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ABSTRACT

This paper presents new econometric methods for the empirical analysis
of individual labor market histories. The techniques developed here extend
previous work on continuous time models in four ways: (1) A structural
economic interpretation of these models is presented. (2) Time varying

explanatory variabtes are introduced into the analysis in a general way.

(3) Unobserved heterogeneity components are permitted to be correlated across

spells. (4) A flexible model of duration dependence is presented that
accommodates many previous models as a special case and that permits tests
among competing specifications within a unified framework.

We contrast our methods with more conventional discrete time and
regression procedures. The parameters of continuous time models are in-

variant to the sampling tine unit used to record observations. Problems
plague the regression approach to analyzing duration data which do not

plague the likelihood approach advocated in this paper. The regression

approach cannot be readily adopted to accommodate tine varying explanatory

variables. The functional forms of regression functions depend on the

time paths of the explanatory variables. Ad hoc solutions to this problem
can make exogenous variables endogenous to the model and so can induce
simultaneous equations bias.

1'wo sets of empirical results are presented. A major conclusion of
the first analysis is that the discrete time Narkov model widely used in
labor market analysis is inconsistent with the data. The second set of
empirical results is a test of the hypothesis that 1tunemployment1' and
"out of the labor force'1 are behaviorally different labor market states.
Contrary to recent claims, we find that they are separate states for our
sample of young men.
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This paper presents new econometric methods or the empirical analysis

of individual labor market histories. Jovanovic's equilibrium model of worker

turnover, the McCall—Nortensen search model, and Holt's model of labor force

dynamics can be estimated, and crucial assumptions tested, wIth our tech-

niques.

Our point of departure is the continuous tine >!arkov odel widely

utilized in sociology (Coleman; Singer and Spilerman; Tuma, Rannan and

Groneveld). The methodology developed here extends this work in four ways. Cl)

A structural economic interpretation of these nodels is provided. It is

demonstrited that continuous time models naturally arise from optimal stopping

rules that are the essence of a variety of economic problems. (See Brock at

al). (2) Th€ methods developed below admit the introduction of time varying

explanatory variables into the analysis in a general way. Previous work

either ignores such variables or utilizes special procedures for selected

variables. (e.g., Tuma, Rannan and Groneveld). Regression procedures

for introducing time varying nriables require special assumptions that are

unlikely to be realized in empirical work vith labor force data.

We present a flexible empirical procedure which can be used to estimate

duration models with time vüying variables and demonstrate, both theoretically

and empirically, the importance of being careful about the way time varying

variables are introduced into duration zodels. (3) We extend :revtous warlcby

introducing unobserved components ("bacarogeneity") that are correlated across

srel.Ls. Previous work assumes chat unobserved ccnponencs art indeoendant2.y

distributed across stalls — a strong — and as we demonstrate below one data

set — a counter factual assumption. (4) We produce a flexible econometric



model with general types of "state dependence." Many models coonly

used in the analysis of continuous time data can be written as a special

case of our model. Our framework can be used to test among competing

model specifications.

We present empirical estimates of a two—state model of employment

and nonenployment1 in the youth labor market. We then proceed to test a

critical assumption often used in labor market analysis: that "unemploy-

ment" and "out of the labor force" are legitimately separate labor market

states. We find that this is so and that the behavioral equations that

generate movement into and out of these states are fundamentally different.

The structure of the paper is as follows. In Section 1 we present a

continuous time model of worker turnover. We demonstrate that this model

can be used as a framework within which it is possible to estimate

Jovanovic's model and many other models as well. The model is extended

to allow for heterogeneity, time varying variables and general types

of dependence of labor market transition rates on previous labor force

states. The likelihood function for a two—state model is presented and

solutions to the problem of correct treatment of the initial conditions

of the process (sometimes called the "left censoring" problem) are offered.

The nonemploynent state is cootosed of the states "unem,lovmenc'
and "out of the labor force."
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Section II presents a discussion of the advantages of continuous

time models over discrete time models. Certain limitations of continuous

time models are discussed as well.

Section III discusses pitfalls that arise iii using regression

methods to analyze duration data. Two problems plague the regression

approach. First, standard regression estimators are ill—equipped to

deal with censored spells of events that arise in short panels. Failure

to account for censored spells leads to biased estimates of the parameters

of population regression functions. Second, the regression approach

cannot be readily adapted to accommodate time varying explanatory variables.

The functional forms of population regression functions depend on the

time athsof the explanatory variables. Ad hoc solutions to this problem

can make exogenous variables endogenous to the model and so can induce

simultaneous equations bias.

Section IV presents two sets of empirical results. The first

set is an analysis of employment and nonemployment data using both regres-

sion and maximum likelihood procedures. The second set is a test of

the hypothesis that "unemployment" apd "out of the labor force" are

behaviorally different labor market states.

Appendix A presents a general multiple state multiple pell

likelihood function for a continuous time model. Appendix B presents

the Weibu.U regression model used in some of our empirical work.

Appendix C presents a simple economic model in which non—Markovian,

long—ten dependence between labor market outcomes is senerated.
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I. CONTLNUOUS TtE ZCoNO?rRIc MODELS OF TURNOVER AND UNENpLOYENT

(a) First Passaze Tine Distributions as an Economic Construct. We start with

the iafluential model of Jovanovic. A worker and firm together constitute

a match. At the start of the match, both are uncertain about the productivity

of the match but both learn about this productivity through a Bayesian

leaning algorithm. Both worker and firm start with the same prior about the

productivity of the match. The prior does not depend on the previous labor

market hIstory of the worker because each match is unique: the

productivity is not inherent in either the worker or the firm alone. The prior

is then updated as the two partners continue their relationship.

Jovanic demonstrates that a competitive equilibrium wage policy

of the firm which is also a socially optimal wage policy is to pay all

employees their expected marginal productivity where the expectation is computed

with respect to the updated prior on the productivity of the worker — f±rm

match. Workers, however, have alternatives. These alternatives include employ-

ment in other fins, participation in social. transfer programs which subsidize

unemployment, or nonmarket activity.

Jovanovic demonstrates that the worker and fin continue their match

until the tine when the perceivedproductivity of the match — ¶4(t) — falls below

the reservation wage — Q(t) — defined as the monetar value of the best

altarnattve to the current employment match. From his assumvtion of a Lener

;age Browth orocess W(t) is normaflv distributed. The length cf the

match is the fIrst passage tine to the event W(t) cQ(t). The first tine chat

this occurs is denoted :'.
;ocher way to fonujata this model is in terms of the index fumc::.n

model fldeiy used in labor econozics. Define
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1(t) w(t) - Q(t).

When I(t)<O, the worker leaves the firm (for a match to exist at all the

initial value of the index function — 1(0) — must be non—negative). The first

time in the match that 1(t) becomes negative — — is termed the first

passage time. (See Jovanovic, page 981, for the explicit formula for r in

his model).

Denote the distribution of T* by F(t*) with density (t*). For the

moment, we ignore any dependence of this distribution on observed or unobser-

ved components. The Jovanovic model implies a special functional form

for this distribution. 1oreover, it Implies that the same distribution

characterizes all spells of a worker's employment with firms, and that the

outcomes of previous matches do not determine the distribution of the first

passage time or exit time from a current match.

At this point it is useful to rewrite the Jovanovic model in

a more convenient form. To da so requires the introduction of

the hazard function, h(t*). The hazard function is a conditional density of

first passage or exit time from a spei1 given the length of time spent in the

spell. For expositional convenience assume that the distribution function

is continuous and differentiable.

Let g(T*jT* >t*) be the conditional density of the first passage time

T' given that 1* is greater than or equal to t*. From the definition, i—F(t)

is the probability that the first passage occurs after t*. Thus

h(t*) s g(T*T*>t*) 1_F(t*)
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A giver. F implIes a given h. Conversely, given h, and our asstnption,Ty

is uniquely defined because

f(t*) dt*
h(t*) dt

1.,F(t*)

so
-

— 1 — axp(— I h(u)du).
and also *

(3) (c*) — b(c*) czp ( — h(u)du)

Duratlan Dependence is said to exist if 3t* 0. The only

(contInuous) density of exIt tines with no duration dependence is the exponentiC

density. Thus if

a exp(- at*), a > o

h(t*) = a

ad 3h(t*) =at*

If Th(t*) >
there Is positive dtiratio dependence. 1 this case,

ha Lager a rkar has been a job, the ora likely he Is t6 escape i i

the next'tncarn."of tIne (:*, :* 4- dt"). If < 0, there is naga-13

atn teDencence, anc t-a Lzer a :c:--a: tas 3een It a joc :te _aS —'-—

is to exit .t in the na:c: "small .nzerra2." c :ne. Positive da-
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dependence during unemployment is associated with a declining reservation wage

in search theory (e.g., Lippman and Mccall) . Negative duration dependence during

employment is associated with firm specific capital in the theory of turnover.

The hazard function arises as a simple and readily interpreted represen-

tation of the structural conditional distributIon of first oassage times in

many models of labor market turnover. The Mortensen, Lippman and McCall search

theory generates a structural distribution of first passage tines. In the

infinite horizon case with a stationary economic environment, the optimal search

strategy is stationary so that there is no duration dependence in unemployment

speils. A shrinking horizon (Gronau), systematic job search over different

wage distributions (Salop), or declining assets in a utility maximizing job

search model (with constant relative risk aversion, see Danforth, or Hall,

Lippman and McCall), all generate optimal stopping time distributions with

positive duration dependence. The precise functional form of the hazard function

is determined by the distribution of the random shocks facing the agents.

Typically, these specific distributional assumptions are imposed as a matter

of mathematical convenience in formulating a theory and are not, themselves,

justified by an appeal to theory. For this reason, it is important to develop

a flexible approach to estimation that does not require special functional forms

to secure estimates. The approach to empirical model building which is developed

below permits the analyst to explore the sensitivity of his estimates to special

assumptions about functional forms
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aolt's model of labor market dynamics, while not derived from an

explicit optimizing odei (but see Toikka), offers another axanole of

a continuous tine labor market aodei. Holt works with the probability that

an individual will be in one of a set of labor market states at a point in

tine. For convenience of exposition, we consider only a two state todel and

we designate those states by 'a' and 'u" — shorthand rv tation for employment

and unemployment.
-

We assume all workers participate in the labor force at

each point in time.

The first passage time or exit time distribution from the employment

state is f(t). The first passage time from the unemployment state is

f(t). The labor market h±s tory of an individual is governed by these two

distributions. Given the initial stat; labor market histories are generated

by realizations of these first passage distributions, By assuming no duration

dependence (or constant hazard) in either labor market state, Holt specializes

these distributions to

f (t ) a exp(— a t )e e a ae
-

f (t) a exp(— at).x u u uu

Hofl does not work with these duration distr±bucions directly.

aather, he works with the orobabilittes that a :erson ifl be in each state
at a cn: in tine. .2(t) and 2(t) (= 1 — 2(c)). These 'rtbabilities tar.

be ieri'zad from the densities cf exit tines by :he foilowin arzunen:.

uosa cnat a :erson :s n staca a: cite . as procao:_.:v
is The conditional rc-babi,!:- cxi: f::n the s:ace tine
in:aral : Lt) is sly the hazaro. a:t) . Thus the probarili:-: f cxi:

from the em;loten: s:aza co the unwpioyment state is (a_c) and b a taraflel
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argument the probability of exit from the .inemployment state to the employ-

ment state is (a At). The conditional probability of remaining in the

unemployment state is l_(aAt). As At-O, the probability of remaining in the

state becomes unity — a result consistent with fixed costs of changing state.

Assuming that a and a are bounded positive numbers, the probability that a

person is employed at time t + At is

P(t + At) (1 — a tt)P (t) + (a At) P(t)

i.e. a person is employed at t + At either by remaining employed (with.

probability (1 — att)) or becoming employed from the unemployment state

(which occurs with probability a At).

Rearranging terms

P(t + At) — 2(t)
________________ — — a P (t) + a P (t).At ee uu

Passing to the limit as At • o,

2(t) — a 2(t) + a 2(t).

By a parallel argument

P (t) aP (t) — a P (t).u ee uti
This system of equations generates a continuous tine Marlcov process.
Given the probability of being in each initial state, these equations can be

solved to yield

a ( __P(t) —
a +Ua + i0) — a

U
r

exp — (a + a)t andeu euj
2(t)

a::
a +(o) — a a; e — (a+ a)t.
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As t — , these probabilities converge to constants irrespective of initial
a

conditions. If the process scans in equilibrium (so P (o)
U and

e aa
a ua

P (o) =
e , convergence is iunediate.

u a+a
e u

The equilibrium probabilIties have strong intuitive appeal. The

larger the exit rate (or hazard) a from the unemployment state relative to

the exit rate from the employment state, a, the more likely is the person to be

found in the employment state at a point in time. In equilibrium, the odds

of finding someone in the employment state are au/ae.
Burdett and Mortensen present a model of search and labor supply that

is developed in terms of state probabilities. It is Markovian conditional on

market wages and reservation wages. - Knowledge of the hazard function and the

initIal state of the process is sufficient information to calculate the state

probabilities. Thus the methods presented in this paper can be used with some

modifIcatIon Gy incorporating wages) to estimate their model.
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(b) Introducing Heterogeneity Into the Model

aeterogeneity is defined as unmeasured and ceasured exogenous variables

that differ among individuals and that nay differ over time for the same

individual. The tern is usually reserved f or unobser-vables as per-

ceived by the data analyst. This paper considers both types of variables.

