he

installs his capacity, he is protected from competition. This protection may

arise from a patent or a trade secret. To be concrete, consider a project

which produces a commodity, using a Cobb—Douglas production function

(2)
=

where is the fixed level of capital, and Q and l are quantity produced and
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labor employed at time t. The firm faces an inverse demand curve given by

—1

(3) P

where P is the price of the commodity at time t, n is the price elasticity of

demand, and S is a demand shift parameter following the stochastic process

(4) 4 = o.0dt + 00dz0

At each point in time after the capacity installation profits are given

by Tr = PQ— wL , and labor usage is chosen to

(5) Max = Max wL = BO

where

:; '-
' the (fixed) wage, I = and

B = K w (d — d ). If r is the appropriate discount rate for

profits, it is possible to show that when production continues indefinitely,

the present value of expected maximized profits is

B51

(6) v(00)
= * 2r — Ia— --I(I—1)G

Using Ito's lemma, it is easy to show that the present value of cash flows

given by (6) follows the process (1), with G = 1o and

a =
yet5

+ .ay(y—1). Recall that a0 is the expected secular rate of growth

in the demand price, while is the standard deviation of that growth rate.

Table I shows the relationship between the two parameters affecting cash flow

et5
and c, and the parameters for the present value of profits, a and
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The calculations use the formulas developed above.

Finally, the cost of capacity installation, F, may be stochastic, as it

may depend upon other variables such as factor prices, which are themselves

stochastic.

(Table 1 Here)

B) Competitive Industry with Stochastic Entry

A firm in an industry where entry is expected in the future will attempt

to capture temporary rents. The investment opportunity consists of a project

whose future net cash flows have a positive present value now, but which tend

on average toward zero as time goes on because of lagged entry. In equation

(1), this is represented by a < 0. The stochastic component may arise

because of stochastic entry and stochastic demand for the commodity being

produced by the project. This kind of structure is present when a firm is in a

strong competitive position, because other firms need time to "gear up" to

enter. The advantage only results in temporary rents because other firms

eventually compete away profits.

C) Unprotected Innovator

An unprotected innovator also tries to capture temporary rents. His

investment opportunity consists of a new commodity that can be easily copied

after a lag. Therefore Vt represents the present discounted value of net cash

flows before entrants compete away profits. This differs from the previous

case because a need not be less than zero. The demand for the commodity may
v

increase over time, inducing an increase in temporary rents.

Many examples of this kind of project occur in the high—technology
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industries. When a firm introduces a new product, it realizes that others

will copy it using "reverse engineering" techniques. As the others enter,

profits disappear.

These industries also provide examples of how Vt might at some point drop

to zero. While the unprotected innovator is waiting to introduce his

commodity (or after he has done so), a new, more sophisticated, or cheaper

version might be introduced by another innovator, rendering the former's

product useless.

D) Cost—Benefit Analysis

This kind of analysis is also useful in certain types of cost—benefit

analysis. Policy—makers may face an investment opportunity where V

represents the present value of future benefits if the investment is

undertaken at time t and Ft represents the value of those resources forgone by

undertaking the project at that time.

As an example, consider the Everglades canal discussed in the

introduction. If the canal is built at time t, then V represents the present

value of future net benefits from the canal.7 Ft represents the present value

of recreational opportunities lost by building the canal plus the construction

cost. In this context it may make sense to have Ft be stochastic, as the

value of recreational opportunities may change over time.

E. Optimal Scrapping of a Project

By reinterpreting F as the value of the project and V as the scrap value,

this same analysis can be used to study the optimal scrapping decision.
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III. INVESTMENT TIMING AND THE VAIJJE OFWAITING

In this section we solve the problem of the optimal timing of the

installation of an irreversible investment project. We derive an optimal

decision rule and the value of the investment opportunity. We begin with the

case of Vt following (1) with a fixed and known Ft, and then consider a

stochastic Ft and the possibility that V may suddenly fall to zero.

