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The expected real monthly return on Treasury bills is serially correlated,
by some estimates - following a random walk.1 Expected real returns on stocks
have a different dynamics. This means that the relative risk characteristics
of stocks and bills differ depending on how long they are held.

For example, suppose that the expected real returns on ffeasury bills
are highly serially correlated and that expected real returns on stocks are
less serially correlated. It is known that the variance of unexpected real
returns on stocks, looking ahead one month, is about one hundred times the
variance of the unexpected real return on bills. Stocks are of course much
riskier than bills in the short run of a month.

Now consider an invesﬁor making a long-term portfolio decision to
allocate his wealth between two mutual funds--a bill fund and a stock fund--~
with the proceeds being automatically reinvested in the fundvin which they
originate. Given the assumed serial correlation properties of asset returns,
the longer the investment period, the less risky are stocks relative to bills.

Three questions are taken up in this paper: 1} How does the term
structure of risk arising from differences in the dynamics of asset returns
affect optimal investment behavior? 2) What is the evidence on the dynamics
of returns on stocks and bills in the United States? 3) Given the returns
dynamics estimated in the paper, how do optimal portfolios change with the
. length of the holding period?

The paper starts in Section 1 by distinguishing between the horizon of

the investor and the portfolio holding period, and by briefly reviewing




known results on the effects of the horizon on the investment decision.
Section 2 sets out the dynamics of asset returns and uncertainty about those
returns as a function of the length of the holding period of an asset.
Optimal mean-variance portfolios for investors choosing between two assets
each with returns following a first-order autoregressive process are
calculated in Section 3. The dynamics af returns on stocks and bills is
described in Section 4, using United States data since 1926. Section 5
presents the results of simulations of optimal portfolios fof holding periods
of different lengths, given the dynamics described in Section 4. Section 6
contains comments on the applicability of the analysis to pension investing;

Concluding remarks are in Section 7.

1. The Investment Horizon and the Portfolio Holding Period

Consider an investor maximizing the intertemporal utility function
T -6t
(1) V() = BEO J e u(C(t))de + (l—e)EoB(W(T))
o

where C(t) is the rate of consumption at time t, U(C(t)) is the instantaneous
utility function, 6 is the discount rate, W(T) is real wealth at time T, B( )
is a utility of bequests function, and 6 is a constant, 0 < 6 < 1,

Suppose first that 8 is equal to zero, so that the individual maximizes -

only the expected utility of bequests Eo B(W(T)). 1In this case T is the

investment horizon. The function B( ) is also called the terminal utility
of wealth function. Research on growth and turnpike portfolios (for example,
Hakansson, 1971 and 1974; Leland, 1972; Merton and Samuelson, 1974; and Ross,

1974) has examined the effects of the length of the investor's horizon on



optimal portfolio composition. The main question here is whether as the
horizon lengthens all investors tend to hold the same portfolio--to which
the general answer is no. There is a further question whether investors
should or might want to maximize the expected growth rate of the value of
the portfolio (subject to no short sales), to which again the answer is in

general no.

The investor's holding period is the interval of time between successive

portfolio actions,2 At one extreme, the investor may have aﬁ arbitrarily
short holding period, engaging in continuous trading to rebalance the
portfolio. At the other extreme, the investor may make his only portfolio
decision at time zero and thereafter not be able to adjust the portfolio's
composition. The important point is that the investor does not respond within
the holding period to changes in actual and desired portfolio composition

resulting from the behavior of asset returns.

For any given holding period, the individual solves the optimal portfolio

problem from the recursion relations
(2) J(W(t)) = Max Et (T W(t+n))) s 0<t«<rT

with J(W(T~4A)) = Max E B(W(T))

T-A
In (2) J( ) 4is the indirect or derived utility function, and A is the length
of the holding period. The maximization is conducted with respect to the

. composition of the portfolio.

Research on myopia in portfolio choice, by Hakansson (1969), Mossin

(1968), and Samuelson (1969), considers the circumstances under which the



investor's optimal portfolio is, for any given holding period, independent

of the horizon. For utility functions with constant absolute or relative
risk aversion, the investor's portiolio decision is independent of the length
of the horizon, depending only on vealth. But, as shown by Goldman (1979),
the composition of the optimal portfolio is not independent of the holding
period, even when utility functions have constant relative risk aversion.

The holding period for an individual managing his own portfolio is
likely to be finite but not constant. Portfolio rebalancing will be
undertaken only at discrete intervzls because they are costly. But the
interval is not fixed, beczuse the need for rebalancing varies with the
behavior of asset prices.

An investor who saves through regular contributions to a retirement
fund for which he specifies the breakdown of his portfolio between equities
and bonds, may formally be peraitted to change the composition of his
retirement portfolio only once a year ér every few years, However, if such
an individual also has discretionary portfolio assets, he can effectively
rebalance his portfolio more frequently than the rules of the retirement
fund formally permit. This is done by using the discretionary funds to
offset movements in portfolio composition in the retirement funds.

‘When the possibility of consuming at intermediate dates, t < T, is
reinstated by setting 8 in (1) at a value other than zero, the notion of
the horizon loses its crispness. Date T is still the horizon in the sense
that the individual looks no further ahead than T. But now events that
occur at t ; T matter not only because they affect the situation at T, but
also because consumption at t and later depends on the state of the world

at time t. Despite the ambiguity, I continue to refer to T as the horizon.