L'ncorrected heterogeneity leads to biased estimates of duration dependence.

If individual exit time distributions are exponential but individuals have

different exponentIal parameters, estimated hazard functions exhibit negative

duration dependence.

To see this, let the exit time density be a[exp-(—at)]. The

density of a in the population is g(a). Assuming an ideal data set in which

all spells are completed, for a large random sample of individuals the estimated

empirical dIstribution function of exit times K(t) converges to the population

distribution K(t) defIned as

K(t). 1 —
je_ttg(a)da.

The emtirlcal hazard functicn converges to

(t) 1 — (c) =
a

-at
:1 (a)da

tera

<
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by the Cauchy—Schwartz inequality.
1

Intuitively, high a individuals are the

first to exit the state leaving behind the low a individuals. This shows

up as negative duration dependence in the fitted distribution.

By a theorem of Barlow and Proschan (p. 37) if each individual

exIt time distribution exhibits negative duration dependence over the entire

range of values of exit time the fitted hazard function also exhibits negative

duration dependence. The only way for the fitted hazard to exhibit positive

duration dependence is for some (but not necessarily all) individual exit

time distributions to have positive duration dependence over at least some

portion of the domain of the distribution of exit times.

This paper controls for heterogeneity in observed and unobserved

variables by parameterizing the hazard function in a general way. The strategy

adopted here is to write

xi_i A2_i(1) h(t) — . exp CZ(t+r)8 + n + ÷ V(t-i-r)}

A A. ,.

1

h(t) [fa fltg(g) .
[je_atg(a)aaJ

e g(a)da

The numerator oi the expression on the right hand side is nonpositive by the

Cauchy—Schwartz inequality for integrals [Buck, p. 123]. It is strictly negative
so long as g(a) is nondegenerate.
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where Z(t) is a lxK vector of exogenous variables as of calendar time :+t

3 is a Kxl vector of coefficients. t is the calendar time at which the spell

tALi _____coences. Duration deoendence is captured by the two tens and
-

x2

This treatent of the duration terms is clearly analogous to the Box—Cox

transformation used in regression analysis. Unobserved varab1es V(t+r) are per-

mitted to be functIons of time (ttr). By exponentiating the term in brackets,

we ensure that h(t) is positive as required since h(t) is a conditional density

function.

This formulation of the hazard is more general than any we have seen.

It dontains, as special cases, virtually all of the commonly utilized hAzard

functions. For example, setting all elements of a equal to zero except for

the intercept term 8, and assuming V(t+t) — 0 for all t and r,a variety of inter-

esting special cases widely used in the literature on reliability theory can be

generated. If we set — 0 and Xz 0, te obtain the Weibuil hazard rate

(2) h(t) e (Weibull).

Duration dependence is monotone in this model and its sign is the sane as the

sign of n• If we set X — 1 and z = 0, we obtain the Gompertz hazard

(3) h(t) e (60—Yj) e (Gompertz),

By spec±fying alter-
native values for X., y1, 'z and 'r, a variety of models of duratIon datendenca

can be generated. In partIcular, the essentIal features of Jovanovics tunlover

model can be captured by choosing 1 - I and k- 2. Jovanovtc predicts :tac
v• ' 3 and < U so that initial osi:ive duratIon dependence is eventual!::

followed by ne2atlve duration decendence. We demonstrate below chat v-, V2,

and can be estimated and classical hypothesis testing procedures can be used

to cast among copecimg models of duration daendenca.
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Our model (1) extends previous work by penitting the exogenous variables

to vary freely 'thin spells.1 Although time varying variables are a

computat±onal nuisance they are a fact of life. In the empirical work reortad

below we demonstrate that this extension makes an important difference in our

estimates of the impact of key economic variables on turnover probabilitIes and

enables us to generate sensible parneter estimates.

Finally, our treatment of heterogeneity generalizes previous work by

permitting unobserved components to be correlated across spells.

Work by tuna, Hannan and Groeneveld assumes that unobserved components are
uncorreIated across
spells. However, in this paper, our treatment of heterogeneity components

is soaewhat restrictive. We assume that within each spell V(t+t) a v i.e. that

heterogeneity' components are constant within spells. Heterogeneity components

ar permitted to vary across spells. There is no particular reason to assume

that unobserved components behave the way we assume they do unless unobserved

heterogeneity components are immutable person—specific effects. It is l±kely

that unobserved components change within spells. This assumption is made

solely to simolify the coutacona1 procedure discussed below. Its relaxa-

tion is a major goal of our future research.

In order to simplify the exposItion we have thus far confined our

attention to the fonulacion of the hazard function for a sing'e ste1l of an

event, ma procedure outlined above can be extended to multiple episodes of

the event. La: j index ce episode number. The hazard for the j:h episode

ray be wLItten as

:urna, annan. andGror.eveldpeni: one variable in a set of 7artaDlaS
to change within spells.

Z9ec:<man and 3orjas introduce heterogeneIty correlated across
spelLs.
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(4) h.(t.) asp
(Z(t+ t) 6+i (t—l) + iti_ii + v}

Ii 'zi
<

where is the data of the onset of the jth spell, Sy X1,y1,y2. and

are coefficients for the jth speil and is an unobserved heterogeneity

component for the jth spell. This general paraneterization permits behavioral

coefficients todifferdepending on the serial order of the spell. Such shifts

in coefficients has been termed "occurrence dependence" by Hecian and Borjas.

4 simple economic mode]. of 'occurrence dependenc&'or stig is presented in Appen-

dix C. To simplify the computations we restrIct unobserved heterogeneity across spells

to a one factor error specification where V.—CV and is a parameter of the model.

The extension to a two state multiepisode model is iediate. Let

"s" and "u" denote the two states. The hazard function for the jth episode of

state L (2. — e, u) may be written as

(5) •hjt) - exp {Z(tj:Lj:,)8jztrljz(t X1 + 'tZjz (\-1) + v)

where c X9. Again, to simplify the calculations, we restrIct

heterogeneity to a one factor specification

(6) v. =c., v.
j2. 34..
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C. THE LIXELIHOOD FUNCTION FOR .4 TWO—STATE MODEL

This section presents the likelihood function for a two state version

of our nodal. The general likelihood function is presented in AppendbcA.

Individuals are observed for a time interval of length T. At the

start of the interval, the individual is in one of two states "e'or '? To coni—

rnence the analysis we adopt the simplifying assumption that the beginning of

the observation interval is also the initIal entry date of the individual into

the work force. This assumption permits us to postpone discussion of the

problem of correct treatment of initial conditions for the process until the

next section. The data analyzed below are consistent with this assunption.

To simplify the notation, write hazard function (5) with

heterogeneity specification (6) as

where conditioning on the exogenous Z variables and the date of the onset of

the soell is left implicit. Recall that Z = e or u and that i denotes the serial

order of the spell. Subscript 3e thus denotes the third spell of employent

which starts at calendar time
'3e tlq(ve)tT is the density of heterogeneity

components in the population. "' is a pareter vector that characterizes

the distribution. The 7 component is the same for each individual across soells

but is independently distributed across peopLe.

The densit fiztction of cxi: ties t, - for an individual who has

ccrn;le:ed stel.s of anoloyttent and:C cortolacad stells of unenpicynenc and who

a: the end -of interval T is in an uncomtleted soelL of event — of letth
4here is either or —1 and is either a or 2) is, using eceation

- a
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t. t.
K Ju

R hje(tjeV) ex_J hje(flIV)dfl} (n h.(tV) ex-j h.(nIV)dn.

C

Kr
exp—1 h. (ntv)dn} q(V)dV

K K -
where Ze . + C + tj( T. K and K differ by at most one inju u

absolute value because the individual is always in one of the two

states.

The first term in brackets is the product of the e densities of exit
time from employment. Each of these densities is conditioned on V, the hetero-

geneity component. The second term in brackets is the product of K conditional

(on V) densities of exit tines from unemployment. The third term is the

probability that the KTth spell of event lasts at least t . This prob—T' t
ability is also conditioned on V, the unobserved heterogeneity component. Inter—

gratidn with respect to V eliminates the conditioning. Integrating out V is

formally equivalent to integrating out nuisance parameters. n alternative

approach to estimation would be to treat V as a fixed effect for each individual.

Except for some very special cases, the latter approach leads to a serious incidental

parameters problem (see, j., Heckman), and results in inconsistent

parameter estimates in short panels. For this reason we adopt a "random effect"

approach in our empirical analysis.
- Under the assumption that individual event histories are obtained from

random samples of individuals, the apøroriate log lIkelihood is the sum of the log of
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density (7) for each individual in the sample. Maximizing this function with

respect to the parameters,
12,JZ A1. ,

and C, for

2. eSorhIu,I and S, the parameters generating the density q(V8), produces

maximum likelihood estimators which can be shown to be both consistent

and asytnptotlcau.y normally distributed as the number of event histories becomes

large. Valid large sample test statistics for parameter vectors can be based on

the estimated information matrix. To imolement the model, it is necessary to

make some assumption about the functional form of qClje). In this paper, we

assume that it is a standard normal density. Since the parameters c. and C.ju
can b'e freely chosen, this specification does not restrict the values of variances

of V across spells. In later work, we plan to experiment with a variety

of densities for V in order to check the sensitivity of the estimates to

alternative specifications of the density of heterogeneity components.

The likelihood function presented in this section generalizes previous

work by permittIng (a) introduction of time varying explanatory variables, (b)

correction for heterogeneity components correlated across spells. (a) estimation

of general forms of duration dependEnce. By permitting structural coefficients

to change across different spells of the event, we can estimate a model of

"stia" or"occurrence dependence" of the sort discussed inBecican and Zorjas

and derIved in Apoendlx C. Lagged values of lengths of previous spells

can also be introduced as explanatory variables in the model to capture the

notion of "lagged duration dependence" advanced by 5ecloan and Sorjas.

Since the likelihood function accounts for each unit of time spent in the sapling

interval 0 — T, it naturally corrects for incomplete or censored spells of events

that are a consequence of the spliag scheme.
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Testing for the presence of heterogeneity raises certain delicate

statistical problems that arise in testing for values of parameters at the

boundaries of parameter spaces (Moran, 1973). A straightforward test for

the presence of seriafly correlated unobserved components can be constructed

that avoids these problems.

The following test procedure is proposed. Under the null hypothesis

that there is no serial correlation in unobservables. Future values of

duration variabLes should not be statistically significant determinants of

current duration distributions if heterogeneity is ignored in estimating the

parameters of current duration distributions. Standard (asymptotic) signifi-

cance tests on the estimated coefficients of future duration variables

estimated without correcting for heterogeneity can be used to test the hypothesis

of no serial correlation in unobservables for any two spells of the event)

This test is not informative on the presence or absence of heterogeneity

components distributed independently across spells.

It is possible to estimate both A1. and A2. (subject to the restriction

that A1 < A2) and the associated coefficients and 12j• Using the estimated

information matrix one can construct a joint confidence interval for these coeff i

cients and determine whether or not certain restricted models lie within the

confidence interval. If they do, the data are consistent with the restricted

models. Thus, for example, if the estimated confidence interval includes 0

and — 1, a Gomvertz hazard is consistent with the data for spell . If
the confidence interval includes — 0 and — 0, the data are consistent

with a Weibull hazard. By examination of the confidence interval for the general

model it may thus be possible to select a more parsimonious model.

1We advocate use of Cuture values rather than lagged values in constructing
the test because of the possibility that lagged duration variables may be present
in the structural model. See Hecican and Borjas (1980).
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(d) Initializinz the ?rocess

It is a rare data set for which the beginning of the sample observation

interval is also the beginning of the individual's entry into the workforce —

the assumption made in the last section. More typically, a sample begins

with individuals caught midstream in an employment or uneploynent spell. It

is coonly the case that we know which state an individual occupies at the

beginning of the sample, and possibly the serial order of the spell but we do

not know the length of time spent in the spell before the individual is observed.

This section presents methods for adjusting the likelihood function presented

in the preceding section to account for this problem.

In order to focus on the essential aspects of the problem, we coence

the analysis under the assumption of a strictly stationary economic environment,
and under the further assumption that the process is in equilibrium.

People can be in only one of two states: employed or unemployed. The density

of exit time from employment, f(te) is the same across people and across time

for the same person. The same is true of the density of exit time from unem-

ployment, fu(tu) The process is assumed to have been in operation for a long time

for each person. Let Le and s be the mean time in employment and unemployment,

respectively. These means are assumed to be fnLte. We abstract from occur-

rence and lagged duration dependence, but permit duration dependence.

Suppose that we first observe the process for each individual at calendar

time : . The probability that a randomly selected person will be found to be

empLoyed at is
0

1 -
a

a '

a derivation :or this expression can be furrd in Cox ? 36). ln:i;ively,

each complete empLoyment and utemploymenc episode lascs on average

flscussions with !arjoria icflroy and urt:n Singer :larifiad our

thinking •:n the :robiems disctzssed in this action.
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and each complete employment spell lasts 11e Rence is the proportion of

time we expect to find an individual employed over a long observation period.

