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In Part 1 the dynamics of an open market operation were analyzed for

the case of logarithmic utility. Though such a utility function Is useful

for illustrative purposes, the implication that current prices are independent

of current and future monetary injections is unsatisfactory. This implication

results from the fact that with logarithmic utility future consumption is

independent of the rate of return to savings. In Part 2 the logarithmic

utility assumption is replaced by the more general assumption that utility

is of the constant elasticity form such that future consumption is an increasing

function of the interest rate. Though a closed form solution cannot be derived for

this case, it is shown that the basic results of Part 1 still hold: An

increase in money causes a sluggish response of the price level and a fall

in interest rates.

I. The Basic Difference Equation

This Part refers freely to the equations in Part 1. Assume that

1-A
u(c) =

—A

Then from (2.12a) savings (x.y) can be written as
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IA

(X,Y) = Y (X), where (X) =

el/A + A

Assume that 0 < A < 1, so that '(X) > 0, i.e., future consumption is an

increasing function of the interest rate. The case A 1 was the concern

of Part 1. Note that 0 < < 1 for 0 <X < .
As in Part 1 we will be concerned with equilibrium near the steady

state, where the initial cash in advance constraint will be binding. In order

to analyze an open market operation which occurs only during period 1,

set

(1) M = M(l + k), for t > 1,

where k is the % increase in money which occurs at time 1, and N = Ma + M

is the steady state stock of money. Also set y. Thus (2.20), gives

the following second order difference equation

(2) py + p 1y = (1 + k)M for t > 3,t

and (2.22) gives the constraints on initial conditions

(3a) p1y + M M

(3b) p2y + (p1y + ) (1 + k)M
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Recall that for t > 3, py is the amount of money flowing Into and hence

out of the bank at t—l. Thus t—l is the money holdings at

the end of t for someone who went to the bank at the end of t—l, and thus

(Pt \
plans to exhaust his money at the end of t+l by spending

during t+i. The term is the money held at the end of t by the people

making a withdrawal at t. Hence the left hand side of (2) is total money

holdings at the end of t.

Note that (2) implies that

(4) Pt + = t+l
t+2)

Pt

p
Let then (4) can be written as

pt+l

(5) = "'';— + 1 — for t > 3.—

Since prices are non—negative, (5) is defined only for non—negative

Equation (5) gives the path of the one period returns to holding money

It is somewhat easier to work with rates of return than prices so we will

study (5) rather than (2). Note that (5) has only one steady state namely

= t—l = 1. This can be seen by writing (5) as

(y) - (y)y -l or, (y)(l - y) = 1

This last equation can only hold for y = 1, since 0 < < 1

We will use the following Lemma:
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Lemma 1. (a) If 2 < 1 and 13 < 1, then there exists an > 0 such

that < 1 — c for all t > 2. (b) If 2 > 1 and 13 > 1 then there

exists an > 0 such that > 1 + c for all t > 2. In both cases

(5) will eventually fail to hold, i.e., 0 < 4(y) < 1 will be violated.

Proof. (a) From (5), y4) < q(y3)y2 < 4'). Hence, since '(y) > 0

14 < 13 < 1. Similarly Y5) < I4)Y3 < 4(Y) SO < < < 1. It

is easy to see by induction that (1) y < 1 and y < 1 implies thattl t

< 1 and 1t+2 ( 1, and (ii) < Hence since 13 < 1. the

are bounded away from 1.

(b) The signs of all the above reverse, i.e., y — > 1 y > 1 impliestl t

from (5) that t+l > > so > It' etc.

In both cases a monotone sequence is generated which diverges from

the unique steady state I = 1. Hence It must go to positive infinity or zero.

However this will violate (5) for 1 sufficiently large or close to zero, QED

Lemma 1 implies that if there are ever 2 consecutive 1' both above

1 or both below 1 then
Pt goes to infinity or Pt goes to zero, and (5)

will eventually fail. Each of these possibilities Is inconsistent with

market clearing. To see this look at equation (2), Since k and M are

given with (l+k)M > 0 and 0 < q < 1, It cannot be the case that prices

get Indefinitely high or go to zero: (2) will eventually fail.

Intuitively, If prices get too high then people will be demanding more

money than the whole stock of money to make their purchases. Similarly if

Pt gets too small the purchasing power of M(l+k) will exceed the stock

of goods. Hence
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Corollary 1 If Pt is an equilibrium price path i.e., (2) and (3) hold,

then there is no t > 3 such that (a) < 1 and < 1, or (b) > 1

and 't+l > 1.