A) F Fixed with no Jumps in V

Suppose initially that V is random, but that Ft is fixed at F. That is,

there is a known cost of investing, but the (present) value of the benefits in

the future is uncertain. (As we discussed above, the value of the benefits

from investing today is known with certainty.) One can think of the

investment timing problem as a standard first—passage problem in the theory of

stochastic processes.8 That is, there is a boundary which is a function of

time alone, such that investment is undertaken the first time that Vt passes

the boundary. This boundary may be found by solving recursively backward.

Suppose, for example, that the investment opportunity expires at T,9 and

that it is currently time 0. It is obvious that if we reach T and have not

already undertaken investment, then it will be optimal to do so provided that

VT > F. Thus, CT = F constitutes a boundary at T, at vhich the investment

opportunity is undertaken. In a similar way, working backwards, for any t it

is possible to derive a C such that, if the investment opportunity is still

unexercised at t, then undertaking it will be optimal if V ) C, and not if

the inequality is reversed. Using this dynamic prograing approach, C (for

every t) is chosen to maximize the value of the option given that it is still

unexercised. From the recursive structure of this problem, it is clear that

*T
the boundary schedule chosen in this way, {C}o, will maximize the current
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value of the investment opportunity. Thus the optimal decision rule involves

deriving a boundary schedule C, t c [0,T], such that as long as Vt < C the

firm will defer the investment. When V = C the firm invests and the net

present value of the project is then C— F.

For an arbitrary boundary {c}, the value of this opportunity is the

expected present 'ralue of the payoff:

—Pt'X(T) =
E01e [Ce,— F]

where t' is the date at which V first reaches this boundary C. The

expectation is taken over the first passage times t' and P is the appropriate

discount rate (which for now can be thought of as the risk—free rate.) We

derive p in Section ivi° Let G({C}, V0,t) be the probability that the

first passage of V across this arbitrary boundary C occurs at or before time

t. Then the optimal boundary is found by solving the problem

T

(8) X*(T) = Max f ePt[Ct_ F]g({C }, V0, t)dt

{c} 0

where g() is the density function associated with C(). In general, the

first passage density g() is complicated because it is calculated conditional

on V having not already reached C.11

In the special case where the investment opportunity is infinitely lived,

it is possible to solve (8) explicitly. When T = , it is possible to remove

calender time from the problem, from which it follows that C cannot depend on

t, hence Ct= C for all t.'2 Cox and Miller (1965) present a solution

technique for this problem.13 Because C* — F is constant, (8) reduces to



— 11 —

(9) Max [C — F]E0ePt}
C

The expectation is calculated for an arbitrary boundary C by Cox and

Miller, who show that'4

(10) E0{ePt) = (0)c

where C is the solution to the quadratic equation

(11) p ••22+ (c —

Having found the expectation in (9) for an arbitrary boundary, we now

find the boundary which maximizes the value of the investment opportunity.

Using (10), the solution to (9) is

* * V0
(12) K () [C — F1(—-)

C

where

* C
(13) C =

F(—1-)

is the optimal boundary.15 Notice that for the solution to he well—defined

(i.e., for c > 1), it is necessary that a< p. Otherwise the investment will

always be undertaken immediately.16

The significance of the option to invest at some point in the future can

be seen in Table II. This table presents the value of an investment option

(from (12)) which has a zero net present value (V = F) if the investment is
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undertaken today. For example, if .02, r = .02 and a= 0 (implying no

expected increase in V), then the investment project is still worth 25 cents

for every dollar that the project installation costs. Even if the present

value of benefits decreases at an annual rate of 5 per cent (ct= —.05), the

investment opportunity is still worth 6.3 cents for every dollar that the

project installation costs. As the table shows and as we will verify later in

general, increasing will increase the value of the investment opportunity.