Given that a person is employed at time what is the distribution

of a completed employment spell spled at r? The completed spell

length includes the portion observed after the start of the observation period

at to and the uuobaerved portion completed prior to r. The distribution of

exit times from the sampled spell is not the distribution fCc). This is so

because the completed lengths of spells sampled at r are on average longer

than the typical spell. Longer spells are more likely to be sampled than

shorter spells. Amplifying an heuristic argument due toCox and Lewis (pp.

61—63), the density of the sampled completed spell, denoted

can be derived in the following way)'

Condition on the event that the individual is employed at the time he is

sampled. The number of employment spells of length x that occur in J episodes
3

of total time spent in employment E Ct) is n(x). For a random sampling
j—].

scheme, random across time for a single person or across people at a point in

time, the probability of sampling a spell of length x is

3
z Ct).
j=l

This exØession is the ratio of the total length of spells of length x to the

total length of the employment process. On average, one '411 tend o oversaple

longer spells by the random sapling process. Divide the numerator and denomi—

nator by 3, the number of spells of employment, and let 3 grow Large, so thac
total tine spent in amploymenc gets large. Then

- 3
Z Ct

tin 3=1 a
3

For discussion of this point ifl the analysis of unemployment s;ells
see Salant, p. 56. -
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by the strong 1a of large nubers and

(.1)liz it (x) -= z Cx)3 e

Then the density of sampled employment spells of length x is

liz x" (x) =
X

J— 3
z (t ) _

j=l e

The mean of the sampled employment distribution exceeds the mean of employment

so long as the variance of t (2) is positive. The mean of the sampled

distribution is a2 + p which is clearly greater than e since the mean is

always positive. For exponential exit time distributions this mean is twice

the mean value of an employment interval. By randomly sampling across

time for a single person or across people, we overestimate the population mean

length of employment (and unemployment) duration.

Collecting results, the density of the completed employment spell sampled

at time period % is

to fCc°)
(8) t°)= e: e

We do ot observe ° . Ens tead we observe t, the time from the origin of the

sample to the completion of the spell. -
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For any length of completed spell t°, as a consequence of stationarity

any value of t0 is equally likely as long as 0 c Thus the conditional

density of t: given is

(9) k(t° t°) a!, ,

The joint density of and t° is the product of (8) and (9),

0 0
—o o 1 t f(t)m(t,t)a— e a ea e 0

te U

Thus the marginal density of E° is

—o*e(t)— 1 1 f(t)dte — e a e

a

—o (1)

— l-'F(t)
u

Recail that these derivations depend on the assumption that the sampled spell

is an employment spell. The probability that the sampled spell is an employ—

mentspellisiT "a . Thusthee
U+U

unconditional, density of an observed first spell of employment is

•@ (t°)t l—F(°)a a a e
e u

1'This density is also the density for time in the spell prior

to t, A. See Cox, p. 61. Replacing A: for in Pe(t) produces the

density for A".
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By an entirely parallel argument the unconditional density of an observed first

spell of unwployment is

— —o
* — — 1—r(t)

'!i (t°)= •4i (t°)T
U LI

U U U U U
a u

where the new sybols used in this expression are defined in the obvious way

replacing "a" with "u." -

It is straightforward to modify the analysis by adding exogenous hetero-

geneity components provided that these components are identical across spe11s.

They may differ across people. Thus, in place of ft(tz) (L e,u) we may write

I Z,V) and the derivation .may be repeated as before with 4i (E j

e,u, written in prace of 47 CE.
With this odification, the density f-4nction for the exit times

(where the subscript denotes the state at sampling tine period "o") and

for an individual who has Xe completed soells of nploynent and conpietad

spells of uneinploynent and who at the end of interval t is in an incomplete

spell of event of length (where Ktis either Ke ÷ I or K + I and

i either e or u) is

K tie K

(10) 1 v (t? !Z, V) Yt h (t. I) exp-i h (n!V)dr} C r h (t. jv).e je j C j=l1

ext— h (v):- . I h. (-7)dn} c('7)dV
U -

C C

Thdar the assuz:ticn that itdrLcual avan: hist:ris are obcaine rtn

rancc 3am:sas or :icv1duas, :ta ao'Crocrtaca .o; lLelatooc :Cr tt.s at.LZ
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scheme is the sum of the log of density (10) for each individual in the sample.

Maximizing this function with respect to the parameters of the model produces

consiscent and asymptotically normally distributed estimators as the number

of event histories becomes large.

This procedure produces an exact solution to the probln of initializing

the likelihood in a stationary environment if the process is in stationary eq.zili—

brium. It is not a general solution. In many cases the two key assumptions —

equilibrit and a stationary environment — are unlikely to be even approximately

correct. tn this case the procedure just presented is not valid.

We postpone a general discussion of this probl to a later occasion.

Here we sketch two solutions, both of which are patterned after a discussion

by one of us in a previous paper (Hectcnan). In a general nonstationary

environment, in order to correctly initialize the process, we require the prob-

ability distribution of the first spell in our saple. Its derivation depends

on the rule used to select the saple being analyzed, the probability that the

individual is in a given state at the time he is sapled, and the distribution

of the length of time spent in the first spell in the observed sample period

given the state that the individual is in when the sapling begins. The density

of the first spell duration written as

1 Z(r)s )
— e, U

0

This density does not, in general1 have the same functional fon as or

I: depends on presple values of the exogenous variables as well as within

sample values. In general, we do not ow its exact functional Eon. Ecwever,
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we can approximate it using the flexible functional Eons for the hazards given

in equations (5) and (6). One strategy for empirical work is to parweterize

the first spell in the sple differently from that of subsequent spells and

utilize density \ in place of in equation (10).

A practical difficulty with this solution to the problem of initial

conditions is that aresaaple values of the exogenous variables are required

to form the density of the exit time from the first svell in the sample,

While such data may be available for some samples, this is unlikely in

most cases.

there are two approaches to this probleD. Denote the density function

for the exogenus variables by k(Zx) where x is a vector of parameters of the

density generating the data. The first approach estimates this density from

data. The exogenous variables within the sample period might be used to

animate the density or else auxtliary data sources might be utilIzed. GLvn

consistent estimates of the density function of the missing data, denoted

k(Zx), one can form defined as

* —o 2.0

f A,(c, ( Z(r)} , V) k(ZIx)dZ

Inserttng Xin place of X, in density (10) is equivalent to integrating out the

tnissing dna, and fonin; an estimated likelihood function. From the exogeneir:

of Z, and the assumed convergence of k(i:x) to ktZ) the estimated UJ-alihood
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converges to the true likelihood and maximum likelihood estimators based on the

estimated likelihood converge to the true maximum likelihood estimators.'

The second approach is to jointly estimate the data density and structural

parameters of the modal. Given the exogeneity of Z, no advantage accr3es to

this comoutationafly more demanding approach.

A second solution to the problem of initial conditions proceeds conditionally

on V. Substituting A -for in density (10) and gjven V v, the probability

density for the sample exit times is

(12) I v1{Z(r)}t0.Q )

t. t.

e(tje exp he (nlv) dq}{ ti1h(t. jv) exp h(nIV)dn}.

(art, _fT1LT h (rifr) d }

"v't is a parameter for each individual. One may further condition on to

write the density of the sample exit times given V and This conditional

density is

t. . t.
K Je t'..

(13) h(t. J) exp — j h (rilv) d.i}{ zt3h (t. j v) exp —f h(rilv)drl}
j=l a j=L u

1ç,z_
[ exp —j

-
h, (Hv) d }

tDue :o the nonlinearity of the model, integrating out the missing daca
with respect to its distribution is a not, in general, equivalent to tapLac.ng
the nissing values with estimated mean values as is customary in standard
litear regression odels.
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and does not depend on the parameters of the initial exit time distribution.

Maximizing the conditional likelihood function with respect to the parameters

of the model (including a value of v for each person in the sample) generates

consistent parameter estimates as number of spells per person becomes large

(K + K • to). However, in the case of short panels, it is in general not

possible to consistently estimate v, and due to the nonlinearity of the model

estimated parameters win not be consistent because the maximum likelihood

estimator will involve joint estimation of v and the structural parameters.

The inconsistency in the estimator of v will be transmitted to the estimator

of the structural parameters (Heckman).
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II CONTINUOUS TINE vs. DIRETE ThIS MODELS

The principal, advantage of continuous tine models for discrete panel

data over more conventional discrete tine models for discrete panel. data

is that the parameters generating the continuous time model are invariant

to the time unit used in empirical work. Commonly utilized discrete tine

models such as logit and probit lack this invariance property. A. probit

model for the occurrence of an event in a time interval of a specified

length does not imply a probit model for the probability of events in time

intervals of different length. Dependence of the parameters and functional

form of the model on the data.used to estimate it is an undesirable feature

of discrete time time models that is avoided by use of the continuous tine

approach. Put differently, a continuous tine model can always be used to

generate a discrete time model while a discrete tine model is critically

dependent for its paraneterization and interpretation on the particular time

interval on which it is estimated.

To demonstrate this point, we consider the first passage time asso-

ciated with a single spell of an event. We do not observe the process

continuously but we lmow in which of a series of discrete, equispaced

intervals the first passage occurs • To silify the exposition, we ignore
heterogeneity in unobserved components and initially assume that measured

variables stay constant within each spell. The stochastic process starts

'at time "0". We observe the occurrence of the event only in equispaced

time intervals of length a.

For a continuous time model with hazard function h(u)', the probability

that a first passage occurs in the ith interval is

'For simplicity we do not explicitly note the dependence of the
hazard function on exogenous variables.
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(j—l)
(14) exp—( f h(u)du)— exp—ffh(u)du).

0 0

This is simtly the probability chat the first passage occurs sometime

between (j—l)A and jt. (" F(Ja)—?(Q—l)A)). No matter how wide or stall

the intervals are defined and irrespective of whether or not successive

intervals are of equal length, the first passage time probability is

generated by the same structural hazard function h(u). Thus if A iS the

width of the Lth interval, the probability of a first passage in the jth

interval is simply

i-.1

LtL
9.—I

exp— Cf h(u)du)— exp— Cf h(u)du).
0 0

The conventional dLscraca tIme modal (e.g., Kiaf at and Neumann

or Mecian and Willis; assumes chat there is a '!true" time interval of

length A. is the probability that an event does not occur in the interval.

For example, if the probit model 15 adopted it is assumed that

where is the ctulative dIstrIbutIon functIon of tie tonal dIstrIbution,

and 1 is a vector or erolanatorv variables with assocIated coefficIent vector

2. Zor thIs model, the rcbabUi:y of a fIrst passage in the :h interval Is

=
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Suppose that in another data set the interval widths are longer

(e.g., quarters and not months). For the continuous time model this enlarge-

ment of the interval creates no problem and the probability of first passage

can be expressed as a function of the underlying h(u) function by a straight-

forward modification of expression (14).

For the discrete time niodel to be defined at all on the new time scale,

that scale must be a positive integer multiple of the original scale. For the

discrete time model, unlike the continuous time model, fractional intervals

have no meaning because the discrete time model is silent on the behavior of

the process within any interval. If in fact the new time scale is m times the

old scale (with ni a positive integer), the probability of a first passage in

the j th new interval is

(15) ()(i-l)n(1_ () cp)m_Lup)t) -
t= I.

The second term in the expression on the left hand side is the probability that

at least one event occurs in the jth tine interval measured on the new

scale. NeIther the probability of occurrence of at least one event in the

new interval (l—(P )) nor the probability of occurrence of exactly one

event in the new inter7al(l_((p)m (1P)) are probit f'nctior if the

orobabtilty of occurrence of the avert in the old interval is ;robt. Of

course, in this sinvle exannla, it is possible to nta these probabilItIes

in tens of the underlying probIt nodel for the old intervals. Sun note

than it will be necessary to modify a lIkelihood function t.sed to compute
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parameter estizatas to account for the nod1ficaton of the intar;al width.

as noted above, there is no legitinate procedure available to nodify

the discrete time model to account for non—integer expansion or shrinkage

of the original inteal length. It .s necessa' to postulate a new

model——which might be asstned to be probit in the new intaa1s——with new

parameters that cannot be. derived from the original parameters of the model

defined on the original interval.

Continuous time models can be used to generate discrete tine models.

Indeed, in light of the discussion in this sectIon, the models consisting of equations

(5 ), (6) and (7) can be interpreted as providing a general algorithm

for producing a class of discrete tine models for the analysis of discrete

panel data. In contrast with conventional approaches in econometrics,

the approach offered in this paper provides a parameterization of discrete

tine models that is independent of the tine scale in which the occurrence

of dIscrete events is measured.

We do not want to overstate the case for ccrttnucus tine models.

As noted by Singer and Spilerman, Phul±ps and others, aggre-
gation of cttinucus tine' fata into interval data tf the sort described

in this section may lead to non—identification of the hazard function h(u).

