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ABSTRACT

We consider linear predictor definitions of noncausality or strict exoge-
neity and show that it 18 restrictive to assert that there exists a time-
invariant latent variable ¢ such that x is strictly exogenous conditional on c.
A restriction of this sort 1is necessary to Justify standard techniques for
controlling for unobserved individual effects. There 1is a parallel analysis for
multivariate probit models, but now the distributional assumption for the indi-
vidual effects 1is vrestrictive. This restriction can be avoided by using a con=
ditional likelihood analysis in a loglt model. Some of these ideas are
illustrated by estimating union wage effects for a sample of Young Men in the
National Longitudinal Survey. The results indicate that the lags and leads
could have been generated Jjust Dby an unobserved individual effect, which gives
some support for analysis of «covariance-type estimates. These estimates indi-
cate a substantial omitted variable bias. We also present estimates of a model
of female labor force participation, focusing on the relationship between par-
ticipation and fertility. TUnlike the wage example, there 1is evidence against
conditional strict exogenelty; if we ignore this evidence, the proabit and logit

approaches give conflicting results.
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1. INTRODUCTION AND SUMMARY

The paper has four parts: the specification of linear models; the
specification of nonlinear models; statistical inference; and empirical
applications. The choice of topics 1s highly selective. We shall focus
on a few problems and try to develop solutions in some detail.

The discussion of linear models begins with the following specification:

(1.1) Vi ® By £¢5 0 Uy,

(1.2) E(uit]xil, ce B ) =0 (i=1, ..., W tl, ..., 0.

For example, 1in a panel of farms observed over several vyears, suppose that
yit is a measure of the output of the :i_l:E farm in the t:-m season, Xj,. is a
measured input that wvaries over time, s is an unmeasured, fixed input
reflecting soil quality and other characteristics of the farm's location,
and u it reflects unmeasured inputs that vary over time such as rainfall.

Suppose that data is available on (Xy(s . . . . Xyqs Vyp» - . yiT)

for each of a large number of units, but e, is not observed. A cross-

1
section regression of Yip OO %y will give a biased estimate of B if ¢ is
correlated with x, as we would expect it to be in the production function
example. Furthermore, with a single cross section, there may be no internal

evidence of this bigs. If T » 1, we can solve this problem given the

assumption im (1.2). The change in y satisfies

E(yyp = Tyglgp = %pp) = Blxpp = x40,

and the leagt squares regression of }’12 - ¥yp on Ry, = Xy provides a




consistent estimator of R8(as W =+ =) if the change in x has sufficient

variation. A generalization of this estimator when T > 2 can be obtained
from a least squares regression with individual specific intercepts.

The restriction in (1.2) is necessary for this result. For example,

consider the following autoregressive specification:

Yie = BV 1 P00t By

It is clear that a regression of ¥

1t = T4 gl O Yi,e-1 T Ty peg WL nOC

oV . ; i ., o= U,
provide a consistent estimator of B, since Uy 1, £-1

yi’ i1 -yi’ e Hence it 1s not sufficient to assume that

is correlated with

E(uit|xit’ ci) e .,

Much of our discussion will be directed at testing the stronger restriction
in (1.2).
Consider the (mipimm mean-square error) linear predictor of e

conditional on xﬂ, C e xiT:

(1.3) E*(ci|x s s R AN AR, L +lTxiT .

Given the assumptions that variances are finite and that the distribution
of (xil’ corrs By ci) dcas not depend upon 1, there are no
additional restrictions in (1.3); it 1is simply notation for the linear

predictor. Now consider the linear predictor of Yie given Xigs + v - xiT:

* T T .
E(Yitlxﬂ,. .. .xﬂ)=§t+ X1t TRy
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Form the TXT matrix E with ﬁts as the (t,s) element. Then the restriction

in (1.2) implies that Il has a distinctive structure:

T=81+244,

~

where I 1is the TXT identity matrix, £ 1s a TX1 vector of ones, and
Aa (}\l, . ey )\T). A test for this structure could usefully accompany
estimators of B based on change regressions or on regressions with
individual specific  intercepts. Moreover, this formulation suggests an
alternative estimator for R, which is developed in the inference section.
This test 1s an exogeneity test and it 1is useful to relate it to
Granger (1969) and Sims (1972) causality. The novel feature 1s that we
are testing for noncausality conditional on a latent variable. Suppose
that t=l 1is the first period of the individual's (economic) 1life. Within

the linear predictor context, a Granger definition of "y does not cause

x conditional on a latent variable e' is

(1.9 E*(xi,t+l\xil’ rt o X Yil’ veer Fypo ci)

a E*(xi veis X

, ci) (t=1,2,...).

,t+l ERE it

A Sims definition 1is

XY %0 Xypr v o) = B Xy 0 By ©y) (t=1,2,...),

In fact, these two definitions imply identical restrictions on the

covariance matrix of (X;y»> . .«3X;p ¥yqs. .y Yy The Sime form fits

directly into the [ matrix framework and implies the following restrictions:

I=B+ YA,




where B 1s a lower triangular matrix and Y is a TX1 vector.

We show how these nonlinear restrictions can be transformed into
linear vrestrictions on a standard simultaneous equations model. We show
also how a ¥ ):' term can arise in an autoregressive model from the pro-
jeection of an initial condition onto the x's.

In Secti.n 3 we use a multivariate probit model to illustrate the new
issues that arise in models that are nomlimear in the variables. Consider

the following specification:

Ve =B Xy 03 Uy
" i f ¥ >
Tgp T 1 A0V 20,
0 otherwise (i=1, . .. . N;e=1,. ... T,
where, comdii ional on X, . eev, Xjp. Cys the distribution of (uil’ Coe uvT)
is multivariate normal (N(0, I)) with mean 0 and covariance matrix I = (crjk
We observe (xﬂ,. N R 'YiT) for a large number of individuals,

but we do not observe cye For example, in the reduced form of a labor
N ,th
force participation model, ¥ q¢ Can indicate whether or not the l-t—

individual worked during period t, x,,. can Dbe a measure of the presence

it
of young children, and ¢y can capture unmeasured characteristics of the
individual that are stable at least over the sample period. In the
certainty model of Heckman and MaCurdy (1980), cy is generated by the
single life-time budget constraint.

If we treat the ¢y as parameters to be estimated, then there is a

severe incidental parameter problem. The consistency of the maximum

).

W f

"
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likelihood estimator requires that T =+ %, but we want to do asymptotic
inference with ¥ + «w for fixed T, which reflects the sample sizes in the
panel data sets we are most interested in. So we consider a random
effects estimator, which 1is based on the following specification for the

distribution of ¢ conditional on x:

+ + A x,  +vV,,

(1.4) ey mn+hpxy, +. . FAdp p+vy

where the distribution of v, conditional on x X

. 2
1 1 is N{0, Ov) .

iT
This is similar to our specification in (1.3) for the linear model, but

there is an important difference; (1.3) was Jjust notation for the linear
predictor, whereas (1.4) embodies substantive restrictions. We are
assuming that the regression function of ¢ on the x's is linear and that

the residual variation is homoskedastic and normal. Given these assumptions,

our analysis rtuns parallel to the linear case. There is a matrix [ of

multivarlate probit coefficients which has the following structure:
T = diag{®,, ..., %, HB I +4£A'],

where diag{al,. GT} is a diagonal matrix of normalization factors

with at = (Gtt + Gi)_;i. We can 1impose these restrictions to obtain an

estimator of utB which is consistent as N = = for fixed T. We can also
test whether E in fact has this structure.

A quite different treatment of the incidental parameter problem 1is

possible with a logit functional form for P(yit a 1|xit’ ci). The sum

T

Et=lyit provides a sufficient statistic for ci. Hence we can use the

distribution of Y495 . . . . Yyp conditional on Xgqs . . . . Eyq Et Yie




to obtain a conditional likelihood function that does not depend upon c,.
Maximizing it with respect to B provides an estimator that 1is consistent as
N = ® for fixed T, and the other gtandard properties for maximum likelihood
hold as well. The power of the procedure is that it places no restrictions
on the conditional distribution of ¢ given x. It 1s perhaps the closest
analog to the change regression in the linear model. A shortcoming is that
the residual covarlance matrix is constrained to be equicorrelated. Just

as 1in the probit model, a key assumption 1is
(1'5) P(Yit = llxil' e e e xiT’ Ci) = P(yit = l[xit, Ci) 3

and we discuss how 1t can be tested.

It 1is natural to ask whether (1.5) 1is testable without impoging the
various functional form restrictions that underlie our tests im the probit
and logit cases. First, some definitions. Suppose that t = 1 1is the initial
period of the individual's (economic) 1ife; an extension of Sims' condition

for x to be strictly exogenous is that e is independent of xt+l’ Kopnr oo

conditional —on Xy, »esy X AN extension of Gramger's condition for "y

does not cause x" is that L) is independent of yl, . . . . Ve conditional on

Epsoooo X Unlike the linear predictor case, now strict exogeneity is
weaker than noncausality. Noncausality requires that Yo be independent of

Xppqr Zeqgs ove conditional on xpy wees x and on¥y» . .. . ¥eq- If X

is strictly exogenous and in addition Ve is independent of xl, ceny X

conditional on x_., then we shall say that the relationship of x to y 1is

t’

static.
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Then our question 1is whether it 1is restrictive to assert that there
exists a latent variable ¢ such that the relationship of = t0 vy is static
conditional on ¢. We know that this is restrictive in the linear predictor
case, since the weaker condition that x be strictly exogenous conditional
on ¢ 1s restrictive. Unfortunately, there are no restrictions when we
replace zero vpartial correlation by conditional independence. It follows
that conditional strict exogeneity is restrictive only when combined with
specific  functional forms == a truly nonparametric test cannot exist.

Section 4 presents our framework for inference. Let E:;. =

(1, x'il’ e xi‘I' Yil’ e yi,r) and assume that T, is independent and

i

identically distributed (i.i.d.) for i = 1,2,... . Let w, be the vector
formed from the squares and cross-products of the elements in Ty Qur

framework 1s based on a simple observation: the matrix [I of linear
predictor coefficients is a function of E(‘.'.’i); if Ei is i.i.d. then so is
Wl hence our problem is to make inferences about a function of a popu-
lation mean wunder random sampling. This 1s straightforward and provides
an asymptotic distribution theory for least squares that does not require
a linear regression function or homoskedasticity.

Stack the columns of II' into a vector T and let T a h(M), where
E o= E(gi). Then the limiting distribution for least squares 1s normal

with covariance matrix

3 3’
B g V) 5y

We impose restrictions on Il by using a minimum distance estimator.

The restrictions can be expressed es Y = g(g), where 9 is free to vary




N
within some set T. Given the sample mean w = EN Wi/N, we choose @_

i=1
to minimize the distance between v:f and g(g), using the following distance

function:

min (7 - @1 ¥ (w) (@ -g®1,

get
where fl(vgi).is a consistent estimator of V(Ei)' This 1is a generalized
least squares estimator for a multivariate regression model with nonlinear
restrictions on the parameters; the only explanatory variable 1is a constant
term. The limiting distribution of QA is normal with covariance matrix

ag' 3 171

2 -1
EpR

An asymptotic distribution theory 1is also available when we use some
matrix other than fr—l(gi) in the distance function. This theory shows
that \?-l(ﬁji) is the optimal choice. However, by using suboptimal norms,
we can place a number of commonly used estimators within this framework.

The results on efficient estimation have some surprising consequences.
The simplest example is a wundivariate linear predictor: E*(yi[xil, xiZ)
TI'O + Tflxﬂ + “2312' Consider imposing the restriction that sz = (; we do
not want to maintain any other restrictions, such as linear regression,
homoskedasticity, or normality. How shall we estimate Tfl? Let
iﬂ\" = (?Tl,?fz) be the estimator obtained from the least squares regression
of v on Xy Xy We want to find a vector of the form (®, 0) as close as

possible to (‘ﬁ' , T ), using ﬁ-l (’ﬁ) in the distance function. Since we
1 2 ~

are not using the conventional estimator of ¥(T}, the answer to this




-~
minimization problem is not, in general, to set B = by , the estimator

obtained from the least squares regression of y on Xy We can do better

by using bw:1 + Tﬁz; the asymptotic mean of TY; is zero if Tl'2 = 0, and if
b and T, are correlated, then we can choose T to reduce the asymptotic

¥Ey 2
variance below that of D x]_‘

This point has a direct counterpart in the estimation of simultaneous
equations. The restrictions on the reduced form can be imposed using a
minimum distance estimator. This 1is more efficient than conventional
estimators since it is using the optimal norm. In addition, there are
generalizations of wo= and three-stage least squares that achieve this
efficiency gain at lower computational cost.

A related application is to the estimation of restricted ovariance
matrices. Here the assumption to be relaxed is multivariate o« :mality.
We show that the conventional wmaximum likelihood estimator, wh.ch assumes
normality, 1s asymptotically -eguivalent to a mninimum distance estimator.
But that mimdmum distance estimator is not. in general, using the optimal
norm, Hence there is a feasible minimum distance estimator that is a8
least es good as the maximum likelihood estimator; it 1is strictly better
in general for nonnormal distributions.

The mnminimum distance approach has an application to the multivariate
probit model of Section 3. We begin by estimating T separate probit

specifications in which all leads and lags of % are included in the

specification for each Vet

w
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where F 1s the standard normal distribution function. Each of the T
probit specifications 1is estimated wusing a maximum likelihood program
for univariate probit analysis. There 1s some sacrifice of efficiency
here, but it may be outweighed by the'adwvantage of avoiding numerical
integration. Given the estimator for I, we derive its asymptotic
covariance matrix and then impose and test restrictions by using the
ninimum  distance estimator.

Section 5 presents two empirical applications, which implement the,
specifications discussed in Sections 2 and 3 wusing the inference procedures
from Section 4. The linear example 1is based on the panel of Young Men
in the National Longitudinal Survey (Parnes); Ve is the logarithm of the
individual's hourly wage and x, includes wvariables to 1indicate whether or
not the individual's wage 1s set by collective bargaining; whether or not
he lives in an SMSA; and whether or not he 1lives in the South. We present
unrestricted least squares regressions of Yt on Eqs . .. xT, and we
examine the form of the II matrix. There are significant leads and lags,
but there 1is evidence in favor of a static relationship conditicnal on a
latent wvariable; the leads and lags could be interpreted as Jjust due to ¢,
with E(ytlxl, . vey XT, €)= B X, + ¢. The estimates of R that control for
c are smaller in absolute value than the cross—section estimates. The
union coefficient declines by 402, with somewhat larger declines for the
SMSA and region coefficients.

The second application presents estimates of a model of labor force
participation. It is based on a sample of married women in the Michigan

Panel Study of Income Dynamics. We focus on the relationship between
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participation and the presence of young

children. The  unrestricted

T matrix for the probit sgpecification has significant leads and lags;

but, unlike the wage example, there 1is evidence here that the leads and

lags are not generated Jjust by a latent wvariable, If we do 1impose this

restriction, then the resulting estimator of B indicates that the cross-

section estimates overstate the negative effect of young
woman's  participation  probability.

