NBER WORKING PAPER SERIES

A TRANSACTIONS BASED MODEL OF THE MONETARY TRANSMISSION MECHANISM: PART 2

Sanford J. Grossman

Working Paper No. 974

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge MA 02138

September 1982

The research reported here is part of the NBER's research programs in Economic Fluctuations and in Financial Markets and Monetary Economics. Any opinions expressed are those of the author and not those of the National Bureau of Economic Research. A Transactions Based Model of the Monetary Transmission Mechanism: Part 2

ABSTRACT

In Part 1 the dynamics of an open market operation were analyzed for the case of logarithmic utility. Though such a utility function is useful for illustrative purposes, the implication that current prices are independent of current and future monetary injections is unsatisfactory. This implication results from the fact that with logarithmic utility future consumption is independent of the rate of return to savings. In Part 2 the logarithmic utility assumption is replaced by the more general assumption that utility is of the constant elasticity form such that future consumption is an increasing function of the interest rate. Though a closed form solution cannot be derived for this case, it is shown that the basic results of Part 1 still hold: An increase in money causes a sluggish response of the price level and a fall in interest rates.

> Professor Sanford Grossman University of Chicago Department of Economics 1126 E. 59th Street Chicago, Illinois 60637

(312)962-8178

A Transactions Based Model of the Monetary Transmission

Mechanism - Part 2

by

Sanford J. Grossman

In Part 1 the dynamics of an open market operation were analyzed for the case of logarithmic utility. Though such a utility function is useful for illustrative purposes, the implication that current prices are independent of current and future monetary injections is unsatisfactory. This implication results from the fact that with logarithmic utility future consumption is independent of the rate of return to savings. In Part 2 the logarithmic utility assumption is replaced by the more general assumption that utility is of the constant elasticity form such that future consumption is an increasing function of the interest rate. Though a closed form solution cannot be derived for this case, it is shown that the basic results of Part 1 still hold: An increase in money causes a sluggish response of the price level and a fall in interest rates.

I. The Basic Difference Equation

This Part refers freely to the equations in Part 1. Assume that

$$u(c) = \frac{c^{1-A}}{1-A}$$

Then from (2.12a) savings $\phi(X, Y)$ can be written as

University of Chicago

I am grateful to Jose Scheinkman for helpful advice. All errors are mine. Research supported by NSF Grant SES-8112036.

$$\phi(X,Y) = Y \phi(X)$$
, where $\phi(X) = \frac{\beta^{1/A}}{\beta^{1/A} + x^{A-1}}$

Assume that 0 < A < 1, so that $\phi'(X) > 0$, i.e., future consumption is an increasing function of the interest rate. The case A = 1 was the concern of Part 1. Note that $0 < \phi(X) < 1$ for $0 < X < \infty$.

As in Part 1 we will be concerned with equilibrium near the steady state, where the initial cash in advance constraint will be binding. In order to analyze an open market operation which occurs only during period 1, set

(1)
$$M_t^s = M(1 + k), \text{ for } t \ge 1,$$

where k is the % increase in money which occurs at time 1, and $M = M_o^a + M_o^b$ is the steady state stock of money. Also set $y_t \equiv y$. Thus (2.20), gives the following second order difference equation

(2)
$$p_t y + \phi \left(\frac{p_t}{p_{t+1}} \right) \quad p_{t-1} y = (1+k)M \text{ for } t \ge 3,$$

and (2.22) gives the constraints on initial conditions

(3a)
$$p_1 y + \phi \left(\frac{p_1}{p_2}\right) M_0^b = M$$

(3b)
$$P_2 y + \phi \left(\frac{P_2}{P_3}\right) (P_1 y + kM) = (1 + k)M$$

Recall that for $t \ge 3$, p_{t-1}^y is the amount of money flowing into and hence out of the bank at t-1. Thus $\phi\left(\frac{p_t}{p_{t+1}}\right) p_{t-1}^y$ is the money holdings at the end of t for someone who went to the bank at the end of t^{-1} , and thus plans to exhaust his money at the end of t+1 by spending $\phi\left(\frac{p_t}{p_{t+1}}\right) p_{t-1}^y$ during t+1. The term p_t^y is the money held at the end of t by the people making a withdrawal at t. Hence the left hand side of (2) is total money holdings at the end of t.

