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ABSTRACT

In this paper, necessary and sufficient conditions for an asset

substitution matrix to be symmetric for all distributions of rates of

return are derived. It is found that symmetry in this context is

essentially equivalent to the proposition that the von Neumann—Morgenstern

utility function displays either constant absolute or constant relative

risk aversion, depending upon whether the substitution matrix is defined

in terms of arithmetic or geometric rates of return.
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ytinetric Substitution Matrices in Asset Demand Systems*

I. Introduction

Consider the generic single-pericxl portfolio choice problem

in which an investor seeks to allocate wealth "W0,' among "k" alternative

assets so as to maximize the expected utility of end-of--period wealth.

Denoting the amount of money invested in the th asset by A1 in the absence

of transactions costs this problem may be formally written as:

k
(1) maximize E {u[E1A R.]}

k
subject to: E A. = Wii 0

where E C. = the expectation operator,

U [•] = a von Neumann - Morgenstern utility function
displayiug non—satiation and risk aversion
(i.e., U > 0 and U"< 0), and

= the randan gross after ta rate of return per
dollar invested in the i asset.

It will prove convenient below to parameter ize the randan rates of

return in the form:

(2) (.El-I-.1 1

E 1 + + 5c.

where the net rate of return per dollar invested in the th aset,

and1 1

a zero mean randan variable definitiorially set equal to
the prediction error in i.

Subetituting expression (2) into (1), we can in principle solve

the portfolio choice problem for the optimai asset demands A1. These
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asset dands are generally of the form:

(3) A = al[,...,rk ; 1) ; W0]

where = a vector of parameters which ccziletely characterize the
joint probability distribution of (5,... ,x).

The asset substitution matrix US" is, by definition, the Jacobian

of the systen of asset dand equations (3) with respect to the vector

of net rates of return. Thus, the typical elanent of S is:

(4) S EES. .1= 1

Without prior information about either the form of the utility function

U [.] and/or the joint probability distribution of rates of return preciously

little can be said about the structure of S other than that each of its

columns sum to zero and that its diagonals are likely to be positive.1
This lack of knowledge about the structure of S is sanetirnes not well

appreciated. For example, it is traditional in the monetary econa'nics

literature to say that asset "i" is a substitute (ccinp]2xnent) to asset "j

if the sign of is negative (positive)? In general, however, these

concepts are not well defined because the sign of need not be the

same as the sign of for i j . Thus, we might have the confusing

result that asset "i" is a substitute for asset "j" but that "j" is a

canp1nent to "i".

One situation in which the above ambiguity does not arise is when

the substitution matrix is snietric. Under s'ninetr' = S. implying

that the cross yield effects between two assets are equal and therefore

of the same sign.

Syrrinetry of the substitution matrix not only permits one to define

asset substitutability and canplanentarity unambiguously, it has useful

npirical implications as well. Gramlich and Kalchbrenfler (1970) were

the earliest to observe the fact that syrrrnetry of the substitution matrix
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may facilitate the estimation of systarts of asset dnaiid equations which

are linear in expected rates of return. To appreciate this fact, consider

the following sinplified vector systan of asset duand equations

*
A = (Br+d) •W0

where B is a k x k matrix of coefficients and d is a k x 1 vector of co-

efficients. In general, there are k2 - 1 independent paramaters to be

estimated after allowances are made for the balance sheet constraint. If
the substitution matrix B.W0 is syrrmetric, however, the number of independent

parameters is reduced to (k2-i- k -2)/2. For k = 5, this results in a decline

in the number of coefficients to be estimated fran 24 to 14

Symrtetry restrictions on the substithticn Iwftri x have heen usfully

anploy&1 in npirica1 estimations of systans of asset driands by Gramlich

arid Kalchbrenner (1970), and Hendershott (1977). Smith (1978)

has criticized this practice for apparently lacking theoretical justification4.

