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ABSTRACT

Geography shapes economic outcomes in a major way. This paper uses spatial empirical methods

to detect and analyze trade patterns in a historical data set on Chinese rice prices. Our results suggest

that spatial features were important for the expansion of interregional trade. Geography dictates,

first, over what distances trade was possible in different regions, because the costs of ship transport

were considerably below those for land transport. Spatial features also influence the direction in

which a trading network is expanding. Moreover, our analysis captures the impact of new trade

routes both within and outside the trading areas. We also discuss the long-run implications this

might have.
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1 Introduction

Geography exerts a major influence in many economic areas. Trade declines with geographic distance,

and per-capita incomes vary with climatic conditions, for instance (Anderson and van Wincoop 2003,

and Sachs 2003, respectively). But does geography–mineral deposits, soil quality, or rivers, say–

immediately determine how rich people are, or is the impact of geography on the choice sets of

economic agents more indirect?1 Does geography influence also long-run outcomes as some have

claimed (Diamond 1997)? And are there strong reasons to believe that the influence of geography

will be lower in the future than it has been in the past?

In an attempt to shed new light on these questions, we study how geography guides the

evolution of interregional trade patterns in 18th century China. Recent research has highlighted the

general importance of interregional trade during this period (Chen, Wang, and Hu 1999, Shiue 2002).

Geographic factors, in particular local climate and access to relatively low-cost ship transport, were

important determinants of interregional trade (Perkins 1969, Chuan and Kraus 1975, Wang 1989,

and Shiue 2002). Analyzing the evolution of this trade empirically, we contend, can provide valuable

insights on comparative economic development in China and elsewhere.

This paper studies interregional trade by examining the spatial pattern of rice price differ-

ences in 121 Chinese prefectural markets between the years 1742 to 1795. It puts the paper into the

well-established literature that uses price data to look at trade (Engel and Rogers 1996, O’ Rourke

and Williamson 2000, and Slaughter 2001). At the same time, we emphasize more the geographic

features underlying these price differences by using information on the actual geography of China

(climate, topography) and Geographic Information System-based spatial empirical methods (Cliff

and Ord 1981, Anselin 1988).2

1Cronon (1991) has called this first-nature and second-nature geography, respectively.
2See e.g., Case (1991), Kelejian and Robinson (1992), and Anselin, Varga, and Acs (1997) for other recent work
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Our results suggest that spatial features have shaped the expansion of interregional trade.

First, geography dictates the distance over which trade was possible in different regions. Second,

because in addition to distance our methods track the spatial position of one region relative to all

others, we can also capture the impact that the emergence of new trade routes has in different regions,

and the direction a trading network is most likely to expand.3 Overall, we think that using spatial

methods gives a much clearer picture of the evolution of interregional trade.4

Geography not only affects the costs of interregional trade, but also the autarky prices in

different regions. Specifically, the (relative) price of rice under autarky is related to the relative

abundance of arable land (Heckscher 1919 and Ohlin 1924), and trade will tend to equalize prices

and factor returns across regions (e.g., O’Rourke, Taylor, and Williamson 1996, Richardson 1995).

We suspect that this effect was present in 18th century China too, although there is little systematic

data that we can use to confirm this point. The main focus of this paper is the extent to which

geography affected trade costs, and thus trading possibilities, and whether these differences could

trigger different development paths across regions.

The question is fundamental to related work on institutions and technological change. For exam-

ple, trade might facilitate technological innovations through learning, which could give some regions

earlier access to new transport technologies than other regions.5 In addition, trade may be associ-

ated with institutional innovations, for instance information sharing within a group of traders as a

monitoring device in the absence of enforceable contracts (Greif 1989).6 Once formed, such a group

that has used spatial empirical methods.
3Quah (2002) and Quah and Simpson (2003) emphasize the importance of capturing relative spatial position as

well. These authors, as well as Hanson (2001) also suggest that the recent literature on agglomeration driven by scale
economies might benefit from incorporating more spatial elements.

4O’Rourke and Williamson also note that spatial analysis helps to understand changes in market integration in New
World and European economies of the 19th and early 20th century (2000, 47).

5Along these lines, Mokyr emphasizes the importance of trade primarily insofar as it contributes to the diffusion of
technological knowledge (1990, 134); Keller (2003) discusses some of the more recent evidence.

6North and Thomas also note that trade goes hand-in-hand with institutional innovation (1973, 12), while
Williamson emphasizes that ex-ante mutually beneficial trade often shapes ex-post institutional outcomes (2000, 599-
600).
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of traders can serve as a network that lowers the costs of looking for trading opportunities outside the

current trade area.7 Last but not least, the strategic expansion of trade can have lasting economic

and political consequences. A case in point might be the abandonment of long-distance trade by

China in the early 15th century, versus the state-supported trade of the British and Dutch East

India companies in Asia a couple of centuries later.8 Additional examples of how initial geographic

advantages can be self-enforcing may be found.9

The remainder of the paper is as follows. Section 2 describes the characteristics and sources of

the data and gives summary statistics. Section 3 examines the spatial autocorrelation of prices both

globally as well as locally. The spatial econometric results are discussed in section 4, while section 5

provides some concluding discussion. Additional background on the data is given in the appendix.

2 Data

2.1 Characteristics and sources

The geographic area studied in this paper consists of 10 out of a total of 18 core provinces of China;

these provinces are Anhwei, Fuijan, Guangdong, Guangxi, Guizhou, Hubei, Hunan, Jiangsu, Jiangxi,

and Zhejiang. The area is situated in the center and south-east of the country, and includes some of

the most agriculturally fertile areas, some of the most developed areas, as well as some poorer areas.

The ten provinces were selected on the basis that they all produced rice as a major grain crop in the

period under analysis. Figure 1 shows the sample area within the borders of contemporary China.

The provinces have retained a basic correspondence to their historical geographic positions.

The 10 provinces in the sample are made up of 121 largely contiguous prefectures; a limited

7Rauch (2001) discusses the importance of social networks in international trade.
8See e.g. Findlay and O’Rourke (2002).
9At the same time, Krugman (1991) has shown that a region’s geographic destiny might be altered. Davis and

Weinstein (2002) have provided evidence on this question.
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number of independent administrative units are not included in the sample. There are ten to fourteen

prefectures in a province, and the sample includes the full set of the prefectures in each province that

we can identify on historical maps. Figure 2 gives a map of these prefectures and the boundaries of

the ten provinces that are the focus of the spatial analysis.