The notion of the portfolio holding period retains its meaning, however.
Even if consumption takes place continuously, optimal portfolio behavior may
involve infrequent rebalancing of the portfolio. Inventories of goods and
liquid assets are used to finance consumption within the holding period, while
the investment portfolio is rebalanced at discrete intervals.

The optimizing problem of the investor/consumer is again solved as in
(2), with the aid of recursion relations and an indirect utility function.

For any given frequency with which decisions are made, questions about myopia
in portfolio behavior receive the same answers as they do without intermediate
consumption.

I do not in this paper analyze optimal invesfment strategy for an
individual faced with costs of portfolio management and given dynamic
properties of asset returns. Optimal strategy in such a case will involve
a finite but not constant holding period. Instead, I study the simpier
problem in which the holdiné period is given. The focus of the analysis is
the effects of the length of the holding period on the optimél composition
of the portfolio, when asset returns are serially correlated.3 The assumption
is that there are a siénificant number of individuals for whom the portfolio
holding period is effectively of the order of months, or even years. It is
for such individuals that the distinction between the short-run and the long-

Tun properties of asset returns is important.



2. Rates of Return and the Length of the Holding Period

This section briefly examines the distribution of per period rates of
return on an asset as a function of the number of periods for whi&h it is
held. The returns are assumed to follow a stable first-order autoregressive
process.

Suppose the rate of return on an asset, r is described by

t’

(3) n (1+rt) = x = q 4 th + €,

where €, is serially uncorrelated and normally distributed, with expectation
. 2
zero and variance GE.
Let WN be the amount obtained by buying one dollar of the asset at the

beginning of period 1 and reinvesting the returns for N periods. Then

4y - In W 1n HT(1+£i)

N

Ny
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From (3) and (4);

hc , B(1-8 ) ghti-i
(5) In wN "T‘B——— C!) + 2 €. (—T—)
N is therefore lognormally distributed with

N B(1-
(6) E[anleo] = TEE-+ —ET—g—l (x -a) = M
and
% 8(1-8") 8(1+8M) 2
(7)- var[lan]xo] =.____;.[N - (2 - - )] = e
(1-8)

Tre expectation and variance of terminal wealth, Wy» ére given by:



(8) E[wN[xo] =

(9) var [leon = e (e © - 1)

Now define the expected rzte of return per period on an N
period investment, p(R), by
(10) Nu(N) = LI
Tne variance of the per period return, OZ(N), is defined by.

(11) NoZ(N) = s2

N
Asymptotically, the per period expected rate of return is just
(e/(1-B)), with the zdditional term in (6) reflecting the effect on

expected returns of initial conditions.

The per period variance of returns goes asymptotically to

02

lim 2 £
(12) e O (N) = —
N+ (1-8)2

For N=1, of course
(13) o?(1) = o

Thus the variance of the per period rate of return on an asset

increases by a factor of (l-*.‘.’:)-2 és the number of periods for which it

1s held rises from one to many. For a highly autocorrelated series,

£=.9, the ratio of the asymptotic to the one period variance of the per

period return is 100.



Table 1 shows how the variance of the per period rate of return changes
with the number of periods for a first-order autoregressive process, for
alternative values of B. The effects of the serial correlation on the

variance of the per period return are highly nonlinear in the parameter B.

Table 1 to go here.

3. Minimum Variance and Optimal Mean-Variance Portfolios

In this section I examine minimum variance and optimal mean-variance
portfolios when asset returns follow first-order autoregressive processes
like (3). The consumer/investor is understood to be maximizing an
intertemporal utility function with iﬁdirect utility function that ié
quadratic in the portfolio. return, and with portfolio holding period of
length N.

Suppose there are two assets, 1 and 2, with returns described by

Il
Q

+ i =
(14) e T % TB e e, i=12

2
i = i f d .
with E[altazt] CITY and variances o €. enoted o,
Define the variance of the per period rate of return for each asset by
og(N), as in (11).4 Let w be the share of the first asset in the portfolio
1 .

and define the variance of the portfolio rate of return as

(15) oi(N) = WZOf(N) + 2w(1—-w)012(N) + (1~W)20§(N)

where Olz(N) is the covariance of the per period rates of return, given by



Nelog N+l-i
6 N8 v 1B
(16) No, (M) = E[J e I-£] Y118y g )]
(o]

where

£(N) = (1—3152)[31(1_52)(1_5I1~‘+1) . 82(1—81)(1—8§+1)]

+ 8182(l~31)(1—82)(1—(8182)N+1)

The Minimum Variance Portfolio: The minimum variance portfolio is given by

2 .
cz(N) - clz(h)

(17) wx(N) = 7 ’ 3
ol(N) - 2012(N) + QZ(N)

In particular:

2
o -0
(18) w*(1) = 5 2 12 5
- 20 + 0
% 12 2
(1—81)202 - (1-8))(1-8,)0 ,
(19) wi(=) = ) : 773
: (1-82) oy~ 2(1—51)(1-82)012 + (1—81) o

The difference between the one period and asymptotic minimum variance

portfolios depends largely on 32 - Bl:

2 2 2 2
(8,-£)) [c](1-8,) [05-0,] + 0,(1-8) [0]-0 1]