The purpose of the present paper is to provide a theoretical justification

for iirosing syirmetry restrictions on the substitution matrix within the

context of the portfolio choice nvdel discussed above. Specifically, in

Section II of this paper we shall derive necessary and sufficient conditions

for the substitution matrix to be synmetric for all joint probability

distributions of rates of return. Concluding rnarks are presented in

Section III.
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II Syninetry of the Substitution Matrix

ii. A Case 1: Discrete Ccmpounding

Roley (1977) was the first to derive necessary and sufficient condi-

tions for the substitution matrix to be syninetric in a portfolio choice

setting with uncertainty. His analysis, though, is confined to mean-variance

rcde1s of investor behavior. Nonetheless, his results are useful as a

starting point in• our investigation of the synrnetry property for general von

Neumann - Morgenstern expected utility maximizers.

Suppose that an investor has a mean-variance utility function of the
2: 2

form u [p, a I where p and a are the mean and variance of end—of-period

wealth respectively. A measure of the investor's risk avprsion is

-u1/u2 , defined to be the investor's mean-variance absolute risk aversion.

Roley proves that a necessary and sufficient condition for a mean-variance

investor 's substitution matrix to be exactly syrrunetric is that the investor

display constant mean—variance absolute risk aversion.

The first new result of this paper is to generalize Roley' s theorn to

von Neumann-Morgenstern expected utility maximizers:

Theoran 1: Consider the portfolio choice problea (l)whose

solution is given in (3). Then a necessary and sufficient

condition for the substitution matrix S to be synmetric for

all joint probability distributions of rates of return

is that utility display constant absolute risk aversion.5

Clearly Theorn 1 includes Roley' s result as a special case when mean-

variance rreferences are derived fran an underlying von Neumann -

Morgenstern utility function.
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Sane care must be exercised when interpretting Theoranl. When utility

displays constant absolute risk aversion this theorEn says that the sub-

stitution matrix will be syninetric regardless of the joint probability

distribution of rates of return. It also says that only this type of utility

function generates a synmetric substitution matrix for all joint distributions

of rates of return. Theorea 1 does not claim, IxMerer, that the substitution

matrix will never be synmetric if utiltiy does not display constant absolute

risk aversion: given an arbitrary utility function it may be possible to

find sane distribution of rates of return that will generate a syninetric

substitution matrix.

II. B Case 2: Continuous Canpounding

Constant absolute risk aversion is a very stringent assumption about

investor behavior which does not have much eapirical support. Therefore,

tpirical applicability of Theoren 1 is likely to be quite limited.

Constant relative risk aversion, on the other hand, appears to

characterize the preferences of many groups of investors reasonably well.6

In the present section we shall redefine the substitution matrix in terms

of geanetric rather than arithmetic rates of return. Having done this it

is straightforward to derive a result analogous to Theoren 1 in which

constant relative risk aversion is both necessary and sufficient for the

(redefined) substitution matrix to be syninetric.

Rather than parameterize gross rates of return R by the arithmetic

net rates of return as in (2), it is gcjne.tjines nore convenient to pararneterize

then by their geanetric analogues g defined by

(2') exp[J
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expL+ y.]

where = the net geanetric rate of return per dollar
invested in the th asset,

g=E{} ,and
a.

Essentially, differs fran in that the former is the net rate of return

per unit time if rates of return are canpounded continuously during the

investment period whereas the former is the appropriate concept if returns

are canpourided only at the end of the investment period.

l½nalogous to (3), the solution to the portfolio choice problen generated

by substituting (2') into (1) can be written in the general form:

*
(3') A = a1(g1,...' ; W0]

where = a vector of parameters which canpletely
characterize the joint probability
distribution of .

We are interested in the conditions under which the (gecmetric) substitution

matrix defined by

(4') [c1]

is snetric. Our results are surmiarized in the following theoren which

is proved in lppendix 2:

Theoren 2: A necessary arid sufficient condition

for to be snnnetric for all joint probability

distributions of rates of return is that utility

display constant relative risk aversion.