This paper uses weather and price data from 1742-1795 from the 121 prefectures. Systematic

rainfall recording began as early as the Tang Dynasty (618-907 A.D.), and from at least the 17th

century, during the reign of the Qing Dynasty (1644 to 1911), the collection of rainfall and weather

reports at the county level had become standard government practice (Wilkinson 1969). In addition,

the reporting of prices of the major grains and different grades of rice was also required at a minimal

frequency of once a month. The prices recorded were selling prices of grains in each of the city

markets, given in the standard government accounting unit of taels (silver currency) per bushel. It

is generally believed that the grain prices closely correspond to free market prices (Chuan and Kraus

1975, Shiue 2003 forthcoming).

The price reports were sent to the prefectural level, where the highest and the lowest price

observed in the city market of every county in a particular month were recorded and compared

with the highest and lowest observed in the previous month. These reports are provided in the

Gongzhong zhupi zouzhe, nongye lei, liangjia qingdan [Grain Price Lists in the Agricultural Section

of the Vermilion Rescripts in the Palace Archives]. The series we use consists of the 2nd and 8th

lunar months from 1742-1795.10

Historical weather data, from the State Meteorological Society (1981), gives weather data through-

out China for each year for 120 "stations" (a regional designation equal to one or two prefectures).

The sample we construct is created by using the information from the table and from pinpointing

the location of prefectures on the weather maps. The variable is a discrete indicator of the degree

10Because of missing values, we estimate parts of the data; see the appendix for more on this.
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of "wetness and aridity", from floods, droughts, monsoons, or rainfall. Bad weather ranks are 1 and

5 (exceptional drought and flood), fair weather ranks are 2 and 4 (limited drought and flood), and

good weather is rank 3 (favorable conditions). From this data, we have constructed three different

weather variables (see appendix for details).

2.2 Summary statistics

The location of the prefectures can be described using Geographic Information System (GIS) data,

which we will employ extensively below. Table 1 reports the prefectures’ longitude and latitude, by

province. The North-South axis is spanned by Jiangsu and Guangdong provinces (latitudes of about

32 and 23, respectively), whereas the West-East range is given by Guizhou and Zhejiang (longitudes

of about 107 and 120, respectively). The area of analysis is approximately 1600 kilometers by 1100

kilometers (km). In our analysis, the longitude and latitude of the capital city of each prefecture

is used to measure Euclidean distance between prefectures. This distance ranges from about 10 to

1730 km in our sample.

We focus primarily on the middle price, computed as the average between highest and lowest

price in each prefecture in each month.11 Table 2 presents summary statistics on the mid-, lowest and

highest prefectural price by province. There are a total of 13,068 observations, corresponding to two

monthly (2nd and 8th month) observations for 54 years and 121 prefectures. There is a substantial

amount of variation, with the mid-price ranging from 0.600 to 3.250 taels and a standard deviation

of 0.334. Across provinces, the mean ranges from a low of 0.972 in Guizhou to a high of 1.794 in

Jiangsu. In general prices in inland regions are lower than on the coast.

Table 3 shows how the weather, a key determinant of the quality of the harvest and hence

agricultural output, varies across regions. The Bad Weather variable indicates that the prefectures

11We compute this average for regions that differ substantially in size (Figure 2). The implied spatial averaging does
not affect our results in a major way; using either the low or the high price leads to similar results.
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of Fujian province experience exceptional floods or droughts (mostly floods, related to monsoons) in

about 17% of the years, for instance, whereas among the prefectures in Guangxi this occurs in only

about 4% of the years. This highlights the relatively low weather variability in the inland areas. The

table also indicates that for the sample as a whole exceptional drought and flood years account for

about 10% of all cases (last line).

Our analysis focuses on how the scope and direction of interregional trade has changed over time.

To this end, it is useful to examine the changes in prices and weather over this period. Tables 4

and 5 provide the major trends by reporting summary statistics for three 18-year periods, namely

1742/59, 1760/77, and 1778/95. Table 4 shows that, overall, prices have risen from about 1.33 to 1.48,

or 0.2% per year on average, and the rate of price increase is somewhat higher in the later years.

An important fact for our analysis is that with the exception of Guizhou province, all provinces

experienced a slight price increase over time. The table also suggests that the 2nd and 8th month

prices behave not too differently, which allows us to focus largely on the 8th month prices without

losing much.

As the ease of arbitrage across markets within a region increases, the variation of prices in

any one market is expected to decline. Table 4 reports the coefficient of variation, defined as the

standard deviation over the mean, both by province and for the sample as a whole. Within-province

price variation tends to decline over time (70% of the cases), but for the sample area as a whole,

the variation in price increases (from 0.214 to 0.248 for the 8th month prices; last row). To the

extent that these changes in price variation are due to the emergence of interregional grain trade,

its geographic scope seems to be limited: trade appears to increase among the prefectures within a

single province, but there does not seem to be strong enough forces of arbitrage that would bring

about one and the same price at a national level.

Lastly, Table 5 shows how the weather changed over the sample period. In general, weather is an
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exogenous variable that is also expected to be random, even though a certain region may be more

(or less) susceptible to a harsh climate. In the weather data for this sample, the percentage of years

of Bad Weather, e.g., does not vary much overall (from 10.1 over 9.2 to 11.1 percent; at the bottom).

We now turn to the empirical analysis.

3 Measures of spatial autocorrelation

Two of the most widely used measures of spatial autocorrelation are Moran’s I and Geary’s c statistics

(Moran 1950, and Geary 1954, respectively). Let {δij} be a connection matrix in which δij = 1 if

the ith and jth prefecture are joined, and δij = 0 otherwise. Frequently, jurisdictions are considered

to be joined if they share a boundary. This can be generalized by considering matrices for different

degrees of connectedness, or, different spatial lags. Let k denote the spatial lag, k = 1, ...,K, with

{δ(k)ij } the corresponding connection matrices. In our analysis, the spatial lags are based on distance.