Note that (2) implies that

(4)
$$p_{t} + \phi\left(\frac{p_{t}}{p_{t+1}}\right) p_{t-1} = p_{t+1} + \phi\left(\frac{p_{t+1}}{p_{t+2}}\right) p_{t}$$

Let $\gamma_t \equiv \frac{p_t}{p_{t+1}}$, then (4) can be written as

(5)
$$\phi(\gamma_{t+1}) = \phi(\gamma_t)\gamma_{t-1} + 1 - \frac{1}{\gamma_t} \text{ for } t \ge 3.$$

Since prices are non-negative, (5) is defined only for non-negative γ_t .

Equation (5) gives the path of the one period returns to holding money γ_t . It is somewhat easier to work with rates of return than prices so we will study (5) rather than (2). Note that (5) has only one steady state namely $\gamma_t = \gamma_{t-1} = 1$. This can be seen by writing (5) as

$$\phi(\gamma) - \phi(\gamma)\gamma = 1 - \gamma^{-1}$$
, or, $\phi(\gamma)(1 - \gamma) = 1 - \gamma^{-1}$.

This last equation can only hold for $\gamma = 1$, since $0 < \phi < 1$. We will use the following Lemma: <u>Lemma 1</u>. (a) If $\gamma_2 < 1$ and $\gamma_3 < 1$, then there exists an $\varepsilon > 0$ such that $\gamma_t < 1 - \varepsilon$ for all $t \ge 2$. (b) If $\gamma_2 > 1$ and $\gamma_3 > 1$ then there exists an $\varepsilon > 0$ such that $\gamma_t > 1 + \varepsilon$ for all $t \ge 2$. In both cases (5) will eventually fail to hold, i.e., $0 \le \phi(\gamma) \le 1$ will be violated.

<u>Proof</u>. (a) From (5), $\phi(\gamma_4) < \phi(\gamma_3)\gamma_2 < \phi(\gamma_3)$. Hence, since $\phi'(\gamma) > 0$ $\gamma_4 < \gamma_3 < 1$. Similarly $\phi(\gamma_5) < \phi(\gamma_4)\gamma_3 < \phi(\gamma_4)$ so $\gamma_5 < \gamma_4 < \gamma_3 < 1$. It is easy to see by induction that (i) $\gamma_{t-1} < 1$ and $\gamma_t < 1$ implies that $\gamma_{t+1} < 1$ and $\gamma_{t+2} < 1$, and (ii) $\gamma_{t+1} < \gamma_t$. Hence since $\gamma_3 < 1$, the γ_t are bounded away from 1.

(b) The signs of all the above reverse, i.e., $\gamma_{t-1} > 1 \quad \gamma_t > 1$ implies from (5) that $\phi(\gamma_{t+1}) > \phi(\gamma_t)\gamma_{t-1} > \phi(\gamma_t)$ so $\gamma_{t+1} > \gamma_t$, etc.

In both cases a monotone γ_t sequence is generated which diverges from the unique steady state $\gamma = 1$. Hence γ_t must go to positive infinity or zero. However this will violate (5) for γ_t sufficiently large or close to zero. QED

Lemma 1 implies that if there are ever 2 consecutive γ_t , both above 1 or both below 1 then p_t goes to infinity or p_t goes to zero, and (5) will eventually fail. Each of these possibilities is inconsistent with market clearing. To see this look at equation (2). Since k and M are given with (1+k)M > 0 and $0 \le \phi \le 1$, it cannot be the case that prices get indefinitely high or go to zero: (2) will eventually fail. Intuitively, if prices get too high then people will be demanding more money than the whole stock of money to make their purchases. Similarly if p_t gets too small the purchasing power of M(1+k) will exceed the stock of goods. Hence

<u>Corollary 1</u>. If p_t is an equilibrium price path i.e., (2) and (3) hold, then there is no $t \ge 3$ such that (a) $\gamma_t < 1$ and $\gamma_{t+1} < 1$, or (b) $\gamma_t > 1$ and $\gamma_{r+1} > 1$.

Recall from Part 1, that except for the case of logarithmic utility we have no equation to determine p_1 . That is, (3a) gives p_2 as a function of p_1 . This and (3b) gives p_3 as a function of p_1 . Thus p_3 and p_2 are determined as a function of p_1 . Equation (2) is a second order difference equation which requires a p_3 and p_2 to start it off. Thus for every p_1 , in general there will be a path generated by (2) and (3) which is a candidate path for an equilibrium. The paradox of this seemingly continuum of equilibria can be resolved by showing that the second order difference equation in (2) will eventually violate $0 \le \phi \le 1$ unless p_2 and p_3 satisfy a particular functional relationship. In particular given a p_2 we will show that there exists at most one p_3 such that (2) can hold for all $t \ge 2$ and $0 \le \phi \le 1$.