The estimates for the logit functional form present

children on the

some 1interesting

contrasts to the probit results. The cross-section estimates, as usual,

are 1in close agreement with the probit estimates. But when we use the

conditional maximum likelihood estimator to control for ¢,

the effect of

an additional vyoung child on participation becomes
negative than in the cross-section estimates; so the

the bias is epposite to that of the probit results.

method 1is having a first order effect on the results.

substantially more

estimated sign of
Here the estimation

There are a variety

of ©possible explanations. It may be that the unrestricted distribution

for ¢ in the logit form is the key. Or, since there is evidence against

the restriction that

P(yy lx;00 . B e 3 By e e,

perhaps we are finding that imposing this restriction simply leads to

different biases in the probit and logit estimates.
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2. SPECIFICATION AND IDENTIFICATION: LINEAR MODELS
2.1. A Production Function Zxample

We shall begin with a production function example, due to Mundlak

(1961) .2 Suppose that a farmer is producing a product with a Cobb-Douglas

technology:

Yit=Bxit+°i+uit 0<B<1l; i=1, ... . NH ....T),

where Yie is the logarithm of output on the iE-h- farm in season t, xit is
the logarithm of a variable input (labor), ¢ represents an input that is
fixed over time (soil quality), and L represents a stochastic input
(rainfall), which 1is not wunder the farmer's control. We shall assume that
the farmer knows the product price (P) and the input price (W), which do
not depend on his decisions, and that ha knows ci. The factor input deci-

sion, Thowever, 1is made before knowing uit’ and wea shall assume that Xie is

chosen to maximize expected profits. Then the factor demand equation 13
(2.1)  x, = {ln B+ & [E(e%e|T)] + Ln (B/W) + cHA-B),

where J . is the information set available to the farmer when he chooses x

t!
and we have suppressed the 1 subscript.
Assume first that ut is independent of Jt, so that the farmer cannot

do better tham using the unconditional meam, In that case we have

E(ytlxl, . sy xT, C) = th + C.
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So if ¢ 1is observed, only one period of data is needed: the least squares

regression of Yl on Xy c provides a consistent estimator of B as N + @,
Now suppose that ¢ 1s not observed by the econometrician, although it

is known to the farmer. Consider the least squares regression of ¥, on X,

using just a single cross-section of the data., The ©population counterpart

is
E*(y1|x1) = TrO + “x"l!

where E* 1is the minimum mean-square error linear predictor (the wide-sense

regression function):
T = COV(Y11 xl)/v(xl)s 'ﬂ'o = E(Yl) - “E(xl)‘

We see from (2.1) that ¢ and xl are correlated; hence T # B and the least
squares estimator of B does not converge to B as N = =, Furthermore, with
a single cross section, there may be no internal evidence of this omitted-
variable bias.

Now the panel can help to solve this problem. Mundlak's solution was
to include farm specific indicator variables: @& least squares regression
of ¥ it‘ on x

dit (i=1, . . ., N3 c-1, . .. . T), where d . is a WL vector of

it’ i
zeros except for a one 1in the :i.—tE position. So this solution treats the
c; as a set of parameters to be estimated. It 1s a "fixed effects" solu-
tion, which we shall contrast with "random effects." The distinction 1is
that under a fixed effects approach, we condition on the Cys SO that their
distribution plays no role. A random effects approach invokes a distri-

bution for c¢. In a Bayesian framework, B and the ¢y would be treated sym-

metrically, with a prior distribution for both., Since I am only going to
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use asymptotic results on inference, however, a "gentle" prior distribution
for B will be dominated. That this need not be true for the ci is one of
the interesting aspects of our problem.

We shall do asymptotic inference as N tends to infinity for fixed T.
Since the number of parameters (ci) is increasing with sample size, there
1s a potential "ineidental parameters" problem in the fixed effects approach.
This does not, however, pose a deep problem in our example. The least

squares regression with the indicator variables is algebraically equivalent

to the least squares regression of Yie ™ }-ri on Xz = ii (i=1, . . . . N;
= — - - - T '
t=l, . . . . T}, where vy £t=1 }'it/T, X, Zt=lxit/'r' If T = 2, this reduces

to a least squares regression of YiZ - y:i.l on xi2 = xil' Since
E(rgp = yyplm o - xyp) = Blxgp = xyp),

the least squares regr+ssion will provide a consistent :stimator of B if

. Lo i : - 3
there 1is sufficient wariation 1in xiZ xil'

2.2 Fized Effects and Ineidental Paramelers

The dincidental parameters can create real difficulties. Suppose that
u;,. 1s independently and identically distributed (i.i.d.} across farms and
periods with V(uit) a 72. Then under a normality assumption, the maximum
likelihood estimator of 02 converges (almost surely) to 02(1‘-1) /T as
N = @ yith T fixed.4 1he failure to correct for degrees of freedom leads

to & serious inconsistency when T 1s small. For another example, consider

the following autoregression:
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= o+ ou,
Yy S @ Vg tooy tugy

Yip = B Yip tey T U,

Assume that Ui and u;, are i.i.d. conditional on Yio and ci, and that they

follow a normal distribution (N(O, 02)). Consider the likelihood function

corresponding to the distribution of (yil, Yiz) conditional on Yio and ¢,.

i
The log-likelihood function is quadratic in B, cl, . . . . Cy (given U[), and

the maximum likelihood estimator of 8 is obtained from the least squares
regression of ¥;o = Vi1 on y.4 =Yy (-1, . .. . H). Since u 1s correlated

0 il
with Yi1» and

Yiz = Y31 = Blyyp = ¥io) +ougp 8y
it 1s clear that

(2.9) E(yiz - Yillyil - YiO) # B(Yll YI'.O)’

and the maximun likelihood estimator of B 1s not con=istent. If the dis-

tribution of yio conditional on s does not depend on B or ¢ then the

il
likelihood function based on the distribution of (yio, yil, yiz) condi-

tional on cy gives the same inconsistent maximum likelihood estimator of

B. If the distribution of (yio, Vi1 yiz) is stationary, then the estimator

obtained from the least squares regression of Yip = yil on ¥Yyq ® Y44

converges, as N =+ @, to (5—1)/2.5

2.3. Random Effects gnd Specification Analysis

We have seen that the success of the fixed effects estimator in the

production function example must be wvieweu with some caution. The ineci-
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dental parameter problem will be even more serious when we consider nonlinear

models. So we shall consider next a random effects treatment of the pro-

duction function example; this will also provide a convenient framework

for specification analysis.6
Assume that there is some Joint distribution for (xil, e xiT’ ci),

which does not depend upon i, and consider the regression function that does

not condition on cC:
E(rgplmyge ooon xyp) = B oxgp + Eeyfxyyn v v 2.

The regression function for e { given x. 3 (x . KiT) will generally be

11°

some nonlinear function. But we can specify a minimum mean=-square error

linear  predictor:’
» = '
(2.2) A CH xﬂ) =9+ llxil +oees t xTxiT ¥+ ATx,,

where ) = v'l(xi) Cov(xi’ ci)' No restrictions are being imposed here ==
(2.2) 1s simply giving our notation for the linear predictor.

Now we have
8 A'x
E*(Yitlggi) =¥+ By o+ L

Combining these linear predictors for the T periods gives the following

multivariate linear predictor:8
(2.3)  EX(gglxp) =T+ T x,

= covly,, x}) V(xp) = BI+4,




"
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where yi = (yil’ cens YiT)’ I is the T<T identity matrix, and £ is a TX1
vector of ones.

The 1 matrix is a useful tool for analyzing this model. Consider first

the estimation Of 6: if T = 2 we have

1 2
I= (" )= '
~ ik Al B-sz
Hence
B=Tf -Tf =T -TT

11 21 22 12°

So given a consistent estimator for II, we can obtain a consistent estimator
for 5. The estimation of Il: is almost a standard problem in multivariate
regression; but, due to the nonlinearity in E(e ilEi)’ we are estimating only
a wide-sense regression function, and some care 1is needed. It turns out that
there is a way of looking at the problem which allows a straightforward
treatment, under very weak assumptions. We shall develop this in the section
on inference.

e see in (2.3) that there are restrictions on the I matrix. The off-
diagonal elements within the same column of [I are all equal. The Tn‘ elements
of T are fumctions of the T+l parameters Bs Ays . . . . Ap- This suggests an
obvious specification test. Or, backing up a bit, we could begin with the
specification that E = B E Then passing to (2.3) would be a test for
whether there is a time-invariant omitted variable that 1is correlated with
the x's. The test of T = 8 I + é A' against an unrestricted E would be an

omaibus test of a variety of misspecifications, some of which will be con-

sidered next.9
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Suppose that there is serial correlation in u, with u_ = Dut_ + w

t 1

where W is independent of J . and we have suppressed the 1 subscripts.

t!

Now we have

So the factor demand equation becomes

«
x, = WUn B + Ln [E(e 1;)] +2n (B /W) + Pu._, + ¢}/ (1-B)
Suppose that there 1is no wvariation in prices across the farms, 80 that the

Pt/Wt term 1is captured in period specific dintercepts, which we shall suppress.

Then we have
-1
Ex(y, %, ..k = Bx H AT 4L AR R

where ¢ = D_l(l—ﬁ).

So the [ matrix would indicate a distributed lead, even after controlling

for ¢. If instead there is a first order moving average, 4, = W_ + Pw

t t t-1°

then

Ow w

u -
Be Ty =e “lEEeH,

and a bit of algebra gives
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r -l
3 = -
Byele, ooz rxe =0 Tz o A e

Once again there 1is a distributed lead, but now B is not identified from

the I matrix.

2.4. 4 Corsumer Demand Example

2.4.a. Certainty

We shall follow Ghez and Becker (1975), Heckman and MaCurdy (1980),
and MaCurdy (198l) in presenting a life-cycle model under certainty. suppose

that the consumer 1s maximizing

T
v I p(t-l)Ut(Ct)
t-1
subject to
L ~(eD)
Ly PC_<B,C_>0(t=l,. .. .T),
- e =" =

-1 . . . . .
where P ~ = 1 is the rate of time preference, Y-1 is the (nominal) interest
rate, Ct is consumption in period t, Pt is the price of the consumption good
in period t, and B 1s the present value 1in the initial period of lifetime

income. In this certainty model, the consumer faces a single lifetime

budget  constraint.

If the optimal consumption 1is positive in every period, then
[ “(t_l) '
A convenient functional form is Ut(C) = Atca/é (At:>0, § < 1); then we have

(2.4) Y, = th + g(t=1) + c + Ty s




20

where yt = Zn Ct, x, = £n Pt, ¢ = .(8=1) -1 yal [Ui(cl)/Pl]’

u, = (1-5)_1 in At, B = (5—1)—1,'and ¢ = (l-d)-l £n (yp). VNote that ¢ is
determined by the marginal utility of initial wealth: U]'_(Cl)/P1 = 3V/8B.

We shall assume that At 1is not observed by the econometrician, and that
it 1s independent of the P's. Then the model is similar to the production
function example if there is price wvariation across consumers as well as
over time. There will generally be correlation between ¢ and (xl’ e xT).
As before we have the prediction that T = 8 T + {1‘ 2‘\', which 1s testable.

A consistent estimator of B can be obtained with only two periods of data

since
(2.25) Ve " Vep ® 8 (xt - xt_l) + ¥+ u Uy

We shall see next how these results are affected when we allow for some

uncertainty.
2.4.b.  Uncertainty

We shall present a highly simplified model im order to obtain
some explicit results in the uncertainty case. The consumer 1is maximizing
T
B I "o (el
t=1

subject to

P.C, +8§

16 t8 <8,

Ptct+st§\rst_l, Ctlo, St30(t=1,. Y
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The only source of uncertainty 1is the future prices. The consumer is
allowed to borrow against his future income, which has a present value
of B in the initial period. The consumption plan must have Ct a function
only of information available at date t.

It is convenient to set T = @ and to assume that Pt+l/Pt is 1i.i.d.

{(e=1,2, . ..). If Ut(c) = Atcﬁ/é, then we have the following optimal plan: 0

(2.5) c, = dlB/Pl, 5, = (l—dl) B,
c, = thSt_llPt, 5, = (l-dt) Yst_l (t-2,3, . ..).
where
1+ ¢ (F £ )+ 17t
d, = ( 41 T Ve tet SRR
. [1/(1-8)1 L8 8,
£ o= (K A /A ) » K=YENP /P01,

It follows that
Ve = Veop = (-1} (xt - xt-l) + L+ U= Uy

where y, x, u are defined as in (2.4) and § = (1—6)-:L Ln py+ Lny.

We see that, in this particular example, the appropriate interpretation
of the change regression 1s wvery sensitive to the amount of information
available to the consumer. In the uncertainty case, a regression of
(En Ct = en Ct-l) on {&n Pt = en Pt-l) does not provide a consistent esti-
mator of (6-1)-1; in fact, the estimator converges to -1, with the implied

estimator of ¢ converging to @.
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2.a.c. Labor Supply

We shall consider a certainty model in which the consumer is maxi-

mizing

: (e=1)
(2.6) v = Zo U (C, L)
subject to

T T
: v pe +wry<n+ Dy,
t=1 er  FET ¢

c.20,0<L <L (=1, .... T,

where Lt is leisure, Wt is the wage rate, B 1is the present value in the
initial period of mnomlabor income, and L is the time endowment. We shall
assume that the inequality constraints on L are not binding; the parti-

cipation decision will be discussed im tbe section on nonlinear models.

If Ut is additively separable,
a [J* i
Ut(C, L) Ut(c) + Ut(L)’
and if ﬁt(L) = AtLﬁlé, then we have

(2.7) V. ® B X, +¢(t-1) + ¢ + ¢,

LW, com (87T e (BT, [

v, = (1-6)-1 In ALs B -'(5-1)-1, and ¢ = (1—6)--1 Zn (yP). Once again ¢ 1is

where Y, = in Lt’ X

determined by the marginal utility of initial wealth: i.’r]'_(Ll)/w1 = 3JV/3B.
We shall assume that At is not observed by the econometrician. There

will generally be a correlation between c and (xl, .+ . . %Eg), since Ly depends
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hypothesis 1in (2.8) implies that if T > 4, there are (T-3)(T-2)/2 over-
identifying restrictions.
Consider next a Granger definition of "y does not cause x conditional

on cll:

(2.10) E*(xt+l|xl’ e e xt’ Yl: . ”’Yt’ C‘.)=E*(Xt+llxl, .. X ,0)

(e=1, . . . . T-1.

Define the following linear predictors:

Kepg TV * oo VR H O T T Bt Y

B g Xy kLY oLy, =00 (e, L T,

Then (2.10) is equivalent to Prg * 0. We can rewrite the system, imposing

¢ a2 0, as follows:

ts
(2.11) ¥epl ® ];tlxl s q.;1:,1:-1“1:-]. Pl T Ve
L;t:s = Vs = Cen/®0Y,. 1,8 e = Ve + Gy /)
Verl ® Verr ~ Crar/50ve BGxg ;1:+1 * E(y vt+l)
(s< t-1; t-2, . . . . I-1).
In the equation for X there are € unknown parameters, thl, . ¥ £,6-1" Tt’

and 2(t=l) orthogonality conditions. Hence there are t-2 restrictions
(3£t <&T=1).