(Table II Here)

The case where T is finite has not been solved analytically (Samuelson

(1970)). The general solution procedure in such cases involves using a

discrete approximation to the continuous—time problem and applying a dynamic—

programming argument to obtain numerical approximations to the solution (cf.,

Ingersoll (1976)). Brock, Rothschild and Stiglitz (1982) have attacked with

great generality the problem of investment timing when there is no cost of

investing (F = 0). In order to obtain non—trivial results without an

investment cost, their model has an which is a declining function of V.

B) Ft Stochastic with no Jumps in V.

Now we consider consider the same problem in A) above, except that Ft

also random and follows the stochastic process (ib). As before, the problem

is formulated as a first passage problem, but now there are two plausible ways

to characterize the solution: 1) invest when the difference V — F reaches a

barrier, or 2) invest when the ratio V/F reaches a barrier. Fortunately, the

economics of the situation help us choose between these. It is sensible that

doubling the size of the project ceteris paribus should double its value.
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This implies that the value of the project should be homogeneous of degree one

in V and F (Merton (1973)), so that the second
characterization is the correct

one. If the first characterization were adopted, the barrier could be reached

simply by increasing the scale of the project sufficiently, so that the value

could not be homogeneous in V and F.

It is possible to use the same method as before to derive the optimal

decision rule and value of the investment opportunity. Because the optimal

*
rule is to invest when Vt/Ft reaches a barrier E , the expected present value

of the payoff is

* —Pt' * —Pt'
(14) EO(F,[ —lie } = [ _l]E0F,e }

where the expectation is taken over the joint density of Ft and the first—

passage times for Vt/Ft. Fortunately, it is not necessary to derive the joint

density for Ft and t' in order to evaluate (14). The derivation of (14) is

involved, however, so it is relegated to the Appendix. From the Appendix, the

value of the opportunity is

* V0/F0 t
(15) ( —l)F0( * )

where E' is the solution to the quadratic

(16) P = c'(c'—l)a2 + +

c2-- 2 + a2 2c ,
a is the instantaneous covariance of the rates of

v f vf vf
*

increase of V and F, A = c'/(€'—l). The solution is:



— 14 —

(lot) = af - 1)2 +
2(p-

+ ( - af

It is easy to show that (15) reduces to (10) if Ft is constant. Notice

also that when V is fixed and F follows (16), then (15) represents the value

of the option to scrap a project, where the value of the project is F and the

scrap value is fixed at V. This requires setting a = 0 and 2 = 2.
Merton (1973) obtains the same formula for the value of a perpetual put on a

stock. A stochastic V then would represent a stochastic scrap value.

C) Ft Fixed and Jumps in

Once again we assume that the investment cost F is fixed, but now there

is a positive probability that the present value of net future cash flows, Vt

can take a discrete jump to zero. If this happens the investment opportunity

becomes worthless. Thus the stochastic process for Vt is a mixed Poisson—

Wiener process of the form

(17) .=adt+odz+dqV v v v

where

d = c—i with probability Xdt
q 0 with probability 1 — Adt

The occurence of the Poisson event induces the process to stop, since zero is

a natural absorbing barrier for a geometric Brownian motion process.

Calculating the value of the investment opportunity and the optimal

decision rule is made easier by noticing that when the Poisson event occurs,

it is as if the investment opportunity expires, since its value becomes
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zero. Thus, calculating the value of the investment opportunity when Vt can

jump to zero is just like calculating the value of an investment opportunity

with an uncertain expiration date. The opportunity expires just when Vt falls

to zero. The value in this case is easily calculated thanks to a result in

Merton (1971).

The value of the investment opportunity conditional on its expiration at

time T (X*(T)) is given by (8). The distribution of first occurence times for

a Poisson event with parameter A is exponential. Thus, if the Poisson event

is uncorrelated with the first passage time for V, then for the risk—neutral

investor, the expected present value of the payoff from the investment

opportunity with uncertain expiration date is

* _AT*
(18) X = I Xe X (T)dT

0

Following Merton, this may be integrated by parts to give

(19) max f e_ )t[C_ F]g({C }, V0, t)dt

{c} 0

But this is exactly the problem we solved above for the fixed investment cost

with no Poisson jump. The discount rate p has been replaced by p + A.17 The

formula is therefore the same as (12) with the discount rate adjustment. When

we consider risk—averse investors, it will be necessary to assume that the

jump risk is uncorrelated with both V and other systematic sources of

uncertainty in the economy.

