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ESTIMATING DISTRIBUTED LAGS IN SHORT PANELS WITH AN APPLICATION TO
THE SPECIFICATION OF DEPRECIATION PATTERNS AND

CAPITAL STOCK CONSTRUCTS

I. INTRODUCTION

The problem we deal with in this paper arises, as is often the

case in econometrics, because we do not have all the data that we

would like to have. We often expect that changes in our independent

variables have relatively long lasting effects, but have only fairly

short time series to uncover them. Consider, for example, the simple

model

y wx +x
t Ot it—i mt—rn t

where we have suppressed the constant term for simplicity of exposi-

tion. Here in + 1 is the total length of the lag structure and the

problem we wish to consider arises when rn is large relative to T

or to T + 0 , where T is the total number of observations on y

and 0 is the available number of lagged observations on x • A

typical example might be T = 20 , in = 6 , and 0 = 2 . In this case,

one would have to give up )4 observations on y to get the whole lag

"in", and estimate 8 parameters (including the constant term) on the

basis of i6 observations. The resulting estimates are unlikely to be

very precise. One way of gaining precision is to impose additional

structure on the w's , choosing the form of the lag a priori —— poiy—

nomial, geometric, etc. Alternatively, one may try to increase the

sample in some other dimension, adding more individuals, states or

commodities. The sample becomes then a time—series panel with N x T

observations.
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A significant number of panel data sets are now available. Though

N in these data sets is often quite large, it is not yet clear

whether they will yield "better" estiraates of distributed lag coef-

ficients. Part of the problem lies in the fact that panel data sets

usually track their observations only over a rather short time inter-

val. Thus, if in the example introduced above T + 0 were less than

seven while m > 7 , we could not estimate any of the coefficients

consistently (as N grows large) without bringing in additional

information. The problem is, of course, that in short panels the

contribution of the unobserved presample x's to the current values

of y (or the truncation remainders) are likely to be particularly

important. Since the value of the truncation remainder is determined

by the lag coefficients and the presaniple x's one has to constrain

either the lag structure, or the stochastic process generating these

x's , in order to identify any of the coefficients of interest. The

first alternative has been discussed in the context of a single time

series by Klein (1958), Dhrymes (1971), Maddala and Rao (1971),

Pesaren (1973), and others. In Section III, we discuss how their

solutions can be adapted to the panel data situation. Because there

are usually many more degrees of freedom available in panel data, we

concentrate on solutions which do not restrict the lag coefficients a

priori. Section II considers, therefore, the problem of estimating a

sequence of unrestricted lag coefficients when one is willing to

impose some structure on the stochastic processes generating the x's

The models we deal with allow for the possibility of individual—

specific time—invariant unobservable factors which impact both on y

given past x's and on the distribution of the x's themselves (they
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allow for heterogeneity and correlated effects). We consider expli-

citly the identification of lag coefficients when the regression func-

tion of recent xs on all past values of x and an individual spe-

cific constant term depends only on this constant term and a small

number of the immediately preceeding x's . Examples of stochastic

processes which statisfy such assumptions are mixture processes con-

sisting of individual—specific components plus an integrated auto-

regressive deviate. The parameters defining this process may differ

from year to year (they need not be homogeneous over time). It is

shown that given this assumption one can identify the leading lag

coefficients without nking any assumptions on the shape of the rest

of the lag distribution and test for alternative simplifications (for,

e.g., that there is no individual—specific component, or that the lag

coefficients, at least after a few free lags, have an autoregressive

structure). These assumptions do not allow, however, for the iden-

tification of the tail of the lag structure (at least not without

further restrictions). One cannot provide answers to questions

involving the entire sequence of the lag coefficients (such as their

sum) without imposing constraints on the lag structure itself (Sims,

l9T4). On the other hand, the early w's are often of significant

interest in themselves, especially since unconstrained estimates of

their values may provide an empirical basis for restricting the tail

of the lag structure in further work. This brings us then to

Section III where we discuss the estimation of distributed lag coef-

ficients from panel data when one is willing to restrict the shape of

the lag structure a priori.
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An advantage of using the approach discussed here is that, in

general, it can be checked against the observed behavior of the data.

The tests we consider consist of a set of constraints on the second

order population moments of the vector r ' = (y ', x') ; where y
_]_ _i

is the T element vector of observations on y for individual i ,

and x is the T + 0 vector of observations on x • In most cases

these constraints are restrictions on the matrix of coefficients

obtained from the regression of each of the T y 's on all
it

(T + 0) of the x 's . In each of our models this matrix, labelled
it

II by Chamberlain (1918), consists of a combination of the lag coef—

ficients of interest, and of the regression functions of the unob-

served components (the truncation remainders, and the individual—

specific sources of heterogeneity), on x.

We conclude with an empirical example. It consists of regressing

the operating profits of firms on a distributed lag of their past

investment expenditures. The example, therefore, investigates empiri-

cally how to construct a "capital stock" for profit or rate of return

regressions. We find that the lag coefficients rise monotonically

over the first three periods and then remains fairly constant over the

next four or five. This differs significantly from lag structures

based on straight line or declining balance depreciation schemes (in

both of these the lag coefficients decline monotonically in T ).

When we compare the fit of the equations estimated from our models to

the fit of a system of regressions functions based on the usual capi-

tal stock constructs (net or gross), our equations do quite a bit

better. On the other hand, when we compare the restricted II matrix
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implied by our model to an unrestricted II matrix, we find that we

can, using traditional testing procedures, reject the null hypothesis

embodied in our assumptions. It is doubtful whetherthe relationship

between profits and past investments is truly stable over different

firms and time periods.