It follows that the Granger condition for "y does not cause x con-
ditional on e" implies (T=3)(T-2)/2 restrictions, which is the same number
of restrictions implied by the Sims conditiom. In fact, it is a consequence

of $ims' (1972) theorem, as extended by Hosoya (1977), that the two sets of
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restrictions are equivalent; this 1s not immediately obvious from a direct

comparison of (2.9 and 11.19).

In terms of tie T matrix, conditional strict exogeneity implies that

4 0 - 0 ' A
21 By O -0 : :

Eﬂ " I - : ’ 5 F :
- ° i
B B B Yr T
Tl T2 [N TT

These nonlinear restrictions can be imposed and tested using the minimum
distance estimator to be developed in the inference section. Altermatively,

we can use the transformations in (2.9) or in (2.11). These tramsfor-

nations give us "simultaneous equations" systems with linear restrictions;

(2.9) can be estimated using three-stage least squares. A generalization of
three-stage least squares, which does not require homoskedastieity assumptions,
is developed in the inference section. It 1is asymptotically equivalent to

imposing the nomlinear restrictions directly on I, using the minimum distance

estimator.

2.6. Lagged Dependent Variables

For a specific example, write the labor supply model in (2.7)

as follows:
(2.12) Y, = élxt + szt_l + G3yt_1 + Ve
* a = .
BR(v lx, oo xd 20 (e=l, LT

this reduces to (2.7) if 52 2 -51 and 53 = 1. If we assume that v, =3 W + e

t =



.
L
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upon wages in all periods. If At is independent of the W's, then we have
the prediction that T =8 I +_-E~l'. If, however, wages are partly deter-
mined by the quantity of previcus work experience, then there will be lags
and leads in addition to those generated by ¢, andI_I will not have this
simple structu%é.

It would be useful at this point to extend the uncertainty model to
incorporate wuncertainty about <future wages. Unfortunately, a comparably

simple explicit solution 1s not available., But we may conjecture that the

correct interpretation of a regression of (&n L, - Ln Lt—l) on (&n v, - £n wt-l)

is also sensitive to the amount of Information available to the consumer.

2.5. Striet Exogeneity Conditional on a Latent Variable
We shall relate the specification analysis of T to the
causality definitions of Granger (1969) and Sims (1972). Consider a sample
12

in which ¢=1 is the first period of the individual's (economic) life. A

Sims definition of ™x is strictly exogenous" is
E*(yt|xl,x2, c) !E*(ytlxl, C ’xt) (t=1,2,...).

In this case II 1is lower triangular: he elements above the main diagonal
are all zero., This fails to hold in the models we have been considering,
due to the omitted variable c¢. But, in some cases, we do have the following

property:
(2.8) E*(y,[%],%y,...,0) = Ex(y, [xy, . ..> %, ) (821,2,...)

It was stressed by Granger (1969) that the assessment of noncausality

depends crucially on what other variables are being conditioned on. The
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novel feature of (2.8) is that we are asking whether there exists some
latent wvariable (c) such that x 1is strictly exogenous conditional on c.
The question 1s not wvaguous since ¢ 1s restricted to be time invariant.

Let us examine what restrictions are implied by (2.8). Define the

following linear preciic:tm:s::L3
Yo =Bt +BthT+th‘+ut,
E*(ut‘xl,.--, xT, C) = O (t'li LA L | T)°

Then (2.8) 1is equivalent to Bts = () for s > t. If Yl # 0, we can choose
a scale normalization for e such. that. Y1=.. 1. Then we can rewrite the

system with Bts = 0 (s > t) as follows:

(2.9) Jo 2B K tBy ¥ Bep Xe * Yo ¥p + Yo

-~

Bp @ By = YeBpys w mu = Yoy,
E(x u)®0 (51, . ... T a2, . .. . 1)

Consider the "instrumental variable™ orthogonality conditions implied

by E(xsﬁt) = 0. 1In the Vr equation, we have T4l unknown coefficients:

B

~

B ., 8 .Y and T orthogonality conditions. So these coeffi-

Tl’ Tz’ . Tl

cients are not identified. In the Yra1 equation, however, we have just
enough orthogonality conditions; and in the yT—j equation (J < T-Z), we
have J-1 more than we need since there are T=j+l unknown coefficients:
BT—-j,l’ BT—j, 1 vy ET—j,T—j, Y'l'-j’ and T orthogonality conditions:

E(xsﬁ,r_j) a(0(s=1, ... .T). It foJ.lows that, subject to a rank condition,

' ' < < <Ta=-1. it
we can identify Bts’ Yt, and Btl for 2 £ s <t £T=1. In addition the
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where W is uncorrelated with the x’s and e, is i.i.d. and uncorrelated with

the x’s and w, then we have the autoregressive, variance-components model of

Balestra and Nerlove (1966) .14 In keeping with our general approach, we shall

avoid placing restrictions on the serial correlation structure of v , our
inference procedures will be based oa the strict exogeneity condition that
* =
E (vtlxl,.... X.) = 0.

We can fit this model into the [l matrix framework by using recursive

substitution to obtain the reduced form:

Ve =8t1x1+ e+ Bttxt"' th+ U

E*(ut]xl,. ..,xT) = 0,

where

t-g=1 . o gt-1
B = (8y + 846)64 B TR
t=-1
C=52x0+53yo,ut-vt+53vt_1+...+53 vy
(1<s<tltal,....T)

(We are assuming that (2.12) holds for t > 1, but data on (xo’ y 0) are

not available.)

Hence this model satisfies the cond..tional strict exogeneity restrictions,
T=B+YX,

where B is lower triangular. The Y A' term is generated by the projection

. L 15
of the initial condition (szo + 53:,70) on xI, . . . . Koo

Estimation can proceed by using the minimum distance procedure to impose

the nonlinear restrictions on [[, Alternatively, we can complete the system
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in  (2.12) with
yl = @lxl +,,.+ waT + vl;

this 1is just notation for the identity

¥ = E*(Yl!xl,. c. xT)+ [yl - E*(yllxl,, .oy xT)].

Then we can apply the generalized three-stage least squares estimator to be

developed im the inference section. It achieves the same limiting distri-

bution at lower computational coat, since the restrictions in this form

are linear and can be imposed without requiring iterative optimization

techniques.

Now consider a ¢=2cond order autoregression:
Yo = 8%t 3%y + Og¥p g G e
E*(vt|x1, Co .xT)= 0 {(e=l, ....T}.

Recursive  substitution gives

Ve = BoyXp ¢ oeee v Bixp f Yigor Y8 - ou,

E*(utlxl,. Ve xT) a (t=l,....7),
where
g T Ok + Og¥, + Gy ga 0y m Y,
and there are nonlinear restrictions on the parameters. . The g_matrix

the following form:

has
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r t
I=B+Th +14, .

. . At * = A! i=
where B 1s lower trianqular, -{-j (*rlj, ey Y'I'j) , and E (Cj lij) ~j'}~: (j=1,2)
This specification suggests & natural extension of the conditional

strict exmgemelty idea, with the conditioning set indexed by the number of

latent variables. We shall say that '"x 1is strictly exogenous conditional

on ¢y, cz” if
E*(Yt] Ty xt‘-l’ xt’ xt+1, . . . . c1| cz)- E*(Ytlxt, Kt_l, "ray cl’ Cz).

We can also introduce a Granger version of this condition and generalize the

analysis 1in Section 2.5.
Serigl Correlgtion or Partial Adjustment?

Griliches' (1967) «considered the problem of distinguishing between

the following two models: a partial adjustment model,m

(2.13) Y, = Bx, + TWeep * Ve

and a model with no structural lagged dependent variable but with a

residual following a first order Markov process:

(2.14) Ve ® th +u,

ut = Put_l T e e, i.1.4.;

in both cagses x is strictly exogenous:

E¥(v |x), . . . x) =E*(u [x, ... %P0 (t=l,....T),
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In the serial correlation case, we have

e

Yt = th - psxt-l + pyt-l + £

as Griliches observed, the least squares regression will have a distinctive
pattern -- the coefficient on lagged x equals (as N =+ =) minus the product
of the coefficients on current x and lagged .

I want to point out that this prediction does not rest on the serial
correlation structure of w. It is a direct implication of the assumption’

that u is uncorrelated with X9 . . . . Xpd

*
E (ytlxt’ xt_l! Yt"l) = th + E*(utlxt’ xt_l’ Yt"l)

"

- th + E (ut|ut_1)
=Bx+ YU

=

Br, = o B+ 9T

Here ¢ 1

) is simply notation for the linear predictor. In general u, is

not a first order process —(E*(utlut_l, ut_z) # E*(ut|ut_1)), but this does
not affect our argument.
Within the II matrix framework, the distinction betweem the two models
is that (2.14) 1implies a diagonal I[ matrix, with no distributed lag, whereas
the partial adjustment specification im (213 implies that I = B 4+ v A',
with a distributed lag in the lower triangular E matrix and a rank one set
of lags and leads in Y );\.."
We can generalize the serial correlation model to allow for an individual

specific effect that may be correlated with x:
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+
Y, =th+c Uy

E-;c(utlxl, Co .XT) =0.

Now both the serial correlation and the partial adjustment models have a
rank one sat of lags and leads in ll, but we can distinguish between them
because only the partial adjustment model has a distributed lag in the ?_
matrix.  So the absence of structural lagged dependent variables 1is signalled

by the following special case of conditional strict exogeneity:
E*(ytlxl, TETRE c) = E*(yt]xt, c).

In this case the relationship of ® to y is "static" conditional on €. We

shall purs:e this distinction in nonlinear models 1in Section 3.3.

2.7. Resi .al Covariances: Heteroskedasticity and Serial Correlation

2.7.a. Heteroskedasticity

If E(ci|xi) # E*(ci|§i), then there will be heteroskedasticity,
since the residual will contain E(ciIEi) - E*(ci|§i). Another source of

heteroskedasticity 1s random coefficients:

Ve * bixit toey ot Uy

bi = B+wi, E(wi) =,

Yip ® sxit teg+ (Wixit +ug).

If w is independent of %, then I = B I+ .@_ A', and our previous discussion,

is relevant for the estimation of B. We

shall handle the heteroskedasticity
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problem in the inference section by allowing, E[(zi - E Ei)(zi- g Ei)'lﬁi]

to be an arbitrary function of §i-17

2.7.b.  Serial Correlation

It may be of interest to impose restrictions on the residual
covariances, such as a variance-components structure together with an
autoregressive-moving average gschene, 18 Consider the homoskedastic case in

which
Q= El(y; -1 x) (g - 1 ’.Ei)'!l‘i]

does not depend upon X, - Then the restrictions can be expressed as
ij = gjk@-)’ where the g's are known functions and 8 is an unrestricted
parameter vector. We shall discuss a minimum distance procedure for

imposing such restrictions in the inference section.

3. SPECIFICATION  AND  IDENTIFICATION:  NONLINEAR  MODELS

3.1. A Random Effects Probit Model

Our treatment of individual effects carries over with some important
qualifications to nonlinear models. We shall illustrate with a labor force
participation example, If the upper bound on leisure is binding in (2.6),

then

p( t"l) ﬁt‘:(f‘) > mY"(t-"l)Wt ,

where m 1s the Lagrange multiplier corresponding to the lifetime budget
constraint (the marginal utility of dinitial wealth). Let Yie ® 1 if

individual i works in period t, yit 2 () otherwise. Let
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£n Ai = L":int + e

t 2it !

where X'it contains measured variables that predict wages and tastes for
leisure. We shall simplify the notation by supposing that xit consists of

a single variable. Then Vie = 1 if

(sbl'-aaz)xit = (t-1) £n (yp) + en L

+ (16) en T+ e, =e, >0,

lit 2it

which we shall write as

(3.1) 8 Xy, + ¢(t=-1) + ey + U > 0.

Now we need a distributional assumption for the uw's. We shall assume
that f(w, . . . . uT) is independent of ¢ and the x's, with a multivariate
normal distribution (N{0, L)). So we have a probit model (suppressing the

i subscripts and period-specific 1intercepts):

P(y, = Lix ,xT,c)sF[ojé(sxt + o)1,

1!

where F{ )} 1is the standard mormal distribution function and ¢ is the

£t
th .
t— diagonal element of E.
Next we shall specify a distribution for ¢ conditional on x & (%,, . . . . xT):
c='lJJ+Alxl+ Coe +kaT+v,

. . . 2
where v 1is independent of the x's and has a normal distribution (N(O, cv)).




34

There 1s a very important difference in this step compared with the linear
case. In the linear case it was not restrictive to decompose ¢ into 1ts
linear projection on x and an orthogonal residual. Now, however, we are
assuming that the regression function E(e|x) is actually linear, that v is
independent of x, and that v has a normal distribution. These are restric-
tive assumptions and there may be a payoff to relaxing them.

Given these assumptions, the distribution for Y. conditional on

X5 .. xT but marginal on ¢ also has a problt form:
= = ¢
Py, =1l%p, ... oxp=Fle (Br o+ Ax + . L+ A,
_ 2, =%
a, = (ctt + cv) .

Combining these T specifications gives the following matrix Of

19
coefficients:

(3.2) T = diag {Oll, S .DLT}[B I +£)\~'].

This differs from the linear case only in the diagonal matrix of normalization
factors d.t. There are now nonlinear restrictions on lI, but the identi-

fication analysis 1is still straightforward. We have

r
t alall Tex ™ e = 3

-ch-a (1'rtt N 'n'tl)/('rrll N Trlt) 2, . . . .0,

if B + 11 + A, # 0. Then, as in the linear case, we can solve

for OLlB and alA. Only ratios of coefficients are identified, and so we

can use a scale normalization such as Otl = 1.
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as for inference, a computationally simple approach 1is to estimate T

cross-sectional probit specifications by maximum likelihood, where xl’ ceey X
are included in each of the T specifications. This gives %t (t=1, . . . . T

and we can use a Taylor expansion to derive the covariance matrix of the

asymptotic normal distribution for (.frl, C e ﬁ'T)_ Then restrictions can be

imposed on I using a minimum distance estimator, 7just as in the linear case.
We shall conclude our discussion of this model by considering the

interpretation of the coefficients. We began with the probit specification

that

P(y, = 1], . . . . XTI, ¢)=F[s;f Bx, + c)].

So one might arqgue that the correct measure of the effect of x, is based

t

on c;f B, whereas we have obtained (ct + 05)-%6, which 1s then an under-

t
estimate. But there 1is something curicus about this argument, since the
"omitted variable" wv 1is independent of X, - - . Enpo Suppose that we

decompose u, in (3.1 } into u . + u, and that measurements on u

: 1t become

available. Then this argument implies that the correct measure of the
effect of x, is based on [V(uZt)]JEB. As the data collection Dbecomes
increasingly successful, there is less and lass variance left in the
residual Uges and [V(u.zt)]-‘15 becomes arbitrarily large.

The resolution of this puzzle is that the effect of X, depends upon
the value of ¢, and the effect evaluated at the average value for e¢ 1s not
equal to the average of the effects, averaging over the distribution for c.

Consider the effect on the probability that ¥, = 1 of increasing ¢ from x'

to x"; using the average value for ¢ gives

T
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FIoTE (8" + Ble)) ] = FLOTE (Bx' + E(e)) 1.