We use the prefectures’ location in terms of longitude and latitude to compute the Euclidean

distance Dij between any pair of prefectures i and j. Then, let {δ(1)ij } be the connection matrix for

spatial lag k = 1, where δ(1)ij = 1 if Dij ≤ 200 km, and δ(1)ij = 0 otherwise. Similarly, let {δ(2)ij } be the

spatial lag (k = 2) matrix, with δ
(2)
ij = 1 if 200 < Dij ≤ 400 km, and δ

(2)
ij = 0 otherwise. Define also

the following spatial lags by successive 200 km distance bands, up to k = 9, where δ(9)ij = 1 if 1600

km < Dij ≤ 1800 km, and δ
(9)
ij = 0 otherwise. Let pi denote the log of the mid-price of prefecture i,

i = 1, ..., N .

Moran’s I statistic for spatial lag k is defined as

Ik =
N

2Jk

PN
i=1

PN
j=1 δ

(k)
ij zizjPN

i=1 z
2
i

, i 6= j, (1)

where zi = pi − p, p is the average price, p = N−1PN
i=1 pi, and Jk is the number of nonzero values
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of δ(k)ij . Correspondingly, Geary’s c statistic for spatial lag k is defined as

ck =
(N − 1)PN

i=1

PN
j=1 δ

(k)
ij (pi − pj)

2

4Jk
PN

i=1 z
2
i

, i 6= j. (2)

Both the Moran and the Geary statistic measure the covariance of prices in connecting prefectures

relative to the variance of the price across prefectures. Under the null hypothesis that the zi are

identically and independently distributed normal variates, the expected value of the Moran statistic

is E [Ik] = −(N − 1)−1. For Geary’s ck statistic, the expected value under these assumptions is

E [ck] = 1. Inference is based on the result that the Ik and ck statistics are asymptotically normal

under the null.12 In the following we examine how spatial autocorrelation varies across different

spatial lags.

3.1 Spatial autocorrelation and distance

Table 6 shows Geary’s c statistic for different groups of prefectures and subperiods by distance band.

The latter ranges from (0,2] to (14,16]. For the full sample of 121 prefectures, the first column shows

that Geary’s c rises monotonically from a value of 0.289 for the (0,2] band to 2.47 for the (14,16]

band.13 Under the null hypothesis of no autocorrelation, the expected value is one. Therefore

there is evidence for positive autocorrelation for distances up to 800 km and evidence for negative

autocorrelation for distances above 1,000 km.

Intuitively, this result can be best understood by considering two opposing pictures of spatial

patterns: clusters versus the checkerboard pattern. If similar prices are clustered together, this will

produce a positive covariance among connected regions, and hence positive spatial autocorrelation.

12See, e.g., Cliff and Ord (1981), who also derive higher moments of the Moran and Geary statistics.
13These are means across 54 years; the table also shows the standard error of these means in parentheses. The latter

tend to be relatively small, but increases if the number of prefectural pairs for a given distance is small.
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However, if prices vary a lot in different markets for a certain spatial lag, there is negative spatial

autocorrelation–a checkerboard pattern. In the case of rice markets in 18th century China, higher

spatial autocorrelation for shorter distances is plausible: since transport technology was not very

advanced, there should be a diminished possibility of trading grain over long distances relative to

shorter distances. This means that trade will tend to connect markets for relatively short distances

before it does so over longer distances.

Negative autocorrelation over longer distances might be due to several factors. Perhaps most

importantly, prices tend to be increasingly dissimilar for geographic locations that are further apart

because of differences in soil, weather, and other reasons. Thus, even if one finds negative spatial

autocorrelation over long distances, it could still be the case that long distance trade contributes to

price covariation if in the absence of trade the spatial autocorrelation at this distance would be even

lower. At the same time, positive autocorrelation over short distances does not necessarily imply

trade–it is merely consistent with it. The most important alternative reason of why prices might

be spatially autocorrelated is probably common weather patterns.

How important is spatial autocorrelation for weather relative to prices? Geary’s c for weather

suggests that the variable is spatially autocorrelated, but the effect is less pronounced than that for

prices. For example, for the 200 to 400 km band, Geary’s c is 0.46 for prices and 0.85 for weather

(recall that the expected c under the null hypothesis of no spatial autocorrelation equals one) . While

part of the correlation in price might be attributable to common weather shocks, prices are clearly

autocorrelated even after we take weather into account. Moreover, for very long distances, the spatial

autocorrelation for prices is lower than for weather. That also suggests that the results for prices

capture more than weather effects.

We have obtained similar results using Moran’s I statistic.14 This is the case in general for our

14For instance, the correlation between Geary’s ck and Moran’s Ik for all 121 prefectures across all distance bands
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sample and so we present only the Geary’s c statistic.

3.2 Spatial correlation in different regions

This section considers how the geographic features of the cross-sectional heterogeneity across pre-

fectures might affect spatial patterns in price. Because transport costs of grain over land was much

higher than that of ship transport for the same distance in 18th century China (Evans, 1984), a major

distinction can be made between areas where grain transport by ship was possible and those where

it was not possible (only overland transport, by e.g. porter or cart). First, we divide the sample

into those prefectures that lie directly on or near to the coast–relatively low-cost ship transport–

and those that are located more inland. The Coastal sample is defined as the prefectures in the

provinces of Anhwei, Fuijan, Guangdong, Jiangsu, and Zhejiang (59 prefectures), whereas the Inland

prefectures are those in Guizhou, Guangxi, Hubei, Hunan, and Jiangxi (62 prefectures).

Second, there is evidence for the importance of the Yangzi River, China’s longest navigable

waterway, for interregional transport in China, both historically as well as today. We therefore

define a set of prefectures located near the Yangzi River. In the 18th century, the Yangzi was

navigable by sizable watercraft for at least 1,000 kilometers upriver from its mouth near the city of

Shanghai (Worcester 1971). The Yangzi’s path is outlined in Figure 2. This Yangzi River sample

consists of 21 prefectures, and has maximum distance band (8,10].15

The Geary’s c statistics for these Inland, Coastal, and Yangzi River samples are shown in Table

6, and spatial correlograms are presented in Figure 3. For each of these groups, the Geary statistic

increases with distance. Across all samples, there is consistent evidence of price clustering at distances

of 0 to about 400 km, little or no evidence of autocorrelation at distances between 400 km and 800

and the three subperiods given in Table 6 is with −0.98 close to −1.
15These are prefectures 1, 4, 5, 6, 12, 64, 65, 66, 69, 78, 79, 87, 88, 89, 90, 91, 93, 94, 96, 106, and 107; see Figure 2.

Note that the Yangzi sample includes several of the prefectures that are also in the Coastal sample.
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km, and negative autocorrelation for distances above 800 km.