II. DISTRIBUTED LAGS FROM PANEL DATA WITH PRIOR STRUCTURE ON THE
x—PROCESS

The distributed lag model which we assume is given by Al.

Co

Al: y =a + wx +U
it i

•t—O
• i t—T it

where, if x.' = [x. , ..., x. I and u' = [u , ..., u I , it is
-1 i—O iT i it iT

assumed that the N observations on the vector (x.', u' a.) are
—1 1 1

independent draws from a common distribution function in which

E*[uj x.,D] = 0 , where D denotes the indicator function which

takes the value of one for individual i and zero elsewhere, and

E = EIx , x 'I is positive definite. The sequence {w }°° is a
xx' -i .-i t 'r=O

set of unknown finite parameters.

Here (and in the discussion below) E*(z1 z) is the operator

which provides the minimum mean square error linear predictor (or the

regression function) of z1 given z2 . Some preliminary comments on

Al are in order. For ease of exposition we have omitted time—specific

constant terms from it and from all equations to be introduced below.

Since we will be concerned with the limiting distribution of the para-

meter estimates in dimension N (holding T fixed), time—specific
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constant terms, if required, can be added without creating any addi-

tional estimation problems. Al does assume that the distributed lag

coefficients do not differ either over time or between individuals

(though random differences in these coefficients as defined for

example by Swairty, 1910, are covered by Al). Note, however, that the

model does allow for individual—specific constant terms (the a ).
1

This permits one to deal explicitly with the problem of unobserved

individual—specific components which are constant over time and affect

both the conditional distribution of . given the x sequence

corresponding to individual i and the marginal distribution of x.

Given the a , we are also assuming that u is not correlated
1 it

with either the x's observed prior to, or those observed after,

period t [i.e., E*(uj x, D) = o] . Since the models presented

here will, in general, be overidentified, one may, in any particular

example, wish to relax the assumptions of constancy of the lag para-

meters and E*(u. x., D.) = 0 • These assumptions do, however, allow

for a relatively straightforward exposition of our results concerning

the estimation of lag structures in short panels.

It is convenient to rewrite Al as

t+ 0

y =a + w x +b +u (1)
it i t it—T it it

where bt = w+ x. T
for i = 1, ..., N and t = 1, ..., T

1=0+1
1—

In (1), b.t is the truncation remainder (or the contribution of

presample x to the current value of y ) for individual i in
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period t . Let the matrix of coefficients obtained from the

regression function of y on x be II , defined by

E*(y. x) = lix We ll say that a lag coefficient is identified

if it can be calculated from the elements of II . Given Al,

equation (1) makes it clear that each row of II will contain a coni—

bination of the lag coefficients of interest and of the coefficients

from the regression functions of the two unobserved components, a,

and b. , on x • Our problem is, therefore, to separate out the
it 1

lag coefficients from the coefficients defining these two regression

functions.

The distinction between a and b is that a is constant
1 it 1

over time while b is not. The estimation of models containing the
it

a has been discussed extensively in the past (see Mundlak, 19T8, and
1

the literature cited there) and therefore the particular difficulties

we shall encounter in identifying (at least some of) the lag coeffi-

cients from TI in our models arise from the existence of the trunca-

tion remainders (the b. ). Since b = w x , in order
it it t+T 1 —t

to identify any one of the lag coefficients one has to restrict either

the sequence of lag coefficients (the w ), or the relationship
T

between presample x's and the observed data. This section deals

with the second alternative.

1. This will be shown to be equivalent to stating that a lag coef-

ficient is identified if it can be calculated from the second

order population nDments of r = (x, y')-1 i
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11.1 The Identification Problem When There Is No Heterogeneity

The phrase 'no heterogeneity' will be used to denote a situation

in which it is appropriate to assume that

A2: c = 0, for i = 1, ..., N

Since the basic ideas underlying our results are easier to grasp when

we nintain A2, and since the addition of the a does not change the

identification status of the lag coefficients in the models discussed

here, we begin with this special case.

Given both Al and A2 the 11 nRtrix (which, in this special case,

nh
we denote by II ) has the form

11nh = W + B

where (2)

r
0 0 . . . 0

w1
. . .

I . * 0. w
T1 w2

.

0 w w . .. V V V . . .W
0 1 T—3 T—2 T—1 T+ 0—2

— w0 w w . . . VT2 VT_i wT
. • • WT+

e1

and B is defined by

E*[b. xi = B X

Clearly, in order to be able to identify any of the lag coefficients

from
, B niist have a structure which depends on only a few

unknown parameters. B will be restricted if it is reasonable to
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assume that the stochastic process generating the x sequences

restricts the regression of presample on insample x • The particular

special case that we assume is given by

p ,
A3: E*(x x.) = p

i —O—q -
j=1

1

for q> 1 ; that is in the regression of the unseen past x's on

x only the first (the closest) p coefficients are non—zero.

A sufficient condition for P3 is that the regression of the

T + U — p most recent observations of x on their entire past

history depends only on their preceding p values.' This would

hold, for example, if the recent x's were a realization from a

th
P order autoregressive process. It would also be true for more

general processes such as an integrated autoregression (where the

order of the integration plus the order of the autoregression sum to

p ), with possibly changing coefficients over time.'