The problem with this measure is that it may be relevant for Only 38 small

fraction of the population. I think that a more appropriate measure 1is

the mean effect for a randomly dram individual:

[IB(y, = 1]x, = x", ¢} = P(y, = 1|x, = x', c)]u(de),

where wu(dc) gives the population probability measure for c.

We shall see how to recover this measure within our framework, Let

z= A + .. .+ A x; letu(dz) and H(dv) give the population probability
11 T°T

measures for the independent random variables g and w. Then

P(y, 1., ¢) = P(y, = L%, . .0y %y, ©)

= P(Yt = l|xt. Z, V)

/ey, = 1 X, 2, V)U(dz)U(dv)
z fP(yt » llxt, z, v)u(dlet,z)u(dz)
a [B(y, = l|x,, 2)u(da),

where u(dlet, z) 1s the conditional probability measure, which equals the

unconditional measure since ¥ 1s independent of x, and 2. (It is important

to note that the last integral does not, in general, equal P(yt - ll,xt).

For if xt end 2 are correlated, as§ they are in our case, then

P(y, * 1|x) =[B(y, = 1|xt, z)u(dzlxt)

# [P(y, = llxt, 2)u(dz).)
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We have shown that
— Is R - _ = !
(3.3) [ (Bly, = 1z, = x", ¢) - P(y, 1|xt x', o) ]u(de)
- - = " - =, = ! R
= [ [B(y, = 1|x, = %", 2) - B(y, = 1[x = x', 2)]u(d2)

The integration with respect to the marginal distribution for z can be

done wusing the empirical distribution funetiom, which gives the following

consistent (as N =+ @)} estimator of {3.1S5\.
1 N

(3.4) = T {Fla_(Bx"+A,;x,, +...+A )]
Yoo t 1711 TiT

!
Flo (Bx' + Ajx.y + . . . + A1)
3.2 A Fixed Effects Logit Model: Conditional Likelihood

'A weakness 1in the probit model was the specification of a distribution
for ¢ conditional on x. A convenient form was chosen, but it was only an

approximation, perhaps a poor one. We shall discuss a technique that does
not require us to specify a particular distribution for ¢ conditional on
x; it will, however, have its own weaknesses.

Consider the following specification:
F3 z
(3.5) B(y, = 1|x1, ..« . X ce) mG(Bx_ + ), G(2) =eY/(1+eT),
where Fys o ov o YT are 1independent conditional on ¥s oo - - Xq C
Suppose that Ta2 and compute the probability that ¥, ® 1 conditional, on
Yl + Yz a 1:

(3.6) P(y, = 11x1, X0 C; ¥y + ¥, I 1 = G[s(xz - "1)]’
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which does not depend upon c¢. Given a random sample of individuals, the
conditional log-likelihood function is

where
1 if (v, Vea) = (0, )
wj_:{ il* ‘12

B o= {ily;; + vy, =1L

This conditional 1likelihood function does not depend upon the
incidental  parameters. It is in the form of a binary logit likelihood
function in which the two outcomes are (0.1) and (1,0) with ey-lanatory
variables xz - %, This is the analog of differencing in the .wo period
linear model. The conditional maximum likelihood (ML) estimata of B
can be obtained simply from a ML binary legit program. This conditional
likelihood approach was used by Rasch (1960, 1961) in his model for
intelligence tests.20

The conditional ML estimator of B is comsigtent provided that the
conditional likelihood function satisfies reqgularity conditions, which
impose mild restrictions on the ey These restrictions, which are
satisfied if the ¢i are a random sample from some distribution, are dis-
cussed in  Andersen (1970). ~Furthermore, the inverse of the information’
matrix based on the conditional likelihood function provides a ceovariance
matrix for the asymptotic (N = ®) normal distribution of the conditional
ML estimator of R.

These results should be contrasted with the inconsistency ofi che

standard fixed effects I, estinmator, in which the likelihood function is
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based on the distribution of yl, e . yT conditional on xl, . . . . XTI, c.
For example, suppose that T = 2, X;4 =0, K49 =1 (i=1, . . . . N). The
following limits exist with probability one if the ¢y are a random sample

from some distribution:

N
1
lim = I E[Y. (l-y )lC-] = ¥ s
Noeo N i=1 il 12 i 1
1l N I
lim = L E[{(l-y..)¥.5(c.] = ¥y
oo ¥ i 11771214

where
Ely (1 = v, |e;] = G(e)G(-B = c ),
E[(l'Yil) yizlci] - G(-ci)G(B + ci)l

Andersen (1973, ; 66) shows that the ML estimator of R converges with

probability one to 2B as N =+ @ | A simple extension of his argument shows
that if G 1is replaced by any distribution function (E) corresponding to a
symmetric, continuous, mnNONZAro probability density, then the ML estimator of

B converges with probability one to
-~ ¥
267 ( d'éi') '
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The logit case is special in that wz/\al = eB for any distribution for e¢. In
general the limit depends on this distribution; but if all of the ¢ ;= 0, then
once again we obtain convergence to 26 as N =+ %,

For general T, conditioning on Zty it (i=1, . . . . N) gives the following

conditional  log-likelihood  function:
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% T T
L = I ¢fn [exp(B I =%, v.)/1L exp(p L x,d )1,
i= =1 it  ic EEBi =] it t
T T
B, ={d=(d,, ... .dJ|d =0orlandld =Ly, 1.
i 1 't p=] © e=1 it

¢ 1s 1in the conditional legit form considered by McFadden (1974), with the
alternative set (B i) varying across the observations. Hence it can be
maximized Dby standard programs. ‘'There are T+l distinct alternative sets
corresponding to L.y

t it
contribute zero to L, however, and so only T-1 alternative sets are relevant.

a 0,1, ..., T. Gfoups for which Etyit s 0 or T

T
The alternative set for the group with I = s has (s) elements,

tfit
corresponding to the distinct sequences of T tr als with 8 successes. For
example, with 7=3 and gal there are three alter atives with the following
conditional p-obabilities:

P(1s0,0|¥i, cil E Yits 1) = ExP[B(xil - xi3)]/D,

P(0,1,0]x,, ¢4, zt v, = 1) = exp{B(x,, ~ x,9)1/D,

2(0,0,11x,, ¢, i;Yit = 1) = 1/,

_ - - AR
D = exp[B(xil xia) I+—exp[B(x12 LIPVRE D
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A weakness in this approach 1s that it relies on the assumption that
the Yt are independent conditional on x, ¢, with an identical form for the
conditional probability each period: P(yt = 1|§, e) = G(th + c).

In the probit framework, these assumptions translate into L =,02§, 80

that v + u_ generates an equicorrelated matrix: cri L1+ 021. We have

t
seen that it is straightforward to allow I to be unrestricted in the probit
framework; that 1is not true here.

An additional weakness is that we are limited in the sorts of probability

statements that can Dbe made. We obtain a clean estimate of the effect of

x. on the log odds:

P(yt=l|xt=x", c) P(yt=l|xt=x', c)

P(Yt=0 |xt-xu’ c) P(Yt’0|xt’x', c).lj 2 B(x" - x,);

the special feature of the logistic functional form is that this function
of the probabilities does not depend upom c; so the problem of integrating

over the marginal distribution of ¢ (instead of the conditional distribution

of ¢ given x} does not arise. But this is not the omly function of the

probabilities that one might want to know., In the probit section we

considered
Py, = Ux, = ", &) - P(y, = Ux, = x', 0,

which depends upon ¢ for probit or logit, and we averaged over the marginal

distribution for «c¢:

(3.7) J(P(y, = l‘xt a x", ¢) - P(y, = ll:ﬂ:t = x', c)ju(de).
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This requires us to specify a marginal distribution for ¢, which is what
the conditioning argument trys to avoid. We cannot estimate (3.7) if all

we have 1s the conditional ML estimate of B.

Our specification in (3.5) asserts that Y. is 1independent of

B I o conditional on x_, ¢. This can be relaxed

t

somewhat, Dbut the conditional likelihood argument certainly requires more

than
1’(yt ) ,].Ixt, c) =G(5‘Kt + ¢);

to see this, try to derive (3.6) with x2 = Y., We can, however, implement

the following specification (with x' = (xl, e xT)):
(3.8 P(yt = IIE! c) = G(Bto + Btlxl 4 o 4 Bttxt + ),
where Yir o oo 'YT are 1independent conditional on x, c. This corresponds

to our specification of "x 1s strictly exogenous conditional on ¢'" in

Section 2.5, except that Yt = 1 in the term th -- it is not straightforward
to allow a time=varying coefficient on ¢ fim the conditional likelihood

approach.  The extension of (3.6) is

(3.9) P(yt = 1|:_5, Cr ¥ty " 1= G(Bto + Btlxl + Btzxz + .. .t Bttxt)
(t=2’ L ] T) H]
where Etj = Btj - Blj (3=0,1) . So if ¥ has sufficient wvariation,

-

we can obtain consistent estimates of Bto’ Btl’ and Bts (sm2, ....t).
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Only these parameters are identified, since we can transform the model

replacing ¢ by c = 310 + 811x1 + ¢ without wviolating any restrictions.

The restrictions in (3.5) or in (3.8) can be tested against the

following alternative:

(3.10) Ny, =1lfx, ) = 6T+ W= + . . 47 x +c).

We can identify only Tth - 1le and 80 we can normalize Trlj 2 0 (§=0, ..., T;
t=2, .... T). The maximized values of the conditional log likelihcods can

21

be used to form xz statistics. There are (T=2){T-1)/2 restrictions in

passing from (3.,10) to (3.8), and (3.5) imposes an additional

(T-1)(T+4)/2 = 1 restrictions.

3.3, Serial Correlation And Lugged Dependent Variables

Consider the following two models:

1 if y* = yy +e >0
(3.113) yt I{ t t-1 L=

0 otherwise ,

1 if yg = ut i 0
(3.115)  y, =

0 otherwise; u, * fu + e
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2
in both cases et is i.i.d. ¥(0, 9). Heckman (1978) observed that we

22 .
can distinguish between these two models. In the first model,

B(y, = Ly 1 Yeogr - -) = B(y, = Ly, ) = FQy /),
where F( ) 1s the standard normal distribution function. In the second
model, however, P(yt = llyt-l’ yt-2’ . ..) depends upon the entire history

of the process. If we observed U1 then previous outcomes would be
irrelevant. In fact, we observe only whether L] > 0; hence conditioning
in addition on whether LT 2> 0 affects the distribution of u._q and V-
So the lagged y implies a Markov chain whereas the Markov assumption for
the probit residual does not imply a Markov chain for the binary sequence

that it generates.

There {8 an analogy with the follewing linear models:
(3.12&) ) yt a Yyt-l + et ,

(3.12b) Vo 3w u T e+ Pe

where e, 1is i.i.d. W(0, 0'2). We know that if u, = Pu,_, + e, then no

t t t t

distinction would be possible, without introducing more structure, since
both models imply a linear Markov process. With the moving
average residual, Thowever, the serial correlation model implies that the
entire past history is relevant for predicting y. So the distinction
between the two models rests on the order of the dependence on previous
realizations of ¥,

We can still distinguish between the two models even when (ul, N

has a general multivariate normal distribution (N{W, Z)). Given nor-
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malizations such as V(ut) =1 (1, ... . T), the serial correlation model
has T(T+l)/2 free parameters. Hence if T > 3, there are restrictions on

the 2t . 1 parameters of the multinemial distribution for (y,, . . . . jfT).

In particular, the most general multivariate prebit model camot generate
a Markov chain. So we can add a lagged dependent variable and

identify VY.

This result relies heavily on the restrictive nature of the multi=
variate probit functional form. A more robust distinction between the two
models 1s possible when there is variation over time ‘in X, We shall
pursue this after first presenting a generalization of strict exogeneity and
noncausality for nonlinear models.

Let t=1 be the first period +f the individual's (economic) 1life. An
is

extension of Granger's definition of "y does not cause x'" is that LI

independent of Yyo o o o 0 Yy condit-cmal on xl,. Cee B An extension of Sims'

strict exogemeity condition is thst y_ is independent of x y X oy
t t+l’ Ted2

conditional on Xys coes X In contrast to the linear predictor case,

t
these two definitions are no longer equivalent.23 For consider the following
counterexample: let Y10 ¥y be independent Bernoulli random variables with
P(yt = ]) = P(yt x= —1) a 1/2 (t=1,Z). Let x3 = y1¥p+ Then ¥y is 1indepen-
dent of x3 and Yo is independent of Xq Let all of the other random
variables be degenerate (equal to zero, say). Tlhen x 1is strictly exogenous
but x3 1is clearly not independent of Yi» Y2 conditional on x1, X5« The
counterexample works for the following reason: 1f a random variable 1is
uncorrelated with each of two other random variables, then it is un=
correlated with every linear combination of them; but If it 1is independent

of each of the other random wvariables, it need not be independent of every

function of them.
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Consider the following modification of Sims' condition: Ve is

independent of x ++» conditional on Ko eees Xiu Yy weny Yoy

t+l’ Fe+2’
{t=1,2, . ..). Chamberlain (1982) shows that, subject to a regularity

condition, this is equivalent to our extended definition of Granger non-

causality. The regularity condition is trivially satisfied whenever Ve
has & degenerate distribution prior to some point. So it 1is satisfied in
our case since Yoo Tagr v« have  degenerate distributions.

It is straightforward to introduce a time-invariant latent variable
into these definitions. We shall say that "y does not cause x conditional
on a Llatent variablee" if either

T 47 is independent of Yys« - o3 Yy conditional on
Tys vees L C (t=1,2,...1

or
¥, 1s independent of:ctﬂ,a:t_l_z,.-..conditionalon
Tys wwey Tps Yyo seny Yyp_gs € (B=12,.0.05
they are equivalent. -We shall say that "r is strictly exogenous eonditional

on a latent variable e if

y, is independent of z conditional on

X

£41° Teagr e o

79 vres B O (t=1,2, . ..).

Now let us return to the problem of distinguishing between serial
correlation and structural lagged dependent variables. Assume throughout
the discussion that X, and y, are not independent. We shall say that the
relationship of x to y is static if

x is strictly exogenous and Yy 18 independent of Lys v ovy Ty 4

conditional on Xyo
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Then I propose the following distinctions:

There is residual serial correlation 1f y, is not independent
of Ygo -« - - Yy_gconditional on g, . . .y Ty

If the relationship of xto yis static, then there are no
structural lagged dependent variables.