IV. RESULTS AND DISCUSSION

In this section we discuss some implications of the foregoing. For
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simplicity, we treat oniy the case of a fixed investment cost with no jumps in

V. For the most part, we will also focus only on the case when investors are

risk—neutral, though we will mention the risk—averse case.

A) NPV > 0 Rules

It is commonly asserted that an investment should be undertaken if its

net present value exceeds zero. This is correct, except when choosing among

mutually exclusive projects. In that case, one chooses the project with the

greatest net present value. Undertaking an investment today and undertaking

it tomorrow are mutually exclusive actions. The model we have presented

simply provides a way to choose among the mutally exclusive alternatives of

investing today or waiting.
18

In general, for the firm facing an infinitely—lived investment

opportunity, it will not be optimal to invest unless V exceeds F by some

positive amount. From (12), it can be seen that a firm will be willing to

invest at V = F only when O = 0 or a = —.

How important is this effect? Table III displays values of C*/F computed

risk—neutral case. A rule of thumb is the

r = Y, then C*/F = 2. Thus, if V has a zero

value, the risk—free rate is .02, and the variance

is a not unreasonable .02,20 then V will have to be

before it is optimal to invest today. The size of

r increases or if or a decreases.

to decline by 25% over the following year, it can

be optimal, for reasonable variances, to defer investing until V exceeds the

cost of investing by as much as 20%. Clearly the option value of waiting can

be important.

from (11) and (13), for the

following: when a = 0 and
v

expected rate of change in

of the rate of change of V

twice the investment cost

this barrier is lowered if

Even if V is expected
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(Table III Here)

B) Comparative Statics

In this section, we will discuss the effect on X, the option value, and

C, of changes in r and The effect on on the value of the investment

opportunity of induced changes in C will be ignored, which is permissible y

*
the envelope theorem, since C was chosen so as to maximize the value of the

opportunity. We will also ignore the effect of parametric changes in V,

although from equation (6) it is obvious that changes in these parameters will

in general change V, and hence X.

i) Variance

It is possible, though tedious, to show that X/C < 0 and 0, so

that an increase in variance, holding V fixed, will raise the value of the

option to invest. This occurs because increasing the variance of changes in V

will increase the chance that V will have either large positive or large

negative deviations from its expected path. The investor is not hurt any more

by the large negative surprises than he would be by small negative surprises

because in either case there is no need to invest; the investor does benefit

from the large positive surprises, however. The result that value increases

with variance is a standard property of options.2'

An increase in c also increases C* since the owner of the investment

opportunity can take advantage of large positive deviations of V from its

expected path, which are now more likely.
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ii) Risk—Free Rate

An increase in the risk—free rate raises c and thus lowers the value of

the investment opportunity. A change in r obviously leaves the first—passage

distribution unaffected, so it does not change the expected time to

investment. However, the present value of any particular passage to the

boundary is lowered by the increase in the discount rate. Hence, the value of

the option is lower.

This result should be compared to the standard option—pricing result that

an increase in the risk—free rate raises the value of the option. In standard

option—pricing models, it is implicitly assumed that the rate of return on the

stock (which is analogous to V) rises with the increase in the risk—free

rate. Put another way, the dividend rate on the stock is held fixed when the

risk—free rate increases. In our model, 5 = r — could be held fixed with
V V

an increase in r only if c'. also rose. For our purposes, this seems less

interesting than allowing the dividend to change when the risk—free rate

changes.

Because c increases, C*/F will fall. This is because the cost of waiting

(foregone rents) has gone up.

iii) Expected Rate of Change

An increase in cx will obviously raise the value of the claim on the
v

investment opportunity.

