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Symmetric Substitution Matrices in Asset Demand Systems*

I. Introduction

Considgr the generic single-period portfolio choice problem
in which an investor seeks to allocate wealth "Wp" among "k" alté.rnative
assets so as to maximize the expected utility of end-of-period wealth.
Denoting the amount of money invested in the ith asset by Ai,in the absence
of transactions costs this problem may be formally written as:

‘ Kk “
(1) maximize E {U[J-;]_Ai Ri]}

Ay... /B .

subject to: I XA, = Wy
i= 1

whera E{.}

Il

the expectation operator,

ul-]

a von Neumann - Morgenstern utility function
displaying non-satiation and risk aversion
(i.e., U >0and U"< 0), and

4

R, = the randam gross after rate of return per
dollar invested in the i~ asset.

It will prove convenient below to parameterize the random rates of

return f{i in the form:

(2) Ris 1+ E,
= 1+F + X%,
1 1 )
where §i= the net rate of return per dollar invested in the ith asset,

r.=e{r.t , and
i i

X.= a zero mean random variable definitionally set equal to
the prediction error in fi.

Substituting expression (2) into (1), we can in principle solve

*
the portfolio choice problem for the optimal asset demands Ai' These
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asset demands are generally of the form:

N * ~ ~
(3) Ai - ai[ri’...'r H 9_ H Wo]

where ¢ a vector of parameters which campletely characterize the

joint probability distribution of (il, ces ,':'ck) .

The asset substitution matrix "S" is,‘ by definition, the Jacobian

of the system of asset demand equations (3) with respect to the vector
of net rates of return. Thus, the typical element of S is:

*
(4) s =ls;41= 1 s-f-;—— 1.
Without prior information about either the form of the utility function
U[-] and/or the joint probability distribution of rates of return preciously
little can be said about the structure of S other than that each of its

colums sum to zero and that its diagonals are likely to be positive.l
This lack of knowledge about the structure of S is scometimes not well

appreciated. For example, it is traditional in the monetary econamnics
literature to say that asset "i" is a substitute (camplement) té asset "3j"
if the sign of Sij is negative (positive)? 'In general, however, these
concepts are not well defined because the sign of Sij need not be the
same as the sign of Sji for i # j.3 Thus, we might have the confusing
result that asset "i" is a substitute for asset "j" but that "j" is a
canplement to "i".

One situation in which the above ambiguity does not arise 'is when
the substitution matrix is synmetricA. Under symmetry Sij = Sji implying
that the cross yield effects between two assets are equal and therefore
of the same sign.

Symmetry of the substitution matrix not only permits one to define
asset substitutability and complementarity unambiguously, it has useful

empirical implications as well. Gramlich and Kalchbrenner (1970) were

the earliest to observe the fact that symmetry of the substitution matrix
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may facilitate the estimation of systems of asset demand equations which
are linear in expected rates of return. To appreciate this fact, consider

the following simplified vector system of asset demand equations

* -
A =Br+d -W

where B is a k x k matrix of coefficients and d is a k x 1 vector of co-
efficients. In general, there are k2 - 1 independent parameters to be
estimated after allowances are made for the balance sheet constraint. If

the substitution matrix B-WO is symmetric, however, the mumber of independent
parameters is reduced to (k2+ k -2)/2. For k = 5, this results in a decline
in the number of coefficients to be estimated from 24 to 14!

Symmetry restrictions on the substitution matrix have heen usefully
employed in empirical estimations of systems of asset demands by Gramlich
and Kalchbrenner (1970), and Hendershott (1977). Smith (1978) ,
has criticized this practice for apparently lacking theoretical justification4.
The purpose of the present paper is to provide a theoretical justification
for imposing symmetry restrictions on the substitution matrix within the
context of the portfolio choice model discussed above. Specifically, in
Section II of this paper we shall derive necessary and sufficient conditions
for the substitution matrix to be symmetric for all joint probabiiity
distributions of rates of return. Concluding remarks are presented in

Section III.
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II Symmetry of the Substitution Matrix

IT.p Case l: Discrete Campounding

Roley (1977) was the first to derive necessary and sufficient condi-
tions forithe substitution matrix £o be'symmetric in a portfolio choice
setting with uncertainty. His analysis, though, is confined to mean-variance
models of investor.behavior. Nonetheless, his results are useful'as a
starting point in our investigation of the symmetry property.for general von
Neumann - Morgenstern expected utility maximizers.

Suppose that an investor has a mean-variance utility function of the
form u[u,oZ] where u and 02 are the mean and variance of end-of-period
wealth respectively. A measure of the investor's risk aversion is
-u,/u, , defined to be the investor's mean-variance absolute risk aversion.
Roley proves that a necessary and sufficient condition for a mean-variance
investor's substitution matrix to be exactly symmetric is that the investor
display constant mean-variance absolute risk aversion.

The first new résult of this paper is to generalize Roley's theorem to

Von'Neumann-Morgenstern expected utility maximizers:

Theorem 1l: Consider the portfolio choice problem (1l)whose
solution is given in (3). Then a necessaiy and sufficient
condition for the substitution matrix S to be symnetric for
all joint probability distributions of rates of return

is that utility display constant absolute risk aversion.5

Clearly Theorem 1 includes Roley's result as a special case when mean-
variance preferences are derived fram an underlying von Neumann -

Morgenstern utility function.
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Same care must be exercised when interpretting Theoreml. When utility
displays constant absolute risk aversion this theorem says that the sub-
stitution matrix will be symmetric >regardless of the joint probability
distribution of rates o'f return. It also says that only this type of utility
function generates a symnétric substitution matrix for all joint distributions
of rates of return. Theorem 1 does not claim, however, that the substitution
matrix will never be symmetric if utiltiy does not display constant absolute
risk aversion: given an arbitrary utility function it may be possible to
find some distribution of rates of return that will generate a symmetric

substitution matrix.