Suppose that Ve and x_ are Dbinary and consider the probability that

t

g = 1 conditional on (xl, xz) a (0, 0) and conditional on (x1, xz) a (1, 0).
Since Yt and X, are assumed to be dependent, the distribution of Y1 is
generally different in the two cases. If ¥ has a structural effect on Yos
then the conditional probability of ¥y 3 1 should differ in the two cases,
so that 7y is not independent of 5 conditional on Xy

Note.that this condition 1is one-sided: ]‘_ am only offering a condition
for there to be no structural effect of yt—-l on yt. There can be distri-
buted lag relationships in which we would not wadt to say that yt-l has a
structural effect on ¥,. Consider the production function example with
serial correlation im rainfall; &assume for the moment that there is no
variation im c¢. If the serial correlation in rainfall is not incorporated
in the farmer's information set, then our definitions assert that there is
residual serial correlation Dbut no structural lagged dependent variables,
since the relationship of X to y is static. Now suppose that the <farmer
does wuyse previous vrainfall to predict future rainfall. Then the relation-
ship of x to y 1§ not static since x is not strictly exogenous. But we

my not want to say that the relationship between ¥ and ¥, is struc-

t-1
tural, since the technology does not depend upon yt-l'
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How are these distinctions affected by latent variables? It should
be clear that a time-invariant latent variable can produce residual
serial  correlation. A major theme of the paper has been that such a
latent wvariable can also produce a failure of strict exogeneity. So
consider conditional wversions of these properties:

There is residual gerial correlation conditional on a
latent variable ¢ if Yy is not independent of Ygs ove2 Yp_g

conditional on Ty o s By

The relationship of & to y is gtatic conditional on a latent
variable ¢ 1L x 1s strictly exogenous conditional on ¢ and
if Yy ig independent oOf s vens Ty g eonditional om Zy C;

If the relationship of ¢ to y is static conditional on a
latent variable ¢, the: there are no structural lagged
dependent variables.

A surprising feature of tae linear predictor definition of strict
exogeneity is that it is restrictive to assert that there exists some.
time-invariant latent wvariable ¢ such that x 1is strictly exogenous
conditional on ¢. This 1is no longer true when we use conditional
independence to define strict exogeneity. For a counterexample, suppose
that xt is a binary variable and consider the conditional strict exogeneity
question, "Does there exist a time-invariant random variable ¢ such that
Ve is independent of X5 o oo T conditional on Xpp o0 Xy e?" The
answer 1s "yes" since we can order the 2: possible outcomes of the binary
samwnce(xl,. Coe xT) and set e=j if the jEE outcome occurs (j-l,..f, 2T).
Now Ve is independent of x> seey %o conditional on c!

For a nondegenerate counterexample, let y and x be binary random

variables with
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2
= = =1 >0 =
P(y = aj, X Otk) ik ) -z Tjk =1,
jok=l

T..). Then we can set

= = ! T
where 0‘.1 l, u'z O. Let Y = ( ll, 112) TZl! 22

4 4
1= 5, Ytn-%tu' YlIl >0, Zl Tm =1
m=". m=

where e 1s a vector of zeros except for a ¢ne in the ml:-t—1 component.
Hence Y is in the interior of the convex hull of {em, m=l, + ., 4}. Now

consider the vector

A -
§(1-A)
Z(G,)\) = (1-5)>\

(1-6)(1-M)

The components ‘f Z(S,A) give the probabilities P(y = Gj, X = Gk) when
y and x are independent with P(y = 1) a &, P(x = 1) = A,  get ex =
z(dm, lm) with 0 < ﬁm <1, 0< Rm< 1. Then Y will be in the interior
of the convex hull of {gg, m=l,...,4} if we choose € , A, so that e*

is sufficiently close to e - Hence

4 4
Y= z Y; E; s Y; >0, L Y; =1
n=l m=1
m m m m

Let the components of eX-be (T;;, Tyy, Thy» Ty,). Let ¢ be a random

variable with P(c = m) = Y* (m=l, ..., 4), and set

P(y = dj, X = kac =m) = T?k .
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Now y 1is independent of =% conditional on ¢, and the conditional distri-
butions are nondegenerate.

If(xl, e xT,yl, L vy yT) has a general multinemial distribution,
then a straightforward extension of this argument shows that there exists
a random variable ¢ such that (yl, Coe yT) is independent of (xl, Coe XT)
conditional on ¢, and the conditional distributions are nondegenerate.

A similar point applies to factor analysis. Consider a linear one=-
factor model. The specification is that there exists a latent variable c

such that the partial correlations between ¥qs are zero given c.

- Tp
This 1is restrictive if T » 3. But we now know that it 1s not restrictive
to assert that there exists a lateat variable ¢ such that Ty oo YT are
independent conditional on c.

It follows that we cannot test for conditional strict exogeneity
without dimposing functional form restrictions; mor can we test for a
conditionally static relationship without restricting the functional
forms.

This point 1s intimately related to the fundamental difficulties
created Dby incidental parameters in nonlinear models. The labor force
participation example 1is assumed to be static conditional on c. We
shall present some tests of this in Section 5, but we shall be jointly
testing that proposition and the functional forms == a truly nonparametric
test cannot exist. We stressed in the probit model that the specification
for the distribution of ¢ conditional on % 1is restrictive; we avoided
such a restrictive specification in the logit model but only by imposing

a restrictive functional form on the distribution of y conditional on x, c.
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3.4, Duraticon iHodels
In many problems the basic data is the amount of tine spent in a

state. For example, a complete description of an individual's labor

force participation history is the duration of the first spell of parti-
cipation and the date it began, the duration of the following spell of non-
participation, and so on. This complete history will generate & binary
sequence when it 1is cut up into fixed length periods, but these periods
may have 1little to do with the underlying process. 24
In vparticular, the measurement of serial correlation depends upon the
period of observation. As the period becomes shorter, the probability that
a person who worked last period will work this period approaches one. So
finding significant serial correlation may say very little about the under-
lying process. Or consider a spell that begins near the end of-a period; then
it 1s likely to overlap into the next period, so that previous employment
raises the probability of current employment.
Consider the underlying process of time spent in one state followed by
time spent in the other state. If the individual's history does not help
to predict his future given his current state, then this is a Markov process.
Whereas serial independence 1in continuous time has the absurd Implication that
mean duration of a spell is zero, the WMarkov property does provide a fruitful
starting point. It has two Implications: the individual's Thistory
prior to the current spell should not affect the distribution of the
length of the current spell; and the amount of time spent in the
current state should not affect the distribution of remaining time
in that state.
So the first requirement of the Markov property is that durations

of the spells be independent of each other. Agsuming stationarity, this
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implies an alternating renewal process. The second reguirement 1is that the
distribution of duration Dbe exponential, so that we have an alternating Ppisson
process. We shall refer to departures from this model as duration dependence.

A test of this Markov property using binary sequences will depend upon
what sampling scheme 1s Dbeing used. The simplest case 1s point sampling,
where each period we determine the individual's state at a particular point
in time, such as July 1 of each year. Then if an individual is following an
alternating Polsson process, her history prior to that point is irrelevant
in predicting her state at the next interview. So the binary sequence
generated by point sampling should be a Markow chain.

It is possible to test this in a fixed effects model that allows each
individual to have her own two exponential rate parameters (cil’ ciz) in
the alternating Poisson process. The idea is related to the conditional
likelihood approach 1in the fixed effects logit model. Let sijk be the
number of times that individual 1 is observed making a transition from state
'j to state k (j, k = 1,2), Then the initial state and these four transition
counts are sufficient statistics for the Markov chain. Sequences with the
same 1initial state and the same transition counts should be equally likely.
This is the Markov form of de Finetti's (1975) partial exchangeability.zs
So we can test whether the Markeov property holds conditional on e 11’ %12
by testing whether there is significant wvariation in the sample frequencies
of sequences with the same transition counts.

This analysis 1is relevant if, for example, each year the survey question

is "Did you have-a job on July 1?" 1In the Michigan Panel Study of Income

Dynamics, however, the most commomnly used question 'for generating parti-
cipation sequences is "Did your wife do amy work for money last year?" This
interval sampling leads to a more complex analysis, since even if the

individual 1is following an alternating Poisson process, the binary sequence
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generated by this sampling scheme is not a Markov chain. suppose that

yt-l = 1, so that we know that the individual worked at some point during the

previous period. What is relevant, however, is the individual's state at

the end of the period, and Yt-2 will affect the probability that the spell
of work occurred early in period t-1 instead of late in the period.
Nevertheless, it 1s possible to test whether the underlying process 1is
alternating Poisson. The reason is that if Yt-l = 0, we know that the
individual never worked during period t-1, and so we know the state at the

end of that period; hence ¥ are 1irrelevant. So we have

g-2? Y3

P(yt = l]Icl’ cz’ Yt-l, Yt-Z’ . .')

= NY, = llcls cz’ Yt-l = ves = Yt-d = l, yt-d"l = 0)
= P('Yt = l|cl: czl d)y

where d 1s the number of consecutive preceding periods that the individual
was in state 1.

Let 50]. be the number of times in the sequence that 1 is preceded by
0; let sOll be the number of times that 1 is preceded by 0, 1; etc. Then

sufficient statistics are 501 Sg1y? *+*s as well as the number of

consecutive ones at the beginning'(nl) and at the end (nT) of a sequence. 26

For an example with T = 5; let 0y =0, Ag 0, 857 1, S5y = 1,

50111 = _ . .= (; then we have

PO, 1, 1, 0, 0]¢)

= Ny, = 0{c)P(1]0, ¢)»(1]0,1,c)P(0]0,1,1,8)P(0[0,0);

P(0, 0, 1, 1, Of¢)

= P(y; = 0[0)P(0]0, c)P(1]0, )P(1]0,1,0)P(0]0,1,1, ¢),
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where ¢ = (cl, cz). Thus these two sequences are equally likely conditional

on ¢, and letting Y be the probability measure for ¢ gives
P(0,1,1,0,0) = 1 P{0,1,1,0,0[c)u(de)
=/ #(0,0,1,1,0|c)ulde) = £(0,0,1,1,0)

So the alternating Poisson process implies restrictions on the multinomial
distribution for the binary sequence.

These tests are indirect. The duration dependence question 1is clearly
easier to answer using surveys that measure durations of spells.  Such
duration data raises a number of new econometric problems, but we shall not

27

pursue them here. I would simply like to make one connection with the

methods that we have Dbeen discussing.

Let us simplify to a one state process; for example, Yyp can be t.e

duration of the time interval between the starting date of the 1-t-£

individual's tEh— job and his (t+1)£1- job. Suppose that we observe T > 1
jobs for each of the N individuals, a not innocuous assumption. Impose,

the restriction that Yie > 0 by using the following specification:
Vi =exe(Bxy - oep +oud,

E*(uit|§i) = 0 (e=1,...,T),

where x; ® (z X,). Then

il’ “ e e iT
= ]
Br(r v [xg) = By + A%

and our Section 2 analysis applies. The strict exogeneity assumption has
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a surprising implication 1in this context. guppoge that x,. is the

1t
individual's age at the beginning of the tE Job.  Then x. = x =
) ’ it it-1
Yi,t—l -- age 1s not strictly exogenous.
4, INFERENCE
: o ! ] = ! -
Consider a sample £ (:fi, Xi)’ i=1, . . . . Nwhere x (xil’ Ce KiK)’
\ . . . .
¥i® (yil, ... ,ym). We shall assume that r, 1is independent and 1identically

distributed (1.i.d.}) according to some multivariate distribution with finite
fourth moments and E{x, x!) nonsingular. Consider the mninimum mean-square

error linear predictors,29

E*(Yim|§i) = T X (m=1, ....M),

which we can write as

B(yglx) * T xp 0= E(yE) (BGeapl™

We want to estimate [ subject to restrictions and to test those restrictions.

For example, we may want to test whether a submatrix of II has the form
BI+Z{nA.

We shall not assume that the regression function E(y_i|§i) is linear.
For although E(zilfi’ ci) may be linear (indeed, we hope that it 1is), there
1s generally neo reason to insist that E(cii§i) is linear. So we shall
present a theory of inference for linear predictors. Furthermore, even if
the regression function 1s linear, there may bDbe heterdskedasticity -- due

to random coefficients, for example. So we shall allow E[(zi-'[‘fgi)(zi- E§i)'|§i]

to be an arbitrary function of X,
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The Estimation of Linear Fredictors
Let W, be the wvector formed from the distinct elements of Eifi
that have nonzero variance. 30 Since Ei = (Ei’ gi) is 1i.i.d., it follows
that W, is 1.1.d. This simple observation is the key to our results. Since
I_I is a function of E(‘fi)’ our problem is to make inferences about a function
of a population mean, under random sampling.

Let 4 = E(Ei) and let T be the vector formed from the columns of IL'

! w, /N;

(a = vee(ll')). Then T is a function of u: T = h{u). Let ‘E - Zi’l W,

then T:T =~h£§) is the least squares estimator:

A N 4
T =2 yec[{ I x-x!I) I x.y'l.
jo L gay T

By the strong law of large numbers, W converges almost surely to uo as N =» =

(v} a.s., Llo), where uo is the true value of u. Let n_o a~h£u°)_ Since

525 7°.  The central limit theorem

~

. . o Aa
h(y) is continuous at y = y , we have T

implies that

A G -0 2> N0, ¥w)) .
Since n{y) is differentiable at u, = go, the g§-method gives

A (r - 1) 2> N0, B,

where
3n(u°) ).
€= Vuy) au )

We have derived the limiting distribution of the least squares estimator.
This approach was used by Cramer (1946) to obtain limiting normal distributions

for sample correlation and regression coefficients (p. 367); he presents an
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explicit formula for the variance of the limiting distribution of a gample
correlation coefficient ( p. 359). Kendall and Stuart (1961, p. 293) and
Goldberger (1974) present the formula for the variance of the limiting distri-
bution of a simple regression coefficient,.

Evaluating the partial derivacives in the formula for & is tedious.
That calculation can be simplified since T has a "ratio" form. In the case

of simple regression with a zero intercept, we have 71 = E(yixi)/E(xi) and

e ) N 0 N 2 N2
(T =« ) = (£ xR, =T S VAL O x./N) 1.
. i . i i
i=1 i-1 i=1
. N 2 4a.s. 2 . o . . .
Since Zi=l xi/N > E(xi), we obtain the same limiting distribution by
working with
N o 2
151 [(y; = 7 x)x, 1/ [N =D

o] L
The definition of 7 gives El(y, = "xx;] = 0, and so the central linit

theorem implies that

A G- 1) 2 wo, E((y; - ﬂoxi)zxi]/[E(xi)lz}-

This approach was used by White (1980) to obtain the limiting distribution

for wuynivariate regression coefficients. 32 In the Appendix (Proposition 7) we
follow White's approach to obtain
(4.1) Q= El(y, ~ IPx)(y, - FPx)" ® 0 (x,x)e ]

. 2 Iy T2 EM T Y x EXZ D

where Qx s E(x xi). A consistent estimator of {1 is readily available from

-~

the corresponding sample moments:
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N
P 1 & & ' -1 ' -1
(4.2 A=f T Uy - TGy -T2 @ 5 Gyxy) 5
i=1
a.8., o ,
N
=T 'IN.
where 5, = Lo }fi’:‘im

If E(yitxi) =1 X, SO that the regression function is linear, than
Q= EV(y, |x) @® o (xxd) 1M1
- L1131 x R1% Ix
. , Wt
If v-(zi|§i) is uncorrelated with z;Xj, then

-1
Q= BVl @ 8,

If the conditional variance is homoskedastic, so that V(Yilfi) a § does

not depend on X0 then

1=k @

_l.
~ ~%
4.2 Imposing Restrictions: The Minimem Distance Estimator

Since I[_,is a function of E(Yi)’ restrictions om [I imply restrictions
on E(gi). Let the dimension of W = E(V_fi) be q-33 We shall specify the restric-
tions by the condition that U depends only on a PXl vector 8 of unknown
parameters: W = g(B), where g is a known function and p £ 4. The domain of
g8 is T, a subset of p-dimensional Fuclidean space (RP) that contains the true
value 80. So the restrictions Imply that I_:lo = 5(@0) is confined to a certain

subset of Rq .
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We can impose the restrictions by using a minimum distance estimator:

choose 6 to

N
min I [w, - g(8)]"' [w, - g(8)1,
geT i=1 ~1 T~ T EC

a.s5.. , . Lo L 4 . C . .
where Ag —> ¥ and M‘P 1s positive definite. 8 This minimization problem 1s

A
equivalent to the following one: choose 8 to

min [w - g(8)]" A_[w - g(8)].
geT ~ T 7 W g

The properties of § are developed, for example, in Malinvaud (1970, Chap. 9).
Since g does not depend on any exogenous variables, the derivation of these

properties can Dbe simplified considerably, as in Chiang (1956: and Ferguson

(1958), 37

For completeness, we shall state a set of reqularity concitioms and

the properties that they imply:

aA«S.