C*/F also increases, because C decreases. Intuitively, C*/F increases so

that the owner can take advantage of the increase in the expected future value

of V.
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V. VALUATIOt BY RISK—AVERSE INVESTORS

Up to this point, we have taken the rate at which future payoffs are

discounted, p, as given. In a world of risk—neutral investors p would equal

r, the risk—free rate of interest. In this section we derive the appropriate

formula in a world with risk—averse investors. The technique we use is to

show that p——which is the equilibrium expected rate of retufn on the

investment opportunity——must be a weighted average of the equilibrium expected

rates of return on assets with the same risk as V and F.

A) V and F Stochastic

Consider the formula for the value of the investment opportunity when the

investment cost is stochastic. From (16) this may be written

* * *€' 1—c' c'

(20) x () = (t —1)\ F V

is of course also the equilibrium price of a claim on the investment

opportunity. The rate of return on such a claim can be derived by taking an

Ito expansion of X*:

d + c'+ (c'-1)c'(+ 0vft

(21)
= [(1-')f + C'+ (e'—1)c'21dt

+ (1—e')o dz + c'o dz
f f v v

The unanticipated component of the return on is

(1—c')ofdzf+ c'odz, which is a weighted average of the unanticipated

components in the rates of change of V and F. Therefore, if a is the
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equilibrium expected return on the claim to the investment opportunity, then

(22) a = (l—c.')af+ La
x V

where af and a are the required expected rates of return on assets with the

same stochastic components as F and V.

If we equate the required expected rate of return (22)

expected rate of return on in (21), we get the following

in E'

v 12 24
C' F-

2
+

0 0

where 5 = a — a and S = a — a . When investors are risk—neutral,
f f f v v v

r = af
= a and (24) reduces to (16) with p = r.

This formula may be converted to the case where the investment cost is

kno and constant by setting af = 0, af = r, = r and 2 = 2.

B) Jumps in V

For the Poisson case of Section IIIC, we can use Ito's lemma for Poisson

processes (see Merton (1971)) to calculate the equilibrium required expected

rate of return on a claim on the option to invest. Assume that F is fixed and

with the actual

quadratic equation

(23) = (1—c')a + = (1—c')af+ c'a+(c'1)C'02

Notice that this quadratic equation is exactly that which generates C' in

(15), with p = a. Thus we have defined what p must be in equilibrium.

(23) has the solution

(24)

5 —5
1 f v
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that the Poisson event is independent of dv. The Ito derivative of (12) is

then

(25)

*
dX = E(E:—1)--a2dt — cXdt—. V 2v
x

where again X is the Poisson parameter. Thus

(26)

*

E() = c(ci - X) + c(c—1)2dtv 2v
x

*
r—6

11)

*
where 6 = ci + X — ci . Note that this is identical to (24)

V V V

with 6= r (because the investment cost is fixed) and 5 replaced by 6*.

C) Relation to Option—Pricing Formulas

In the known investment cost case, this risk—adjusted formula is

equivalent to the formula derived by Samuelson and McKean for valuing an

American call option on a stock, where Vt is the price of the stock, F is the

exercise price, 6 is the proportional dividend rate and the time to maturity

is infinite. This is not surprising, because a perpetual investment

opportunity of the type we discuss is simply an American option to purchase

the present discounted value of future net cash flows (the 'stock") by paying

the investment cost (the "exercise price").

The value of the discounted stream of net cash flows is increasing at an

Equating

we find that

(27)

this expected rate of return to the required rate of return ci,

*r—6
v 1 2 2r

2 0
V v
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expected rate a, which is less than a, the rate at which the price of a

financial asset with the same financial risk would be expected to grow under

the ICAFM. Therefore, the expected "capital gain" on Vt is the same as the

expected capital gain on this financial asset, if the asset also pays a

proportional dividend at a rate 6 = a — a . (The total rate of return on the
v V V

asset is thus a + 6 = a •) Similarly, the stochastic investment cost formula
V v v

would also be the formula for an American call option on a dividend—paying

stock when the exercise price is stochastic.