Since each element of is just a different linear combination

of the same presample x's , given P3, the B matrix in (2) will

have the form

T+O—p p

B = [ 0 B 1 (3)
p

p

2. Mathematically the condition is that for q > 1

, •.., x )' (x , •.., x , x )1 =
iT i — O+p i — O+p-l 1 -e 1 -O-q

E*I(x. , ..., x )' (x. , ••., x
iT i-O+p 1-e+p-l i-U

3. See Anderson (1978) and the literature cited there for details on

the use of such processes in multiple time series.
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That is, B may be partitioned into a T by T + 0 — p matrix of

zeros and a T by p matrix of free coefficients (B ) . In this
p

case then a consistent estimate of 11nh yields consistent estimates

of the leading T + 0 — p lag coefficients without imposing any

restrictions on the lag structure.

It will prove helpful to provide a nre explicit solution for

11nh • Noting that given P3

= x (4a)

where =

qi Wt+0+q
(q) and using, for simplicity, the

assumption that p = 0 ÷ 1 , the system of regression equations

defined by E*[y. xi has the form

P

j1
p

E*(y.2 x.) W0X2
+

j—0—1''i jo_i

(bb)

E*(y.3j ) w0x3
+ w1x2 +

.o_1x. j—o_i

E*(yiTI xi =
wOxT

+ ... + w o_x2 +
jo_li j—o_1

where _o_
= w1_j +

j.....0....1'

for t = l ... T and

j = 1, ••., p.
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(14) clarifies how one identifies the leading lag coefficients from II

under assumptions Al to A3. Fach year's value of y is regressed on

current and all previous insaniple values of x • The last p values

of x in each regression equation have non—zero partial correlations

with the truncation remainders (the b ). Hence their coefficients
it

do not identify the parameters of the lag distribution. The

t + U — p leading coefficients in each equation are, in fact, esti-

mates of the leading lag coefficients. As t increases, one gradu.-

ally uncovers the lag structure. Of course, if T + 0 is small rela-

tive to p , we will not be able to build up much information on the

tail of the lag distribution. This simply reflects the fact that

short panels, by their very nature, do not contain unconstrained

information on that tail. However, even when T + 0 is small, the

initial consistent estimates of the first few lag coefficients pri—

vided b (14) may contain enough information on the lag structure to

allow one to restrict it to be a member of a family of distributions

which depend on a small number of parameters and concentrate on esti-

mating those parameters thereafter. This gets slightly more compli-

cated when there is also heterogeneity, a topic which we turn to now.

11.2 Identification With Heterogeneity

Recall that the reason for dealing explicitly with the x was to

allow for the possibility of unobserved individual—specific factors

which cause differences in both given all the individual's past
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x's , and in x. It follows that if there is heterogeneity, A3

is not likely to provide a good approximation to the regression func-

tion of presample on insaniple x • That is, if y conditional on all

past x's has an individual—specific component, and the diverse unob-

served factors which lead to that component have an independent effect

on insaniple x's , then these same factors are likely to have an inde-

pendent effect on presample x's • The simplest way to incorporate

this possibility into our framework is to allow the regression func-

tion of presample on insample x to depend directly on the a
I

That is, we would drop A2 of the last subsection (thus allowing for

heterogeneity) and replace A3 with the assumption

Ab: E*[x x., D] = c a + p for q i
1 —O—q J. 1 q 1

j=1
i

Note that A4 does constrain the individual—specific differences in the

x process to be proportional to the a • Since this assumption may1
be too restrictive for many examples we develop below the generaliza—

.. If the a were not correlated with x , i.e., if
E*(a.J x.) = 0 , then, given Al, the a would become a set of

'random' (or uncorrelated) effects in the sense of Balestra and

Nerlove (1966). Since the discussion of 11.1 did not restrict

ELu.u.' xi , in this case we can simply define I = u + a
11 1. 1 1 1

substitute ii for u in subsection 11.1, and apply the results
1

obtained there.
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tions required when we replace the in A14 with a separate unob-

served individual specific component, say m1

Let = (x — am) for i = 1, ..., N , all t , and some
it it ti

sequence {a } . Then if is substituted for x in the
t it it

discussion of the sufficient conditions for P12 (see p.9) those con-

ditions become sufficient for A4. Familiar examples of processes

which satisfy this condition are processes in which, for

t = — 0 + p, •••, T

px _yt Kx + , where
it t=l

it—T it

E*[.t D., X X
t—2'

••• = 0. With = and Kt = K

for t = —O + p, ..., T , this is a mixture process consisting of an

individual—specific component and an integrated autoregressive deviate

whose coefficients are stable over time (MaCurdy, 1982, gives several

examples of the use of such processes).