> g(e°); T is a compact subset of rP that contains

Assumption 1. 2z

6°: g is continuous on T, and g(8) = g(8°) for BeT implies that § = Qo;

~ -

a.5.
&N

> ¥, where Y 1s positive definite.

Assumption 2. \/ﬁ[au - g(eo)] L) N(O, %), T contains a neighborhood
= 0 of eo ip which g has continuous second partial derivatives; rank (G) =

o, where G= 3g(8°)/98".

Choose & to

min [ a - g(8) 1"’ éN[éN - g(g)]-
8eT T4 T 7
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|'|]

a.5._ .0
S>:.

rovost tiom I. If Assumption 1 1is satisfied, then ¢

A
Ppoposition 2. If assumptions 1 and 2 are satisfied, then /ﬁ(e..' Qo) 2, N(0, A),,

where
Be(0YOTE YA YU Y 0.
If A is positive definite, then A = (G’ é-l MG)-l is positive semi-definite;
hence an optimal choice for Y is é_l.
Proposition 3. If Assumptions 1 and 2 are satisfied, if é is a qxXq positive=

definite matrix, and if AN a.s., A-l, then

Mg - 8 1" aylay - 8@ 1 Lo a0

Now consider imposing additional restrictions, which are expressed by
the condition that 8 = g(t}') , where @ is gX1 (s < p). The domain of @ is Tl’
a subset of R° that contains the true value %o_ so 8% 2 E(U-o) is confined

to a certain subset of Rp.

Assumption 2'. Tl is a compact subset of R° that contains go; f is a
continuous mapping from Tl into T; £(%) = ?.o for * € Tl implies G = g“;
Tl contains a neighborhoed of ﬁo 1o which £ has continuous second partial
derivatives; ramk (F) = s, where F = a~f(a°)~/aa'.

Let h(®) = g[f(2)]. Choose & to

nin - @)1’ - h@)].
AT, (ay - BT Aylay - B@)]
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Proposition 3'. If Assumptions 1, 2, and 2' are satisfied, if & ispositive

. . .8, -1
definite, and if ~AN 4.8 & 7, then ::11 - d2 —D—-)(Z(p -~ 8) , where

d; = Nlag -~ @1 ala - a@®],

4y = Nlay = 5(5) ' agla - g(®) ]

~ ~
Furthermore, d, = d2 is independent of d2 in their 1limiting Joint distribution.

Suppose that the restrictions involve only II. We specify the

restrictions by the condition that % = £(6), where § is sx1 and the domain

o

of 6 1is Tl’ a subset of Rs that includes the true wvalue 60. Consider the

~

following estimator of §o: choose § to

ra [T-£8®1 87 - (O,

where 9 is riven in (4.2), and we assume that § in (4.1) is

a 5.> 60,

~

A
positive definite., If Tl and f satisfy assumptions 1 and 2, then §

ARG - 0 2w, 5o BTY,

and
wir - 591 87T - D1 2 Por-s,
where F = 3£(38%) /36",

We can also estimate 60 by applying the minimun distance procedure to
w instead of to 7. Suppose that the components of W, are arranged so that
' . L
E;. a (‘11'.1’ Yiz)’ where ¥ , contains the components of xiYi Partition

U = E(w,) conformably: uh= (Mg, Uy). set g = (8, 9&) = (&', E'z)
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\ssume that v(w.) 1is positive definite. MNow choose 8 to
b ~1

0 1 a0,

a

.8.. ~1
where ) > (Vji) /

~L

g(8) = ,

-

and gl('rr, uz) =1 Then Bl gives an estimator of 60; it has the same

limiting distribution as the estimator § that we obtained by applying the
-

minimum distance procedure to . 36

This framework leads to some surprising results on efficient estimation.

For a simple example, we shall use a univariate linear predictor model,
E*(yi|xﬂ, K )= T WX 4 TRy,

Consider imposing the restriction T, 3 0. Then <the conventional estimator
of Trl is by , the slope coefficient in the least squares regression of y
on xq. We shall show that this estimator is generally less efficient than
the minimum distance estimator if the regression function 1is nonlinear or
if there 1is hetaroskedasticity.
Let %l’ %2 be the slope coefficients in the least squares multiple

regression of y on X xz. The minimum distance estimator of T, under

the restriction 1'r2 = () can be obtained as g- ?1'1 + T 1?2. where T 1s chosen

to mwinimize the (estimated) variance of the limiting distribution of 3;

this gives
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Sy

A 2 ~
= -
i

= T - ;-2,

it

(=3

22

£

where (3,, is the estimated covariance between %j and ?rk in their Limiting

ik
distribution. Since 7. = b - T, b , Wwe have
1 g 2 XoX;
Cal (1\1 -~
¢ =b - (b + ;-1-2—) Ty -

X i w2 2

1f E(yilxil, xiz) is linear and if V(yilxil, xiz) = 02, then wl?_/wzz =
- Ccv(xil, xiz)/V(xil) and 5 = byxl' But in general & # byxl and 8 is more
efficient than bYXl° The source of the efficiency gain is that the limiting
distribution of %2 has a zero mean (if Tr2 = 0}, and so we can reduce
variance without introducing any bias if "r)\r2 1s correlated with b xl. Under
the assumptions of linear regression and homoskedasticity, bel and ﬁz are

uncorrelated; but this need not be true in the more general framework that
we are using.

4.3 Simultaneous Equations: A Gemeralization of Two-and Three-
Stage Least Squares

Given the discussion on imposing restrictions, it is not sur=
prising that two-stage least squares is not, in general, an efficient
procedure for combining instrumental wvariables. I shall demonstrate this
with a simple example. Assume that (yi, Zgs Xy9s xiZ) is 1.i.d. according

to some distribution with finite fourth moments, and that

v, = 0§ z

¥y 1 ¥y

where E(vixil) = E(v‘ixﬂ) = (0. Assume also that E(zixil) # 0, E(zixﬂ) # 0.
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Then there are two instrumental variable estimators that both converge a.s.

to &:
. N N : )
= L z LXK, . i=1, 2),
éj o yixij/i=l 2%y 4 h
S, s\ .
N N - — ¥(0, A) ,
8 ) -

where the j, k element of A is

E[(yi_azi)zxijxik]
ik T EGzx ) Bzgxg)

Py (j sk = l.,Z).

The two-stage 1l-.ast squares estimator combines 51 and 8, by forming

zi— = Trlxil + TeriZ' ‘aged om the least squares regression of z on xla X2

(aSSUITle that E[(xil’ :{iz)'(xill xiz)] is nonsingular):

§ = ¢ y.2,/ L z,z,=aé + (1-0) 8. ,

TSLS 4a1 1 1 1=1 i1 1 2
where

N N N
A fal ~ A
a=sT, I z,x,./(my, I z,x, T, L Z,X,4).
1 j_mli:f.l 1i=1 1711 + "2 isl.i‘iz

Since a 2.5, O, ‘/ﬁ(gTSLS - 6) has the same limiting distribution as

Alad -8 + (10 (§,=9)1.

This suggests finding the T that minimizes the wvariance of the limiting

distribution of /ﬁ[r(al-é) + (1—1‘)(32-6)]. The answer leads to the minimum
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Y
distance estimator: choose 8 tp

min 1 g At 5 e
6 N - - ~ -
°2 8 5, 8
=18 +an3,,

where

T = (All + Alz)/(kll + lez + Azz),

and )\Jk is the J,k element of A-1. The estimator obtained by using a
consistent estimator of A has the same limiting distribution.
In general T # a since T is a function of fourth moments and @ is not.

Suppose, for example, that Z, = X5 Then ¢ = 0 but T # 0 unless

2
2 %42 *51%42
E{(yl - Gzi) (E(xz ) E(Kﬂxiz) )] =0,
12

If we add another equation, then we can consider the conventional
three-stage least squares estimator, Its limiting distribution 1is derived
in the Appendix (Proposition 7); however, viewed as a minimm distance
estimator, it 1s wusing the wrong norm in general,

Consid2r the standard simultaneous equations model:

3 = 0xy +yy, Blyxp) = O

fyg +Bzi =%,

where TTTI +B =20 and T 2 v We are continuing to assume that

1
y; is M1, x, i s Rx1, Ei s (ﬁ, Zi)’ts i.i.d. according to a distribution

~

with finite fourth moments (isl, . . . . N), and that E(’fif‘:'f.) is nonsingular.
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There arc restrictions on [ and B: m([, B) = 0, where m is a known function.

~

Assume that the implied restrictions on I can be specified by the condition

that ™ = vec(ll') = £(6), where the domain of § is T, a subset of R® that

includes the true value 60(5 < MK). Assume that Tl and f satisfy assumptions
1 and 2; these properties could be derived from regularity conditions on m,

as in Malinvaud (1970,  proposition 2, p. 670).

ol

Choose § to

min [7 = £(5)1" &

[T - £(8)1,
§sTl - -

~

where {} is given in (4.2) and we assume that 9 in (4.1) is
positive definite. Iet F = af(5°)/as'. Then we have /ﬁ(g-éo) 2, ro, N,

where A = (F' ﬂ'l F)'l_ This generalizes Malinvaud's minimun distanc -

1
zgz is uncorrel: ad
with x,X}, so that & = E(uouol) @ [E(x x')]-l (u = - I°x )
X%y o ot ] X% s D £ R

Now suppose that the only restrictions on [ and B are that certain

™

estimator (p. 676); it reduces to his estimator if u

-~

coefficients are zero, together with the normalization restrictions that
the coefficient of Yim in the m—tl structural equation is one. Then we can

give a* explicit formula for A. Write the n:tE structural . equation as

- ]
Yim ™ Sm Zin ¥ Vin

where the components of 2y, are the wvariables 1in y i and X, that appear in

the mﬂ equation with unknown coefficients. TLet there be M structural
equations and assume that the true value I'o 1s ponsingular. Let

8'= (8], +vsy 8y) be sxI, and let T(3) and B(8) be parametric repre-
sentations of l: and B that satisfy the =zero restrictions and the normalization

rule. We can choose a compact set T1CR$ containing a neighborhood o. the

true value 50, such that T(6) is nonsingular for §ET1. Then T = §(§).



67

where E‘{é) = vec ['E_l(§) B(O)]'.

Assume that £(6) = 1= implies that § = 60, so that the structural

parameters are identified. Then Tl and f satisfy Assumptions 1 and 2, and
(3 - 8°) =B=> N(q A). «The formula for 3m/38' is given in Rothemberg
-~ 7 LT} L - ~

(1973, p. 69):

Q2

Q2
ton|t g

L= @ B, L, ® THI

. . . = dq4 ' 1
where ?zx is block dlagoual. ?zx dlag{E(Eil Ei)’ ey E(fiM fi)},

and @x = E(x x;). So we have

: o o’ —— -1
(4.3) A= {o (ECvv; ® xxDl e b0,

o ' . .
where v, = Foyi + Bogl. If 5252 is uncorrelated with xixi, then this

-~

reduces to
-1, o o' -1 , 1~1
Q = {?zx [E (E-igi ) @ ?x ] ?zx} '

which 1s the conventional asymptotic covarianee matrix for three-stage
least squares (Zellmer and Thiel (1962)).

I shall present a generalization of three-stage least squares that
has the same limiting distribution as the generalized minimum distance
estimator. Let B = vec{B') and note that % = = (I'-l @ 1)8 . Then we

have
~ -1 ¢ ~=l.n -1
T+T @D I @ D 8l

< (€ @ pr+8l T @ DT+l
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where
=@ DD EC T ® xx) O @® 6.

Let 3__ be the following Dblock-diagonal matrix:

~2ZX
N N
§ = diag { LzXis o o o o %- T oz,x)
~Zx l"-]. ~ i=1 ~ -
and let
TN N
1 1
== L s S == Iy ®
“x N {=1 Jivi' o ~xy N q=1 ~1i i
Let
. ~ l N ~ A
¥ = E(vqvy° xxp, ¥=§ Iy ® %5
i=1
where

Now replace @ by

-1 @ 50 W@ 5,

and note that

C@ P @D T+8l=s -5, ¢

nZE -~

Then we have the following distance function:

- at P & -1
(Exy §zx §) ? (Exy §zz §)
This corresponds to Basmann's (1965) interpretation of three-stage

squares. L7

least
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Minimizing with respect to 3 gives

A 41 o 41 o1
§G3 - (§zx f §zx) (§zx % Exy)'

The limiting distribution of this estimator 1is derived in the Appendix

(Proposition 7). We record it es

—JE-> N(0, A), where A 1is given in (4.3).

Proposition 4.  /N(8., - )
asymptotically

generalized three-stage

This least squares estimator is
efficient within the «c¢lass of minimum distance estimators.

relies on linearity.

see

Our derivation of the limiting distribution of §
estimator,

For a generalized nonlinear three-stage least squares

Hansen  (1982).

of two-stage least

Finally, we shall consider the generalization

squares.38 Suppose that

= T
Y1 =8 Z31 * ¥yp 0

= i ' = R
where E(§1vil) 0, 249 1is slxl, and rank [E(Eifil)] 81+ We complete

the system by setting

- 1 +
Vim = Ta 31 7 %m
.M. s o X {(m = 2, . M), and

where E(giuim) s 0(n=2
f t L ]
3, = dlag {E(z;) x1), L () E(x;x) ).

procedure to

Let 5' = (4!, “i’ ey TTh:I) and apply the mimimum distance
=2,, .., M,

A
obtain &3 since we are ignoring any restrictions on Wm (m
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[e

is a 1limited information minimum distance estimator.