Recall from Part 1, that except for the case of logarithmic utility

we have no equation to determine p1. That is, (3a) gives p2 as a function

of p1. This and (3b) gives p3 as a function of p1. Thus p3 and p2

are determined as a function of p1. Equation (2) is a second order

difference equation which requires a p3 and p2 to start it off. Thus for

every p1, in general there will be a path generated by (2) and (3) which

is a candidate path for an equilibrium. The paradox of this seemingly

continuum of equilibria can be resolved by showing that the second order

difference equation in (2) will eventually violate 0 < < 1 unless p2

and p3 satisfy a particular functional relationship. In particular given

a p2 we will show that there exists at most one p3 such that (2) can

hold for all t > 2 and 0 < 4' < 1.

Recall that (5) has a unique steady state y = 1. We will assume that

for each 2 there exists some such that the '' generated by (5)

converge to 1, We will show that this implies that there is at most one 13

for each 2 such that (5) holds for each t > 3. After proving the above

statement we will show that the hypothesis is not empty. That Is, there exists

a neighborhood of 1 such that for any in that neighborhood there exists

a 13 such that the solution to (5) converges to the steady state. We will

need the following theorem.
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2
Theorem 1. Let g(x) be a continously differentiable function from 1 to

LI2 Consider the difference equation x1 gGc) with a steady state x,

i.e., x g(x). Consider the linearized difference equation about x:

x = X(x — x), where I = Vg) is the 2 x 2 matrix of derivatives

of g with respect to x. Assume that the two characteristic roots of

A satisfy 1X11 > 1 and IX2 < 1. Then there exists a one dimensional

manifold M in LI2, tangent to the stable manifold of the linear system at

x, with the following properties: there exists an open neighborhood of x

say N such that if x E N fl N and Cx } is generated from x41 =0 t

starting at x, then -+ x. Further if x0 E N and x0 N then there

exists a time t such that x N.

Theorem 1 is analogous to the stable manifold theorems for differential

equations, see Coddington and Levinson Theorems 4.1 and 4.2 on pp.330—334.

Of course, not all theorems for differential equations are true for difference

equations. However Theorem 1 is true. In particular Scheinkman (1974)

(i.e., his Lemma 6 of Part II) proves most of Theorem 1 following steps

analogous to Coddington and Levinson. The remainder of the theorem is

straightforward following Scheinkman's discrete time rendition of Coddington and

and Levinson. Thus a proof will not be given here.

We will use Theorem 1 to prove a global property of the difference

equation (5).

Theorem 2. Let be given. Assume that there exists a such

that the solution to (5) converges. Then for 2 = is the unique

value for for which (5) can hold for all t > 2 without violating

0 < 4(y) < 1, i.e., for which there exists a solution path to (5).
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Proof.

We must show that there Is no path ; satisfying (5) starting from

= and y3. We will denote the convergent path starting from

(i2,V3) by y• We first show that it is impossible for > If

> then from (5)

= 32 + -
y> "32 + - =

so 14 > y4. It is easy to see by induction that > for all t.

Further, by Lemma l, satisfies (5) then must alternate in

sign as t goes to t+l. Note that either y converges to 1 or it does

not.

First suppose that converges to 1. Then by Theorem 1, there

exists a neighborhood of (1,1) so that will be on the stable

manifold of (5) "near9' where it is tangent to the stable manifold of the

linearized system, More precisely write (5) as

(6) = g(x). t > 3

where x g(x) + 1 —

Note that g(x) = x has a single solution in R, x = (1,1). The eigenvalues

of = Vg(x) are given by

(7a) = 24

— (4'+l) + I('+l) + 4qx'

A 24

— (4'+l) — /(q'+i) + 444'

where 4(1) and 4i' E 4'(l).!J Recall that 4' > 0 and 0 < < 1.

It can be shown that —l < A2 < 0 and
A1

> 1. Therefore the stable manifold
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of the linear system (starting at t > 3) satisfies

(Y3l,Y2_l) (l,-X2) = 0 or y31 = A2(12l).

Thus the stable linear manifold has a negative slope in space.

Hence by Theorem 1, the stable manifold of the non—linear system (6) has a

negative slope in some neighborhood of (1,1), Denote the stable manifold

of the nonlinear system by = m(y1) Since and both converge

to 1, for t large enough = m(yi) and = m(yi). Recall that

for all t > Hence 1t—l > t—l' but for t large enough m(y) has

a negative slope, so m(y) < m(Y). Hence m(Y) = 1t+l < t+l = m(Y)
which is impossible. This shows that does not converge to 1.