It can be shown that the investment opportunity will always be undertaken

immediately if 6 < 0, and will never be undertaken if 6= 0. Similarly, a

perpetual American call option on a non—dividend paying stock will never be

exercised.

D) Changes in Comparative Statics Results the to Risk Aversion

Most of the comparative static calculations in Section IV are severely

complicated once a is determined by an asset pricing model, and is no longer

the risk—free rate. Suppose that asset rates of return are set according to

the Capital Asset Pricing Model. An increase in variance will——in addition to

the direct effect on c——increase a if the change in V is positively

correlated with the return on the market (i.e., if V has a positive beta).

This increase in a, holding a fixed, will raise the required expected rate

of return on the investment opportunity and thus will lower X', offsetting the

beneficial direct effect of an increase in variance. If V is highly enough

correlated with the market, an increase in variance can lower X. For

negative beta projects, the reverse is true—the increase in variance

lowers a, thus reinforcing the effect of the variance increase and raising

x*.
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The effects of changes in the risk—free rate can also be different

because a change in the risk—free rate may change the risk premium on the

market, ci. — r. The net effect on X will be different for positive and

negative beta projects, and will depend on the direction of change in the

risk —pretni urn.

VI. CONCLUSION

This paper has discussed the problem of the optimal timing of investment

when the benefit from (and possibly the cost of) investing is a random

variable. The general conclusion is that it is almost always optimal to defer

investing until the present value of the project's cash flows exceeds the cost

of investing by some positive amount. This amount can be surprisingly large

even for moderate parameter choices. We show in a risk—neutral world, for

example, that if the variance of the rate of change of the project's value

equals the risk free rate, and the project value has a zero expected rate of

change, then it will always be optimal to defer taking the project until the

present value of the cash flows is double the investment cost.

The basic insights appear to be applicable in a variety of areas, from

the analysis of environmental issues, to questions in industrial organization

and investment theory.
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Appendix: Derivation of E0(F,et}

The purpose of this Appendix is to derive the expectation on the right

hand side of (14). We argued in Section 11Th that it will be optimal for the

firm to invest when D = Vt/Ft reaches a barrier t. The first step in our

derivation is to characterize the joint probability density function of Ft

*
the first passage time of D across . Denote this density function

as g(F, t; F0, D0, L*). Then, using arguments similar to those in Cox and

Miller (pp. 208—211, 246—247), this density must satisfy the Kolmogorov

backward equation

(Al) g gddoD2 + -gffcf F + gfGfFD
+ gcD + gfctf F

where = —, gf = —, etc., but =

It is easy to show, by applying Ito's lemma to D = V/F and equating drift

and stochastic terms, that

(A2) = —
d v f 2f vf

= a2 + 2 — 2a
d v f vf

2
°fd — 0vf

— °f

Therefore (Al) can be rewritten as
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(Al') = dd°v o- 2G1D2 + fffF + gf[0f G]DF

+ g{f+ f G]D ÷ gfafF

Now let

(A3) L = f f e_PtFg(F, t; F0, D0, *)dtdF

where L = E0fF,e } is the expectation on the right hand side of (14) in

the text. We assume that L exists. (If it did not, then the option would

have infinite value.) Notice that

(A4) Ldd = f f FgdtdF00

Ld = f f FgdtdF00

and so forth for -1f T-fd' and Lf. It is permissible to exchange

differentiation and integration in this way because we are taking derivatives

in (Al) with respect to initial values D0 and F0, while the integration is

over t and Ft, holding fixed and F0. (This is why (Al) is called the

backward equation.) It is also possible to show, using integration by parts,

that

(A5) Lt = pL

Therefore, multiplying (Al') by Fte_ct and integrating over first passage

times and F, we get the partial differential equation
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(A6) PL = Ldd[a2+ a_2aVf]D2 + -LffaF2 ÷ Lfd[aVf_ a]DF

+ Ld{aV_ f +Gf Of]D + LfZfF

Now, assume (guess) that the form of L is

(A7) L=A FD

Then (A6) can be written as

(A8) p = '(c'—1)[a2+ 2a] + [Of a]
÷ c?Ec_ af+ af f] + af

which can be rewritten as the quadratic

(A9) p = + c'a +

where a2 = a2 + a2 — 2a
v f vf

The solution to this quadratic is given by equation (16') in the text.