We have fﬁ(gl - §;) D, N(Q, All), and evaluating the partitioned
inverse gives
- ' 0,2 1y 1L ' -1
(4.4) Mg = {BCzyy ) [EQ(v )" xxpD 17 EGxyz D} o,
o _ < 10
whete Vi, = ¥gy v 9 Zgy-

We can obtain the same limiting distribution by using the following

generalization of two-stage least squares: Let

2] = (g ween Zg)s K= (R eens 1Y,

1
zl =2 (Yll! LI A | YNl)! a'n'd
N
~ l - Al 2 v 1
a=§ L n- 9§ 230 %% o

e

where 31 3-5->§i (for example, §l could be an instrumental variable

estimator); then

~ A—l -l A-l ]
= ! ' ! x ly x v -
8,00 = (2 X ¥y %'2)) ~ () X ¥y X'y
This is the estimator of 51 that we obtain by applying generalized three-
stage least squares to the completed system, with no restrictions on

Wm(m =22 ... .M. The limiting distribution of this estimator is derived

in the Appendix (Proposition 7):
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po ) - 2 o] D

orovosteion k. N - - ; . . .
[ (§1G2 9-.].) N(\Nn; {:\ll), where i}ll 18 gliven 1n

(4.4). This generalized two-stage least squares estimator is

asymptotically efficient in the class of limited informatiopm minimun
distance  estimators.
4.4 Asymptotic Efficiency: A Comparison with the GQuasi-Maximum
Likelihood Estimator
Assume that r, is 1.1.d. (i=1,2,...) from a distribution with
E(ri) =T, V(ri) a L, where I is a JXJ positive-definite matrix; the fourth
moments are finite. Suppose that we wish tO estimate functions of £
subject to restrictions. Let ¢ = vec (I) and express the restrictions by
the condition that @ = 5(6), where g is a function fr @ T I.ite Rq with a
. . 0 2
domain T € RP that contains the true value B7(q = J75 5 < J 341)/2). Let
- ;5“3

(

N

L (r. = r){r
Ni=l ~1 . §
and let s = vec(S),

If the distribution of I, 1s multivariate normal, then the log-likelihood
function 1is

L= |27 - 3 20376 + G- DG - 01k

If there are no restrictions on T, then the maximum l:ikelihosod estimator of

8° is a solution to the following problem: Choose é t0 soive

(9 -
—— 7@ @ IHOIG - «8) = 0,

We shall derive the properties of this estimator when the distribution of
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fi is not r}ec_gSSariiy normal; in that case we shall refer to the estimator
as a quasi-maximum likelihood estimator (:B\QML).39

MaCurdy (1979) considered a version of this problem and showed that,
under suitable regularity conditions, ﬁ(éqm - 90) has a limiting normal
distribution; the covariance matrix, however, is not given by the standard
information matrix formula. We would like to compare this distribution
with the distribution of <the minimum distance estimator.
This 'comparison eam be readily made by using theorem 1 in Ferguson (1958).

In our notation, Ferguson considers the following problem: Choose 8 to

solve

(s, 9) [E_‘- g(8)] = 0.

a

He derives the limiting distribution of vﬁ\f(ﬁ - 80) under regularity conditions

on the functions W and g These regula-ity conditions are particularly simple

in our problem since W does not depend on s. We can state them as follows:

Assumption 3. Eo C Rp is an open set containing Bo; g 1s a continuous,
one-to-one mapping of Eo into RY with a continuous inverse; g has conrtinuous
3

second partial derivatives in Eo; rank [3g(8)/36'] = p for GF.EO' L(8) is non-

singular for GEEO .

a.8., g(eo_‘; and the central limit theorem result

LTI )

In addition, we shall need s
- ) D .0 o
that /N(s - g(8 )) —> N(0, A), where A = V[(r:L - T) ® (Ei - 1)].
Then Ferguson's theorem implies that the likelihood equations almost

surely have a unique solution within Eo for sufficiently 1large N, and

o

/ﬁ(gQML < 8% N N(0, A), where

-r
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A= (G'YGE)

- N R

and ¢ =_23g(8”)/38,v=(1" ®1")

—~ul

b will be convenient to rewrite
this, dimposing the symmetry restrictions on Z. Let g* be the J{J+1)/2x1
vector formed by stacking the columns of the lower triangle of L. We can
define a Jz X [J(J+1)/2] matrix T such that ¢ = T g*. The elements 1in each
row of T are all zero except for a single element which is one; T has full
colunn rank. Let s =_T s*, g(8) = T g*(8), G* =~8§f(§_°)/3§’,‘f’*=T:'{’gj
then \/ﬁ[é* - g*(go)] L N(Q, A*), where A* is the covariance matrix of the
vector formed from the columns of the lower triangle of (-r-i - Io)(Ei - To)'.

Now we can set

{\ = (G'* ‘ﬁ* G*)'I(E'* ly* 5* ly* E;*) (9'* f* G*)‘l_

Consider the following minimum distance estimator: Choose 6MD to

min IS* = gx(89)1' A [s* = g*(8)],
geT - ~ 7

where T 1s a compact subset of EO that contains a neighborhood of g°

and éN 8:5:5 yk, Then the following result is implied by Proposition 2.

Proposition 6. If Assumption 3 1s satisfied, then Jﬁ(eqm - Go) has the

same limiting distribution as fﬁ(BMD ©

- 8.

If A* is nonsingular, an optimal minimun distance estimator has é’N

where [ 1s an arbitrary positive real number. If the distribution of Ts

is normal, then A*_l a {1/2) ‘g*; but in general A*-l i§ not proportional to

Wk gince A* depends on fourth moments and ¥* i1s a function of second moments.

-
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~

So 1in general EQML is less efficient than the optimal mninimum distance

estimator that wuses

- |
- g% * - g%

(4.5) 5ot

ﬁrb12=

where f*i is the vector formed from the lower triangle of (r, = :rj) (r; = ',
More generally, we can consider the class of consistent estimators

that are continuously differentiable functions of §§:8t= §(§*). Chiang

(1956) shows that the minimum distance estimator based on L.\*-l has the

minimal asymptotic covariance matrix within this class. 10¢ minimum

distance estimator based on A.N In (4.5) attains this lower bound.

4.5, Multivariate Probit Models

Suppose  that

=LiE M x +u 20,

Yim im

= 0 otherwise (i=l, ..., N; mal, . . . . M),

where the distribution of 11!1 = (u TURE um) conditional on %, 1is multi-
variate normal, N(O, Z). There may be restrictions on m= (T, . . Eb:! ,
but we want to allow § to be unrestricted, except for the scale normalization
that the diagonal elements of ;_ are equal to one. In that case, the maximum
likelihood estimator has the computational disadvantage of requiring
numerical integration over M-1 dimensions.

Our strategy 1s to avoid numerical integration. We estimate Em by
maximizing the marginal likelihood function that dis based on the distri-

bution of Yim conditional on Xer
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where F 1s the standard normal distribution function. Then-under standard

A -
assumptions we have ij 2-3., 'Lf;, the true value. If /N(E-T9) 2. N(0, D,

A
then we can impose the restriction that T = £(§) by choosing § to minimize

~

M- 2O G - 591

We only need to derive a formula for @.40

Qur estimator of T 1is solving the following equation:

ao(™)
e = —7—=10,

where
N M
M = ¢ {I

LN LnF(TY %)+ (1-y ) Le [1-F(T0 x,) 1H

Vim
Hence the asymptotic distribution of f{ can be obtained from the theory
of "M-estimators." Huber (1967) provides general results, which do not
impose differentiability restrictions on s(T). His results cover. for
example, regression estimators based on minimizing the residual sum of
absolute  deviations. We shall not need this generality here and shall
sketch the derivation for the simpler, differentiable case. This case
has been considered by Hansen (1982), MaCurdy (198l1a), and White (1982).41
Let zy be 1.i.d. according to a distribution with support 2 € ri.
let @ be an open, convex subset of Rp and let @(E, Q)‘be a function from

Z X 9 into Rp; its kt—h component 1is 11!)]&(::3, %). For each 8€9, ¥ is a

measurable function of z, and there is a GOE@ with
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EW(z, 391 = 0, B[Y(z;, 890" (2, 891 = & < =

~

For each z€Z, ~llJ 1s a twice continuously differentiable function of 6. 1In

‘addition,

is nomsingular, and

W2z, O)

am

< h(z) (k, £, m=1, ..., p
2

for QEG, where E[h(:v:_l)] < o,

Suppose that v= have a (measurable) estimator §NEG such that §N é'—‘?--'-3. g°

-

and
N " 5
i=1" ~1 N

for sufficiently large N a.s. By Taylor's theoren,

-;—ﬁ igl Vi (zg0 8+ ['j.bllk * % g8 Gl ©2M1 = 0,
where
gy -k p i) N T a%k;éz'ééug;k) .
~N t=1 : fal 292
and gﬁk is on the line segment joining e:N and 5_5'0 (k=1, ,,.,P). (The measur-

ability of ?_;;k follows from lemma 3 of Jennrich (1969).) By the strong law

of large numbers, ll:Tk converges a.8. to the k-EE- row of J, and
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7
¥ 3y, (=, 9% N
| % z ag "a'g e <% L hizy) 235 Efh(z;)]
LY £%n - i=1
, m= 6 8% <.
(k, £, m=l, . . . . p). Hence (—-N-) gNk+935 and
@ 9% = ot [ & T UG, 891
I ~N - “'N i1=l ~ ~1 ~

a.5. PR
for v sufficiently large a.s., where Dy — > J. By the central limit

theoren,

8% 2 n(0, 8).

Hence

AE A% L wa, 7harh.
Applying this result to our multivariate probit estimator gives
A @17 L, 57,
where J = diag{{l, R -{M} is a block-diagomal matrix with

L] 2 L]
Jp = EHEDT/[FA-B 1} x %]

. . . o'
(F and its derivative F' are evaluated at ‘I-T-m 1:1);

and

4= EE ® 5l

where the m, n element of the MXM matrix }3 is ‘nmn 2 e e with

== F' (z=l....,M)
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(F and F' are evaluated at "T?n'xl). We obtain & 'consistent estimator (S;l)
of LI‘]'_AJ-I by replacing expectations by sample means and using TE in place
of ™, Then we can apply the minimum distance theory of Section 4.2 to

impose restrictions on T,

5. EMPIRICAL APPLICATIONS

5.1 Linear Models: Unigon Wage Effects
We shall present an empirical example that illustrates some of the

42

preceding results. The data come from the panel of Young Men in the National

Longitudinal Survey (Parmes). The sample consists of 1454 young men
who were not emrolled in school in 1969, 1970, or 1971, and who had complete
data on the variables listed in Table 1. Table 2.1 presents an unrestricted
least squares regression of the logarithm of wage in 1969 on the union, SMSA,
and region variables for all three years. The regression also includes a
constant, schooling, experience, experience squared, and race. This regression
is repeated using the 1970 wage and the 1971 wage.

In Section 2 we discussed the implications of a random intercept {(c),
If the leads and lags are due just to ¢, then the submatrices of JI corres-
ponding to the wunion, SMSA, or region coefficients should have the form
BRI +4& 2\'. Consider, for example, the 3%X3 submatrix of union coefficients --
the off-diagonal elements in each columm should be equal to each other. So
we compare ,048 to .046, .042 to .041, and'-.009 to ,010; not bad.

In Table 2.2 we add a complete set of union interactions, so that, for’
the union variables at least, we have a general regression function. Now

the submatrix of wunion coefficients is 3X7. If it equals (853, 0) + £ A%, then
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Table 1

CRARACTERISTICS OF NATTONAL LONGITUDINAL SURVEY YOUNG
MEW, NOT ENROLLED IN SCHOOL IN 1969, 1970, 1971:

Means omd Standard Deviations

N = 1454
Variable Mean Standard Deviation
LWl 5.64 423
L2 5.74 426
LW3 5.82 437
Ul .336
u2 .362
u3 .364
Ulu2 .270
[ARIE] .262
U2u3 .303
Ulu2u3l .243
SMSAL .697
SMSA2 627
SMSA3 622
RNS1 . 409
RNS2 404
RNs3 410
S 11.7 2.64
EXPRY 5.11 3,71
EXP692 39.8 16.6
RACE .264

Notes to Table I:

LWl, LW2, LW3 == logarithm of hourly earnings (in cents) on the
current or last job in 1969, 1970, 1971; Ul, U2, U3 —-- I if wages
on current or last job set by collective bargaining, 0 if not, in
1969, 1970, 1971; SMSAL, SMSAZ, SMSA] — 1 if respondent in SMSA,
0 if not, in 1969, 1970, 1971; RNSl, RNS2, RNS3 - 1 if respondent
in South, 0 if not, 1in 1969, 1970, 1971; § -- vyears of schooling
completed; EXP69 —- (age in 1969 = 8 - 6); RACE -- 1 if respondent
black, 0 if not.
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TABLE 2

UNRESTRICTED LEAST SQUARES REGRESSIONS

2.1
Coefficients (and Standard Errors) of:
Dependent
Variable Ul U2 u3 SMEAL SMSA2 SMSA3 RNS1 RNS2 RNS3
LWl 171 042 -.009 .135 -.001 .Q32 -.016 -.020 -.108
(.025) (.026) (.025)|(.028) (.055) (.054) (.081) <(.081) (.070)
W2 .048 .150 010 .086 .053 ,020 065 -.039 -.155
{.023) (.028) (.026)|(.027) (.065) (.061) (.099) (.109) (.092)
1W3 046 041 132 .083 .003 .088 074 .056 -.232
(.023) (.030) (.030)|(.031) (.058) (.056) (.079) (.093) (.078)

Notes to Table 2.1:

All regressions include (1, §, EXP69, EXP692, RACE). The standard errors are
calculated using §§ in (4.2).

Coefficients (and Standard Errors) of:

Dependent
Variable Ul U2 U3 (pRip Ulu3 [PAIE) ULu2u3
LWl 127 =047 -,072 .128 .092 .156 -,182
(.044) (.042) (.041) (.072) (.075) (.070) (.104)
LW2 -.019 014 -.085 181 .118 227 -.229
(.040) (.045) (.040) (.074) (.092) (.066) {.118)
W3 -.050 -.072 -.022 .110 .264 , 246 -.256
(.037) (.053) (.052) (.079) (.081) (.079) (.113)

Notes to Table 2.2:

All fgre331ons include {(SMSALl, SMSA2, SMSA3, RNSL1, RNS2, RNS3, 1, S, EXP69,
EXP69“, RACE) The standard errors are calculated using @ in (4.2).
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in the first three columns, the off-diagonal elements within a column should
be equal; in the last four columns, 311 elements within a column should be
equal.

I first imposed the restrictions on the SMSA and region coefficients,
using the minimum distance estimator.  is estimated using the formula in
(4.2}, and Ay T é_l. The minimum distance statistic (Proposition 3) is 6.82,
which 1is not a surprising wvalue from a )(2(10) distribution. If we impose the
restrictions em the union coefficients as well, then the 21 coefficients in
Table 2.2 are replaced by 8: one 8 and seven A's. This gives an increase in
the minimum distance statistic (Proposition 3') of 19.36 - 6.82 = 12.54, which
is not a surprising value from a i‘(l3) distribution. S0 there is no evidence
here a;ainst the hypothesis that all the lags and leads are generated by c.

In the -erminology of Section 3.3, the (linear predictor) relatiomshi: of «x
to y arpears to be static conditional on ¢,

Consider a transformation of the model in which the dependent variables
are LWl, LW2-LWl, and LW3-LW2. Start with a multivariate regression on
all of the lags and leads (and union interactions); then impose the
restriction that U, SMSA, and RNS appear in the LW2-LWl and LW3-LW2
equations only as contemporaneous changes (E(yt—yt_llxl,xz,x3) = B(xt-xt-l))'
This is equivalent to the restriction that ¢ generates all of the lags and
leads, and we have seen that it is supported by the data. I also coniidered
imposing all of the restrictions with the single exception of allowing
separate coefficients for entering and leaving union coverage 1in the wage

change equations. The estimates (standard errors) are .097 (.019) and
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-.119 (.022). The standard error on the sum of the coefficients is .024,

so again there 1s no evidence against the simple model with E(Yt
43

Kl,ngx3,c) =

Ext + c.