DlD°°

(20) wH (@) —wx(l) =

where D1 and D_ are the denoczinators of the expressions in (18) and (19)

respectively.
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For both 81 and 32 less ttan cne in absolute value, and for zero
covariance of asset returns (012 = 0), the minimum variance portfolio moves
towards or away from stocks as the holding period lengthens, depending only
on the sign of (82 - 81). When asset returns are positively correlated
(512 > 0), the direction of the shift iq the minimum variance portfolio
apparently becomes less certain. Eowever, for stocks as the riskier asset
(so ci > 012) and provided w*(l) is positive (so og > 012), Fhe direction of
shift is of the same sign as (52 - Bl),

The "composition of the minimun variance portfolio may be highly sensitive
to the length of the holding period. To take a simple example, in which

asset 1 should be thought of as stocks, assume that

2 2
oel = 99 052
012 =0 -
81 =0
82 = .,9
then
wx(1) = .01
and

wk(=) = .50
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As the holding period lengthens in this case, stocks take up a larger part
of the minimum variance portfolio. It takes a holding period of 19 periods
for the optimal share of the first asset in the portfolio to reach 25%. The

47.5% mark is reached only after 131 periods.

Mean-Variance Portfolios: Although the usual justifications for mean-variance

portfolio analysis do not apply when portfolio decisions are made for the long
term, it is instructive briefly to consider optimal mean-variance portfolios
as a function of the decision period. TIf utility is defined as a function of

the mean and variance of the portfolio returns, the optimal proportion of the

first asset in the portfolio is

H (N - M, (N)
(21) w *(N) = A

2 g 2 + W*(N) N
o] () - 20, () + o5 (N) ,

where A is a measure of risk tolerance and ui(N) is the expeéted per period
return on asset 1i.

In (21) we interpret the first asset as the stock, which has a higher
expected return than bills., Two forces act on the portfolio as thé horizon
changes. In the first (excess return) term on the right hand side of (21),
the numerator stays constant as N increases while the denominator increases
with N. .Thus the asset holder will want to hold less of the stock when the
riskiness of the excess return on stocks rises relative to the expected
. return, as the holding period lengthens. Second, as seen above, the share
of the stock in the minimum variance portfolio, w*(N), changes as the holding

period N increases.
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For 82 > 81, the two portfolio effects—-that through the first, excess
return, term, and that through the minimum variance portfolio--work in
opposite directions. Thus the effects of changes in the holding period on
the composition of the portfolio will be ambiguous for this mean-variance
case, if 82 > Bl. The net effect on the portfolio will depend on the
parameters of the stochastic processes describing asset returns, and on the

investor's risk tolerance. The presumption is that if Bz >> B the shift

1’
in the portfolio will be towards stocks as the holding period lengthens, but

if the sérial correlation properties of the returns on the two assets are
similar, it is less certain which way the portfolio will shift with the

holding period.

Constant Relative Risk Aversion Portfolios: Mean-variance portfolio analysis

is difficult to justify when ;he holding period is long. But it turns out
that ambiguities similar to those notea above emerge when utility functions
are isoelastic and asset returns follow diffusion processes.

Goldman (1979) has shown, for isoelastic utility functions, that
portfolios become less diversified as the holding period lengthens, when
asset returns are generated by diffusion processes with no serial correlation.
Portfolio proportions move away from one half towards undiversified positions
as the holding period lengthens.

When serial correlation of asset returns is introduced, there is an
effect additional to that of Goldman on the cqmposition of the portfolio
(Fischer, 1982). As the relative risk of assets changes with the holding
period, the composition of the pcrtfolio changes for that reason as well as
 the Goldman effect. The net effect depends on the relative étrengths of the

Goldman effect and the risk-aversion effect.
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Portfolio analysis thus cannot unambiguously describe the effects of
changes in the holding period on the composition of the portfolio. The
effects depend on both the facts--the stoéhastic processes describing asset
returns--and the investor's preferences. In the next section we turn to the

facts.

4, Asset Returns

Although knowledge of the stochastic processes generating asset returns
is essential to portfolio behavior, there is no consensus on what these
processes are. Nor are there well-known competing estimates of the stochastic
processes. In this section I first present evideﬁce that there is both serial
correlation in bill returns and differential returns dynamics of bill and

stock returns. Then I present three alternative estimates of the stochastic

processes generating asset returns.

Method 1 estimates a simple autoregressive model for real bill returns,
and then treats the real return on stocks as a function of the anticipated
real rate on bills and lagged stock returns. This method has been used by
Fama and Gibbons (1980).

Method 2 estimates a complete monthly vector aﬁtoregressive médel of the
economy, including stock and bill returns émong the variables in the model.
The vector autoregressive model implies the dynamics of stock and bill returns.
Because the rate of inflation, growth rate of industrial production, and rate
of money growth are included in the model, the dynamics of asset returns is
. potentially richer than in the simpler constrained processes estimated by

Method 1.
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Both Methods 1 and 2 2t times icply that the expected real return on
bills exceeds that on stocks. Met:od 3 therefore imposes a constraint, of

a type implied by the capital asset pricing model, on the processes generating

the returns.

The section ends with a comparison of the alternative estimates of

returns.

Differential Returns Dynamics: Sizple time series properties of realized

real ratés of return on stocks and Treasury bills are suggested by Table 2.
Stock and bill returns are monthly Ibbotson-Sinquefield data from the Center
for Research in Security Prices; stock returns are from the Standard and Poor's
Composite Index. Real rates of return are calculated from the non-seasonally
adjusted consumer price index.5 Returns are measured as logarithms of one

plus the return. Returns for nore than one month are compounded for non-

overlapping periods.
Table 2 to go here,

The essential point made by Tzble 2 is that the relative riskiness of
stock returns falls with the length of the holding périod. For data covering
the entire 1926-1980 period, the per period variance of returns on stocks is
100 times that on bills over a one-month holding period; over a one-year
holding period, the variance of returns on stopks is twenty times greater
than that on bills. The ratio of variances over five-year holding periods

is only 4.4, though this number should be treated with caution since it is
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based on only 11 five-year periods. A similar though less dramatic pattern
holds over the 1948-1980 period.6 I will from this point on work with monthly
data for the period 1948-1980.