Using A4 to find E*(b. D., x) and substituting the result

into Al yields

5. A simple example where the restriction is relevant is provided by

Mundlak (1961). In that article, the problem is to estimate a

production function from panel data on the inputs (x) and output

(y) of a group of firms operating in a competitive market. In

this case the ct represent unobserved interfirm productivity
i

differences that are constant over time and known to management at

the time input decisions are made.
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E*(y. x., D) (5)
it -J 1

t+O—p *=ca + w x + x
T t—T

j=i
t j—U--i i j—O—i

where c Ii + Wt+q Cq1 and j6-1 = +
qi Wt+q

for t = 1, ..., T , and j = 1, ..., p • Note that in equation (5)

the c have different coefficients in the different years of the
1

sample. This follows from the fact that the truncation remainders are

different linear combinations of the presample x's . If w = 0 for

T > T + 0 , that is, if the length of the lag is less than or equal to

T + 0 , then there is no truncation remainder in period T , and

cT = 1 • In the general case, however, equation (5) has a single

unobserved factor with free 'factor loadings' (the c ). Since the

contribution of the in year t can only be identified relative
1

to its contribution in some other year, a norralization of the factor

loadings is required and one which is consistent with the possibility

that the length of the lag is less than or equal to T + 0 is

c = 1 • To show which lag coefficients are identified in this case
T

we rewrite (5) as

t—1

y —y = wx
it t ii T0 tt it

for i = 1, •.., N and t = 2, •.., T , where =
c/C1 , and

v. = y — c y — E*(y — c y x., D ) , so that
it it t ii it t it—i 3. 1

E*(v. I x., D) = 0 by construction, and we have assumed for simpli-

city that 0 + 1 = p • This is a standard simultaneous equation

system and will identify the leading T + 0 — p lag coefficients (if
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0 + 1 = p, T + 0 — p = T — 1) if there is an equation (year) in

which at least one x is excluded from the determinants of

y — c y while still being correlated with y • If T > 3 ,it til ii —

then x. , x , ..., x are excluded from the equation determining
13 i iT

— c y• , and provided they have a non—zero partial correlation
i2 2i1

with the a , they will be correlated with yi il
To find the II matrix corresponding to (5) (that is, the

matrix under assumptions Al and A4 which we denote by if' ) we

use the fact that E*(. ) = E*{(E*(y..
f

x, D) }, to derive

sh
II =W+B+ca' (6)

where Wand B are defined in (2) and (3), c' = [1, °Tl' ..' ci,
and a denotes the vector of coefficients resulting from the

1

T
regression of a on [i.e., E*(ajl )

= a x) . Recall
r— 0

that = W + B so that the difference in the II matrices that

results from allowing for the a (heterogeneity) is just
1

c& , the matrix of coefficients obtained from the regression of ca—
on x1

If one were to allow for two different sources of heterogeneity,

one in the distributed lag model (the a ) and one in the process
1

generating the x's (the m ), then to identify the leading lag coef—
1

ficients we would require T > 1 , and the TI matrix (which in this

case we denote by 11th would be given by

11th = W + B + cm' + La' (7)
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where W , B , and are defined as in (6), c' = Ii c1 , ..., 4],
in is the vector of coefficients obtained from the regression of

T
in. on (i.e. E*(m. x.) = , and £ here, and in the

discussion below, is a vector of ones. Note that when two sources of

heterogeneity are allowed for it is m which has a variable coef—
1

ficient over time, and if the length of the lag is less than T + 0 ,

its coefficient in year T is zero. To allow for this possibility

the normalization, c = 1 is used (instead of cT = 1 as in

11sh )6/

11.3 Some Further Considerations: Estimation and Testing

Having discussed the identification of the lag parameters under

alternative assumptions, we turn now to the consideration of some

issues associated with the choice of estimators and test statistics

for such models.

In the context of panel data one is interested in the limiting

properties of estimators as N (the number of individuals) grows

large, and these depend on how the sample moments behave as the sample

grows in this dimension. Chamberlain (1982) provides an explicit

discussion of the properties of alternative estimators of II and of

relevant test statistics under the assumption that the N obser—

6. With two sources of heterogeneity there is an additional normaliz-

ation to be imposed on one of the elements in or in in.



—1 'r—

vations on the vector r.' = (x ', y') are independent draws from1 -i

some niultivariate distribution with finite fourth order moments. Note

that neither this assumption, nor any of the assumptions made prior to

it, imply that E{y. — lix') (y — llx ' x. } = (independent of
i_ —1 -1 -i

i ) . Thus random coefficients models, and models in which there is a

complicated non—linear relationship between the a (or m ) and

1. *
x i.e. E (a. x.) * E(a x.fl do not necessarily violate any of
-1 i •1 1

our assumptions (for a discussion of related points and alternative

stochastic assumptions, see, in addition, White, 1980, 1980a, 1980b,

and 1982). With these assumptions maximum likelihood (based on a nor-

mal density for r ) or an asymptotically equivalent estimator of II

is (strongly) consistent and asymptotically normal but need not be

efficient, nor need its covariance matrix be given by the traditional

information matrix (see also MaCurdy, 1981). The point to note here

is that unless further assumptions on the covariance matrix of distur-

bances from the regression of on x are relevant, one must
I

take care in formulating standard errors and test statistics from maxi-

mum likelihood estimation procedures (Chamberlain, 1982, provides both

the appropriate formulae and more efficient estimators, under these

assumptions). Of course, if E{(. — llx.)(y. — llx) x. } =
1 1 i

then maximum likelihood is efficient, and variances and test
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statistics are formed in the usual manner.

Looking at the structure of the II matrices, it is clear that for

> 1 , can be obtained from a set of restrictions on fi fiSh

th th sh
from restrictions on 11 , and TI from restrictions on H

There is, therefore, a nested sequence of restrictions that can be

used to decide between alternative models. In particular, if there

is no heterogeneity, then the elements of II = I 11 1 ought to be
tr

close to zero for r > t > p — 0 (that is all leading x's for years

where t > p — 0 should have insignificant coefficients); and its

elements should have a "stationary structure" (should depend only on

t — r) for t > r > p — 0 . The test for a model with no hetero-

geneity involves, therefore, only equality and zero restrictions.