Recall that (5) has a unique steady state $\gamma = 1$. We will assume that for each γ_2 there exists some γ_3 such that the γ_t generated by (5) converge to 1. We will show that this implies that there is at most one γ_3 for each γ_2 such that (5) holds for each $t \geq 3$. After proving the above statement we will show that the hypothesis is not empty. That is, there exists a neighborhood of 1 such that for any γ_2 in that neighborhood there exists a γ_3 such that the solution to (5) converges to the steady state. We will need the following theorem.

<u>Theorem 1</u>. Let g(x) be a continously differentiable function from \mathbb{R}^2 to \mathbb{R}^2 . Consider the difference equation $x_{t+1} = g(x_t)$ with a steady state \overline{x} , i.e., $x = g(\overline{x})$. Consider the linearized difference equation about \overline{x} : $x_{t+1} - \overline{x} = \overline{A}(x_t - \overline{x})$, where $\overline{A} = \nabla g(\overline{x})$ is the 2 x 2 matrix of derivatives of g with respect to x. Assume that the two characteristic roots of A satisfy $|\lambda_1| > 1$ and $|\lambda_2| < 1$. Then there exists a one dimensional manifold M in \mathbb{R}^2 , tangent to the stable manifold of the linear system at \overline{x} , with the following properties: there exists an open neighborhood of \overline{x} say N such that if $x_0 \in N \cap M$ and $\{x_t\}$ is generated from $x_{t+1} = g(x_t)$ starting at x_0 , then $x_t \neq \overline{x}$. Further if $x_0 \in N$ and $x_0 \notin M$ then there exists a time t such that $x_t \notin N$.

Theorem 1 is analogous to the stable manifold theorems for differential equations, see Coddington and Levinson Theorems 4.1 and 4.2 on pp.330-334. Of course, not all theorems for differential equations are true for difference equations. However Theorem 1 is true. In particular Scheinkman (1974) (i.e., his Lemma 6 of Part II) proves most of Theorem 1 following steps analogous to Coddington and Levinson. The remainder of the theorem is straightforward following Scheinkman's discrete time rendition of Coddington and and Levinson. Thus a proof will not be given here.

We will use Theorem 1 to prove a global property of the difference equation (5).

Theorem 2. Let $\gamma_2 = \overline{\gamma}_2$ be given. Assume that there exists a $\overline{\gamma}_3$ such that the solution to (5) converges. Then for $\gamma_2 = \overline{\gamma}_2, \overline{\gamma}_3$ is the unique value for γ_3 for which (5) can hold for all t > 2 without violating $0 \le \phi(\gamma) \le 1$, i.e., for which there exists a solution path to (5).

Proof.

We must show that there is no path γ_t satisfying (5) starting from $\gamma_2 = \overline{\gamma}_2$ and $\gamma_3 \neq \overline{\gamma}_3$. We will denote the convergent path starting from $(\overline{\gamma}_2, \overline{\gamma}_3)$ by $\overline{\gamma}_t$. We first show that it is impossible for $\gamma_3 > \overline{\gamma}_3$. If $\gamma_3 > \overline{\gamma}_3$, then from (5)

$$\phi(\gamma_4) = \phi(\gamma_3)\gamma_2 + 1 - \frac{1}{\gamma_3} > \phi(\overline{\gamma}_3)\gamma_2 + 1 - \frac{1}{\overline{\gamma}_3} = \phi(\overline{\gamma}_4),$$

so $\gamma_4 > \overline{\gamma}_4$. It is easy to see by induction that $\gamma_t > \overline{\gamma}_t$ for all t. Further, by Lemma 1, if γ_t satisfies (5) then γ_t -1 must alternate in sign as t goes to t+1. Note that either γ_t converges to 1 or it does not.

First suppose that γ_t converges to 1. Then by Theorem 1, there exists a neighborhood of (1,1) so that (γ_t, γ_{t-1}) will be on the stable manifold of (5) "near" where it is tangent to the stable manifold of the linearized system. More precisely write (5) as

(6)
$$\pi_{t+1} = g(x_{t}), t \ge 3$$

where $x_t \equiv (\gamma_t, \gamma_{t-1})$ $g(x_t) \equiv (\phi^{-1}(\phi(\gamma_t)\gamma_{t-1} + 1 - \gamma_t^{-1}), \gamma_t).$

Note that $g(x) = \overline{x}$ has a single solution in R_+^2 , $\overline{x} = (1,1)$. The eigenvalues of $\overline{A} = \nabla g(\overline{x})$ are given by