The per period variances in Table 2 suggest both that stock returns are
(approximately) serially uncorrelated and that bill returns are positively
serially correlated. If stock returns were i.i.d., the per period variance
would be independent of the length of the holding period. As it is, tﬁe per
period variance for stocks increases slightly with the leng;g of the holding
period. 'Tﬁe per period variance of returns on bills rises more sharply with
the length of the period.

Autocorrelation functions for real stock and bill returns are presented
in Table 3. Bill returns are significantly serially correlated, whereas
stock returns are not. The autocorrelation function for bills suggests that
the stochastic process forlbill returns is something other than a fi;gt—order

autoregression.
Table 3 to go here.

I now present three sets of estimates of the stochastic processes
generating asset returns. Each method allows for cogrelation of stock and
bill returns; such correlations have a potentially major impact on portfolio
decisions. Tt will become clear below that Method 3 is the preferred esti-
mation method in this paper, but}Methods 1 and 2 are included since they
. have either already appeared in the literature or else are typical of methods

currently used to generate expectations.
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Method 1: The first method of estimating bill and stock returns dynamics is
that of Fama and Gibbons (1980). The method is to estimate a simple ARMA
model for real bill returns, and then to relate stock returns to expected
bill returns. The rationale for this approach is that models of capital asset
pricing imply that expected real returns on stocks are related to expected
returns on bills. |

Table 4 presents estimates of a twelfth-order autoregressive process for
the real bill rate, using data froa the period 1948:2 to 1986:12. The length
of tﬂe autoregression was chosen to eliminate setrial correlation in the
residuals, as indicated by the Q-statistic. More parsimonious representatibns
using moving average as well as autoregressive parameters did not improve on

the properties of the real bill rate equation,
Teble 4 to go here.

The real return on stocks is then regressed on the expected return on
bills, as computed in regression (Rl1). The real return on stocks is
significantly positively related to the ex ante real return on bills. The
share of the variance of realized stock returns accounted for by movements
in the expected bill rate is however less than 1%. The standard error of
esﬁimate of the stock rate of return over the next month is almost 4%, at a
monthly rate. Thus actual movements in real stock returns are hardly at all
the result of changes in the expected rate, at'least according to the

estimates pfesented in Table 4.
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As a result of the constraints under which the stock and bill returns
processes are estimated, the ex ante rates of return on stocks and bills
follow very sirilar stochastic processes. The first-order autocorrelations

of ex ante bill a2nd stock returns are both about 0.7.

Method 2: Method 2 estimates a noathly five-variable vector autoregressive
model of the U.S. economy, for the period 1948:2-1980:12. The five variables
are the rate of money growth (M1-B), the rate of inflation (CPI), the rate

of growtﬁ of industfial production, the nominal bill rate, and real stock
returns. Varizbles aré not seasonally adjusted.

A vector zutoregressive model (Sims, 1980) imposes a minimum of theory
in estimating dynamic equations. 411 variables are modeled as endogenous,
lags are made sufficiently lonz to eliminate any serial correlation of
residuals in estimated equatioas, and no zero restrictions are imposed on
coefficients beyond those impiied by the choice of variables to include in

the model and the length of iag.

The form of the model is
I
(22) X, = ) A,X . +u

where Xt is the vector of (im this case 5) included variables, the maximal
lag length I has to be specified, the coefficients in the A matrices are to
be estimateé, and u, is a whits noisé vector of disturbances that may be
contemporaneously correlated.

In the model estimated here the lag length was taken tovbe twelve, both
to eliminate serial correlatioa of residuals and to pick up any potential

residual seasonal patterns that were not eliminated by the presence of
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seasonal dummy variables in each of the five equations, The Bok—Pierce Q-
statistic was used to indicate serial correlation.

The lag coefficienté were estimated imposing a Béyes—Littermén prior
(Litterman, 1980). The prior is that the model is purely first-order
autoregressive, with each variable following a random walk. Thus priors are
that the coefficient of the first own lag in each equation is unity, and all
other lag coefficients are zero.9 Prior estimates of the standard deviations
of the lag coefficients are that the standard deviations fall geometrically,
with an imposed deéay coefficient of 0.9. The sfandard deviation for the
first own lag coefficient is estimated from a first-order autoregression.
Standard deviations on coefficients of all other &ariables in an equation
follow the same decay pattern as those on the own variable, but with standard
deviations that are half those on the own variables.

The prior restrictions, which are tighter at the longer lags, reflect a
general presumption that ec;nomic systems are low-order auto;egreésions. The
priors typically prevent the alternation of coefficients-that would be
expected in any system in which the regressors are highly collinear.

Summary statistic; from the five equations are presented in Table 5.

The regressions themselves contain too many parameters to be presented. The
most striking feature of the system is the inability to predict stock returns
well using the vector autoregressive approach. The F-statistic for the
regression as a whole is not'significant at the 5% level, though it is

significant at the 10% level.