The figure shows that the level of spatial autocorrelation differs markedly across regional samples

with distance, confirming that the full sample of prefectures contain cross-sectional heterogeneity in

spatial patterns. The Geary’s c statistic rises with the steepest incline for the Yangzi River sample.

By contrast, the Coastal sample displays a relatively flat incline with progressively higher distance

bands, and the inland areas show moderate increases with distance. The patterns suggests that it

is in the Yangzi River areas where we would find the greatest degree of local spatial clustering, as

well as the greatest degree of overall heterogeneity in the covariation between markets within the

sample. This may occur if strong linkages between major trading partners coexist with areas that

are not as well connected. The Coastal sample displays less short-distance clustering, but as distance

increases, the covariation between markets does not decline quite as rapidly, suggesting a degree of

homogeneity in the spatial pattern of markets in this sample that does not appear in the Yangzi

River sample. Spatial clustering also occur in the Inland sample, especially at short distances, but

compared to the Yangzi River sample the Inland area also displays relatively small changes in the

strength of clustering as distance increases.

We note also the presence of spatial non-stationarity appearing in the data. Prices in the interior

of China are lower than on the coast, in part due to lower population (per unit of arable land) in

inland regions. This East-West gradient affects the value of our autocorrelation statistic for the

Yangzi sample in particular, as the Yangzi prefectures are exactly located along this gradient.16 In

contrast, there is more directional variation in the other samples, which limits the effect. Below we

will use local spatial autocorrelation techniques in an attempt to obtain a more detailed picture.

16The numerator of Geary’s c sums over the squared price differential for a given distance band, (pi − pj)
2 , see

equation (2) above. In the Yangzi sample, due to the East-West price gradient, this means that for long distances c
captures large price differences, between one very low- and one very high-price market; Moran’s I is affected similarly.
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3.3 Changes in spatial autocorrelation over time

Our sample period of more than half a century allows us to consider changes over time. To this end,

we have computed the mean of the Geary statistics for the four groups of prefectures–All, Inland,

Coastal, and Yangzi–separately for three 18-year subperiods: the years 1742 to 1759, 1760 to 1777,

and finally the years 1778 to 1795. The statistics are presented in Table 6, columns two to four.

For the sample as a whole, spatial autocorrelation is increasing over time for distances of 0 to 800

km while it is decreasing above 800 km.17 Similarly, for Inland prefectures clustering is increasing

for shorter and decreasing for longer distances, except that the cutoff distance is around 600, not

800 km. This suggests that it is necessary to keep track of distance brackets in analyzing changes

over time.

If initially there is no interregional trade at any distance, there will be relatively little price

clustering at any distance (controlling for the effect of weather and other factors). Once trade over

short distances starts to emerge, central market locations will appear: this leads to more clustering

within regional markets. At the same time, the formation of scattered central markets within different

regions will lead to what will appear to be less clustering across a sample of interregional markets.

For our case, since interregional trade does not yet connect markets that are more than 800 km apart

for the sample as a whole, the cutoff value of about 800 km gives the distance for which trade would

lead to a strengthening of within-region clusters.

The degree of spatial autocorrelation changes quite differently among the Inland prefectures

compared to the Yangzi River prefectures, see Figures 4a and 4b. The top part shows that over

time, there is more clustering in Inland prefectures for distances below 600 km, and less clustering

for distances above that. For the Yangzi prefectures, Figure 4b shows that for the sample period as

17The tables report standard errors for these estimates; formal tests regarding the statistical significance of differences
in these estimates are available from the authors upon request.
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a whole exactly the opposite is true: less clustering (at least weakly) for distances up to 600 km and

more clustering for distances above 600 km. This difference underscores the possibility that Inland

and Yangzi prefectures were at different stages of interregional market development. For Inland

prefectures, trade was only starting to connect markets at the relatively short distances, whereas for

Yangzi River prefectures, trade was already, and increasingly, linking prices in markets that were

much further apart.

If the increasing feasibility of trade over time means that prices tend to covary more (higher

spatial autocorrelation)–even though this occurs at different distances for different groups–then

what could account for the reduction in price covariation for distances of less than 600 km among

the Yangzi prefectures? One possibility is that over time, it becomes more efficient to trade with a

different set of partners. Assume for simplicity that there are two Yangzi prefectures that are 600

km apart, with no other prefecture between them. Suppose that initially shipping costs are too high

for trade to occur between them. Further, assume that overland trade costs are low enough for there

to be trade for distances up to 200 km away from the river. This would result in some covariation

of prices in the river prefectures with their respective local hinterland markets (up to 200 km), but

no covariation of prices over longer distance, between the two river prefectures. Over time, if the

technology for river transport improves faster than that for land transport, it could be efficient for

the Yangzi regions to switch their primary trade partner from the respective hinterland to more

distant markets along the Yangzi river. The result would be a weakening of price covariation for

short distances, and an increase in price covariation for longer distances, as depicted in Figure 4b.

We conclude the section with the following local spatial autocorrelation analysis.
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3.4 Local Spatial Autocorrelation

This section uses a variant of Geary’s c to identify the prefectures that have the greatest relative

spatial clustering. Geary’s ci, due to Anselin (1995), is used to calculate a local spatial association

coefficient for each individual locality i instead of for a certain distance class. For distance band k

and locality i, this coefficient is defined as

cki =
N
PN

j=1 δ
(k)
ij (pi − pj)

2PN
q=1 (pq − p)2

. (3)

As the numerator indicates, this local measure is based only on a single summation, for each locality

i, whereas Geary’s global coefficient sums over localities i and j (see equation (2)). Two separate

distances bands were used in this procedure on the price of rice: the 0 to 300 km and the 300 to 600

km bands (denoted (0,3] and (3,6], respectively). The Geary’s ci coefficients were then separately

ranked and the prefectures falling in the lowest 25% of all prefectures (i.e., the 30 prefectures with

the highest local spatial autocorrelation) were plotted on a map of China. The locations of the

waterways were in no way incorporated in the calculation of Geary’s ci.