Suppose that < 1. Then by Lemma 1 > 1. Further it must be

the case that < 1, for f > 1 then 1t+l < 1 which contradicts

t+l > 1t+1 Thus for every other value of t, '' < < 1, with

Without loss of generality we may assume that along, say, even values of t

converges to 1 from below. Further, since does not converge to 1,

for some > 0 and any S > 0 there exists an even t such that 1 — <

and 1t—l > 1 + E. But this will violate (5), since for 5 sufficiently

small (5) will imply > 1. This shows that it is impossible for

13 < . A similar argument shows that > is impossible. QED

Let S be the set of such that there exists a with the

property that when (5) is started at (y2,y3) then a solution for

exists for all t > 2. In the proof of Theorem 2 it was shown that the

Set S is not empty. This is because it was shown that the linearized

system has a non—degenerate stable manifold. Thus S contains an open

neighborhood of 1. Theorem 2 implies that if e S then there exists
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a unique for which (5) holds. We denote this by tn(y2),

i.e., Y3

Returning to the equations involving Pt recall from Part 1 that we

did not describe how p1 is chosen except for the logarithmic case. We

can use the function m() to determine p1 as follows. Given p1 (3a)

determines as a function of p1 and k, say y1(p1,k). Hence

= + y1(p1,k). Thus (3b) determines as a function of p1 and k,

say y2(p1,k). Next apply equation (2) at t = 3 to get y3(p1,k). Then

p1 must be chosen so that

(8) y3(p1,k) = m(y2(p1,k))

holds. By differentiating the above functions and evaluating at k 0, it

is easy to see that there is a unique p1 such that (8) holds for p1 in

a neighborhood of the steady state p = M y.

II. The Non Neutrality of pen Market Operations

It is easy to use Lemma 1 to show that prices respond slowly to an

open market operation. The next Theorem shows that a k% increase in money

via an open market operation leads the initial price to move by less than

k%. (Similarly prices initially fall by less than k% if there is a monetary

contraction .) Throughout this Section M: and M' are as given in (3.2).

Theorem 3. If M Ma + M' > 0, and M = (l+k)M > 0 for t > 1, then

p1 < (l+k)p when k >0, and p1 > (1+k)p when k < 0, where p Is the

steady state price level when k 0.
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Proof,

We give the proof for k < 0, The proof for k > 0 is similar. So

suppose k < 0 and p1 < (l+k)p, then this leads to a contradiction as

follows. Let Pt be the equilibrium path generated for k < 0. From (3a)

M M - (l+k)py > M- = (1),

where the last equality follows from (3.2). Hence > 1, Hence

< (l+k)p. Recall that the steady state for k = 0 satisfies

py + l)py = N. Thus

(10) (l+k)py + (l) (l+k)py (l+k)M.

Hence from (3b) > (l), so 2 > , Hence p3y < (l+k)py. Apply this

to (2) evaluated at t = 3 and conclude that q(y3) > 4(l), SO 13 >

Corollary 1 this is impossible. QED

It can also be shown that prices respond gradually to a small monetary

injection, with p1 rising, p11p2, p2/p3 falling and p3/p4 rising relative

to their steady state positions of p,l,l, and 1 respectively. This is easily

seen by differentiating (8) with respect to k, evaluating the derivatives

at k = 0, and using the fact that m'(l) = is the slope of the linearized

system in Theorem 2.

Finally, it is possible to show that a small increase in money by an

open market operation lowers both the initial two period nominal rate and

real rate. This can be proved by noting that from (2.23)
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ut(
(11) R1R2 u'(y—(y3)y2Y3y)

Recall that equation (8) determines p1 as a function of k, and hence

determines and as a function of k. Thus R1R2 is determined

as a function of k. This function can be differentiated and evaluated at

k 0 to verify that an increase in k lowers R1R2 for k small.

Si.milarly the real race is easily shown to fall because there is inflation

from t = 2 to t = 4, i.e. p4 + = 2 has a positive derivative

with respect to k at k = 0.

III. Conclusions

The determination of the initial price level for the model of Part 1

with non—logarithmic utility has been presented. This facilitated a simple

proof that open market increases in money lead to a sluggish price level

response and a temporary fall in interest rates. These results assume that

the open market operation is sufficiently small so that people do not return

to the bank (initially) with unspent cash. Throughout Part 1 and Part 2, the

period between trips to the bank has been taken to be independent of the size

of the open market operation. It would be useful but difficult, to extend our

results to a model where the transaction period is endogenous. It would be

far more useful to discuss the possibility of returns to the bank with unspent

cash balances in such a model, rather than in the current model.
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Footnotes

1/

The eigenvector corresponding to

is

a' This shows that there is a unique equilibrium for economies beginning
near k = 0 (i.e., for small monetary shocks), given that the initial
cash in advance constraints are binding. Clearly, if we do not assume
they are binding there will be no p1 in a neighborhood of the p which
solves (8) in which the constraint will fail to bind, and which leds to
a convergent equilibrium. This is because, by the stable manifold property
small changes in the initial conditions will lead to small changes in all
y and consumptions. Thus since (2.26) holds as a strict inequality for
te solution to (8) it will also be a strict inequality for the alternative
path. Hence the cash in advance constraint will bind for all prices which
begin in a neighborhood of the steady state.
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