Table 5 to go here,.
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A vector autoregressive model of the type estimated here should be viewed
as a statistically sophisticated extension of single-variable time series
forecasting methods. No attempt is made to estimate structural relations.

The hypothesis implicit in the use of such models for forecasting purposes

is that the underlying economic structure, including policy response functions,
is stable. This approach is as vulnerable as more traditional econometric
models to the Lucas policy evaluation critique tha£ coefficients will change
if policy rules change.

The ‘model was used to form within sample one period ahead forecasts of
real rates of return on stocks and bills. These predicted rates are serially
correlated. The first autocorrelation of the EEél return on bills (equal to
the nominal rate of interest minus the predicted inflation rate) is 0.61.

The first autocorrelation of the predicted return on stocks is 0.34, However,
there is a seasonal patterﬁ ip stock returns, resulting in a twelfth—ﬁrder
autocorrelation of 0.56. Tﬁekp:edicted rates of return on stocks have a high
standard deviation, équal to 1,3% per month. The standard déviation of
predicted real bill returns is 0.2% per month.

The high variability of the ex ante stock rate also produces occasions
on which the expected return on stocks is lower than'the expected return on
bills. Rather than attempt to correct this problem by tightening the priors
on the lag coefficients in the stock returns equation, I imposed a constraint
of a type implied by the capital assét pricing model. This leads to Method 3

for estimating bill and stock returns.
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Method 3: Method 3 estimates a vector autoregressive model to generate
expected real returns on bills, and the uses the one period ahead forecast
of the real bill rate from that model to estimate an equation for the
predicted real return on stocks. The assumption is that

(23) RS - RB. = a

In (23), the left-hand-side variables are the expected real returns on

stocks and bills respectively. The variable t—lsi is the expected or
estimated variance of the excess return on the market. The variable e

t

is random, and a is a parameter to be estimated.

Equation (23) is not exact, because the capital asset pricing model
does not imply a constant value of the parameter a when the opportunity set
is changing. The error term is included to reflect such changes. The
coefficient a is estimated usigg the aéspmption that expectations of stock

returns are rational. With rational expectations,

(24) RSt = RSt + v

t-1 t

where v, is a serially uncorrelated error term with expectation zero.

Substituting (24) into (23), we obtain the estimated equafion

(25) RS, - RB = a s2 + e -v
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Some comments on (25). First, the structure of the error term in (25)
or equivalently the form in which (25) is estimated, is not known or
determined by a priori considerations. It is possible -that e is -
heteroscedastic,10 and that the implicit assumption made in moving from (24)
to (25) about the variance of v, is inappropriate. Estimation of (25) in

the alternative form

RS_ - RB

' t t-1" "t _ _
(25) ' > a + e, - Vv,

. s< .
» t-17t

hardly affected the estimate of a, to be reported in Table 6 below.

Second, (25) is constrained not to allow a constant. When a constant
is added on the right hand side, the constant is small and insignificant,
the estimate of a falls a iittle, but a loses its statistical significance.

Third, it is necessary'in“(ZS) to use an estimate of the variance of
the excess return on the market.11 I experimented with variances of lagged
realized stock returns over 12, 24, and 36 months. There were no major
differences in the estimates of a. The final choice was the 36-month moving
variance.

Table 6 contains details of the estimated vector autoregressive system
and of (R12), which is the estimated version of (25). The vector
autoregressive system contains four Qariables, those of the previous section
excluding the real return on stqcks. Because real stock returns did not
_ appear significantly in other equations in the five-variable model, the

equations for the four-variable model are very similar to those estimated in

Method 2.
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Tatle 6 to go here.

The estimate of a in (R12) is significantly different from zero. The
predictive power for real stock returns of an equation like (R12) is of
course extremely small. The izplied value of the coefficient of relative

risk aversion is about 3, correspording to a utility function of the form

-2,

he expected real rate of return on stocks is now highl& serially
correlated. This is in large part a result of the serial correlation built
into the method of crezting the variance. The first autocorrelation for
expected stock returns is 0.83. That for bills is 0.62, approximately the
same as for Method 2. The standaré deviation of the expected realArate on
stocks is now only 0.277% per month; that for bills is 0.18% per month.
Expected stock returns always.exceed expected bill returns, though the
premium certainly varies. The"higbest.p;emium is recorded in 1976, and is
equal to 1.2% per month. The lowest premium occurs in early 1966 and is
only 0.17% per month. If such variation is too large to be plausible, the
source of the difficulty is no doudt to be traced to the variance estimator.
The purpose of estimating the alternative forecasting models is to use
them in examining portfolio selection over different-holding periods. 1In the
next section I use Methods 2 and 3 to simulate the behavior of different

portfolios, over one- and sixtr-period holding periods.
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5. Simulated Portfolio Results

The stochastic processes for bill and stock returns implied by Methods
2 and 3 in the previous section were used in simulating the behavior of
alternative portfolios, over holding periods of one month and sixty months.

The utility function was taken to be isoelastic, of the form
(26) MUBER NS

For vy = 0, we have the logarithmic utility function. The smaller is Y,
the more risk averse the individual,

Four alternative utility functions were usedbto evaluate portfolio
performance. They were the logarithm; y = -1.5, y = =4, and y = -10. The
last utility function has risk aversion well beyond any that is usually
estimated. It is included'because the less risk-averse utility funcgions
show little inclination towérds portfolio diversification.