The results of the ranking of the prefectures with greatest local distance autocorrelation in price

(shaded squares) show that the strongest clusters of trade originate along the Yangzi River and its

main tributaries: the Yuan River, Gan River, and Huai River. In addition, there are also indications

of local clustering in the southern provinces.18 The association between the waterways and spatial

market clusters is visible in Figure 5, which superimposes the location of the prefectures on the

coastline and major lakes and rivers in China for distance band (0,3].19

Figure 6 shows the ranking at a further distance band, (3,6], for each individual locality. Com-

18These are prefectures 29, 56, and 57, respectively, in Figure 2.
19The location of rivers and coastal boundaries shown in this map comes from China Historical GIS (2002).
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pared to distance band (0,3], the local clustering found in the southern provinces is relatively weaker,

and they no longer rank among the 25% most spatially autocorrelated markets at that distance.

Twelve prefectures appear in both maps; these prefectures are for the most part located along the

Yangzi River, but there are also a number of prefectures directly on the Yangzi River at distance

(0,3] that are not strongly autocorrelated with the (3,6] band. These are likely to be prefectures that

had relatively strong local connections with nearby markets, but not with far away ones. In the (3,6]

band, we also observe strong autocorrelations among prefectures that are located somewhat further

from the Yangzi River, for instance, at markets more distant from the main artery, yet still on a

tributary. It is likely that these are the prefectures most closely linked to the Yangzi River trade at

a longer distance.

We now turn to a regression framework that allows to analyze this further.

4 Regression results

We start out with the linear regression model

y = Xβ + ε, (4)

where y, the dependent variable, is N × 1, X is a N ×K matrix of exogenous variables, and ε is

a N × 1 error term distributed as ε ∼ NID
¡
0, σ2

¢
. Here y is the (log) mid price and X consists

of a constant and the weather variable. Under the stated conditions, ordinary least squares is the

best linear unbiased estimator, and we will report it as a baseline. Given the size differences of the

prefectures, we also present Huber (1967) and White (1980) heteroskedasticity-consistent standard

errors.

Our results on spatial autocorrelation above strongly suggest that the residuals of (4) are spatially
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dependent. One approach would be to test this assumption by applying a formal test for spatial

dependence.20 A second approach is to adjust the estimated covariance of regression (4) for spatial

dependence. Conley’s (1999) nonparametric approach can be viewed as the spatial counterpart of

the Newey and West (1987) heteroskedasticity and autocorrelation consistent time series covariance

estimation. His covariance estimator uses weighted averages of sample autocovariances that are

computed from subsets of observation pairs falling within a given distance band. We compute these

standard errors for a number of different distance bands.21 Relative to OLS, these methods affect

only the computation of the standard errors.

We then move to regression models that incorporate the spatial autocorrelation into the regressive

structure. The two most influential models are the spatial error dependence and the spatial lag

dependence model. The former is given by

y = Xβ + ε (5)

with

ε = λWε+ u (6)

where λ is the spatial autoregressive coefficient, u ∼ NID(0, σ2), and W is N ×N matrix of known

spatial weights wij. These weights correspond to the connection matrix {δij}, defined above, in that

they capture the spatial structure. If λ 6= 0, ignoring the spatial dependence means OLS is inefficient

20 In addition to a Moran or Geary test on the residuals of (4), a number of other tests have been proposed (e.g.,
Kelejian and Robinson 1992, Anselin and Bera 1998, Baltagi and Li 2001). See also Kelejian and Prucha (2001) on the
relationship of different tests and further results.
21As emphasized by Anselin (2001), the asymptotics of Conley’s (1999) covariance estimator relies on the data

generation process being spatially stationary, and this might not hold in the present context (see the discussion in
section 3.2). Therefore care is required in interpreting these results.
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but remains unbiased. The spatial lag dependence model is given by

y = ρWy +Xβ + ε (7)

where ρ is the spatially autoregressive parameter and ε ∼ NID
¡
0, σ2

¢
. If ρ 6= 0, leaving out the

term ρWy from equation (7) and running least squares gives biased and inconsistent results. We will

present results from maximum likelihood estimation of both models below.

Our spatial weights are based on distance. We considered a variety of specifications, including

one- and two-window distance bands and exponential specifications. For one-window distance bands,

wij = 1 if Dij is less than some maximum Dmax, and wij = 0 otherwise, and different spatial

structures are captured by varying Dmax.22 An example of a two-window weighing matrix,W (0, 3, 6),

might specify a weight of one for distances between (0, 3], a weight of one-half between (3, 6], and

zero for distances above six. Exponential weights are of the form wij = exp(−θDij), where a higher

value of θ leads to a more rapid decline in the size of the weights as distance increases.

In a limited grid search in terms of likelihood for a good weighting matrix, the exponential spec-

ification with parameter θ = 1.4 tended to perform best.23 Among the distance band specifications,

the one-window specification with Dmax = 3 and Dmax = 6 (corresponding to distances of 300 and

600 kilometers, respectively) performed best. The results for these three matrices are shown in the

following table.

22The own weight, wii, is set to zero ∀i in all weighting matrices.
23With distance measured in units of hundreds of kilometers, this leads to weights from 0 to 0.85, with a mean of

0.017. Also note that all estimations use row-standardized weights that sum to one.
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4.1 Spatial regression with all prefectures, 1742-1795

Table 7 shows the mean of the estimates for the models above across the 54 sample years, 1742 to

1795.24 First, the OLS results might suggest that a prefecture’s weather has a significant positive

effect on the local price.25 The point estimate of 0.08 (s.e. of 0.03) suggests that moderately bad

weather, either above normal wet or dry, raises the price by about eight percent, whereas exceptional

floods and droughts are associated with a 16% higher price. In terms of fit, the OLS regression has

an R2 of about 0.10, and the log likelihood is given by 19.463 (last line). The second column shows

Huber (1967)-White (1980) heteroskedasticity-consistent standard errors. They are similar to the

usual standard errors.

Conley’s (1999) nonparametric spatial standard errors are presented in Table 7 for distance bands

(0, 3] and (0, 6], respectively (denoted "Spatial corr. adjusted s.e.’s"). They are about 60% larger

than the non-spatial standard errors. That spatial standard errors are larger than conventional ones

is plausible, because if there is spatial dependence, the effective size of the sample is reduced relative

to one with independent observations (e.g., Cressie 1993).26 Now one cannot reject the null that

local weather has no effect on price at the 5% significance level. A reduction in the effect of local

weather on price once spatial dependence in prices is incorporated is consistent with trade being the

cause of spatial dependence.