This is clearLy the case if the hazard is arbitrarily specified. If suf-

ficient smoothness is iosed on the hazard, as is done for the hazards

utilized in this paper (s'e equations (1), (4) and (5)), this idanti—

fi:ation Droblam does not arise. NonetheLess, it is iortant to note

that without icsing infonation of some sort, tine aggregated data tay

not aLa'rs be used to recover the ur.derlving hazard . n.nfin±tv of hazard

ftr.c:ions dafined over :± intervaLs witnin observed saoiinz ;ert:ds tan

:r:duce the sa time aggre2ated data. 'Jnlass a smoothness assumption

is iosed. it is not possibLe to utilize the time eggregated data to e:over
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the underlying hazard h(u). Without such an assumption, there is no aecessary

advantage in using continuous time dels in place of a conventional discrete

time approach. Put differently, in the absence of such identifying assumpticns,

and in the presence of ti aggregated data, the relative merits of the

continuous time approach fade, and the mdels advanced in this paper must

be interpreted as just one of a variety of discrete time models that might

be used to analyze discrete panel data.

Ill PI1TALLS IN USING REGRESSION METHODS TO
ANALYZE DURATION DATA

Appendix B presents a derivation of the procties of a Waibull.

regression model that can be used to analyze duration data and estimate

duration dependence parameters. This section considers two important

problems that arise in usin; standard regression analysis to analyze duration

data. The first problem is one of sample selection bias.1 The second

problem is the difficulty that arises fron introducing time varying explanatory

variables into regression models. The first problem arises because most

panel samples are short. In the course of a panel, some ithividuals never

complete a single spell of an event while others will have multiple spells

and even those iivi&als will usually have one unfinished spell in the

course of the panel. Coonly used procedures, such as utilizing only

completed spells of events for regression analysis, impose a sample selection

criterion on the sanvle used to execute the emviric.al rk. Failure to

1This problem is discussed in Tuna and aannan.
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ac:ount for such conditioning results itt biased parameter estimates. The

resulting bias depends on the particular rule chosen and on the length

of the panel. The dependence of the bias on the length of the panel makes

regress ton estimates from panel samples of different lengths r.oncompaable

even when the saute selection rule is employed for generating data to estimate

models.

The second problem—introducing tine varying exogenous variables into

a regression analysis for duration data—arises because the appropriate

functional form of the regression equation depends op the time profile of the

exogenous variables. Conditioning duration regressions on "exogenous'

variables measured after a spell begins nay induce simultaneous equations

bias in the regression estimators. Ad hoc solutions to these problems

convert truly exogenous variables into endogenous variables and hence result

in biased estimates. This section considers both of these problems starting

with the first one.

To focus on essentIal ideas, consider a regression analysis of duratidn

data for a particular type of event—e.g., the lengths of time spent in

consecutive jobs. To simpli.fy the analysis we assume that no time elapses

between consecutive jobs. The density of duration in a given job for an

individual with fixed characteristics Z is

t!Z).

Utobser7ed heterogeneity components are assumed to be absent from the zodel.

The expected length of t g±vem Z is

(17. (t!Z) — j• tf(tZ)dt (Z)
0
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From a regression analysis we seek to estimate the parameters of g(Z).

For example, if (tlZ) a 9(Z) erp—(O(Z)t), 9(Z) >0,

tic' - 1
ECt Z) =

9(z)

—1
tefiiing 9(z) a (8z)

(19) E(tlZ) — $Z.

Under ideal. conditions, a regression of t on Z wifl estimate 3. We now

specify those conditions.

Suppose that the data at our disposal come from a panel data set of

length T. To avoid inessential detail suppose that at the origin of the

sample — "0" — everyone begins a spefl of the event. This assumption

enables us to ignore problems with initial conditions.

We would like to use this data to estimate E(tIZ). But in our panel

sample the expected value of the length of the first spell is not E(tIz)

but is rather

(20) E(tIZ,T) - tf(tZ)dt + I f(tIZ)dt < E(tZ).

Thus, in the exponential example

(21) E(tfz,T) z [i - e_h/2Z
]
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Clearly, a least squares regression of t on 2 will not estimate S. As T-c,

the bias disappears. In the exponential example, as T becomes big relative

to the mean duration, 1/0(2), the bias becomes small.

One widely used method utilizes only completed first spells. This

results in another type of selection bias. The expected value of t given

that t < T is

T

ftf(ttZ)dt
(22) E(tIZ, T, t<T) o

T

ff(tJZ)dt

In our exponential example

(23) E(tIZ, T, t<T) —

(i._e_Tet'82)

z / (TIBZ)e TIØZ)

(l_e_T')

Again, a least squares regression of t on Z does not estimate 8 for this

sample. As Te, the bias disappears.

Clearly there is also selectIon bias when we analyze the expected

duration of a completed second spefl of the event. Denote the length of

spell i by t±. The expected length of the second spell is

-

TT—t2
I f tzf(t2IZ)f(tiiZ)dt.dtz

(24) E(taIZ, T, tj + taC)
T t—t2

I f(ta!Z)f(tiIZ)dt1dtz
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Secausa t1 and t2 are independent, and hence the subscripts "i" and '2" can be

interchanged without affecting the validity of the expression, this is also the

conditional erection of the length of the first soell) For a sample of indivi-

duals with at least two completed spells of the event

(25) E(tzlZ, T, t1+t2<T) — BZ 1_e_T1'BZu+r/sz)_() e_Tt
—T/BZ —

Clearly, E(t1IZ, T, t1 + t2<T) # E(t1jZ, T, tt<T)..
The key point to extract from this discussion is that for short panels

In which T is tismaflit, regression estimators do not estimate the parameters

of regression function (18). Least squares estimators are critically

dependent on both the sample selection rule and the length of the panel.

Two studies that utilize the same sample selection rule for generating

"usable" observations will produce different regression coefficients if the

studies are based on panels of different length.

It is possible to estimate the true structural parameters of the model.

The maximum likelihood estimator discussed in section (1) automatically

corrects for the panel length bias. Moreover, it is obvious from our

exponential examples that by use of non—linear regression it is possible to

retrieve the structural parameters of interest.

The sane main conclusions can be obtained if we relax the simvlying

assumption that the process starts up at the origin data of the panel. In

additLon to saumle selection bias and panel length bias in models with

-
1Thus in testing for "mean occurrence dependence" (i.e., different

regression ftrnctioas -for- consecutive spells), the sample selection bias
discussed in the text does not bias the test based on regression methods.
This result is critically dependent on the assumption that the 2 variables
r'nn constant both within and across spells, and of course, that the same
rule is used to generate first and second spells.
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duration dependence regression estimators that do not correctly account for

the length of tine spent in a spell prior to the time the panel begins are

subject to a further source of bias. Except for exponential duration

distributions, the distribution of a left censored first spell is not the

sane as the distribution of an uncensored spell. (See equation (11)).

the conditional expectation of a left censored distribution is not the

sane as the conditional expectation of the uncensored distribution. As

noted in section (t.d), the maximum likelihood estimator can be used to

correct for this source of bias as wefl.

Regression methods for the analysis of duration data also break down

in the presence of time varying explanatory variables. The functional

forms of the regression equations depend on the tine paths of the explanatory

variables. Even if the lengths of consecutive spells of an event are

generated by hazard functions of identical functional form, the regression

functions for durations of consecutive events will, have different functional.

forms. In the presence of unmeasured heterogeneity components, regression

equations fit conditional on the "exogenous variables" measured starting at

the onset of a spell may generate biased coefficients. This is so because

the particular values assumed by the explanatory variables selected in this

fashion may depend on the lengths of the preceding spells. This is certainly

the case for tine trended explanatory variables like age, and in the

enpirical work we report below, it is also the case for our national

unemployment rate variable. Assuming that unmeasured heterogeneity components

are correlated across spefls, the initial values of time trended varIables

in a - spell will be correlated with the regression error term, and will, become

eztdogenous variables • For the usual reasons, least squares estimators will

be biased.
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To focus on the essential aspects of the problem, suppose that we have

access to a very long panel data set (T-) so that we can safely ignore the

length of panel bias previously considered. As before, there is only one

type of event and we assume that the stochastic process begins at the

beg4.mlng of our sample. The duration tine distribution depends on time

varying variables Z(t) where r denotes calendar time measured from the

origin of cur sample.

A coon functional form for the hazard function, h(.), is assumed for

all spells. "V'1 is a heterogeneity component common across all spells.

The density of duration tine in the first spell, t1, is

ti
First spell: h(t1, Z(t1), V) exp— f h(u, Z(u), V)du.

The density for the duration tine in the second spell t2 given that the

first spell ends at calendar tine .a is

Conditional Second Spell: h(t2, Z(t2 + ti), V)exp— f h(u, Z(u +t1), V) du.
0

The marginal second spell density is obtained by integrating out tj. Thus

f*(t2, Z, V) —

tz
f[h(tz, Z(t2 + ti), V) exp— f h(u, Z(u 4-t1), V)du]•
0 0

-

ti
(h(t1, Z(t1), V) exp—f h(u, Z(u), V)du]dtj.

in the case in which the distrIbution of Z(t) does not depend on time (i.e.,

tine stat:ortanty in the exogenous variables),
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f*(t2, Z, V) = h(t,, Z(:2 + tü, V) asp— f Mu, Z(u +t1), V) du.

Othenjise the marginal second spell density will be of a different functional

fan than the marginal first spell density, and the regression functIon for

the second spell wifl have a functional-form different from that of the first

spell regression function.

A snple example may serve to clarify the main points. We fIrst

demonstrate that the functional form of the regression will depend on the

time path of the exogenous variables that drive the model. Consider the

following exponential model for the first spell of an event:

f(tjlZ, V) — 6(Z,V)e'1,

where 8(Z,V) — , and Z remains constant over the entIre spell. The

regression function for duration in the fIrst spell is

(26) E(tiIZ, •
e(z,v)

— + V.

Supoose we consider another indIvidual who is subject to a dIfferent

value of Z before and after calendar time t1. The density of ti for this

person Is derIved most simply from the conditional densIty before and after

t1, I.e.

_24'z 7t- 9(Z; '7) e 1, 1 OCtCT:
:(ta:Z, 7, t Ct1) a —(7, ¶T)—.

(1—s
and

- 2 ( tf(zZ, 7, tt ) tt) • :zz, V)t tRri

The : diional s:cectation zf duracion th zha s:eij ts
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1 —S(Z1, V)tj I — 1

(27) E(tiZi, Za, r1. 1) a ez, a e(Z2, V) S(11, V)

The funct±onal fan of the regression equation (27 ) differs dramatIcally

from that of (26 ), and the problems of inference and parameter estimation

differ greatly between the two equations. In general, different tine paths

for the exogenous variables will result in different functIonal forms for

the regression equations.

A coonly used regression procedure far the analysis of duration

data computes regression equations conditional on the values of exogenous

variables that occur at or after the start date of a spell. The Intuition

that underlies this procedure is that it is only the variables that occur

during a spell that can explain the duration of a spell. In the presence

of unobserved heterogeneity components correlated across spells this

procedure is inherently dangerous. In the presence of heterogeneIty,

selection of explanatory variables in this fashion converts exogenous

variables into endogenous ones, and guarantees simultaneous equations bias

in least squares estimators.

to show this, assune the sane functIonal fan for the hazard function

in all spells of the event. The conditional expectation of duration in the

second spell given values of the exogenous variables that confront the

individual after the end of the first soell is• f or a case of no time varying

variables

(2! tzjZ, V) — 1I8(Z, V).

For the case of tine varying r±ables, the condItIonal expectation depends

on whether or not t > r. If t1 , the condItIonal enec:ation is

E(t2IZ1, Z2i _j —t <

_e(zt,v)cz:-c:)/ — -. -.
—

kz21 e(zt'))''
—
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Par t > tj, the conditional e:c,ectatjon is

(30) .(ziZL, Z2, tj, V, t1 > = cl—1 , -I > Ti.'2, V)

Although equations (29 ) and (27 ) are oi the sane functional fo,

there is one important dfferenc2: in equation (29 ) t is an explanatory

vartable. Since unobserved heterogeneity cornponent V is correlated across

spells, t1 is an endogenous variable in a regression model that treats V as

a component of the error ten of the model (i.e., a model that is not

computed conditional on 7). Partitioning the data on the basis of ti < t1

raises further problems. By Bayes theorem, the conditional mean of V Lu

equations (29 ) and (30 ) depends on ti and the explanatory varLables so

that the error term (inclusive of V) associated with regression specifications

for equations (29) or (30) does not in general have a zero mean. A standard

least squares assution is violated and least squares estimators of duration

equations will be biased and inconsistent.

The maIn point is quite general: whenever there are tine trended

or nonstationary explanatory variables in the modal, condItioning the

durations of subsequent spells on exvlanatory varIables measured from the

onset of those spells induces correlation between the explanatory variables

and the heterogeneity component in the odelJ

One solutIon to these problems is to use the marelnal second spell

densIty and cempuce the conditional expectation of tz with respect to it.

For the casa of no te varying variables, and in the rnore general case of

:inestatlonar exogenous variables, the argizal and condi:icnal densIties

ooincide so that the right hand side of equation (27) is the :ondl:Icnaj ex—

?ectacI:n of t, ii:h rastect to the argInai second spell danslt-'. z the
resenoa oE non—statIonary e:clanatorv rarlabies the two dIstrIbutions differ.