Therefore, (A7) (with ' given by (16')) solves the partial differential

equation (A6).

We need only show that the solution satisfies the boundary conditions of

the problem. The main boundary condition is that when the investment is

undertaken, then L must equal the investment cost. Recall that L is the

expectation of the present discounted value of the investment cost. Since it

is known with certainty (when the investment is undertaken) that the

investment cost is F0 and that it will be paid immediately, the expectation
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equals F0.
It is easy to see from (A7) that when D = then L = F. The

second two boundary conditions are that when D = 0, L = 0 and that the limit

as F + of L is 0. Both of these conditions are met by (A7). Therefore,

(A7) is the solution to the expectation on the right hand side of (14), so

(15) is the value of the investment opportunity. £ is simply the boundary

that maximizes (15).
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FOOTNOTES

1. Several recent papers deal with irreversibility. Baldwin and Meyer (1979)

discuss irreversibility when mutually exclusive investment opportunities

arrive stochastically over time. Bernanke (1981) develops a model where

waiting to invest is optimal pending the resolution of significant

uncertainty. Bernanke also provides a useful discussion of previous papers

dealing with irreversibility and their relation to financial option models and

search theory models. Brock, Rothschild and Stiglitz (1982) study the general

tree—cutting problem for a variety of stochastic processes.

2. Brealey and Myers (1981), for example, discuss the problem of optimal

timing of investment in a certainty case, and they proceed in this way

explicitly.

3. We set up the investment problem in the context of a firm. The same

analysis applies for public—sector cost—benefit analyses.

4. A firm could realize Vt by installing the project and selling the rights

to the net cash flows. We are assuming that it knows the market value of the

claim on the net cash flows if it installs the capacity today, but it is

uncertain about what this market value will be if it waits.

5. This event is modelled as Poisson process.

6. This is a term used by Brock, Miller, and Scheinkman (1981), who study a

problem related to the one in this paper.



— 31 —

7. It is important to note that while the government cannot, if it wishes,

immediately realize Vt by selling a claim on the future net benefits from the

project, it knows Vt with certainty at time t. V represents the analysts'

best guess of the gain in social welfare after installing the project today.

It includes, as part of the discounting, an adjustment for the risk that the

benefits from the project may turn out to be small in the future.

8. Cox and Miller (1965) provide a good introduction to first—passage

problems.

9. While we have said earlier that we only treat the case in which T = , we

set up the problem for an arbitrary T. We do this both for expositional

reasons and because it will prove useful in solving the case in which there

may be jumps in V.

10. Tn general, in the case with risk—averse investors, there is no reason to

expect p to be constant over time. We deal exclusively with the case

T = , however and p is then constant, as we will show.

11. Note that we have assumed that there is a single stopping boundary. We

have not proved that the upper limit to the stopping region is infinity. It

is logically conceivable that if V were sufficiently greater than C, then it

would pay to wait. Recall, however, that the value of waiting is basically

derived from the downside protection afforded by the option not to invest.

This downside protection becomes less relevant, ceteris paribus, the greater

is V — F. Therefore, if the cost of waiting exceeds the value for some C,
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then it should also exceed it for all V > C.

12. Merton (1973) makes this point in a discussion of option pricing.

13. McKean, in his Appendix to Samuelson (1970), also solves the same problem

as the solution to a partial differential equation.

14. Cox and Miller (1965) solve the same problem where V follows arithmetic

Brownian Motion. Our solution can be obtained from their solution by noticing

that if V follows (la), then 2-nV follows arithmetic Brownian Motion with drift

— Making these substitutions in their formula (38) yields (10) above.