The results for the spatial error and spatial lag dependence models are in the lower part of Table

7. They are for the three different weighting matrices discussed above: distance bands (0,3] and

(0,6], and wij = exp(−θDij), with θ = −1.4. First, notice that the spatial models fit much better

24Also Tables 8 and 9 show the mean estimate across 54 years, while Table 10 shows mean estimates from 18-year
subperiods. We have omitted the standard errors of these means in the interest of space; they are available upon
request.
25Among the three weather variables, we focus on Weather Deviation, the extent to which the weather differed from

medium dryness, the generally best harvest conditions. The other two weather variables give similar results.
26At the same time, Conley (1999) demonstrates that his spatial standard errors are not necessarily larger than

conventional standard errors.
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than the models that omit the spatial structure, with a log-likelihood ranging from about 60 to

85, versus about 20 before. Second, this improvement is clearly due to the spatial structure. The

coefficient of the spatial error model, λ, lies between 0.9 and 0.95, with a standard error of about

0.05. The test statistic of the LM test–see e.g. Anselin and Bera (1998), Baltagi and Li (2001)–is

χ2 distributed with one degree of freedom, lies between 239 and 495, with a p-value of zero. The

results for the spatial lag model are similarly strong. Lastly, evidence on the influence of weather

is now further weakened: its point estimate is between 0.02 and 0.04, compared to 0.08 before, and

it is generally not significant at standard levels. This is an example where accounting for spatial

structure qualitatively changes the inferences.

Comparing the results for the six models in terms of fit, one sees that the exponential weighing

matrix performs better than the other two. Moreover, the spatial lag model has always a somewhat

better fit than the corresponding error model. The error model is sometimes seen as appropriate

when the spatial autocorrelation in the data is the outcome of numerous factors. This is in contrast

to the spatial lag model, which isolates one factor (Haining 1990). Our finding that the spatial lag

model is always preferred to the corresponding spatial error model suggests that controlling for local

weather, the price in one locality is predominantly related to prices in other regions, but not much

else. This is consistent with interregional trade leading to a link in prices and that there is no other

major reason that underlies the spatial autocorrelation in the data.

4.2 Coastal versus Inland prefectures

Table 8 shows the regression results for the Inland and Coastal samples. In the OLS regression (upper

left corner), the point estimate for weather is higher in the Inland than in the Coastal sample, but in

neither equation does the coefficient enter significantly at standard levels. The different constants,

0.146 (Inland) and 0.448 (Coastal), confirm that on average prices are higher in Coastal areas. As was
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the case for the whole sample, the Huber-White standard errors are quite similar to the conventional

ones, whereas the spatially adjusted standard errors are higher.

For the spatial models, the results are shown in the lower part of Table 8. We focus now on the

(0,3] window and the exponential weighting matrix (θ = −1.4, as before). First, the log likelihood

values indicate that the spatial models lead to a substantial increase in fit, although it is not quite

as large as for the sample as a whole. The evidence for spatial dependence is strong, with the LM

test indicating that the H0 of no dependence can always be rejected at a 5% level. For the (0,3]

weighting matrix, the spatial autoregressive parameter for the Inland sample is around 0.83, whereas

for the Coastal sample it is about 0.63. Correspondingly, one cannot reject the H0 of no dependence

at a 1% level for the Coastal sample. This is consistent with less clustering in the 0 to 300 km range

along the coast.

Interestingly, the difference in terms of estimated spatial dependence narrows between the Inland

and Coastal samples when the exponential weighting matrix is employed (lower right of the table): the

p-values are about 0.1% for both samples. The exponential matrix gives some weight to prefectures

in the medium to long-distance range while the 0 to 300 kilometers matrix does not. It is possible

that for the coastal prefectures there is stronger evidence for spatial dependence with exponential

weights because some trade relations are already in the middle to long-distance range.

4.3 Yangzi River versus Non-River prefectures

Table 9 highlights the importance of river transport by isolating the Yangzi River prefectures. First,

in the OLS specification weather has an influence on the price only in non-Yangzi regions. The

Huber-White adjustment makes only a small difference, which is in line with our earlier results.

However, here the spatially adjusted standard errors are larger than the conventional ones only for

the Non-Yangzi prefectures (upper part on the right). This may be indirect evidence for less spatial
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dependence in the Yangzi sample than in the Non-Yangzi sample.27 With spatial standard errors, the

effect of weather on price tends to vanish at standard levels of significance even for the Non-Yangzi

sample.

The specifications for the spatial regression models in the lower part of Table 9 help to clarify

these issues. Overall, there is evidence for spatial dependence in both subsamples. At the same

time, it is weaker for the Yangzi prefectures. While for the Non-Yangzi prefectures, the LM test

p-value is zero irrespective of model and spatial weights, for the Yangzi prefectures one can reject

the H0 of no dependence at the 10% level, but never at the 1% level. This suggests that prices are

less strongly clustered along the Yangzi River. Also note that the evidence for spatial clustering in

the Yangzi sample is slightly lower using the 0 to 300 km spatial weights than for the exponential

weights (p-values of 5.8% and 2.3%, respectively). The 0 to 300 km window appears to be too small

for Yangzi River prefectures. In this sense, these LM tests confirm that trade along the Yangzi had

linked markets over substantial distances by then.

4.4 Spatial dependence over time

Table 10 show how spatial dependence among Chinese rice prices has changed over the sample period.

There is strong evidence for positive spatial dependence, and for the sample as a whole the clustering

has somewhat increased over time: the spatial autoregressive parameter ρ is estimated to be 0.856

during the years 1742-59, 0.904 for 1760-77, and 0.917 during the years 1778-95.28 This increase in

positive spatial autocorrelation is stronger among the Inland prefectures: initially, ρ is estimated to

be 0.71 (LM test p-value of 0.3%), and towards the end of the sample period ρ has risen to 0.89 and

27Other possibilities include problems coming from the relatively small size of the Yangzi sample (N = 21), or
non-stationarity of the data.
28Are these ρ estimates significantly different at standard levels? The standard error of the mean ρ of 0.856 for 1742-

59 is 0.014, and that for the mean ρ of 0.917 for 1778-95 is 0.007. Thus, at standard levels, the subperiod estimates
here are different, although this is not always the case. The full set of standard errors, with tests results regarding
their difference, is available from the authors upon request.
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the LM test’s p-value is zero. For the set of Coastal prefectures, there is no clear pattern of spatial

dependence over time.

The pattern for the Yangzi River prefectures differs substantially from the sample as a whole.