Table 3.1 exhibits the estimates that result from imposing the
restrictions wusing the optimal minimum distance estimator. “ We also give
the conventional generalized least squares estimates. They are minimum
distance estimates in which the weighting matrix (éN) is the inverse of
N
z

N
A A 1 -1
(5.1) (g TGy ~0x)' @ G 2 o2z

i=1 : i=1

1D

-t
s N

. , P Y- _1
We give the conventional standard errors based on (F' Qsl ) and the

standard errors calculated according to Proposition 2. which do not require
an assumption of Thomoskedastic linear regression. These standard errors
are larger than the conventional ones, by about 30%. The estimated gain
in efficiency from using the appropriate metric is not very large; the
standard errors calculated according to Proposition 2 are about 10% larger
when we use conventional GLS instead of the optimum minimum distance
estimator.

Table 3.1 also presents the estimated A's. Consider, for example,
an individual who was covered by collective bargaining in 1969. The linear
predictor of ¢ increases by ,089 if he is also covered in 1970, and it
increases by an additional ,036 if he is covered in all three years. The
predicted ¢ for someone who 1is always covered is higher by ,102 than for
someone who 1s never covered.

Table 3.2 presents estimates under the constraint that A = _9. The

L

increment in the distance statistic is 89.08 = 19.36 = 69.72, which is a
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TABLE 3

RESTRICTED ESTIMATES

3.1
Coefficients (and Standard Errors) of:
U SMSA JNS
A .107 .056 -.082
{.016) (.020) {.045)
B, o .121 ,050 -.085
~GLS (.013) (.017) (.040)
(.018) (.02L) (.052)
Ul u? U3 Ulu? JIARIK] U2u3 LIpRIpALES
5: -.02 ~-.067 -.082 .156 152 .195 -.229
(.03 7 (.040) (.037) (.057) (.062) (.059) (.085)
SMSAL SMSA2 SMS5A3 RNSI1 RNs?2 RNS3
086 -.008 032 100 -.021 -,128
(.025) {.048) (.048) (.072) (.077) (.068)

v2(23) = 19.36

3.2 Restrict A = (.,
Coefficients (and Standard Errors) of:
U SMSA RNS
B: 157 120 -.150
(.012) (.013) (.016)

K (36) = 89.08
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Jotes to Toblaz 3:

- - - A T
E*(y Lx) = lx = Ix, + Dx,; x = (U1, U2, U3, U1U2, ULU3, U203, Ulu2us,
SMSAL, SNSA2, SMSA3, RNSL, RNS2, RNS3); xj = (1, S, EXP6Y, EXP69°, FACE)

I = (B, T30 0y Boyaa Iy» Bpyg I9) + & A'5 I, is unrestricted. The

~ ~

restric:ions are expressed as T = F 6, where § is unrestricted. 8 and )

L

~
- ~ ”~

are minimum distance estimates with éN = 0 in (4.2); gGLS and }-GLS are

minimum distance estimates with ﬁ;,l = Q@ in (5.1) (J}-GLS is not shewn in

the table). The first standard error for EGLS 1s the conventional one based
~_ - A
on (F'QSIF) l; the second standard error for BGLS is based on
- P 2 .
! L E(E'@sl F) t (Proposition 2). The ¥ statistics are

o — P - e d
it 88
-~ s ~ g

4-1
RN

computed from N[TTT_ - F §]' g-l[ff -__Fﬁ] (Proposition 3).
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surprisingly large value to come from a %2 (13) distribution. Tf we constrain
only the union A's to be zero, then the increment is 57.06 = 19.36 = 37.7,
which is surprisingly large coning from a xz(7) distribution. So there is
strong evidence for heterogeneity bias.

The union coefficient declines from .157 to .107 when we relax the
é = _p restriction. The least squares estimates for the separate cross
sections, with no leads or lags, give union coefficients of ,195, .189,
and ,191 in 1969, 1970, and 1971. 43 So the decline in the union coefficient,
when we allow for heterogeneity bias, is 32% or 44% depending on which
biased estimate (.16 or .19) one uses. The SMSA and region coefficients

also decline in absolute value. The least squares estimates for the

separate cross sections give an average SMSA coefficient of .147 and an

average region coefficient of =,131. So the decline in the SMSA coefficient
is either 53% or 62%, and the decline in absolute value of the region

coefficient 1s either 45% or 37%.

5.2. DNonlinear Models: Labor Force Participation

We shall illustrate some of the results in Section 3. The sample
consists of 924 married women in the Michigan Panel Study of Income Dynamics.
The sample selection criteria and the means and standard deviations of the
variables are in Table 4. Participation status is measured by the question
"Did do any WwWOrk for money lagt yeas?" We shall model participation
in 1968, 1970, 1972, and 1974.

In terms of the model described in Section 3.1, the wage predictors are

schooling, experience, and experience squared, where experience 1is measured
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48 age minus schooling minus six; the tastes for nonmarket time are

predicted by these variables and by children. The specification for children
is a conventional one that uses the number of children of age less than six
(YS) and the total number of children in the family unit (K).46 Variables
that affect only the lifetime Dbudget constraint in this certainty model

are captured by c¢. In particular, nonlabor income and the husband's wage

are assumed to affect the wife's participation only through the lifetime

budget  constraint. The individual effect {¢) will also capture unobserved

permanent components in wages or in tastes for nonmarket time.

Table 5 presents maximum likelihood () estimates of cross-section
probit specifications for each of the four years. Table 6 presents un-
restricted ML estimates for all lags and leads in YK and K. If the

residuals (uit) in the latent wvariable model (3.1) have constant variance,

thengga 2. .. =0, in (3.8),and the submatrices of I corresponding to

1 4
YK and K should have the form 8 I + £ A'. There may be some indication

of this pattern in Table 6, but it is much weaker than in the wage
regressions in Table 2.

we gagllow for unequal variances and provide formal tests by using the
minimum distance estimator developed in Section 4.5. 1In Table 7.1 we

impose the restrictions that
1 1
_I_Iudiag{al, cens ad} By L, +& Xy By }&+{15K]

The minimum distance statistic is 53.8, which is a very surprising value

coming from a X2(19) distribution. S0 the latent variable ¢ does not appear

to provide an adequate interpretation of the unrestricted leads and lags.
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It may be that the distributed lag relationship between current parti-
cipation and previous Dbirths 1is more general than the one implied by
summing over the previous six years (YK) and over the previous eighteen
years (K). It may be fruitful to explore this in more detail in future
work. Perhaps strict exogeneity conditional on ¢ will hold when we use a
more general specification for lagged births. But we must keep in mind
that this question is intrinsically tied to the functional form restrictions =
we saw 1n Section 3.3 that there always exist specifications in which Ve is
independent of Xpp oooe o Xy conditional on c.

If we do impose the restrictions in Table 7.1, then there 1is strong
evidence that é # 0. Constraining ?_\. a 0 in Table 7.2 gives an increase
in the distance statistic of 78.4 = 53.8 = 24.6, which is surprisingly
large to come from a )(2(8) distribution.

In Table 7.3 we constrain all of the residual variances to be equal
(Ott = 1), An alternative 1interpretation of the <time wvarying coefficients
is provided in Table 7.4, where B’n( and BK vary freely over time and Gt = 1,
In principle. we could also allow the ®_ to vary freely, since they can be
identified . from changes over time in the coefficiemts of c¢. In fact that
model gives véry imprecise results and it dis difficult to ensure numerical

accuracy.

We shall interpret the coefficients on YK and K by following the pro-
cedure in (3.4). Table 8 presents estimates of the expected change in the
participation probability when we assign am additional young child to a
randomly chosen family, so that YK and K increase by one. We compute this

measure for the models im Tables 7.1, 7.3, and 7.4. The average change in
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the participation probability is =,096. We can get an indication of omitted
variable bias by comparing these estimates with the ones based on Table

1.2, where )f. is constrained to be zero. Now the average change in the
participation probability is =.122, so that the decline in absolute value

when we control for ¢ is 21%. An alternative comparison can be based on the
cross-section estimates, with no leads or lags, 1in Table 5. Now the average
change in the participation probability is -.144, giving an omitted variable bias
of 33%.

Next we shall consider estimates from the leogit framework of Section 3.2.
Table 9 ©presents (standard) maximum likelihood estimates of cross-section
logit specifications for each of the four years. We can wuse the cross-section
probit results in Table 5 to ecistruet estimates of the expected change in
the log odds of participation ® en we add a young child to a randomly chosen
family. Doing this in each of -he four years gives -.502, =-,598, =.683, and
-.703, Wwith the logit estimates, we simply add together the coefficients on
YK and K in Table 9; this gives =-,507, ~,612, -.691, and =-.729, The average
over the four years is =,621 for probit and =-,635 for logit. so at this
point there 1is little difference between the <two functional forms.

Now allow for the latent variable (e). Table 10 presents the conditional
maximum likelihood estimates for the fixed effects loglt model. The striking
result here 1is that, unlike the probit case, allowing for c leads to am
increase in the absolute value of the children coefficients. If we constrain
BYR and BK to be constant over time (Table 10.1), the estimated change in the
log odds of participation when we add an additional young child is =.898.

If we allow BYK and BK to wvary freely over time (Table 10.2), the average of
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the estimated changes 1is -.883. So the absolute value of the estimates
increases by about 40% when we control for ¢ using the logit framework.
The estimation method is having a first order effect on the results.

It 1is commonly found that probit and legit specifications, when properly
interpreted, give very similar results; our cross-section estimates are an
example of this. But our attempt to incorporate latent variables has turned
up marked differences between the probit and logit specifications. There
are a number of possible explanations for this. The probit specification
restricts ¢ to have a normal distribution conditional on x with a linear
regression function and constant wvariance. The conditional likelihood
approach 1in the legit model does not impose this possibly false restriction.
on the other hand, the probit model has a more general specification for the
residual c¢ovariance matrix.

We have seen that the restrictions on the probit II matrix, whieh under-
lie our estimate of B, appear to be false. An analogous test in the logit
framework 1is based on {3.10), We use conditional ML to estimate a model
that includes YK_*D_, K *D, (s =1,...,4; t = 2,3,4), where D, is a dummy
variable that is ome in period t and zero otherwise. It 1s not restrictive

o exclude Y'KS'D and K D since they can be absorbed in c¢. We include

1 s 1’
2
11so Dt’ S-Dt, E}CE‘68°Dt, and EXP68 *D, (t=2,3,4). Then comparing the maximized
zonditional likelihoods for this specification and the specification in

Table 10.2 gives a conditional likelihood ratio statistic of 47.5, which

2
is a very surprising value to come from a X (L8} distribution. SO the

restrictions underlying our legit estimates of B also appear to be false.
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It may be that the false restrictions simply imply different biases in

the probit and logit specifications.
6. CONCLUSION

Our discussion has focused on models that are static conditional on
a latent variable. The panel aspect of the data has primarily been used
to control for the latent wvariable. Much work needs to be done on models
that incorporate uncertainty amnd Interesting dynamics. Exploiting the
martingale implications of <time-additive wutility seems fruitful here, as'
in Hall (1978) and Hansen and Singleton (1981). There is, however, a
potentially important distinction between time averages and cross-section
averages. A time average of forecast errors over T periods should converge
to zero as T =+ ®, But an average of forecast errors across N individuals
surely need not converge to zero as N = @3 there my be c¢common components
in those errors, due to economy-wide dinnovations. The same point applies
when we consider covariances of forecast errors with variables that are
in the agents' information sets. If those conditioning variables are
discrete, we can think of averaging over subsets of the forecast errors;
as T =+ @, these averages should converge to zero, but not necessarily
as N + o,

As for controlling for latent wvariables, I think that future work

will have to address the lack of identification that we have uncovered.

It is not restrictive to assert that (Yl" c . Yy)and (Xls Coe XT) are

independent conditional on some latent wvariable c.
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TABLEA4

CEARACTERISTICS OF MICHIGAN PANEL STUDY OF INCOME
DYNAMICS MARRIED VOMEN

Means and Standard Deviations

N = 924
Variable Mean Standard  Deviation
LFPl .499
LFP2 .530
LFP3 .529
LFP4 566
YK1 L9689 1.200
YKZ2 .764 1.069
YX3 551 .895
YK4 .363 .685
K1 2.38 1.69
K2 2.30 1.64
K3 2,11 1.61
K4 1.84 1.52
S 12.1 2.1
EXP68 17.2 8.5
EXP68°% 368, 301,
Notes to Table 4:
LFPl,. .. . 1FP4 - 1 if answered "yes" to "Did work for money

last year, 0 otherwise, referring to 1968, 1970, 1972, 1974; YK1, .

YK4 == number of children of age less than six in 1968, 1970, 1972,
1974; K1, ..., K4 == number of children of age less than eighteen
living in the family unit in 1968, 1970, 1972, 1974; S —— years of
schooling completed; EXP68 —- (age inm 1968 = S-6). The sample selection
criteria required that the women be married to the same spouse from

1968 to 1976; not part of the low income subsample; between 20 and 35C
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years old in 1968; white; out of school from 1968 to 1076; not disabled.

»

We required complete data on the variables in the Table, and that there

be no inconsistency between reported earnings and the answer to the parti-

cipation  question. .




93

TABLE 5
ML PROBIT CROSS-SECTION ESTIMATES

Coefficients (and Standard ZErrors) of:
Dependent
Variable YK1 K2 K3 YK4 K1 K2 K3 K4
LFPl -,246 -,063 - -
(.046) (.031)
LFP2 -.293 - -.075 - -
(.055) (.031)
LFP3 -.342 - -.077 -
(.067) (.032)
LFP4 =, 366 - -.069
(.081) (.034)

[JOTES TO TABLE 5:

separate ML estimates each year. All specifications include (1,

EXE6E, Exreaz).

S
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TABLE 6

UNRESTRICTED ML PROBIT ESTIMATES

Dependent Coefficients (and Standard ZErrors) of:

variablel ypy K2 K3 Y4 Kl K2 X3 K4

LFPl -.205 -.017 -.160 .420 176 -.142 -.1%96 .063
(.081) (.119) (.141) (.144) | (.076) (.100) (.110) (.090)

LFP2 -.047 =,238 -.047 093 .320 -.278 -.250 77
(.07%9) (.117) (.140) (.1l42)| (.077) (.102) (.110) (.090)

LFP3 -.254 L214 -.190 -.209 204 -, 210 -.045 .030
(.080) (.116) (.139) (.141) | (.07 (.102) (.112) {.090)

LFP4 -.195 ,252 -.211 -,282 120 .083 -,181 L0358
(.079) (.118®) (.139) (.138)| (.175) (.100) {.110) (.090)

NOTES TO TABLE 6:

Separate ML estimates each year. All specifications include S, EXPeS8,

EXP682) .