1Gar' Chamberlain (1981) has also discussed this problem.
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In our e:anpla, the :c.ndit±onal expec:acicn of t2 pu:ad rch

restect to the tar;tnal dis:ribu:iott of t1 is

(31) E(czIZt, 1z, V) —
e(111v)

(1)

(e(zi.v) - &(Z2, 1

e(z21v)

)l\e(ZlV)

I

In long panels, estimation of this equacir. avoids the endogertetty ?roblez

induced by select±ng explanatory variables on the basis of past realiratlons

of the process. Note however from inspection of equat±ons (27) and (31 ),

chatsuccessit conditional expectations of duratIon tines taken 'rith

respect to the successive ttarginal dIstributions have d±fferent functional

forms. this is so even though the functional form of the ha:ard function

is invariant across spells. This means that in the presence of time varying

variables it is not possible to simply poci data across successive spells

of the event to estimate the cocn parameters of a regression function.

Ncreover, due to the nostationarIty of the exogenous variables, simple

regression tests, of "occurrence dependence" till tend not to reject that

hypothesis (coaring differences in regression coefficients across consecutive
spells or an event).

Two ad hoc procedures for cocing tjith tine trended or general non—

sta:onzry varIables in a regression format are readily dtscussed and

disposed of. The f±:st uses average values of the regression varIables

This expectation is cctuted frcm the join: density of :,,:, tthi:h
7)t. _(7 '

• fle —, — (Z. ,V)a 'Si' —z

Octcr,—c,

- —
—.\. . ——

— — r —

-— - ;Ln.._,i)a '-:' / — — —

—C. <t.
— —

'—.—(Z_,:)e '2'': e::.,7):Th e'''2''l''L

3<:.
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within a spell in a standard linear regression format •1 This procedure

ignores the change in functional form that results from different paths for

regressors. It fails to capture the essential dependence of first passage

time densities on the entire sequence of exogenous variables, not just those

realized in a spell. Exogenous variables that are selected in this fashion
become endogenous variables. To demonstrate this final point by way of an example

consider a strictly positively treaded explanatory variable. The average

value of the variable within a spell is simply the multiple of the length of
the spell, and is learly endogenous.

A. second ad hoc procedure for introducing time varying variables into

a regression format is to use exogenous variables measured at a start of a

spell. Again, this procedure results in a misspecification of the true

conditional expectation function and for nonstationary explanatory variables

manufactures simultaneous equations bias for models with heterogeneity

components by selecting "explanatory" variables on the basis of prior

realizations of the process.

The standard regression approach to the analysis of duration data is

thus seen to be a rather fragile empirical procedure. Only in the case of

long panels in stationary economic enviroents does it produce valid

parameter estimates • These conditions are unlikely to be realized in the

analysis of microeconomic labor market data. The likei.iiaood approach corrects

for length of panel bias and suitably modified corrects for other sampling rules.

Tine varying explanatory variables can readily be accommodated in the

likelihood approach. For both reasons, we strongly prifer the likelihood

approach to the regression approach In the analysis of labor market duratIon

data.

1Cox and Lewis suggest this approach but only for explanatory
7ariables that are not strongly time treaded.
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IRICAL A11ALYSIS

This section reports the results of two empirical analyses. Sub-

section A compares empirical results obtained from regression and maximum

likelihood procedures used to analyze spells of employment and nonemployment

for a sample of young men. Our results from this analysis are of considerable

substantive interest, and also serve to illustrate the biases inherent in

using regression technicues to analyze duration data. Subsection B presents

tests of the proposition that it is legitimate to aggregate the "unemployment"

and "out of labor force" states into one state called nonemployment. This

proposition is of interest given recent claims that the distinction between

the two nonemploynent states is artificial (see, e.g., Clark and SummerS).

We find that the states are empirically distinct.

The sample used to perform all the empirical work reported here is

selected from the National Longitudinal Survey of Young Men, and is the same

as that previously employed by Hecican and Borjas. We follow 122 young men

for thin consecutive months, from the time they graduate from high school.

The small size of our sample is due to the stringent selection criteria

imposed. to be included in the sample an individual must (1) be

45
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white; (2) have received a high school diploma in the spring or early suer

of 1969; and (3) not have returned to school in the period beginning in the

fall of 1969 and ending in December of 1971.

The sample was selected in this manner in an attempt to minimize the

initial conditions problem discussed in part d of Section I. By using indi-

viduals who have recently completed schooling, we have selected individuals

with little or no previous labor force experience. The vast majority of

individuals in our sample have not worked in full time jobs during high school.

We can safely ignore the initial conditions problem in deriving the maximum

likelihood estimates presented here. I

A. Comparison of Regression and Maximum Likelihood
Estimates of Employment and ?cnemployment
SoeJ.l Duration

The regression specification employed here is similar to the !eibull

model used by Heckman and Borjas. A more complete discussion of the

Weibull regression model and its statistical properties is presented in

Appendix B • We assume that duration tines conditional on heterogeneity com-

ponents are Weibull distributed, and consider the first two completed spells

of employment and nonemploymenc. In terms of hazard (5)' the specification

estimated is obtained by setting 1•— — 0, and Z(u + t1) Z1 for

o < u c t, j 1, 2, where 1 — employment "e" and 2 — nonemployment "ix."

(Recall that t. is the date in calendar tine at which the j spell of event

.1 begins.) The last condition imposes the requirement that the values of the

exogenous variables are fixed over the duration of a spell. In our empirical

analysis the values of the exogenous variables are fixed in two different ways.

In the first way, we fix the exogenous variables at their beginning of spell

values, so that
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a
3'

The second way uses within spell averages of the Z,

5z + k) dk
a

jZ

to approximate the "true' value of within the jth spell of event 2..

We adopt the following one factor Weibuil regression model specifica-

tion: -

Zn t aZ . +4. +i.
j2. 32. jP. 32. jL

-
where — (equation B—5)

— CL.
viz

—

1+yz

C. is a factor loadlzg for event 2. on heterogeneity component , and

— 0, E('L) — 0, Edi.2W12.) = 0,

and is iid across spells and people. The variance of W is + 1)2 , a

result derived in Appendix B.

Differencing successive completed log dutacions in state 2. elinizates

fro the regression. Focusing on the first and second completed speils

of event Z, we may write

Zn C.. — — (Z,. — 4 —

&L2) W2, W1,

The residual vanancs for this equatIon has mean zero and ;arianca ________
4

'rn the estimated resdua variance it ts thus ?cssiQia to consiSCanty eSt

iza:e the duration deendeace paramater As noced .n Apuendix a this estimate

is derived under the assumptIon that is zo error Ln easuring :plated

durations. f there is, the estir.aed duratior. dependence arametar is dot.ward biased.
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As noted in Section III restricting attention in the empirical

analysis to completed spells of events generates sample selection bias. In

our empirical work, we lose apprwd.mately two—thirds of our sample by imposing

this sample selection requirement.

We include only two regressors in the empirical results presented

here; the first is a duny variable set to one if the individual is married

with spouse ptesent (ItlSP) and zero otherwise and the second is the national

unemployment rate for prime age white males. The second variable is a proxy

for aggregate demand. In addition to the first—differenced specification

described above, we also present estimates of a two equation system of first

and second spell completed log duration times using generalized least squares.

A topic of considerable interest in estimating the regression equations

is the determination of the sensitivity of parameter estimates to the

method used to select spefl constant values for the time varying exogenous

variables. For the regressors used here, the national unemployment rate varies

by month, while marital status is observed yearly. In our sample period

(1969—1971) the within spell, variation of the unemployment variable is likely

to be far greater than that of marital status. We thus expect to find that

the parameters associated with unemployment wifl show more sensitivity to

the method of selecting spell constant exogenous variables.

Since the regression approach has been shown to yield biased parameter

estimates (see Section In) it is difficult to isolate the effect of fixing

the exogenous variables over spells using the two regression methods examined

here. To provide a benchmark we present maximum likelihood estimates of the

Weibull duration model using both methods of fixing the exogenous variables.

We then incorporate time varying variables. Differences among the estimates

are considerable.
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Regression results for log employment durations are presented in

table 1. The top panel contains the estimates of the two spell aS model,

while the lower panel contains estimates from the first difference specif i—

cation. On tl left side of the table the values of the regressors is the

average value over the spell and on the right side of the values are

those observed in the first month of the spell (zr. As discussed in Section

In the second method of fixing the regressors cay also produce biased co-

efficients because the values of the "exogenous variables" at the start of

the second spefl of an event will depend on the lengths of previous spells

of events if the true exogenous variables are tine treaded. In our sample of

thirty months the memployment measure has an extreme positive time trend.

The two methods for fixing the regressors produce large differences

in parameter estimates. Although most parameters are not significantly dif-

ferent from zero by conventional standards, the coefficient of the imemploy—

meat rate in the first spell GLS equations using is three tines as large

as the coefficient based on . The sign of estimated second spell co-

efficient enployment rate differs depending on the method used to fix time

varying variables • The coefficients associated with marital status are

statistically insignificant and are much less sensitive to the method of

selecting explanatory variables.

The two regression specifications yield very different parameter esti-

mates. For the model using the estimate of the coefficient of unemploy-

ment for second spell duration is .531 in the aS system as opposed to .858

from the first difference specification. The coefficients of the unemploy-

ment rate on first spell, employment duration are 9.31 in the first difference

specification and-6.523 in the GLS system. These disparities and the generally

poor fits demonstrate the difficulties inherent in the regression approach.
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TABLE 1.—Ln Employment Durations (Based on Two Completed Spells)1

Within Spell
Exogenous

Averages
Variables

of Start of
Exogenous

Spell
Variables

Spell Spell
•

• Spell Spell
One t Two t One t Two t

Intercept 1.232 ( 2.16) —1.052 (1.25) 7.094 (2.1) -2.048 (3.2)

Marital Status
(laif married) .624 (1.43) — .449 (.72) —.409 (.81) .49O (.75)

National Unem-
ployment —2.020 (5.40) — .975 (.21) — 6.523 (2.5) .531 (1.88)

Difference Specifications

Intercept 2502 ( l.95) 12.423(2.5)

Marital Status —.138 (.17) 0.112 (.01)

Unemployment .185 (.56) .858 (.337)

Marital Status
(First Spell)

— .570 (.49) — .496 (1.11)

National Unemoloynent
(First Spell) 1.946 (2.41) 8.951 (2.43)

1.08 .65

statistics are reported in parentheses.

The estimate of the Weibull parameter y is substantially greater

than zero, using either of the two methods for computing Z. A va.lua of

greater than zero indicates positive duration dependence, i.e., the longer as

indIvidual is in a state the. more likely he is to leave it. The same results

using a d.i±erenc list of variables were also found by 3errn and Borjas.

Regression results for the nonemployment equatIons are presented in

:abie 2. Once agein estimates based on ZPand Zare very fferent. When

izhin spell averages are used (Zc29, the unemployment ocasure has a neganve
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TABLE 2.—La Nonemploynent Durations (Based on Two Completed Spells)1

Within Spell Averages of Start of Spell

Exogenous Variables Exogenous Variables

Spell Spell Spell Spell
One t Two t One t Two t

Intercept —.398 (.97) .44 ( .65) —1.051 (2.28) —1.011 (1.61)

Marital Status
(a]. if carried

spouse present) —.117 (.24) .16 C .44) —.375 (.764) —.093 (.25)

National Unein—
-

ployment —.335 (1.46) -.53 (1.74) .057 (.21) .151 (.51)

Difference Soecifications

Intercept —.0746 (.084) .950 (1.1)

A Marital Status —.342 (.645) — .656 (1.31)

A Unemployment — .402 (.85) .544 (1.32)

Narital Status
nFirst Spell) ..091 (—.13) .280 (.52)

Unemployment
(In First Spell) —.252 (.60) —.653 (1.42)

.74

tt statistics are reported in parentheses.

estimated effect on employment duration. Since the prime age male unemployment

rate is time trended in our sample, using the aveage value of the emloyment

rate as a regressor causes longer duratIon tines to be associated with higher

within spell unemployment rates for purely echanica.L reasons. A strong

empirical, relationship is found not because of any causal -link, but only

because the unemployment measure is a transformation of the dependent variable.

We again find evtdence of posit±ve duration dependence in the juan—

ployment equations. "y" is approximately equal ;o one. The coefficIents asso—
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cated with the unemployment measures switch signs in both the top and bottom

panels according to whether Z or Z is used.jn
We now discuss estimates obtained from maximum likelihood estimation

of the parameters of the hazard function (5). In order to compare these

estimates to those from the regressions, we initially adopt a Weibull speci-

fication. The coefficient associated with the log of the duration in the

state is Later on in this section we present results from a more general

parameterization of duration dependence and compare results from this model

with those from the Weibull.

The maximum likelihood parameter estimates for the employnent—nonemploy—

ment model are presented in Table 3. Panel A. contains estimates from the

model using in panel B are the estimates using regressors and in

panel C are the parameter estimates for the case when the regressors are allowed to vary

within the spells. On the left aide of the page are the coefficients asso-

ciated with the employment to nonemploymett transition, and on the right aide

are the coefficients associated with the nonemployment to employment transi-

tion. First note that, in contrast to the regression results, the estimates

of indicate negative duration dependence in all states and for all methods

of fixing regressors. The duration dependence parameter is l4ghly significant

in virtually all transitions. However, spurious negative duration dependence

can be generated by not properly accounting for population heterogeneity.