7. Note that our discussion is based on estimating the II matrix

rather than on estimating the form of the model containing either

N N
or both of the sequences {. }. and m. }. (the system in

i i=1 i i=l

equation (5) for example). Since they affect the distribution of

only T (a small number) of sample points, one cannot estimate

them consistently as N + and an attempt to do so would lead,

in general, to inconsistent estimates of the other parameters of

interest. That is, in our problem a. ) and {m } are
ii=l ii=l

sets of incidental parameters in the sense of Neynian and Scott

(l91.8). By going directly to the II matrix we are, in fact,

constructing the density of y conditionals on x , and the
'1

structural parameters of the model (i.e. the parameters governing

the distributions of each r ), but marginal to the model's mci—
-1

dental parameters; see Kiefer and Wolfowitz (1956).
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This assumes that p is known at the outset. If

then one can build a nested testing sequence for

p sufficiently large and testing the constraints

lower values of p • In all cases the test of the

that p = p — 1 against the alternative that

testing whether the left row of the submatrix

is a vector of zeroes. Provided p > 0 + 1

imposes T — 1 additional constraints on the

Note also that if we denote the matrix of

moments

this is not the case

p by starting with

on II arising from

null hypothesis

*
p = p consists of

B * (see equation (3))
p
the null hypothesis

II matrix.'

second order population

E =1rr

8. The choice of rejection criteria for such a sequence of tests is

discussed in Geweke and Meese (1979). Their discussion is likely

to be particularly relevant when p can take on a wide range of

values (so that a long sequence of tests may be relevant). In our

case, one is likely to have fairly narrow a priori bounds on p

The assumptions in the text constrain only II • If, however, one

were willing to assume that the leads which receive zero coef-

ficients in the projection of past x's on future x's , (or on

future x's and D. ) are independent of time, then one could
1

test A2 (A1) directly by considering the regression of early

observed x's on later ones (or on the later ones and D , and
1

the projection of D onto x ). The procedure should prove
1

helpful in suggesting a relevant range for p

xy'

yy
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then the only constraints our assumptions place on ,, are con—

—l
straints on II = , I ; a matrix which also contains all

xx xy'

the parameters of interest. Assumption A2 or A1 does impose an addi—

additional set of constraints on moments from the joint distribution

of presample and insample x , but the effect of either assumption on

is limited to its effect on II . However, if one can assume
rr

that the process generating x. is one of the simpler stochastic pro-

cesses that satisfies A2 or A)4), then the constraints are in terms of

the elements of both 11 and • In this case more efficient esti—
xx,

mates of the lag coefficients and more powerful test statistics can be

obtained by imposing the constraints on both of these matrices. For

example, if x. = m + z , where z is a th order auto-
it 1 it it

regressive deviate with partial correlations p , •.., p and
1 p

variance 2 for i = 1, ..., N and all t (this is a simple mixture

process satisfying A4), then ,
= EIx x'] = 02 U' +

, where
xx i 1

02 = E m2 , and E* is the covariance matrix for T + 0 consecutive
m j

observations on a th order autoregressive deviate (formulae for the

elements of E in terms of the parameters p , ..., p and 02 are
1 p

provided in Galbraith and Galbraith, l9T4). Clearly then the (T + 0)

(T + 0 + i) / 2 elements of
,

are a function of only p + 2
xx
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parameters. Moreover, these same parameters determine some of the
th sh 9/

elements of 11 (or TI ).

Finally, though our discussion has been concerned with models

which contain only a single regressor it is not difficult to extend

our results to cases where there are more than one of them. In this

case there would be a vector of x's for each individual in every

9. To see this note that in equation (7'), ' = c, & • it is

—1 *...l *_1 *_l
straightforward to verify that = — 01

2 *_l 2
where ei=a/(1+&t &am). Thus rnE

which is a function of the same parameters as (in fact
xx'

m m for T—p>r>p— 0, while m =m forr -O+j T-j
0 < j < p) . Finally the c and coefficients in A14 will— — q 3

be determined from the backcasting function for this process.

In particular the will follow the recursion formulae for

backcasting coefficients from autoregressive processes

(q+1) = (q) + , where it is understood that

PH = 0 for j > p and = p for j = 1, ..., p; see

Box and Jenkins, 1970), and c = 1 — . Given the
q j=l

definition of c [equation (5)1, and of B and W [equation

(3)], these formulae provide an additional set of non—linear

constraints connecting the elements of II to those of TI

xx
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period, say, x. , and one requires assumptions on the regression
'-it

of presample x. on insample x . The assumptions which are
'-it i,t

analogous to P2 and A are, respectively,

E*[1 —6_qi i —o '' XiTI
= E*[x x. and

E*k —q' i —e '"' T,DiI = E*[ —q1 —e'"'
for q > 1 • These would be satisfied, for example, by a time inhorno—

th
geneous p order vector autoregression, and by a mixture process

consisting of individual specific components (one for each regressor)

th 10/
and a p order vector autoregression. In either case the II

matrix would allow for the coefficients of the earliest p values of

each regressor in every year to be unconstrained regardless of how many

of the regressors had a distributed lag effect on y

III. Distributed Lags from Panel Data with Prior Structure on the Lag
Coefficients

As noted earlier in order to identify any of the lag coefficients

from panel data one must impose some structure on the relationship

between the truncation remainders and the observed data. The last sec-

tion discussed the possibility of restricting the relationship between

presample and insample x ; in this section we consider restricting the

lag coefficients themselves. The particular example we focus on is a

sequence of lag coefficients which, after a few free lags, has an auto—

10. Kiefer, 1979, discusses the problem of determining whether a

smaller number of individual—specific components would suffice.
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regressive structure [such structures have been widely used the past;

see, e.g., Dhrymes (1971), Griliches (1967) and Nerlove (1912)1. This

restriction is formalized in the assumption

for T<k
T —l

A5: w =c Q
T

I w otherwise

L q1 q

Q
where the roots of the characteristic equation 1 — 0 , say

q1 q

••, A lie outside the unit circle. For simplicity we assume
1 q

that = 0 , and that A, ..., A are all real and distinct.