This theorn should be interpreted in the same manner as was described for

Theoren
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III Concluding Rnarks

Above we have derived necessary and sufficient conditions for the

substitution matrix to be synmietric, depending on whether this matrix is

defined in terms of ariti-irnetic or geanetric net rates of return. In the

former case constant absolute risk aversion is required for syrrrnetry

wliereas in the latter case it is constant relative risk aversion.'

Several thnitatioris of our analysis are apparent. First, the portfolio

choice frameworK of this study, given in (1), abstracts fran transactions

costs. As such, the substitution matrices ciiscussed above are best interpreted

as long-run or &uilibrium suostitut on matrices.

A question naturally arises about the syxtinetry of the short-run sur,sti-

tution matrix wnen transactions costs are incorporated, into the analysis. It

is proven in Appendix 3 that when transactions costs are incorporated into the

above portfolio choice framework then the (arithmetic) short-run substitution

matrix is syxm'etric if utility displays constant absolute risk aversion re-

gard less of the form of the transactions cost function, provided that it is

twice differentiable.

The above portfolio choice paradigm is aiso inherently static. Tfle

introduction of dynamic considerations into this framework, hcMever, renders

the probian exceedingly difficult and well beyond the intendi scope of tnis

paper.
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1. See Jones (1979) for a discussion of when the diagonals are positive.

In general, > 0 if 0 and > 0.

2. See for instance, Silber (197(J).

3. This case may result if one of . and is quite small
0 0

and the other is quite large and positive. See Jones (1979) for a

discussion.

4. Roley (1977) has provided a rigorous justification for the syametry

restrictions for mean—variance investors. See section II below.

5. See Pppendix 1 for a proof of Theorn 1. See Jones (1979) for a proof

which hasizes the similarities between portfolio theory and neo—

classical consuiption theory.

6. See Jones (1979) and the references cited therein.

7. When a risKless asset exists then the following interesting result

obtains: that portion of the arithmetic (gearietric) substitution

matrices corresponding to just the risky assets is syninetric for all
distributions of rates of return if and only if utility displays

hyperbolic absolute risk aversion in the sense of Merton (1972). See

Jones (1979) for a proof of this result.
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Proof of Theorem 1:

Necessity:

Step 1: After using the wealth constraint to rewrite

problem (1) in terms of the unconstrained choice over Al,...,Ak_l

the first order conditions are

(Al) E{U'.(R — Rk)} = 0 for i = l,...,k—l.

Step 2: Since each column of S sums to zero, by virtue

of the wealth constraint, symmetry implies that if all are

increased by "(5" then all asset demands remain unchanged. By

totally differentiating (Al) and assuming that the Hessian

associated with (Al) is positive definite so that the second

order conditions hold this is seen to imply that

(A2) E{U".(R — Rk)} = 0 for i = l,...,k—l.

Moreover, because symmetry must hold for all joint distri-

butions of the (A2) implies that U" and U' are proportional.

This is the same as saying that U[] displays constant absolute

risk aversion.

Sufficiency:

Step 1: Define the matrix H to be the Hessian associated

with (Al). Thus,
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(A3) H [H.] = [EU".(R —
Rk) (R — Rk)}1.

Also define

• • •

'k- 1

(A4) SE

k—l • • • k—l

The matrix S is therefore the upper (k-l)x(ik-l1 submatrix of

S (which we will recall is k x k)..

Step 2: Totally differentiating (Al) arid making use of
the assumption of constant absolute risk aversion we obtain

(A5) S = —E{U' } S H1.

Hence, S is symmetric. Moreover, since the choice of which

asset to eliminate via the wealth constraint was arbitrary,

it must be true that S too is symmetric.