Instead of an increase in spatial autocorrelation, the parameter estimate of ρ decreases from about 0.8

to 0.63, with most of the change occurring after the year of 1777. Moreover, during the last eighteen

years of the sample there is no strong evidence for price clusters among Yangzi River prefectures

(p-value of LM test of 6.8%).

Overall, a picture emerges according to which the level and change in spatial interaction varies

systematically with opportunities to interregional trade among these prefectures. For some prefec-

tures, the intensification of local trade tightens price clusters over short distances; these seem to be

primarily the inland regions of China during the late 18th century. Regions on the coast and along

rivers have good local opportunities to trade as well, but they have also medium- to long-distance

trade opportunities. This has shifted the frontier of what constitutes the local economy for these

economies, and price clusters at short distances have begun to disappear.

We now turn to a concluding discussion.

5 Conclusion

This paper has shown how estimators of spatial autocorrelation may be employed with price data

to provide evidence on interregional trade patterns. The geographic locations of the most locally

integrated markets in our sample are found to lie along the Yangzi River and its tributaries, a result

that is consistent with historical accounts that have emphasized the importance of physical geography

in the emergence of trade. The results also suggest that accounting for spatial structure in contexts

where spatial effects play a major role alters the inferences on economic outcomes. For our sample,
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we were able to obtain information on local weather shocks, a variable that could lead to spurious

price correlation because weather, like trade, is a geographically localized variable. We find that the

spatial models effectively removes the significance of weather in the estimation results.

The spatial patterns in the data indicate that markets which are most likely to be integrated over

longer distances are not necessarily also the same locations which are most integrated with nearby

markets. The difference appears to depend on the location of a market with respect to its most

efficient trade route.

When data for long periods is available, there are clear benefits to allowing for temporal as well

as spatial changes in the model. Over time, we find that markets appear to substitute between

local and more distant markets. It is likely that differences in the rate of improvement of different

transport technologies, as well as its location with respect to the preferred trade route, determine

whether a certain market begins to engage in long-distance trade. When long-distance trade does

emerge, our results suggest that its linkages with more nearby markets may diminish.

In future work, it would be interesting to combine this analysis with direct evidence on how trade

routes evolved in China over time. Another direction for future research is to examine the long-run

consequences of market access and interregional trade in China. From what we know about regional

differences in income per capita in China in the 18th century, income appears to be correlated with

market access and trade. Notably, the Chinese regions that are rich today (the Yangzi Delta including

Shanghai, the area around Guangdong and Hong Kong, as well as the coastal areas of Fujian) include

many that were relatively rich already a couple of centuries ago. The impact of geography would

seem to have lasting effects.
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A Price data

During the era of the Qing emperors (years 1644 to 1911), we have relatively good price records

for the 18th century. In these years an empire-wide price reporting system was in place, serving

the purpose of an early warning system to prevent famines. The fact that these data were put to

practical uses suggests accuracy would have been important and, to the extent that is was possible,

enforced. In addition, a system of unannounced checks and audits of the price data was in place.

The quality of the data is generally considered good compared to other historical price records.

Our focus is on rice, the most important type of grain in China. This leads to the exclusion of

parts of China to the North and West where also other crops, for instance barley, play a major role.

With about 60% of the Chinese economy—a population of about 120 million people, about 20% of

the world population at the time—, our sample is still sizable. For our sample period from 1742 to

1795, about 24% of the data is missing in the original source. The percentage of missing data is

similar across prefectures, and there is no evidence to suggest that the missing data is systematically

related to known prefectural characteristics. We have estimated the missing data using the methods

developed by Gomez and Maravall (1997). The main findings of this study are not affected by the

estimation of missing data.

The original source of the price data is Gongzhong zhupi zouzhe, nongye lei, liangjia qingdan

[Grain Price Lists in the Agricultural Section of the Vermilion Rescripts in the Palace Archives].

Today it is located in the Number One Historical Archives in Beijing. The data was originally

collected by C. H. Shiue, see Shiue (2002) for additional details.
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B Weather data

The historical weather data comes from the State Meteorological Society (1981). The weather scale is

defined as follows by the compilers of these maps: ”Level 1 represents years in which there have been

exceptional rainfall, leading to major floods, typhoons, water related disasters, and the destruction

of all crops. Level 2 rain encompasses cases where there is heavy rainfall, but limited in scope and/or

resulting in only minor flooding. Level 3 weather is the most favorable weather. Level 4 indicates

minor droughts of limited consequence, while level 5 denotes the years of exceptional drought, lasting

two or more seasons of the year, and leading to major harvest failures.” For this paper, the above

rankings are used to compute three weather variables: (1) Dryness: This variable gives the weather

levels as given in the source. Dryness takes values of 1, 2, 3, 4, and 5 (1 being least and 5 being

most dry). (2) Weather deviation: This variable is defined as |Dryness− 3| , taking values of 0, 1,

and 2. (3) Bad weather: This variable equals one if Dryness is 1 or 5, and zero otherwise. Summary

statistics for these variables by province are given in Table 3.
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Figure 4a.  Changes in Autocorrelation over Time among Inland Prefectures
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Figure 4b. Changes in Autocorrelation over Time among Yangzi River Prefectures
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Table 1

Geographic Location: Longitudes and Latitudes

Province Number of Coordinates Mean Standard
Prefectures Deviation

Anhwei 13 longitude 117.9 1.0
latitude 31.6 1.0

Fujian 12 longitude 118.4 1.3
latitude 25.8 1.1

Guangdong 13 longitude 112.4 2.4
latitude 23.0 1.6

Guangxi 12 longitude 108.7 1.6
latitude 23.5 1.0

Guizhou 13 longitude 107.5 1.2
latitude 26.8 0.8

Hubei 10 longitude 112.6 1.8
latitude 31.2 0.9

Hunan 13 longitude 111.4 1.3
latitude 27.6 1.4

Jiangsu 10 longitude 120.0 0.9
latitude 32.2 1.0

Jiangxi 14 longitude 115.9 1.2
latitude 27.9 1.2

Zhejiang 11 longitude 120.3 0.7
latitude 29.4 1.0



Table 2

Price Data by Province*

Province Price Mean Standard Min Max N
Variable Deviation

Anhwei Middle 1.553 0.277 0.950 2.890 1404
Lowest 1.408 0.252 0.790 2.600 1404
Highest 1.698 0.335 1.050 3.400 1404

Fujian Middle 1.667 0.262 0.945 3.250 1296
Lowest 1.507 0.280 0.730 3.200 1296
Highest 1.827 0.279 1.100 3.300 1296