(7a)
$$\lambda_{1} = \frac{2\phi}{-(\phi'+1) + (\phi'+1)^{2} + 4\phi\phi'}$$

(7b)
$$\lambda_2 = \frac{2\phi}{-(\phi'+1) - (\phi'+1)^2 + 4\phi\phi'}$$

where $\phi \equiv \phi(1)$ and $\phi' \equiv \phi'(1) \cdot \frac{1}{2}$ Recall that $\phi' > 0$ and $0 < \phi < 1$. It can be shown that $-1 < \lambda_2 < 0$ and $\lambda_1 > 1$. Therefore the stable manifold

of the linear system (starting at t \geq 3) satisfies

$$(\gamma_3^{-1}, \gamma_2^{-1}) \cdot (1, -\lambda_2) = 0 \text{ or } \gamma_3^{-1} = \lambda_2(\gamma_2^{-1}).$$

Thus the stable linear manifold has a negative slope in (γ_t, γ_{t-1}) space. Hence by Theorem 1, the stable manifold of the non-linear system (6) has a negative slope in some neighborhood of (1,1), Denote the stable manifold of the nonlinear system by $\gamma_t = m(\gamma_{t-1})$. Since γ_t and $\overline{\gamma}_t$ both converge to 1, for t large enough $\gamma_t = m(\gamma_{t-1})$ and $\overline{\gamma}_t = m(\overline{\gamma}_{t-1})$. Recall that for all t $\gamma_t > \overline{\gamma}_t$. Hence $\gamma_{t-1} > \overline{\gamma}_{t-1}$, but for t large enough $m(\gamma)$ has a negative slope, so $m(\gamma_t) < m(\overline{\gamma}_t)$. Hence $m(\gamma_t) = \gamma_{t+1} < \overline{\gamma}_{t+1} = m(\overline{\gamma}_t)$ which is impossible. This shows that γ_t does not converge to 1.

Suppose that $\overline{\gamma}_t < 1$. Then by Lemma 1 $\overline{\gamma}_{t+1} > 1$. Further it must be the case that $\gamma_t < 1$, for if $\gamma_t > 1$ then $\gamma_{t+1} < 1$ which contradicts $\gamma_{t+1} > \overline{\gamma}_{t+1}$. Thus for every other value of t, $\overline{\gamma}_t < \gamma_t < 1$, with $\overline{\gamma}_t + 1$. Without loss of generality we may assume that along, say, even values of t γ_t converges to 1 from below. Further, since γ_t does not converge to 1, for some $\varepsilon > 0$ and any $\delta > 0$ there exists an even t such that $1 - \gamma_t < \delta$ and $\gamma_{t-1} > 1 + \varepsilon$. But this will violate (5), since for δ sufficiently small (5) will imply $\phi(\gamma_{t+1}) > 1$. This shows that it is impossible for $\overline{\gamma}_3 < \gamma_3$. A similar argument shows that $\overline{\gamma}_2 > \gamma_2$ is impossible. QED

Let S be the set of γ_2 such that there exists a γ_3 with the property that when (5) is started at (γ_2, γ_3) then a solution for γ_t exists for all $t \geq 2$. In the proof of Theorem 2 it was shown that the set S is not empty. This is because it was shown that the linearized system has a non-degenerate stable manifold. Thus S contains an open neighborhood of 1. Theorem 2 implies that if $\gamma_2 \in S$ then there exists

a unique γ_3 for which (5) holds. We denote this γ_3 by $m(\gamma_2)$, i.e., $\gamma_3 = m(\gamma_2)$.

Returning to the equations involving p_t recall from Part 1 that we did not describe how p_1 is chosen except for the logarithmic case. We can use the function $m(\cdot)$ to determine p_1 as follows. Given p_1 (3a) determines γ_1 as a function of p_1 and k, say $\gamma_1(p_1,k)$. Hence $p_2 = p_1 \div \gamma_1(p_1,k)$. Thus (3b) determines γ_2 as a function of p_1 and k, say $\gamma_2(p_1,k)$. Next apply equation (2) at t = 3 to get $\gamma_3(p_1,k)$. Then p_1 must be chosen so that

(8)
$$\gamma_3(p_1,k) = m(\gamma_2(p_1,k))$$

holds. By differentiating the above functions and evaluating at k = 0, it is easy to see that there is a unique p_1 such that (8) holds for p_1 in a neighborhood of the steady state $p = M_o^b \div y$.

II. The Non Neutrality of Open Market Operations

It is easy to use Lemma 1 to show that prices respond slowly to an open market operation. The next Theorem shows that a k% increase in money via an open market operation leads the initial price to move by less than k%. (Similarly prices initially fall by less than k% if there is a monetary contraction.) Throughout this Section M_o^a and M_o^b are as given in (3.2).