The simulation procedure is to set each model off with étarting
conditions that are equal to historical means of the relevant variables
over the estimation period. Drawings of the additive error terms in each
equation are then made and first-period values of thg variables in the
simulation recorded. The process then repeats, with updated values of
lagged variables (in the sixty-period simulation), and keeps doing so to
the end of the holding period. |

Portfolios are allocated between bills and stocks, on a grid of 0.05,

. running from all stocks to all bills. The total return accumulated over

the holding period by one dollar invested in each asset, and the



24

‘terminal wealtﬁ and utility obtained from each portfolio choice for éach
utility fungtion are recorded for each simulation, There were 10, 000
simulations of the portfolios generated using the stochastic processes of
Model 2, and 2500 of the portfolios generated using Model 3, The mean of
the utility level attained under each portfolio choice for each set of
simulations is calculated, and taken to be an estimate of expected utility,
Because mean asset returns initially differed over the one-month and
sixty-month holding periods, the means of the returns on both bonds and stocks
were adjusted in the one-month holding period simulations to be the same as
those in the sixty-month simulations. The identity of the reported means of
asset returns in one and sixty-month simulations in each table is thus the re-

sult of calculation and not chance.

The simulated optimal.portfolios in Table 7 are heavily in stocks for
both short and long horizoné;‘ Diversification only occurs for utility
functions with high risk aversion. The most interesting result in the
table, from the viewpoint of this paper, is that lengthening of the holding
period shifts the portfolio towards bills rather than away from them, for
the highly risk-averse investors. These investors are probably réacting to
the increasing riskiness of the excess return on stocks over bills, even
théugh the relative riskiness of stocks is falling. A second factor that
may account for the result is that the covariance of bill and stock returns
can move investors into bills aé the horizon lengthens, even if the relative

riskiness of bills is rising (Fischer, 1982),

Table 7 to go here,
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The results of 2500 simulations made using the dynamics of Method 3 esti-
mates are shown in Table 8. The levels of the optimal portfolios are very
similar to those in Table 7. This is to be expected since the interactions
between stock returns and the rest of the system in Method 2 were minimal.

However, the effects of the holding period on the optimal portfolio are
now different from those in Table 7. FSr all but one utility function, there
is no change in the portfolio as the holding period changes. For the utility
function (—W)—4, the portfolic actually moves towards stocks.as the holding
period lengthens. This is more in accord with the intuition suggested by the
discussion of Section 1, but it is not a strong effect. The effect is not‘

a quirk of rounding though. A search for optimal.portfolios over a finer grid

located the optimum for a one-month holding period at a share of .745 for

stocks; for a sixty-month holding period the optimum was .795.
Table 8 to go here.

There are two main conclusions from these simulations.

1. The differential dynamics of asset returns does not cause optimal
portfolios to change dramatically with the length of the holding period. The
direction of movement depends on the stochastic process generéfing portfolio
retﬁrns. Since the stochastic process for Method 3 is more soundly based,
the results for this method should receive more weight. These indicate that
the portfolio moves, if at all, towards stocks as the holding period lengthens.

2. TFor the specified utility functions, and given the historical be-
havior of stock and bill returns, portfolios are heavily in stocks.13
Indeed, for utility functions consistent with estimated coefficients of

14

risk aversion, portfolios are entirely in stocks,
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6. Pension Investments

vIndiv%duals investing in pension or retirement funds are investing for
a long horizon. In some cases they are also, formally, investing for a long
holding period, since the portfolio proportions may be changed only at
discrete intervals of say a vear. The possibility that optimal portfolios

differ depending on the holding neriod is relevant to such investing.

If the investor has other discretionary assets he can use them to
offset movements in the composition of the pension or retirement portfolio
within the holding period for the latter portfolio. He may be able
effectively to rebalance the portfolio continuously. Given the composition

of the retirement portfolio, the individual's discretionary portfolio will

hedge against changes in the retirement portfolio composition. But for those

for whom the pension fund is the only asset, the holding period may be of

the order of a year or severzl years.

Pension funds looking Eo create desirable long-term stqck portfolios
‘may also be concerned about the term structure of risk,Asomething of which
they are of course aware in the case of bonds. It is quite possible that
some stocks may have felatively better long-term than short-term risk
characteristics—-though that cannot be demonstrated at the aggregate level

of this paper.

7. Summary

This paper introduces the notion of the differential term structure of
. risk between stocks and bonds, and then estimates stochastic processes for
the generation of bill and aggregate stock returns. The stochastic process

estimates are to be regarded as tentative, for it is clear that there are
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major problems in estimating these returns. Despite the difficulty,
estimates of such processes are essential for making informed portfolio
choices.

The raw data and the estimated processes show more serial correlation
of bill returns than of stock returns. But estimated bill returns are not
sufficiently highly serially correlated relative to stock returns to make
them anywhere near as risky as stocks for even long holding periods.

The estimated returns processes are then used in stochastic simulations
to estimate optimal portfolio proportions over different holding periods.
There are“two interesting findings. First, optimal portfolio change little.
as the holding period changes. The direction of movement depends on the
estimated dynamic process for stock returns. Indeed, one of the implicit
findings of the paper is the lack of agreed or acceptable estimates of these
dynamic processes. Second, and very striking, optimal portfolios for what

are thought of as typical utility functions are very heavily in stocks.