In fact, when heterogeneity is introduced in the model there is no evidence of

duration dependence in the employment to nonemployment transition (see table 4).

The coefficient of MSP is significant in all three panels in explaining

entloyment duration, though there are large differences La the absolute values

of the estimates. Allowing the MSP variable to change over the course of the



.971
(1.535)
—.137

(1.571)
—1.093
(2.679)

—r. 800
(6.286)

Panel B: Regressors Fixed

Intercept —3.743
(12.074)

in Duration Cr) —.230
(2.888)

MSP —.921
(2.310)

.569

(3. 951)
Unemployment

£ —740.998

—.093

(.221)

—.287
(2.976)

.347

(1.134)

—.577
(3.119)

at Value for First Month of Spell

—1.054
(3.464)

—.363

(4. 049)

.297

(.902)

—.130

(.900)

Panel C: Regressors Free to Vary Over the

—3.07 8

(8. 670)

—.341
(3. 941)

—. 610
(1.971)

.209

(1. 194)
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TABLE 3. — Maximum Likelihood Estimates —— WeibuL]. Model1

Panel A: Regressors Fixed at Average Value Over Soell

Employment to ?ionemployment Nonemployment to Employment

Intercept

in Duration (y)

MSP

Unemployment

— —711.457

Intercept

Zn Duration (y)

MSP

Unemployment

SD all

—.899
(2. 742)
—.316
(3.279)

.362

(1.131)
—.204

(1.321)

£—. —746.315

Absolute value of asymDtotic normal statistics in parentheses.
denotes the value of the log likelihood function.

spell results in a parameter estimate almost one half as large ft absolute

value as the coeff±c±ent value that results from using the average spell



value in the employment to nonemoloyment transition. In the nonemploynent—

piovm equations the method of introducing exogenous variables has little

effect on the value of the MSP parameter, though in all cases the coefficient

is approximately equal to its standard error. In all three panels the inter-

pretation of the effect of marital status on exit tines is the same: mdi-

viduals married with spouse present have lower rates of transition out of

employment and higher rates of transition from noneloyment than others.
-

The differences in parameter estimates are much more extreme for the

coefficients of the prime age male unemployment variabla. Recall that this

variable is strongly time treaded. The coefficients of the unemployment

variable in both panels A and B are highly significant for the employment—

nonemploymant transition, but are of opoosite Ei2n. Allowing the variables

to change over the spell results in an estimate which is positive but not

statistically significant. Use of spell constant regressors leads to dra-

matically different interpretations depending on the technique employed to

arrive at a spell constant value. This same remark is true with regard to the

unemployment rate coefficients in the nonemployment-employment transition.

Taken as a whole, these results demonstrate the seriousness of the biases intro-

duced into the parameter estimates by restricting the vartability of exogenous

variables. These findings cast considerable doubt on the value of regression

nethods for estimating duration models.

We next turn to an investigat±on of the effects of not controlling

for heterogeneity on estimates of duration dependence. The specification of

the one factor scheme we adopt is given in equation (6) in Sect±on I. The same

set of regressors is used as was used in the estimatIon of the model in table

3, Pane]. C, so that all variables are allowed to vary within s,efls. :able

presents the estimates. -
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TABLE 4. — Maximum Likelihood Estimates with Time Varying Variables and
Heterogeneity1

Employment to Nonemployment Nonemploymene to Employment

Intercept —3.600 -.879
(8.395) (2.525)

Zn Duration .015 —.312
(.121) (3.170)

MSP —.498 .320

(1.384) (.961)

Unemploynent —.017 — .172
(.101) (1.056)

C. 1.196 —.133
(4.651) (.756)

£— —740.126

1Absolute value of asym;totic norma]. statistics in parentheses.

It is interesting to note that unobservable heterogeneity is an impor-

tant determinant of the rate of transition out of the employment state, but has

little effect on the rate of leaving nonemployment. There has been much attention

given to separating the effect of heterogeneity and state dependence in the

length of nonemployment spells, but our estimates suggest that for young nen

estimates of duration dependence are not affected by the inclusion of hetero-

geneity into the model. However, the duration dependence Effect vanishes with

the introduction of heterogeneity in the employment-nonemployment transition.

The introduction of heterogeneity reduces the agnitude of all the parameters

(with the excation of the constant) in the emoloynent equation, while the

coefficIents in the nonemployment equation are barely affected.

These findings indicate that employment—nonemploynent transitIon

prcbabili:Ies are non{arkovian and call into question the standard dLscreta

tine 24arkcv assumption widely used in Labor arket analysts (see, e.g.,
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aarston, 1976). The source of departure from the Markov model differs be-

tween the employment to noneraployment transition and the rtonemployment tO

employment transition. The former transition is non—Markovian because of tin—

controlled heterogeneity which gives rise to the classical mover—stayer

problem. The latter transition is non—Markovian because of structural dura-

tion dependence.

All the estimation done up to this point has been predicated on the

assumption that the exit time distributions are Weibuil. We now relax this

assumption. We estimate a model which allows for general- forms of duration

dependence. This specification is obtained by letting — 1 and — 2

for all values of j and £ (see equation 5). Empirical results are presented
in table 5 f or models estimated with and without heterogeneity corrections. The

models estimated without heterogeneity show some evidence of linear duration

dependence in the E to N transition, while the hazard associated with the N to E

transition appears to be nonmonotonic in duration. Except for the unemployment

rate coefficient in the E to N transition, the estimates of the coefficients of

the explanatory variables do not differ much from the estimates obtained in the

Weibull model. When the heterogeneity correction is added, there is no evidence

of duration dependence in the rate of leaving employment. Recall that a similar

result was found in the Weibuli. case. Fot the nonernployinent to emDloyment transi-

tion, the exit rate to employment also appears to be a linear function of duration.

In our data we do not reject the null hypothesis that the squared duration term is

insienificant in each of the transition densicies. Assuming that this is so, it

then become possible to test between the Weibull (X . 0) and Gompertz (X ., 1)
lj;. 1J-

specifications. The difference in log likelihoods between the two models

is neglIgible (—739.2 vs —740.6). The evidence suggests a slight preference

for the Weibull specification. The estimates of the coefficients of the explana—

tory varSables do not change much between those specifitat±ons, and for the sake

of brevtty we do riot report the detailed empirical results from this odel.
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tABLE 5. —— Maximum Likelihood Estimates with Tine Varying Variables, Hetero-
geneity, and General Duration Dependence1

Without Heterogeneity With Heterogeneity

E-'N N÷E E-N NE
Const. —3.271

(8.901)

—.762

(2.425)

—3.565 —.748
(8.537) (2.247)

Tenure/b

Tenure2/l00

—.806

(1.858)

.028

(.145)

—t.714

(2.731)

.602

(1.673)

.045 —1.704
(.085) (2.685)

—.120 .603

(.607) (1.666)

MSP —.568
(1.731)

.349

(1.098)

—.490 .313
(1.353) (.956)

Unemployment .329

(1.865)

—.192

(1.271)

.075 —.164
(.392) (1.042)

C
ii

1.008 —.118
(3.572) (.650)

.

£ —742.334 —739.177

tAbsolute value of asymptotic normal statistics in parentheses.

B. Tests of a Three State vs. a Two State Model and Tests of Whether or not
1

Unemployment and Out of the Labor Force are Behaviorally Different States

The preceding empirical, work lumps the "unemployed" and those "out of

the labor force" into a conon "nonenployed" category. There- is considerable

controversy in the literature over the issue of whether or not the categories

"unemployed" and "out of the labor force" are behaviorally distinct labor

force states (Lucas). This issue is particularly relevant in the study of the

labor market dynamics of youth. Given the range of nonmarket options available

to many youths, and given practices of many state unemployment compensation

agencies which affactively limit the eligibility for unenoloyment compensation

of many youths, it seems especially likely that there is no distinction between

"unemployment" and "out of the labor force" status for young people. Recent

1Corents by Gary Chamberlain have greatly improved this section of the paper,
and eliminated several errors that appeared in previous drafts.
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papers by Clark and Suers and Eliwood have made this claim. In this section

of the paper we present a test of this proposition and reject it. We find

that distinct behavioral equations govern transitions from out of the labor force

to employment and from unemployment to employment.

Recent theory suggests that being "imemployed" and "out of the labor force"

describes different behavior. Por example, in search theory (e.g., Burdect and

Mortensen) a key difference between unemployed individuals and those out of the

labor force is that the former are at an interior point with respect to the

optimal amount of tine they devote to search while the latter are at a corner and

spend no time searching. Separate behavioral equations generate observations in

these two states.



59

Even though these theoretical distinctions are widely accepted, many

economists claim that the empirical distinction between reported "unemployment"

and reported "out of the labor force" is so arbitrary that it is of little

or no analytical value. This point would seem to have some merit after examining

the official current population survey definitIon of unemployment, which defines

those individuals as unemployed !twho had no employment during the survey week,

were available for work, and (1) had engaged in any specific job seeking activity

within the past four weeks, (2) were waiting to be called back to a job from which

they had been laid off, or (3) were waiting to report toa new wage or salary

job scheduled to start within the following 30 days." Because there is no

stipulation as to the quality or quantity of searches made within the month,

the unemployment—out of the labor force distinction may be of little value in

predicting employment probabilities for the nonemployed.

In this lection we present a test to determine whether pr not the classi-

fications "u" (unemployed) and "o" (out of the labor force) are behaviorally

meaningless distinctions. The idea underlying the test is as follows: controlling

for heterogeneity if the hazard rate for exit to employment from unemployment

(h) is the same as the hazard rate for exit to employment out of the labor force

the origin state ("o" or "u") is irrelevant in determining the rate at

which individuals leave nonemployment to go to employment. In a simple 3 state

Markov model, this test is equivalent to testing the proposition that the two

nonemploynent states can be aggregated into a single state and a properly specified

two state Narkov model can be defined for employment and nonemployment. To simplify

the exposition we assume that there is no heterogeneity in observed or unobserved

characteristics. This assumption is not essential and is not used in performing

the empirical work reported below.

To motivate the test, we consider two cases. The fIrst case assumes that
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individuals exit employment at a rate governed by density f(t). The
probability that a person teninating employment classifies himself as a

'u" or "o" is determined by tossing a coin that comes up "u" fraction T

of the time and 110?! fraction 1—it of the time. Once acquired the person

keeps these labels as long as he is nonemployed so there is no switching

between "o" and "u" states (a patently counterfactuai. case). The density

of duration in the nonemployment state is governed by density f(t).

The associated hazard h is

f(t)
h

The joint probability density that an individual is classified as unemployed

and leaves nonemployment at t is

irf (t )nfl

with associated hazard

h th.
us a

The joint probability that an individual is classified as out of the

labor force and leaves nonemployment at t is

(1— w)f(t)

with associated hazard

h =hoe n
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The hazard rate for entry to employment will be the same whether or not the

nonemployed individual is classified as an "o" or an "u".1

In the second case considered here, individuals are allowed to switch

their reported nonemployment status "randomly't. By this we mean that initial

nonemployment classification is random (governed as before by a toss of the

coin) and that individuals switch randomly between "o" and "u". The continuous time

analogue of discrete time independent Bernoulli trials is an exponential waiting tine

model (Cox, 1962). Write the hazard for durations from "o" to "ti' as h and theoil
hazard from "ti" to "o" as h, the density of time spent going from o to e (toe) 1

hoe exp — (h + h)t}

while the density of time spent going from u to e (t) is

hue exp -(h+h)t }

Individuals may change among reported nonemployment states for whatever reason. All

that is required for the origin state (o or u) to be irrelevant for characterizing
transitions from nonemployment to employment is for h— h.

1The proof is triv±al. Assume fn(tn) is not defective so that
1. The hazard rate for exit from unemployment to employment is

Tf(t)anh ntie if —if P(t) n

The term in the denominator is the probability that the exit occurs from u
to e after time t. A parallel argent demonstrates that hoe h
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The condition it — it is also the raauirement that must be sac±sf±edoe uc

in a Markov model to aggregate "o" and "u' into a single state rt, and for the

resulting two state modei. for e and n to be a properly defined Markov model.

To demonstrate this it is most convenient to work with the state probability

representation of the three state Markov model. Define PJt) as the probability

that state j is occupied at tine t and P(t) as the instantaneous rate of change

of this probability. The three state generalization of the two state model

presented in Section I.b is

(h+h0) hoe it 1

P(t) it —(it +h ) it
I

0 eo oe ou uo

it (h + h)i 2(t)!

or

P3(t) — A23(t)

using matrix notation. Note that the rankof A is at most 2.

tn order to aggregate "a" and 'u" into a two stats model defined in

ters of a, we require that we be able to collapse the three state system into

2(t) 1_ hen 1tte

P_Ct)! it te- J

.there 2(t) 2(t) + 2(t). in matrix aotation ? (:) 3 P''(t). The
rank of 3 is 1. For this to be an açuivalen: reresentat1on of the three state
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odel, a aecessary condition is chat rank (A) - rank (B) 1. A necessary and

suif±cient condition is that hoe a h h. Sufficiency aay be checked by

direct substitution into A.