<u>Theorem 3</u>. If $M \equiv M_0^a + M_0^b > 0$, and $M_t^s = (1+k)M > 0$ for $t \ge 1$, then $p_1 < (1+k)p$ when k > 0, and $p_1 > (1+k)p$ when k < 0, where p is the steady state price level when k = 0. Proof.

We give the proof for k < 0. The proof for k > 0 is similar. So suppose k < 0 and $p_1 < (1+k)p$, then this leads to a contradiction as follows. Let p_t be the equilibrium path generated for k < 0. From (3a)

(9)
$$\phi(\gamma_{1}) = \frac{M - p_{1}y}{M_{o}^{b}} \geq \frac{M - (1+k)py}{M_{o}^{b}} > \frac{M - py}{M_{o}^{b}} = \phi(1),$$

where the last equality follows from (3.2). Hence $\gamma_1 > 1$. Hence $p_2 < (1+k)p$. Recall that the steady state for k = 0 satisfies $py + \phi(1)py = M$. Thus

(10)
$$(1+k)py + \phi(1) (1+k)py = (1+k)M.$$

Hence from (3b) $\phi(\gamma_2) > \phi(1)$, so $\gamma_2 > 1$. Hence $p_3 y < (1+k)py$. Apply this to (2) evaluated at t = 3 and conclude that $\phi(\gamma_3) > \phi(1)$, so $\gamma_3 > 1$. By Corollary 1 this is impossible. QED

It can also be shown that prices respond gradually to a small monetary injection, with p_1 rising, p_1/p_2 , p_2/p_3 falling and p_3/p_4 rising relative to their steady state positions of p,1,1, and 1 respectively. This is easily seen by differentiating (8) with respect to k, evaluating the derivatives at k = 0, and using the fact that m'(1) = λ_2 is the slope of the linearized system in Theorem 2.

Finally, it is possible to show that a small increase in money by an open market operation lowers both the initial two period nominal rate and real rate. This can be proved by noting that from (2.23)

(11)
$$\beta^{2}R_{1}R_{2} = \frac{1}{\gamma_{2}\gamma_{3}} u' \frac{(y - \phi(\gamma_{1})M_{0}^{0}\gamma_{1})}{(y - \phi(\gamma_{3})\gamma_{2}\gamma_{3}y)}$$

Recall that equation (8) determines p_1 as a function of k, and hence determines γ_2 and γ_3 as a function of k. Thus R_1R_2 is determined as a function of k. This function can be differentiated and evaluated at k = 0 to verify that an increase in k lowers R_1R_2 for k small. Similarly the real rate is easily shown to fall because there is inflation from t = 2 to t = 4, i.e. $p_4 \div p_2 = (\gamma_2 \gamma_3)^{-1}$ has a positive derivative with respect to k at k = 0.

III. Conclusions

The determination of the initial price level for the model of Part 1 with non-logarithmic utility has been presented. This facilitated a simple proof that open market increases in money lead to a sluggish price level response and a temporary fall in interest rates. These results assume that the open market operation is sufficiently small so that people do not return to the bank (initially) with unspent cash. Throughout Part 1 and Part 2, the period between trips to the bank has been taken to be independent of the size of the open market operation. It would be useful but difficult, to extend our results to a model where the transaction period is endogenous. It would be far more useful to discuss the possibility of returns to the bank with unspent cash balances in such a model, rather than in the current model.

2/ This shows that there is a unique equilibrium for economies beginning near k = 0 (i.e., for small monetary shocks), given that the initial cash in advance constraints are binding. Clearly, if we do not assume they are binding there will be no p_1 in a neighborhood of the p which solves (8) in which the constraint will fail to bind, and which leads to a convergent equilibrium. This is because, by the stable manifold property small changes in the initial conditions will lead to small changes in all γ_{\pm} and consumptions. Thus since (2.26) holds as a strict inequality for the solution to (8) it will also be a strict inequality for the alternative path. Hence the cash in advance constraint will bind for all prices which begin in a neighborhood of the steady state.

References

- Coddington, E. and N. Levinson, <u>Theory of Ordinary Differential Equations</u>, McGraw-Hill, New York, 1955.
- Scheinkman, J., "On Optimal Steady States of n-Sector Growth Models When Utility is Discounted", Unpublished Doctoral Dissertation, Department of Economics, University of Rochester, 1974.
- 3. Grossman, S. and L. Weiss, "A Transaction Based Model of the Monetary Transmission Mechanism - Part 1".