If A5 is substituted into Al the set of truncation remainders from

the resulting distributed lag model follow an exact Qth order auto—

Q
regression. They can, therefore, be written as b. = A b•

it j=1 j ij

where b. = w x ; that is, b , ..., b are a set
13 0—J T1 J i—t—0 ii iQ

of Q unobserved initial conditions. Under A5, then, the distributed

lag model Al becomes a system of T regressions with Q + 1 freely

correlated unobserved factors ( , b , ..., b ), Q of them
1 ii iQ

having factor loadings which decay geometrically over time. Since the

identification properties of a model in which there are Q + 1 unob-

served factors are a straightforward generalization of a model with

two of them, we deal first with the familiar case of a (modified)

geometric or Koyck lag in which Q = 1 , and then point out the modi-

fications required for Q > 1

Setting Q = 1 into A5, and substituting the result into Al, we

have:



U t+O
= + w x + w x

it
t=O

i t—T I t—t

+ b. + u (8)
I it

where b1 W0 x. , that is, b is the truncation
T1 a. —t—8 i

remainder in period one (and the initial condition when Q = 1 ) for

i = 1, •••, N and t 1, •••, T

Given the discussion of the last section it is not difficult to

see why the lag coefficients in (8) are identified from the 11

matrix. Recall that to identify the lag parameters one requires a set

of restrictions on the matrix B = I I , where E*[b xi = Bx
tr —i a

Given our assumptions b = , so that E*[b
f

x ] =it it—i it -i

xl which implies that = for
it—i J. tr t—lr

11/
r = 1 , ..., T + U and t = 2, ..., T .

11. Note the difference here between the estimates of (modified)

geometric lag structures from panel data and those from a single

time series. In the latter case the relevant limiting dimension

is T , and as T gets larger the dependence of consistent esti-

mators of the lag coefficients on the value chosen for b.
1

generally disappears (Dhrymes, 1971). When T is short this

result no longer applies. In particular with large N as in

panel data we have a set of truncation remainders and the proper-

ties of their distribution (i.e., E*(b. xi ) do affect the pro-

perties of alternative estimates of the lag coefficients (see

also Pesaren, 1973).
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It follows that the It matrix (which in this case we denote by 11g

has the form:

' +j& (9)

where i and are defined as in (7) = Ii, 6'

is the vector of coefficients from the regression of b on x
i 1

T

[i.e., E*(bj r=—0 8r Xirl
and

00 00
w0

w

0 0 0 w w w . .
w 0 1 2 0

T-0-2 T-0--1 T—1
w w . . .w w6.. • w6 w6 • • .w601 00 0 0 0

12 /will identify the lag coefficients provided T > 3 • In the

more general case with Q > 1 one would replace 6' in (9) by

12. To see this note that (8) implies that

(y — y )
— 6(y — y ) = w x + Lw — w (1—6)1 xit i t—1 i t—1 i t—2 0 it 1 0 i t—1

0

+ Lw — (1—S)w + w x
r—2 I t—T it

where E*[v
J

xl = 0 for i = 1, •.., N and t = 2 , ..., T
In this form we have a standard simultaneous equations system.

Provided T > 3 , x , ..., x will serve as instruments for the— i3 IT

equation determining y12 — y.1
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Q
and the II matrix would identify the lag coefficients if

j=l J J

T>Q+2
One further point is worthy of note. In this section we have not

restricted the relationship between presample and insample x in any

way, and as a result the II matrix resulting from assumptions Al and

A5 are not, in general, nested inside the II matrices of Section II.

If, however, in addition to A5 we assume A2 or AI of the last section,

then the II matrices from the models in this section can be

simplified further (the additional restrictions are straightforward

special cases of the restrictions developed in Section II) and the

models presented here will be nested to those presented in the last

section. Thus, if either A2 or A14 were relevant, and the initial con-

sistent estimates of a free lag distribution obtained from the tech-

niques developed in the last section indicated that one of the simple

lag structures satisfying A5 seemed plausible, one could test and then

estimate this lag structure in a second round.

IV. AN EXAMPLE: ESTIMATING THE SHAPE OF THE DEPRECIATION FIJNCTION

A common empirical construct is the "stock of capital" based on

some variant of the perpetual inventory method. It is, in fact, a

distributed lag function of past investment expenditure with the

depreciation formula implying a set of lag weights (w's). These

weights are, usually, assumed a priori based on mortality assumptions

(straight line, geometric, etc.) and some scattered evidence on the

length of life of selected assets. Alternatively, one accepts the
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depreciation assumptions used by firms and reported in their annual

statements, even though they n.y be heavily affected by tax and other

accounting considerations that have little to do with the economic

measure of depreciation one is after. In general, there is no obvious

unique right way to construct "capitalt'; it all depends on the purpose

for which such a variable is to be constructed (Cf Griliches 1963, and

the articles in Usher, ed. 1980).