This interpretation of the test is also informative in that ft makes

precise the sense in which o and ii are "irrelevant". Aggregating o and

u into a single state for the purpose of statistical analysis does not alter

the Narkov property of the model. The rate at which indl':iduals leave nonem—

ployment to enter employment does not depend on which nonemployment state in-

dividuals are in.

It is tempting to extend this type of reasoning to consider transitions

from employment to the two nonemploynent states. Thus it might be argued that

U u and o are "irrelevant" distinctions, the rate of transition from e

to u (h ) whould be the same as the rate of transition from e to o Cli ).
eu eo

This argient is correct only if it — 1—r — 1/2. If fe(te) is the density
of employment length durations with hazard rate he(te) the hazard rate for

transitions from e to u is

h —
Cu e

while the hazard rate for transitions from e to o is

it — (l—i)h
Co a

Obviously S +5 a h , as is recuired by the law of conditSonal probability.
eu co e -

-

3utunless if s1 —1/2, h #5 . :Jehaveaocheoryof if. ivan
en eo

racrCng oneself as unemployed is scr±ctly a attar of tossIng a coin, nothing

requires — 1/2. -

Table a Dresents escinaces of the three state model astacad with
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heterogeneity. The fact that the standard errors are so large relative to the

magnitude of the parameters is to be expected given that we are attempting to

estimate twenty parameters with so few degrees of freedom. The parameter signs

are generally consistent with our earlier results from the employment—nonemploy—

ment model. Only the constant tens and the factor loading of the employment

to unemployment transition are greater than twice their standard errors.

TABLE 6—Parameter Estimates from the Three State Unrestricted Model

From Employment to:

Unem1oyment OLE

To Employment

Unemployment

from:

OLE

Constant —3.822
1

(9.778)

—7.193
(2.768)

. —.698

(3.782)

—2.384

(2.078)

Tenure/b

Tenure2/100

.482

(.846)

—.240
(1.004)

.700

(.379)

— .019
(.030)

—1.253

(1.530)

.481

(.547)

1.441

(.365)

.208

(.084)

MSP —.355

(.837)

.086

(.068)

—.065
(.193)

1.154
(.400)

C
ii

1.396

(3.336)

2.788

(1.025)

—.342
(1.633)

—1.866

(1.081)

£ — —784.33

1Absolute value of asymptotic nonal statistics in parentheses.

The estimates from the restricted three state model are given in Table 7.

Let e. E (3 . c. ). The restrictions imposed are a — 9 , which
1.j U oe ue

forces all parameters in the "unemployment" to emvloyment and "out of the

labor force" to enøloyment transitions to equality. There are a total of five

restrictions. Performing the lIkelihood ration test on the restricted versus

the unrescrcted model, the value of the test statistic is 2S.72 which s

cistributad x The critical value tor a ) percent significance level z.s
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11.07. We are able to reject the null hypothesis of the equality of the

parameters governing the two nonem1oyment statis. These empirical results

suggest that "out of the labor force" and "unemployment' are not artificial

distinctions for this sample of young men.

TABLE 7 — Parameter Estimates from the Three State Restricted Model

From Employment to; Nonemployment

Unemployment OLF to Employment

Constant —3.735 —7.718 —.857
(9934)1 (2.596) (4.756)

Tenure/lO .400 .782 —1.460
(.706) (.528) (1.790)

Tenure2IlOO. —.220 —.004 .683
(.940)' (.007) (1.116)

MSP —.397 .160 .202
(.966) (.148) (.577)

C . 1.327 3.102 —.421
ii (4.195) (1.078) (1.894)

£ • —798.69

1Absolute value of asymptotic normal statistics in parentheses.



SUMMARY kiND CQNCLUSIONS

This paper presents new econometric methods for the empirical analysis

of individual labor market histories. The techniques developed here extend

previous work on continuous tine models in four ways: (1) A structural

economic interpretation of these models is presented. (2) Time varying

explanatory variables are. introduced into the analysis in a general way.

(3) Unobserved heterogeneity components are permitted to. be correlated across

spells. (4) A fleble model of duration dependence is presented that accom-

modates many previous models as a special. case and that permits tests among

competing specifications within a unified framework. In addition, longer

range types of state dependence can be introduced into the model and their

empirical importance tested with our model.

We contrast our methods with more conventional discrete tine and

regression procedures. The parameters of continuous time models are invariant

to the sampling time unit used to record observations • Parameters of discrete

time models defined for one time unit are not in general comparable to para-

meters of discrete time models defined for other tine units. Two problems

plague the regression approach to analyzing duration data which do not plague

the likelihood approach advocated in this paper. The first problem is that

standard regression estimators are ill equipped to deal with censored spells

of events that arise in short panels. The second problem is that the regres-

sion approach cannot be readily adopted to accoimnodate time varying explana-

tory variables. The functional forms of regression functions depend on the

66
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time paths of the explanatory variables. Ad hoc solutions to this problem

can make exogenous variables andogenous to the nodel and so can induce simul—

taneous equations bias. The likelihood approach advocated in this paper can

readily accoodate time varying explanatory variables.

Two sets of empirical results are presented. The first set is an

analysis of employment and nonemployment data using both regression and

maximtnn likelihood procedures. Standard regression methods are shown to

perform rather poorly, and to produce estimates wildly at variance with the

estimates from our maximum likelihood procedure. The maximum likelihood

estimates are more in accord with a priori theoretical notions. A major con-

clusion of this analysis is that, the discrete time Markov modal widely used

in labor market analysis is inconsistent with the data.

The second set of empirical, results is a test of the hypothesis that

"employment" and "out of the labor force" are behaviorafly different labor

market states. Concraty to recent claims, we find that they are separate

states for cur sample of young men.
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APPENDIX A
The Likelihood Function for a Xultistate—Multievisode model.

In this appendix we discuss general issues in the estimation of con-

tinuous time probability models and the pirticular features of the Likelihood

function we employ in the empirical work presented in the text. Since our

data start at the beginning of the labor market history of individuals, we

can safety ignore the initial conditions problem discussed in the text. tie

defer a general discussion of this problem to a later paper.

Let there be N states the individual can occupy at any moment of

time.

-

If the individual begins "life" in state I there are N—l "latent times"

with densities

(A-l) f1(t1) - (t1) exp - (u)da}

Ci — l,...,';,j # i}

where f11 C.) is the density function of exit times from state i into state j,

and h1(.) is the associated hazard function. The jcint density of the N—I

latent exit times is given by

(k-2) ri h.j(t.) exp — (fh (u)du}
3l 0I t

n indIvidual, exIts from state i to state j If the fIrst passage time is

the smallest of the S—i potential first passage times i.e. if

t c ,, , {j — 1 NJ f; j,j # i}.

Let the probability that the individual leaves state i and enters state f

denoted o,.. Then

71
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-r

(A-3)
L.

h..(t) exp - cJ h.(u)du} dt..

ii
[

x (h1.At..) erp
—

C]
(u)du})

h (c.) exp - C f
ij

h.k(u))4u}

The conditional density of exit times from state I into stare j' gen_
that c (Vj; i#Y; 1.)

(A—4) s(tI
cc-t.)&i;i#i .;i,i # i)

h1At.) i3( hiiJu))

du}

P. -

I: follows that the density or ex±t times from state 1. into any other state can

be wrItten

(A-3) f(t) •Z ? g(t41. t< c1)(;i i; i;Y i)

- j-i
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(N IN
— I h.1(t ) exp — { ( Z h(u)\ du}

k—1
) o

The probability that the spell is uncompleted by time T is simply

(A—6) Prob (t. > T) f(t) dt

Tp
1/N

—exp—C j'j E hik(u) du}
I k—i

This tern enters the likelihood function for, spells uncompleted as of the end

of sample period T. In this mazner all spells, not only completed ones, are

used in the estimation of the parameters of the hazard function. This is not

the case in regression analyses of durations in a state (or some transforma-

tion of duration) on ccogenous variables, there only completed spells can be

used in a straightforward fashion.
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We now describe in some detail the specific form of the likelihood

function used in the analysis performed here. Let Z (u + r ' be a K x 1
rm rm

vector of explanatory variables of the rt individual in his th spell at time

(u + t), where u is the duration of time spent in the current spell, and

t is the date in calendar tine at which the individual, began his th spall.
Included among the explanatory variables are functions of the spell duration

variables. In particular, the form of Z'(u + rrm) is

[1 Z (u+T )... Z (u+t )V]
Irm rut (K-2)rm rut r

The last element of Z is an unobserved heterogeneity term, invariant over

tine for the Individual, which is assumed to have a standard normal

distribution, i.e.

V n. N(U, 1) V r

Parameter vectors are indexed by transition. "B . is K x 1 vector
- - -

il
of coefficients of explanatory variables in the hazard function.

To be specific

a
8lij a2)1J C..]

ss discussed in the text (eq. 6), we impose a one factor specifcat1ofl, 30

that C1, is the factor loading associated with the i to j transition.

Now we writa the hazard function for the mt1 spell and rth thdivtduai.

as



75

hij(tr) exp
(ZArm(trm

+ t)

f. . (t 1

tj •r
(A-8) 1 -

Fimjm(trtu)

Then the cumulative density for 1. to j exit times is

tr

(A—9)
imimrm

1 — exp {

— ! mE (::)Jdx}

and the probability density is

tr
(Al0) (t)—h (t)ex(_J mh(jj)ma a mm m L-- j

Now consl4er one individual's contribution to the likelihood function
(we henceforth suppress the Individual subscript in the density and distribution
function)

M—l r N
(A-il) L($,V) - (t. 1 I , (1 - kQ)Imai. mm sc"].JL

th
where is the time spent in the M spell, which is censored. Because

heterogeneity is modeled as a random effect, it is necessary to obtain the

expected value of L with respect to the assumed distribution of V. Denote

the conditional likelihood by r where
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(A—i2)
•

J L(3,V) exp C— V2/2)dV.
-a

Now define

Zn (L(8))

In caking first partials note that

3.z (3) aL (B)
(A—13)

r —
1

-
r

gij Lr(B) aagii

1 L (B,V) v2/2dv

1(8) 8gij

where g denotes an element o the parameter vector.

For notatIonal convenience defin the set

— { I i —

which consists of all spells that begin in state i and end in state j for the

ind±viduai. Then

T 't) ;f;
—

— I • . • )ss..: g1j b'b

3
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I'

n — (t )ih N

)

r
I jh#ii

+
I ii f (c) ____
Lnl

im m __ II

JL gij
-I

Now we evaluate the partial derivative of the density with respect to the

parameters,

t
�h (t) I ah11(u)

—ii I I
h dumm mm —

mm

j(A—15) as i aagij
inmm ggiJ

0

t
in

exp hij (u) du
mm

0

But note that

(u)
m in Z (u+r )h. (u)

in tj°5gij mm

After making the appropriate substitutions, we have

r
1 Z(u+t)h.(u)dutf (t)(A—la) —l z (t +)

38 I g in
gsj

a in
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and

(A—li)

t t
I Ixm.(u)
I — ii du exp i—i
m (—J h(u)du} for

It
;agjj

0 0

JtM
— Z (u+r ) h Os) du ( 1— F (t.)) for 1. a j

g M ij m

-o

Upon makixtg a last round of substitutions, we get that

(A—lS)

ftaL(8,V)
— Z(u+t)h (u)d—( z Z(t+-v)
inSg

mS11 [
g m m g a i j

ul}
mm

0

Pt
L(5,V) — I I (u-I-r ) h (is) du

]
& a U

Lo

C -i

- L (S.V) 1 (t ) - D

(u ) h (u) du
mm

r

1cs [

g a a

1
au}

—i Z(u+r)h .(u)j g a
in0

— A L (3,V)
r
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where A is defined to be the expression in braces in the second to last
g ij

line above.

a2z(8) 1 _______ ______
(A—19) = —

as as - as as
gij g ij gij g

1
32LC$)

+ E (s) agjjasg_j_j_r

(A—20)

v2I2
r

1

dv

aegjjaBg.j_f• — gij

If i #ior J j then this last term is

2

(A—fl) A
j

g_jaj_Agjj Lr9V) a 4!
Ic

and if i a j"atid j — j' then it is

r

Ag1, — Z (u )Z .( )h. Cu) du
a

-
meS g m

[

(m
a

- 1 (u )Z (uM) h (u) du1 L (a,V)
j g Mg

Jra
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where the last term in the braces enters only
— = 1

To derive the sample likelihood, simply sum the individual contribu-

tions, i.e.,
a

— S
rd

where R is the number of individuals in the sample. First and second par—

tials are similarly computed for the sample by the suation of each mdi-

vidual' s contribution. In computing the matrix of second partials we can employ

the veil 1own approximation based on the summed outer produce of the vector

of first partials for each observation based on a suggestion of T. W.