.
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Footnotes

* Visiting Scholar, Hoover Institution, Stanford University, on leave
from M.f.T., and Research Associate, National Bureau of Economic Research;
This paper is part of the Bureau's Pensions Project and was prepared for the
Conference on Financial Aspects of the U.S. Pension System, Amelia Island,
March 25-26, 1982. I am grateful to Sudipto Bhattacharya, Fischer Black,
Barry Goldman, Hayne Leland, Thomas MaCurdy and Robert Merton for helpful
commentstand/or dis;ussions, and to Jeffrey Miron for excellent research

assistance. Financial support was provided by the National Science Foundation

and the Hoover Institution.

1 The random walk hypothesis is not rejected by Nelson and Schwert

(1977), Garbade and Wachtel (1978), and Fama and Gibbons (1980).

The terminology is slightly avkward. An alternative term is the

- -

portfolio decision period, which however is potentially misleading since for
certain utility functions the investor keeps the portfolio composition fixed,
and thus need make only one investment decision. Goldman (1979) uses the

term revision period.

Goldman has analyzed this question when asset returns are not serially

correlated.

4

Note that X, is the logarithm of one plus the rate of return, so that

the variance is that of the logarithmic returns on the portfolio.

Use of the seasonally adjusted price index does not much affect the

results.
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There is one period in which the pattern seen in Table 2 is absent,
in that relative riskiness is independent of the holding period. This is
the 1953-1971 period--the period over which Fama (1975) showed the real

interest rate on bills was constant.

There is a question about the interpretation to be placed on the
coefficients in regression (R1). Suppose, as assumed by Fama and Gibbons,
that the stochastic process generating real bill returns is -one between

expected real rates. Thus:

(F1) -1 RBt = a + bt-2 RBt—l + e

where a and b are constants and t—iRBt—i+l is the expected bill rate. Given

that, under rational expectations,

(F2) RB, = ,_|RB, +v_.

where v, is serially uncorrelafed, there is an error in variables problem when
(F1) is estimated using realized bill rates of return, The estimated
coefficient g is biasedvdownward from the true b if (Fl) is estimated as a
first-order autoregression.

If one is willing to assert a priori that the true relation is a first-
order autoregression, the coefficient b can be identified by estimating a
(1,1) ARMA model for the realized bill rate; It was by using a restriction
of this type that Fama and Gibbons concluded the ex ante bill rate follows.

a random walk--they were not able to reject thé hypothesis that b in (F1)

was equal to 1.
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However, separate knowledge of the coefficient b is not needed to form
optimal forecasts of the real bill rate when there are errors in variables
and no information other than realized bill‘ratés to identify the expected
real rate. The optimal forecast is obtained from the appropriate ARMA
regression on realized bill rates. Thus from a forecasting viewpoint the

interpretation of the coefficients in (Rl1) is not important.

The need for a twelfth-order system arose from the presence of serial

correlation in the money growth equation residuals for shorter lags.

An exception was made for stocks, for which the prior was that returns

were white noise plus a mean.

10 This possibility has been emphasized by Merton (1980) in his

exploratory estimation of market returns.

11 Fools rush in, despite the good example of Black (1976). The hope

is that this foolishness will encourage those less foolish to do better.

12 . . . .
The assumption that the estimated stock market variance is formed

in this way is obviously crude. In work in progress, Olivier Blanchard and

I are attempting to provide a more sophisticated model for the variance.

13 . . . . . .
The results of the simulations are consistent with typical estimates of

coefficients of relative risk aversion as being around 2. These estimates

are based on the market risk prgmium. In equilibrium, the desired portfolio
for the "rarket" must be the market portfolio, in which Treasury bills play
only a small part. Hence the simulated optimal portfolios should have only

a small share of Treasury bills.

4 . .
What about taxes, it may be asked. The assumption is that the asset
returns are untaxed, Alternative assumptions about taxation could be in-

corporated in future simulations of optimal portfolios.
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Table 1: Variance of Per Pericd Returns for a First-Order Autoregressive

Process
N 8=0.95 $=0.9 8=0.75 8=0.5 |
1 1.0 1.0 1.0 1.0
2 2.4 2.3 2.0 1.6
3 4.3 4.0 3.1 2.1
6 12.5 10.4 6.2 2.9
12 - 36.2 25.1 10.0 3.4
24 92.7 48.6 12.9 3.7
48 186.9 71.6 14.4 3.9
120 304.5 88.6 15.4 3.9

Note: Entries show variances of per period returns for holding period

of length N relative to variance for one period.



Table 2: Real Monthly Returns on Stocks and Bills

Period
1926-1380 1948-1980
(1) (2) Ratio @D) (2) Ratio
Stocks Bills (1)/(2) Stocks Bills (1)/(2)

Mean return .00511 -.00008 . 00593 .00003

(1)

Variance of
returns per month

Holding period

in months: 1 .362 .00353 102.5 . 160 .00098 164.3
2 .402 .00547 73.5 . 164 .00140 117.2

4 .355 .00826 43.0 .192 .00177 108.8

12 .381‘ .01649 .23.1 .192 .00330 t58.3

60 (.188 ° . 04322 4.4) ((.326 .00683 47.7)

Notes: 1. The variances should all be multiplied by .0l.

2. Stock and bill returns are from the Ibbotson-Sinquefield File,
Center for Research in Security Prices, University of Chicago.
Real returns are calculated using seasonally unadjusted CPI.