One of the more common uses for capital is to compute and compare

"rates of return" across projects, firms, or industries. Such

measures assume implicitly that there exists a stable relationship

between earnings (gross or net profits) and past investments, and that

firms or industries differ only by a factor of proportionality in the

yield on their past investments, with the time shape of these yields

being the same across firms and implicit in the assumed depreciation

formula. In this section we investigate this question empirically,

using panel data and the methods developed in Section II to estimate

an unconstrained distrubuted lag relationship between firm profits and

their past investments.

The data come from the Compustat tape (1980). Profits are for the

years 1961i_72 inclusive (thus T = 9 ) and are defined to equal the

operating income of firms deflated by the implicit G.N.P. deflator

and an index of the average gross rate of return (1972 = 1.0) taken

from Feldstein and Summers (1977, table 1, column 3, page 216). The

observed investment data are for the years 1961—71 (thus, assuming

that this year's investment does not effect this years profits, we

have two presample observations on investment). Investment is defined

to equal the reported gross investment of firms deflated by the impli—
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cit G.N.P. investment deflator. Firms were chosen from the tape if

there was no evidence of a major merger, acquisition, or sale of a

part of the firm during the sample period; and if all the required

variables for the firm were available. This yielded a sample (w) of

258 firms)-'

All results reported here are based on two simplifications.

First, after making an adjustment for heteroskedasticity, we shall

assume that the conditional (on x ) covariance matrix of distur—

bances from the regression of y on x does not vary over obser—1
vations. This implies that maximum likelihood estimation procedures

provide consistent estimates of all parameters and their standard

errors, and maximum likelihood is used throughout. The adjustment

made for heteroskedasticity was to divide all figures for each firm by

the square root of the average rate of investment over the 1961—11

period as a whole. The second simplification to be used here concerns

the relationship between presaxnple and insample x . Our results

focus on the model which allows for heterogeneity and, therefore,

assumption A4 will be used to describe this relationship. It will be

assumed that p in A4 equals three. This is based on a preliminary

examination of the observed x sequences (see note 8) which indicated

that a p of 2 or 3 would do.

13. It also, no doubt, resulted in some selection bias. The esti-

mates presented here do, however, allow for firm effects or

heterogeneity, and this should take care of nost of the sample

selectivity pr oblem.
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The Compustat tape for the years of interest contains more infor-

mation on the history of the firms x's than just the reported

investment series. It reports also the firm's gross (ks) and net

(k'') capital stocks at the beginning of each year. These numbers are

essentially linear combinations of the firm's past investment expen-

ditures (including investments in years that we do not have in our

data). Net capital makes adjustments for reported depreciation

g 3)4/ nexpenses while k does not. The availability of k allows us to

make comparisons between the results from the models based on the

techniques developed in this paper and results that would be obtained

if one assumed Al but constrained the lag coeffiecients such that

kn = w x , (a model which assumed that firms report the
it T it—T

relevant measure of capital stock). To build the comparison model,

note that under the latter assumptions E*[y. k?, D.] = a + ait 1 1 1 lit
n n

and, E*[cz. k.1 = a k , so that
1

3)4. Though there are some additional adjustments, the basic recursion

formulae for and k'1 are: = k + x
t—l

— disi
where disti = discards in period t—l , and;

kn = kn + x — dis — dep , where dep is theit I t—l I t—l t—l t—l t—i
firms reported depreciation in period t—l . Depreciation is

that part of past investments written off in the given year. The

precise foruulae for the fraction of each year's investment that

is written off in subsequent years differ among firms, the most

frequently used being a straight line depreciation scheme.
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n n I

y =a k +a k +v lO
it 1 it 2 1. it

where E*[v. Ic?] = 0 , and k1' is each firm's mean k' over the
-i 1 i. it

sample period, for i = 1, ..., N , t = 1, ..., T

Here we shall also assume that E[v.V' k?1 = l , and use
-il i k

maximum likelihood estimation techniques. Note that the model in (10)

is not nested to the model in Section II which allows for a single

source of heterogeneity. In particular though Ic? imposes the par-

ticular lag structure implicit in the Compustat calculations, it also

uses information on (presample) x's not used in the models of the

last section.

We shall also make use of the information contained in • Note

that if = f x. , and the model with a single source
i—U -r i—O—t

of heterogeneity is used then that model (A1) implies that

p T
k
i —O = L - x + c E L a x I

+ (ii)
-r=i

icr i —6+T—l k r=—O r ir ki

where E*[e x.] = 0 , for i = 1, •.., N • If we assume that

E[ c. xi , and allow to be freely corrected with

= y — lix , then equation (11) can be added to the system in (6),
-i -i —1

to produce a system with T + 1 equations, which, since it uses the

information on the presample x's contained in , should provide

more precise parameter estimates than one could derive from using (6)

alone.
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Table 1 summarizes the parameter estimates. Estimates of the