Anderson (1959) or the exact second partials presented above.
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The Weibull Regression Model
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This appendix presents a brief derivation and discussion of the

Weibull regression model utilized by Rectan and Borjas and employed

in this paper as well. We derive the conditional regression function of

the log of duration in the jth spell of state L, Zn t, discuss the distri-

bution of the regression errors and demonstrate how it is possible to estimate

duration dependence parameters using regression analysis. The efficiency

of least squares estimators relative to maximum likelihood is derived for

a special case.
-

The regression model derived here is the conditional regression

function computed with respect to the density generated by hazard function

(3) in the text with exogenous variables assumed to be fixed within each

spell at value Z1 and with a 0 and — 0. To simplify notation tje define

in place of in the more general model. The hazard function that

generates the density of duration times is

(3—1) h3(t) exp (ZJZSJ + (Zn

Define exp + v1}. The expectation of Zntiven

and and assuming a long panel (so there is no panel, length bias as

discussed in the text) is

E(ZntjAZ.V.) C fun M.(ts)it exp - tdtt
Define = Then d.L — (x)t dt2.

Substituting

for and using standard LaPlace transforms



83

M.

(3—2) E(Zn
tQIZjZJVJL) f(tnc. — Zn( 3L 1

(exp—$.)d$.
3M3 0 ÷1 +1

-l1
)a'(l) + ta(y. +1) — Z. 8. — V.

jt j2. jt jl
,fjt+1

where r'(l) is the derivative of the gaa function evaluated at one (.5772).

The full regression model may be written as

Zn t. = £(Zn t. jz.,v. ) + Vt.
jZ .1 Z

where
-

(z—3) E(W.) —0 E(W) =
31. (+i)2

dtn r(9) evaluated at $ • 1 (Bw2/6).where B —
4$

Note that the variance of error ten W. does not depend an — 3

To prove these results most directly it is helpful to derive the

characteristic function of W. Let E(Zn t.) a so = Zn
3

Then

(3—4) E(exp(i$W. )) — E(exp(iO(Ln t, —u )))
32 jZ j2.

0 N y +1
exp—(i$u. 5 M.

31. 32. texP—rl) at.!,.
3-4

— ____ ____
= exr(iep.1.)Of.2.)hjL rc + 1) (y.,+l)tji+1y. +1

j2.

r'(1)—Lax4tZn(t. +1)
Since

'.kt . +1
32.

_____ F_______
E(exp(i.SW.2.)) F( + 1) exp — _______

+1
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Thus the characteriscic function does not depend on B1 as asserted and

the moments of are not functions of Z., 3jL' or V. Differentiating

the haractaristic function produces the moments stated above.

The density of can be obtained by a direct application of the

inversion theorem or by direct substitution. In our notation the density

ofW. is

• k(W) a NiLe{(YiL+i)(Wit i)}
(l+Y&)

If there is no duration dependence (y 0), the density simplifies to

k(W.t)
—

Because of the conditional independence of the t, j—l,...,J, t—l,....,L

(given and the terms are independently distributed, and

E(W.W.i2.i) —Q for j j or Z #2.' or both.

Collecting results and redefining the intercept term in to include

r'(l) + Ln(Y+t) the new coefficients may be defined as Collecting

the unobservables into a composite error term + we mey write

32.

the conditional expectation of La t1, given as

(B-6) ECtn t2jz32.) a

with associated disturbance ten defined by

(3—7)
•

U. V. +J.
P jJ. 32.

with zero mean and variance ( • )2 [c +
y1+1.

where z(V) = a.. Heterogeneity components are independent of the
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(see equation 3—4) but are freely correlated across states and spells.

Thus E(VJZVj.L.) ji,j'1'
# 0 in general for i jr and/or L

Estimation and Identification in the Weibull Model

5.

Under standard assumptions, least squares estimators of derived

from samples of durations of the jth spell of event L are unbiased, consistent

but not efficient. Consistency is achieved in the usual cross—sectional

sense: by letting the number of individuals in the sample become large.

The lack of efficiency is due to the highly nonnormal skewed distribution

of and is proved in the next section for an instructive special case.

Provided that the intercept term in is zero, it is possible

under certain conditions to estimate l4-. The intercept term in the re—

parameterized model is

r'(i) +

Tjz+l

If the estimated intercept is negative, it is possible to solve for

uniquely from the estimated intercept in the reparameterized model. If

the estimated intercept is positive, and less than or equal to exp{r'(l)l},

a solution exists but is not unique unless it equals exp{r'(l)l}.

In the general case, it is not possible to consistently estimate

or from the estimated regression coefficients. Provided
that further

structure is imposed on the distribution of the heterogeneity components

it is possible to consistently estimate 5. and y. provided that we

have access to panel data in which more than one spell of an event is observed.

- Consider the following one—factor structure
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(3—8) —

I

where EC$) — 0, E($) cli and the C2, are parameters j1,. .. ,L. As is customary

in factor analysis, we normalize a , ECVsV.t) —
CZCLIO.

Provided that there are data on two or more spells, we can consistently

estimate Y9, 3, and Ct. To see how, note that the residual variance

of the regression equation for log duration of the jth spell of event£

is

22
B

(B_9)
t +

(y +jj2 Ci. +1)2

The covariance between the residual in the 5th duration equation and that

in the j'th duration equation for event t is

-(B 10) (y +1)(., +1)
.3 2,

From the two residual variances (for spells j and 5') and the covariance,

it is possible to solve for and 'y,2,. Replacing population moments

by estimated sample moments, we derive unique consistent estimators for

these parameters.

Define S.. as the estimated residual variance from the 5th duration

interval. is defined in a similar fashion. S, is the estimated

interspell residual covariance. The interspell residual correlation is rn,.

From these sample moments, which are consistently estimated, it is possible

to estimate y. ,, and. y. Let "S" denote estimate. Then
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- ,, Br
(fl—U)

a
-t p

B 1.
1/2

a
1—r1i

— 1

— 1/2B ___- s.., 1—r..2 —1
3J fl

where positive values of square roots are used to evaluate these expressions.

From consistency of the sample moments we have consistency of the estimators.

Note that a negative rjj is evidence against the one—factor structure.

Given consistent estimators of these parameters, it is clearly possible to

estimate and

These estimators of the duration dependence parameters are sensitive

to measurement error in the dependent variable that is independently dis-

tributed across spells. Such measurement error generates downward biased

estimators of duration dependence parameters. Permanent measurement error

components are absorbed in leading to an upward bias in the estimate of

but no bias in the other coefficients.

Other covariance restrictions could be imposed to secure estimates

of model parameters but we do not pursue the matter further here. For addi—

tiona]. discussion of the regression approach, see Kec1an and Bones. (1980).

The Relative Inefficiency of the Least Squares Estimator1

We consider only a single episode of an event. Further assume that

the heterogeneity component is zero for everyone in our sample, v a

To simplify the notation, we suppress all subscripts for events and spells.

akeshi Amemiya suggested the line of proof used in this section.
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me panel is assted to be of sufficient length that there is no censoring.

We further assume that '' is known, in order to simplify the analys±s.

The regression model. may be written for individual i as

in t — (—)(r'(1) + Ln(y+l) — i$) + W, i=l,. . .,I.

E(W) - 0, E(W2) -

Given y, the least squares estimators of 2,8 has the sampling variance

- 2

(3—12) vaacs) !_ (zZjZi)
The likelihood for the saple is

£ — 11 t exp(Z6) asp —({exp (Z1B)}41 t'f'].

The log likelihood is

I I I
tnt — Z tnt + S za — E[exp(Z

i—i i—l i—i

Given y, the maxim likelihood estimator of B is obtained by solving

I
— 2 z — Z(exp(Z 8)1—1y Z 0

i—l i—I

Note further that
7 I trL i

as —Sexp(ZB) -j
and

zL.j= .ZZ
;3'a8 i_L,i i

Therefore the asytotic variance—covariafice matrz of e txdntm Ukall—

hood estimator is

(3—13)

Thus the asvnptotic reiatve efftc±ency of the maximum ljkelthood estimatOr

compared to the least squares estimator is ¶/G.



APPENDIX C

A Model of "Stia" or "Occurrence Depeudence"
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Workers differ in turnover propensities and productivity characteristics.

These attributes cannot be diráctly observed. Because of fixed costs of hiring.

fi specific capital investments or costs of monitoring worker output, some

information — albeit imperfect — about unobserved attributes may be valued by

firms in making wage offers to potential employees.

- One source of information about a worker. is his employment record. In—

formation about the number of previous jobs held, their duration, circumstances

under which these jobs were terminated and what the worker did after his termina-

tion is useful in estimating the productivity of a potential match. It is not

obvious that this information is of any market value. This is so because (1)

workers have an incentive to misrepresent their work history or, more generally,

accurate work histories are hard to come by. (2) contingent contracts (c.f.

Becker and Stigle; and Salop and Salop) might be written that select workers out

by their productivity characterIstics and turnover propensities so the past

record of an employee is irrelevant.

Eere we sketch an idealized model of "stigma" and focus only on one

piece of intonation: the number of jobs held by a worker of a given age. We

assume that each ob terminates with a spell of unemployment and that there is

no recall. (3ecker, 1980, considers a model of stigma in the marriage market).

Jobs terminate for many reasons. We assume that tarminati_ca probabilit±eS

are determined in oart by worker "uLt" or "miswatth" charactertsti2s as well as

5': micro demand shocks experienced by firms. to capture this notion nos: sinply

we suppose that 1—? is the per nriod 9robability of termination of a match.

This probab1i_:y
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is exogenously determined. P varies across workers but we assume it stays

constant across unemployment spells for the worker. In a more general model P

would be influenced by firm wage policy.

Firms know the number of jobs held by workers. They adjust to this

Information by offering them wages contingent on their age and on their job

history. For the moment, abstract further and suppose that the wage offer

distributions are indexed only by the number of employment spells. Suppose

that after a jobs, the worker falls into a terminal state and is "marked" as

a loser for life. We assume ii is finite but this assumption is inessantial.

1et (X) denote the wage offer distribution available to a worker with

a history of j jobs. F1 is stochastically dominated by and dominates

For a risk neutral worker with ti jobs, the optimal job search strategy for an

unemployed worker is trivial to establish. Let Wn(X) be the value function

for a worker who receives a wage offer of X from distribution F. The job

terminates with probability 1—P and thediscount factor is B. is defined as

the expected value of Wn(X) with respect to F. There is a fixed cost of

search C with one offer per "period".1

w0(x)
— ax + S(1—P) w ; w}

and

¶4 ——C + S Zax + ;

The reservation wage, , is (l—) W

1Our analysis of the terminal state is similar to that of Lippman and

McCall (1979). They do not, however, discuss "stigma" •or
"occurrence dependence.
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It is obvious that the greater the values of $ and F, the greater the reserva-

tion wage and the longer the expected length of search. It is also well

known (see e.z. Kiefer and Neumann, 1979) that if the Dean of the wage offer

distributIon increases (a pure translation of the distribution), the reserva-

tion wage increases by less than the increase in the mean so that the expected

length of tine in search decreases with increases in the mean of the distri-

bution. Defining en as a translation parameter,

(l—F(%)) c 1. (=1 if P.tSal).

-

1-42 (l-F(c0))

We next consider a worker who has n—i spells of ecployceflt. the value

of a wage offer of X obtained from distribution is

w_1(X) a max + -

The first term in the braces is the expected value of accepting a wage offer

of X. It is the s' of two terms: the discounted value of the wage offer

(inclusive of the terrnination probability) and the discounted expected value

of search from distributIon The second term in braces is the discounted

expected value of search from distribution

It is obvIous chat < Further, it is easy to see that the

reserfltion wage for the worker is

— (L—?)!W
n—i. a

.l:artati:ely

(1—EP) —
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so that the reservation wage for a worker with n—i spells of employment exceeds

that for a worker with n spells. This does not necessarily inpiy that workers

with n—i jobs search longer on an average than workers with a jobs. Although

the mean of distribution necessarily exceeds the mean of distribution

(n) by the assumed stochastic dominance relations, the variance of
(n—1.) y

or may not be smaller hence the expected search tifle in spell n—i ay be shorter

or longer than for spell n. However, if it is assumed that the distributions

differ only in the mean, then workers with n—I jobs necessarily search lass on

the average than workers with it or more jobs.

To show this in a direct way note that the equation for may writtL.. a

(1—PB)(i—8) — c(128) +

where 9 is a translation parameter for dstribution n—i. If e a a = 0,
(n-i) n-l n

— eZ — W , and c — £ . Note that C —i —1
a n—l a n—i .(l—6P) '-

n—i n—i

In a neighborhood of 9 S 3 0
(n—i) (a)

:: <1. (=lfor3l)

Thus, for the case of a negative translation in wage distributinS across

successive stells, on average individuals with c—i soells of wploertt will

spena less tine in search than ndviduals with n spells of empicycent.

recursion, this argument can be extended to demonstrate that geQmetric 3:cit
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tine distribucionshave successively greater neans for individuals who have

held more jobs. Thus the exit time distribution for the jth spell of unemploy—

ient is stochascically dominated by the exit time distribution for spell j+i.

and stochastically dominatthe exit tine distribution for spell i—i.

This generates structural occurrence dependence.

This mode], can be extended to account for age although it is not

especially illuminating to do so. However, it is obvious that employers

would utilize age to estimate mismatch and turnover propensities. Holding

P fixed, older workers will hold more jobs than younger workers. Moreover,

it isalso clear that the length of previous employment spells may also

provide information about expected worker productivity. This gives rise to

lagged duration dependence as defined by Hecknian and Borjas (1980).