3. Parentheses in last row of table are a reminder that statistics
are based on only eleven and six data points respectively.
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Table 4: Bill and Stock Returns, Method 1

1. Real bill rate, RB: Real bill rate is regressed on constant, eleven
seasonal dummy variables, and twelve lags of RB. Lag coefficients
(with t-statistics) are:

Lag 1 2 3 4 5 6 7
.25 .10 .11 .04 -.03 -.06 .06
(1.89) (1.84) (2.09) (0.69) (=0.55) (-1.20) (1.27)
(R1) |
lag 8 9 10 11 12

.16 .07 .09 -.11 -.05
(1.895) (1.51) (1.80) (-2.30) (-1.05)

Sample period: 1948:2-1980:12

R2 = .20 SEE = .0028 D-W = 1.92
: : Q = 59.7 -
2. Real stock rate, RS: k
(R2) Rs_ = .0057 + 3.03 _ .RB_+ .019 RS__
© (2.83) (2.33) 1t (0.38) °©!
RZ = .0097 SEE = .0398  D-W = 1.99
Q = 61.5
Note: t—lRt is the expectation ofRBtfbrmed at the end of period t-1,

using Eq. (R1).



Table 5: Method 2, Five-Variable Yonthly Vector Autoregressive Model

(R3) Real Stock Returns

R% = 15 SEE = .03€9 DW = 2.00

Q =42.9 (Significance level = ,92)

F-statistics for sums of coefficiezts on each variable are not significant at

107% level for any of the variadbles. F-statistics for all coefficients not

significant at 57 level.

~

(R4) *.Nominal Bill Returns

R% = .95 SEE = .00051 DW = 1.98

Q = 40.9 (Significance level = ,95)

F-statistics show strong significa=ce of lagged bill returns; no other

variables significant at 10% level.

(R5) CPI Inflation Rate
RZ

= .59  SIE = .00256 -DW = 1.98
Q = 58.5 (Significance level = .42)

F-statistics show strong significazce of lagged inflation rate; lagged nominal
bill rates are significant at 2% lzvel, lagged money growth at 6% level. Sum

of coefficients for each of these three variables is positive.

(R6) Growth Rate of Industrial Production

RZ

= .85 SEE = .0116 DW = 2.05
C Q = 30.4 (Significance level = .998)

Lagged stock returns, lagged ianduszrial production and lagged money growth are
all significant at 5% level. Sum of lagged coefficients is positive for all

three variables.

{(Continued)



Table 5 (Cont'd)

(R7) Growth Rate of Money

R = .92 SEE = .0040 DW
Q

1.99
49.1 (Significance level = ,76)

F-statistics show sum of coefficients on lagged nominal interest rates and
lagged money growth strongly significant. Lagged stock prices have
significance level of .08. Sum of lagged coefficients positive for all

three variables. Coefficients on bill rate lagged one and two periods are

both negative.

13
-



Table 6: Method 3, Estimated Four-Variable Vector Autoregressive Model

and Stock Returns Equation

(R8) Nominal Bill Returns

R% = .94 SEE = .00051 DW = 1.97

Q = 43.5 (Significance level = .91)

F-statistics show strong significance of lagged bill returns; significance

level for inflation variables is .1l1.

(R9) ~CPI Inflation Rate

R™ = .58 SEE = .00259 DW = 1.99
Q = 56.0 (Significance level = .51)
Coefficients on lagged bill returns and lagged inflation are strongly

significant; significance level for money variables is .08.

(R10) Industrial Production

R% = .84 SEE ='0.0119  DW = 2.04

Q = 31.6 (Significance level = ,998)

Coefficients on lagged industrial production and money are strongly significant.

(R11) ' Growth Rate of Money

R™ = .91 SEE = .00408 DW = 2.00
Q = 49.5 (Significance level = .75)

Lagged bill rates, industrial production, and money are significant at 5%
level. Sum of coefficients on bill rate is positive; first two coefficients
are large and negative. Sum of coefficients on industrial production is

positive.

(Continued)



Table 6 (Cont'd)

(R12) Real Stock Returns
2
RS, = RB. + 3.42 s
t t-1 (2.94)t-1 t

%% = .000046 SEE = 0.0399 DW = 1.95

Q = 59.7 (Significance level = .38)

Variables are: t—lRBt is expected real return on bills, equal to

: nominal rate minus N 1“

rate from (R9).

£ the expected inflation

£-15¢ is the variance of real stock returns over the previous

36 months.

t-statistics in parentheses.

LN



Table 7:

Simulated Optimal Portfolins, Method 2

Utility Function

Holding Period in W L3 Wt -W
1 month 1 1 1
60 months 1 1 .85
(1) (2)

Mean bill Mean stock Variance of - Variance of
return per Tretura per bill return stock return

-10

Statistics: month rorth _per month  per month (2)/(1)
1 month ° .160 x10™>  .00500  .640 x 107> .00125 195.3
60 months .160 ><10-3 .00500 .341 x 10—4 .00163 47.9
Notes: 1. Entries in first two rows érg shares of stocks in optimal
portfolio.
2. There were 10,000 replications.



Table 8:

Simulated Optimal Portfolios, Method 3

Utility Function’

Holding Period in W R Wt w10
1 month 1 1 .75 .35
60 months 1 1 .80 .35
(L (2)

Mean bill
return per

Mean stock
return per

Variance of
bill return

Variance of
stock return

Statistics:' month month per month per month (2)/ (1)
1 month .00013 .00 546 .633 x 107° .00162 256.4
60 months .00013 .00546 .330 X% 10‘4 .00159 48.1

Notes: 1.

Y

Entries in first two rows are shares of stocks in optimal

portfolios.

There were 2500 replicationms.