unconstrained II matrix indicated that there was heterogeneity (see

p.18). Column (1) lists the estimated lag coefficients based on

allowing for a single source of heterogeneity (the model of assump-

tions Al and A4, or the 11 matrix in (6)) while column 2 adds

equation (11) to this system. The algorithm used to compute the maxi-

mum likelihood estimates of column (1) did not actually meet its con-

vergence criteria. It seemed that the data could not distinguish

effectively between alternative combinations of the vectors c and C

and the last few lag coefficients when using system (6); but conver-

gence was rapid once we added equation (ii). The resulting estimates,

listed in column (2), yield w through w8 which are all positive,

the first seven being estimated with a fair amount of precision. As

one should expect from the structure of the II matrix, the standard

errors of the lag coefficients rise nnotonically in T . While it is

clear that the lag coefficients increase until r = 3 ; w3 , w ,
w5

,

w6 ,

w7
and w8 are not very different from each other (though there

is weak evidence of a slight fall in the values of the last one,

perhaps two, coefficients). The observed value of the test sta-

tistic of the null hypothesis that
w3

= w =
w5

=
w6 w,1,

= w was

2.05 which is below the expected of a deviate, and imposing this

restriction produced the estimates of column (3). A test of the addi-

tional constraint that w8 = w , produced an observed test sta-

tistic of 1.91 (still not significant at usual levels of significance),
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and imposing this constraint resulted in the estimates of column

15/(4). The estimated lag coefficients, then, rise over the first

three periods and remain fairly constant over the next four or five.

Note that this pattern is distinctly different from the pattern

implied by either straight line or declining balance depreciation.

Both of these imply coefficients which decline monotonically in t

and in the second case the decline is greatest in the earlier periods.

Column (5) of Table 1 provides the coefficient of obtained

from estimating the comparison model (equation io) while Table 2 pro-

vides some iasures of goodness of fit. All measures of goodness of

fit are based on the trace of the estimated covariance matrices of

disturbances from the alternative ndels, and the traces themselves

are presented in row 1 of the table. Rows 2 and 3 normalize, that is

T

divide, row 1 by alternative numbers. In row 3 we divide by s2t=l y

where s2 is the sample variance of profits in year t • so that one
yt

minus the numbers in this row provide an indication of the fraction of

the variance in profits over the nine year period accounted for by the

model estimated. In row 2 we divide by the trace from a model where

the coefficients in the regression of y. on x are left
i.

unconstrained; that is the model which allows for a free II matrix.

Comparing the first two columns of the table we see that the trace for

the comparison model (which uses Al and kt as defined by Corapustat)

is about 15 percent larger that the trace of the model underlying

15. A test of the constraint that w = 5w for t > 8 was
T T—1

—

strongly rejected by the data.
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the estimates of column (2) in Table 1 (which use Al and A4 of Section

II). The latter figure is still, however, 18 percent larger than the

trace of a ndel which allows for a free II matrix (the trace of the

comparison model is lO! percent larger than the trace from the model

with the free matrix). The model with a free II accounts for about 19

percent of the total variance in profits, the model based on Al and A4

accounts for about 75 percent of this variance, while the comparison

model accounts for about 57 percent of it.

Coming back to the lag structure, recall that the estimates of

column (2) suggested that it rose over the first three periods and was

fairly flat over the next four or five, with perhaps a slight decline

in the last few coefficients estimated. A simple way to approximate

such a lag structure might, therefore, be to allow for three free lag

coefficients and then substitute either k or k' for
it—4 it—14

w x• (the choice would depend on the rate of decline in the
T it—t

coefficients which were not estimated). Column (6) (which uses

and column (1) (which uses ) of Table 1 present
1t-4 it—14

estimates of these ndels (the system estimated is constructed in a

manner analogous to the construction of the system for the comparison

model, see the discussion of system 10). The estimated coefficients

in both these columns also rise over the initial three year period.

Thrning to columns (3) and (4) of Table 2, it is clear that the trace

of the estimated coveriance matrices of disturbances for the systems

which allow for these three free initial coefficients are much smaller

than the trace of the covariance matrix for the comparison model



—36—

(which does not). Their values are only 66 percent of the values of

the trace for the comparison model, but they are still over 15 percent

larger than the trace of the covariance matrix which uses the esti-

mates of column (2).

So far we have compared the estimates from the model based on a

single source of heterogeneity and a set of free lag coefficients to a

model which uses capital stock figures from the Compustat tape, and,

in addition, shown that the model's estimates seem to be consistent

with the information from auxiliary calculations. Though the model

does well in these respects, it does not really provide a completely

adequate summary of the data. This becomes evident when we formally

test the restrictions on the II matrix embodied in the system con—

sistirig of equations (6) and (ii). The observed value of the x/55

test statistic for the restrictions was 5.64 which indicates rejection

of the null hypothesis at traditional levels of significance.--' Thus

though the model underlying the estimates of column (2) seems to pro-

vide a better summary of the relationship between past investment and

current profits than conventional capital measures, none of these

models provide a really adequate account of the interaction between

profits and past investment expenditures. This model failure

reflects the basic implausibilities in the original maintained hypo-

thesis: (a) that the relationship between investment and profits is

essentially the same for different firms and industries and, (b) that

16. Though in judging this test statistic one should keep in mind the

rather large size of our sample.
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the time shape of the relationship (the depreciation pattern) is inde-

pendent of calander time, that the contribution of a particular

vintage of investment is independent of the circumstances and factor

prices that prevailed at the time it was purchased and from subsequent

changes in them. Nevertheless, what is clear is that the usual depre-

ciation schemes which assume that the contribution of past investments

declines rapidly and immediately with age are wrong. If anything

there nay be an "appreciation" in the early years as investments are

completed, shaken down, and adjusted to.
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