Guangdong Middle 1.498 0.284 0.830 2.515 1404
Lowest 1.315 0.278 0.650 2.240 1404
Highest 1.681 0.326 0.920 2.840 1404

Guangxi Middle 1.117 0.162 0.665 1.705 1296
Lowest 0.999 0.157 0.590 1.600 1296
Highest 1.234 0.194 0.740 2.000 1296

Guizhou Middle 0.972 0.172 0.600 1.555 1404
Lowest 0.835 0.172 0.420 1.450 1404
Highest 1.109 0.213 0.670 2.000 1404

Hubei Middle 1.330 0.235 0.780 2.800 1080
Lowest 1.156 0.203 0.660 2.100 1080
Highest 1.504 0.297 0.900 3.600 1080

Hunan Middle 1.190 0.156 0.855 2.095 1404
Lowest 1.090 0.160 0.670 2.030 1404
Highest 1.290 0.185 0.910 2.660 1404

Jiangsu Middle 1.794 0.323 1.125 3.250 1080
Lowest 1.639 0.316 0.950 3.000 1080
Highest 1.950 0.353 1.200 3.500 1080

Jiangxi Middle 1.413 0.189 0.945 2.475 1512
Lowest 1.294 0.184 0.780 2.300 1512
Highest 1.533 0.218 1.000 2.710 1512

Zhejiang Middle 1.564 0.202 1.010 2.715 1188
Lowest 1.414 0.200 0.830 2.350 1188
Highest 1.713 0.226 1.120 3.100 1188

Total Middle 1.400 0.334 0.600 3.250 13068
Lowest 1.257 0.322 0.420 3.200 13068
Highest 1.543 0.370 0.670 3.600 13068

* Price of middle-quality rice in taels per bushel



Table 3

Weather by province

province weather mean standard N
variable* deviation

Anhwei Dryness 2.677 0.940 702
Wdeviation 0.739 0.664 702
Bad Weather 0.124 0.330 702

Fujian Dryness 2.748 1.089 648
Wdeviation 0.906 0.654 648
Bad Weather 0.171 0.377 648

Guangdong Dryness 2.946 1.054 702
Wdeviation 0.906 0.542 702
Bad Weather 0.104 0.305 702

Guangxi Dryness 2.966 0.680 648
Wdeviation 0.392 0.556 648
Bad Weather 0.035 0.185 648

Guizhou Dryness 3.006 0.740 702
Wdeviation 0.405 0.619 702
Bad Weather 0.071 0.257 702

Hubei Dryness 2.850 0.887 540
Wdeviation 0.557 0.706 540
Bad Weather 0.126 0.332 540

Hunan Dryness 2.839 0.805 702
Wdeviation 0.503 0.649 702
Bad Weather 0.085 0.280 702

Jiangsu Dryness 2.865 0.904 540
Wdeviation 0.639 0.654 540
Bad Weather 0.098 0.298 540

Jiangxi Dryness 2.696 0.853 756
Wdeviation 0.640 0.641 756
Bad Weather 0.090 0.286 756

Zhejiang Dryness 2.842 0.910 594
Wdeviation 0.623 0.681 594
Bad Weather 0.114 0.319 594

Total Dryness 2.841 0.900 6534
Wdeviation 0.633 0.659 6534
Bad Weather 0.101 0.302 6534

* Weather is recorded as a discrete variable taking the values 1 (floods; least dry), 2,3 (normal),4, and 5 (droughts)
This is the variable Dryness; Wdeviation = |Dryness-3|, the deviation from normal (good) weather
Bad Weather indicates severe floods or droughts; it is 1 for Dryness=1 or Dryness=5, zero otherwise



Table 4

Prices over time
Mid-price

Province Statistic month 2 month 8 month 2 month 8 month 2 month 8

Anhwei mean 1.472 1.405 1.500 1.500 1.717 1.724
sd * 0.269 0.236 0.214 0.208 0.269 0.285
sd/mean 0.183 0.168 0.143 0.139 0.157 0.165

Fujian mean 1.577 1.564 1.636 1.660 1.764 1.801
sd * 0.289 0.257 0.181 0.170 0.285 0.272
sd/mean 0.183 0.164 0.111 0.102 0.162 0.151

Guangdong mean 1.455 1.412 1.490 1.503 1.566 1.564
sd * 0.321 0.277 0.285 0.283 0.258 0.246
sd/mean 0.221 0.196 0.191 0.188 0.165 0.157

Guangxi mean 1.134 1.138 1.021 1.039 1.171 1.197
sd * 0.209 0.176 0.099 0.096 0.139 0.140
sd/mean 0.185 0.155 0.097 0.093 0.119 0.117

Guizhou mean 0.983 1.016 1.012 1.010 0.908 0.903
sd * 0.179 0.174 0.173 0.177 0.142 0.142
sd/mean 0.182 0.171 0.171 0.175 0.156 0.158

Hubei mean 1.210 1.204 1.296 1.296 1.483 1.492
sd * 0.183 0.160 0.136 0.122 0.286 0.276
sd/mean 0.151 0.133 0.105 0.094 0.193 0.185

Hunan mean 1.156 1.151 1.139 1.147 1.270 1.276
sd * 0.150 0.126 0.102 0.103 0.197 0.168
sd/mean 0.130 0.109 0.090 0.090 0.155 0.132

Jiangsu mean 1.693 1.671 1.778 1.785 1.915 1.924
sd * 0.338 0.292 0.252 0.241 0.346 0.359
sd/mean 0.200 0.175 0.142 0.135 0.181 0.187

Jiangxi mean 1.332 1.276 1.421 1.382 1.551 1.517
sd * 0.212 0.150 0.129 0.111 0.184 0.170
sd/mean 0.159 0.118 0.091 0.080 0.119 0.112

Zhejiang mean 1.526 1.468 1.600 1.588 1.595 1.607
sd * 0.257 0.162 0.195 0.174 0.184 0.190
sd/mean 0.169 0.110 0.122 0.110 0.115 0.118

Total mean 1.346 1.322 1.380 1.381 1.483 1.489
sd * 0.325 0.283 0.309 0.304 0.369 0.369
sd/mean 0.242 0.214 0.224 0.221 0.249 0.248

* sd = standard deviation

(i) 1742/59 (ii) 1760/77 (iii) 1778/95
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