15. Merton (1973) shows that this condition is equivalent to Samuelson's "high

contact" boundary condition.

16. It is straightforward to figure the expected length of time until the

investment occurs. Notice that (10) is the moment generating function for the

first passage density g(•). Taking the derivative of each side of (10) with

respect to p and evaluating at p = 0 yields

V V
—2n(4)(4)

E0{t'} = C

v 2v

Note that since V0 < C, E0tt'} is positive. Equation (14) is only valid

if a ! a2. a < ! a2 then there is a positive probability that V willv 2 v v 2 v t

never reach any boundary set greater than V0 and the expectation ceases to

exist.
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17. Merton (1976) first obtained this result, when he showed that the formula

for a call option written on a stock for which there is a possibility of

complete ruin, is obtained by replacing r with r + X in the Black—ScholeS

formula. Merton shows that the possibility of complete ruin for the stock

makes a call option more valuable. In our case, the possibility of complete

ruin makes the option to invest less valuable. We discuss this later.

18. We thank Alex Kane for pointing this out to us.

19. Financial theory (the CAPM) conveys the lesson that zero—beta assets can

be treated the same as risk—free assets (e.g., both will earn the risk—free

rate in equilibrium). Nevertheless, in this context, (as is true in all

option pricing models) a truly risk—free asset (c2 = 0) differs from a risky

zero—beta asset.

20. The annual standard deviation of the annual rate of return on the stock

market is .2, which implies a of .04.

21. It should be noted that this result is a consequence of the assumption

that V follows geometric Brownian Motion with constant parameters. Brock,

Rothschild and Stiglitz show that when the stochastic process for V has a

lower absorbing barrier sufficiently close to the current value of V, then an

increase in variance can lower the value of the option. With processes like

(1), zero is a natural absorbing barrier, but one which is never reached in

finite time.
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TABLE I

Expected Growth Rates and Standard Deviations of Growth

Rates of V for Different 1mand Elasticities

= .05 a0 = .25

a
V

1.0

0.1

*These calculations assume that the output elasticity of labor is = 2/3.

.0500

.0000

—.0500

—. 2500

.0 500

.0500

.0 500

.0500

.0500

.0000

—.0500

—.2500

.2 500

.2500

.2 500

.2500

.05

.00

—.05

—.25

.007 3

.0002

—.0070

—.0356

.007 1

.007 1

.007 1

.007 1

.0110

.0038

—.0033

—.0319

.0357

.0357

.03 57

.0357
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TABLE II

Value o Investment Opportunity When V = F = 1

r = .02 r .05

a
V

Note: Entries caluclated using (12) with

L2
.02 .250

.04 .341

.06 .404

.08 .452

.10 .491

.30 .684

.50 .763

—.05

.063

.113

.155

• 190

.222

.419

.524

.661

—.25

.014

.028

.041

.054

.066

• 167

.243

.374

.00

• 162

.225

.272

.309

.341

.523

.615

.730

—.05

.059

• 102

.138

• 168

.194

.365

.463

• 599

—.25

.014

.028

.041

.053

.065

• 162

.235

.360

a
1 2 2P

-)+--- +(.---)
a a
V V
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TABLE III

Values of C*/F for Various Parameters

r = .02 r = .05

a=0 a =—.05 a =—.25 a =0 a =—.05 a =—.25
V V V V V V

.02 2.00 1.20 1.04 1.56 1.17 1.04

.04 2.62 1.36 1.08 1.86 1.32 1.08

.06 3.19 1.53 1.12 2.13 1.46 1.12

.08 3.73 1.69 1.16 2.38 1.58 1.16

.10 4.27 1.85 1.20 2.62 1.71 1.19

.30 9.39 3.34 1.77 4.79 2.82 1.56

.50 14.4 4.78 1.96 6.85 3.87 1.91

1.0 26.9 8.39 2.90 11.9 6.42 2.77

Note: Entries are calculated using equations (10) and (12) in the text.