APPENDIX 2

• Proof of Theorem 2:

Necessity:

Step 1: Since each column of the substitution matrix

2 sums to zero, symmetry implies th.at each row must also sum to

zero. That is, an equivalent increase in all leaves all

asset demands unchanged. Equivalently, all asset demands are

unchanged if all gross yields R are increased by the same

proportional amount "3."
This can be shown to imply that

k -. — - —

(A6) E{U" . 1 ACR — ÷ WoRk) (R — Rk)]}= 0 for i = 1,...,k—l.

Since this must hold for all joint distributions of the R it must
k

be true that U' and U" ( A(R -
Rk) + W0R,) are proportional.

This,however, is equivalent to the requirement that UI ] displays

constant relative risk aversion.

Sufficiency:

Step 1: Define

a
—1

A

(A7) =

k—l



Totally differentiating CAl). and invoking constant
relative risk aversion yields

A
T

(A8) c2 = -E{U' 1k —
S

+ S

:

which is clearly synimetric. Since the choice of which asset to

drop via the wealth constraint was arbitrary, this implies

that is also symmetric.
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Within the framework described above transactions

costsmay be incorporated by positing that costs c[Al,...,Ak]

are incurred if the beginning—of—period portfolio is (Al,...,Ak).

Conceptually, the scalar cost function c[] is also parameterized

by the asset holdings inherited or carried forward from the

previous period. Since these are given at the time the current

portfolio decision is made, these additional parameters will be

excluded from our notation for simplicity.

Thus, the portfolio choice problem with transactions

costs may be written

k
(A9) Maximize E{U[ A.R.]}

A11...,A i=l

subject to
k

A + c[Al,...,Ak] = w0.i=1

Under general conditions the portfolio holding of the

kth asset can be solved as a function of A1,...,A_1 and W0

from the wealth constraint in (A9). Denote this function

(AlO) Ak = f[A1,.. . ?Akl; W0].

Then the portfolio choice problem may be rewritten as an

unconstrained optimization over A11.. .,Ak_l:
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k
(All) Maximize E{U1 A(R — Rk)

÷ f IA1,... ,Ak_l;WO]Rk]}.
i=l

The first order conditions are:

(A12) EU''E(R — Rk) + -— R]} = 0 for i = l,...,k—l.

Define the short—run substitution matrix to be

(A13)

where A E f[A,...,A1;W01. Also, let be the upper left-

hand (k-i) x (k-i) submatrix of . Then totally differentiating
(A12) yields:

(A14) = — M1 E{U'}I + E U" • — +

k-i Rk

A1

(Al,...,Ak_l)T
af

where M is the Hessian associated with (All). From the first

order conditions (A12) and constant absolute risk aversion,

however, this expression is just:

(A15) = —E{U'}M1
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which is clearly symmetric. Since the choice of which asset

to drop via the wealth constraint is arbitrary, this implies

that is symmetric also. -



BIBLIOGRAPHY

Gramlich, E. and J. Kalchbrenner, 1970. "A Constrained
Estimation Approach to the Demand for Liquid
Assets." Federal Reserve Board Special Studies
Paper No. 3.

Hendershott, P., 1977. Understanding Capital Markets, Vol. 1:
A Flow-of-Funds Financial Model. Lexington, Ma.:
D. C. Heath & Co.

Jones, D., 1979. A Structural Econometric Model of the United
States Equity Market. Harvard University Ph.D. Thesis.

Merton, R., 1973. "An Intertemporal Capital Asset Pricing
Model." Econometrica 41 (September): 867-87.

Roley, V., 1977. A Structural Model of the U.S. Government
Securities Market. Harvard University Ph.D. Thesis.

Silber, W., 1970. Portfolio Behavior and Financial Institutions.
New York: Hoit, Ithinehart and Winston, Inc.

Smith, G., 1978. "Review of P. Hendershott, Understanding
Capital Markets, Vol. 1: A Flow-of-Funds Financial
Model." Journal of Monetary Economics 4 (August) : 560-66.