II.B Case 2: Continuous Campounding

Constant absolute risk aversion is a very stringent assumption about
investor behavior which does not have much empirical support. Therefore,
empirical applicability of Theorem 1 is likely to be quite limited. '

| Constant relative risk aversion, on the other hand, appears to
characterize the preferences of many groups of investors reasonably well.6
In the present section we shall redefine the substitution matrix in terms
of geametric rather than arithmetic rates of return. Having done this it
is straightforward to derive a result analogous to Theorem 1 in which
constant relative risk aversion is both necessary and sufficient for the
(redefined) substitution matrix to be symmetric.

Rather than parameterize gross rates of return ;ti by the arithmetic
net rates of return as in (2), it is gometimes more convenient to parameterize

them by their geametric analogues ai defined by

(2) R, = explg; |




= expl§i+ 371]
where g. = the net geametric rate of return per dollar
i - :
invested in the i“-" asset,

-~

]
]
Q
[
|
Qi
H

Essentially, 31 differs fram fi in that the former is the net rate of return
per unit time if rates of return are campounded continuously during the
investmen_t period whereas the former is the appropriate concept if returns
are campounded only at the end of the investment period.

Analogous to (3), the solution to the portfolio choice problem generated

by substituting (2') into (1) can be written in the general form:

* L - -
(3") A, = algy,...09 1Y 5 Wl
¥ = a vector of parameters which campletely
characterize the joint probability

distribution of G’l' cos ,§k) .

where

We are interested in the conditions under which the (geametric) substitution
matrix defined by
*
0A;

4’ Q= [R,.] =
(4" (9330 = fg5,]
is symmetric. Our results are summarized in the following theorem which
is proved in Appendix 2:

Theorem 2: A necessary and sufficient condition

for © to be symmetric for all joint probabilitj(

distributions of rates of return is that utility

display constant relative risk aversion.

This theorem should be interpreted in the same manner as was described for

Theorem 1.
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III Concluding Remarks

Above we have derived necessary and sufficient conditions for the
substitution matrix to be symmetric, depending on whether this matrix is
defined in terms of aritmmetic or geametric net rates of return. In the
former case constant absolute risk aversion is regquired for symmetry
whereas 1n the latter case it is constant relative risk aversion.:

Several limitations of our analysis are apparent. First, the portfolio
choice framework of this study, given in (1), abstracts fram transactions
costs. As such, the supstitution matrices discussed above are best interpreted
as long-run or equilibrium supstitution matrices.

A question naturally arises about the symmetry of the short-run supsti-
tution matrix when transactions costs are incorporated into the analysis. It
is proven in Appendix 3 that when transactions costs are incorporated into the
above partfolio choice framework then the (arithmetic) short-run substitution
matrix is symmetric if utility displays constant absolute risk aversion re-
gardless of the form of the transactions cost function, provided that it is
twice differentiable.

The above portfolio choice paradigm 1s also inherently static. The
introduction of dynamic considerations into tnis framework, however, renders

tne probiem exceedingly difficult and well beyond the intended scope of tnis

paper.




Footnotes

*This paper is a portion of my thesis which was written under the supervision

of Professors Benjamin Friedman and John Lintner. Their coamments have been

greatly appreciated.

1.

3.

See Jones (1979) for a discussion of when the diagonals are positive.

*
. BA > *
In general, S, > 0 if awg— 0 and A;* > 0.

See for instance, Silber (1970).

% * K . :
This case may result if one of -g%- . A.* and -g-zi\l ' A] is quite small

) 0 i WO

and the other is quite large and positive. See Jones (1979) for a
discussion.
Roley (1977) has provided a rigorous justification for the symmetry
restrictions for mean-variance investors. See section II below.

See Appendix 1 for a proof of Theorem 1. See Jones (1979) for a proof

which emphasizes the similarities between portfolio theory and neo-

: classical consumption theory.

See Jones (1979) and the references cited therein.

When a riskless asset exists then the following interesting result
obtains: that portion of the arithmetic (geametric) substitution
matrices corresponding to just the risky assets is symmetric for all
distributions of rates of return if and only if utility displays
hyperbolic absolute risk aversion in the sense of Merton (1972) . See

Jones (1979) for a proof of this result.




APPENDIX 1

Proof of Theorem 1l:

Necessitz:'
Step 1: After using the wealth constraint to rewrite
problem (1) in terms of the unconstrained choice over Al""'Ak-l

the first order conditions are
(Al) E{U'-(Ri -R)} =0 for i =1,...,k-1.

Step 2: Since each column of S sums to zero, by virtue
of the wealth constraint, symmetry implies that if all ;i are
increased by "68" then all asset demands remain unchanged. By
totally differentiating (Al) and assuming that the Hessian
associated with (Al) is positive definite so that the second

order conditions hold this is seen to imply that
(a2) E{U"-(R; - R)} =0 for i = 1,...,k-1.

Moreover, because symmetry must hold for all joint distri-
butions of the ii’ (A2) implies that U" and U' are proportional.
This is the same as saying that U[-] displays constant absolute

risk aversion.

Sufficiency:

Step 1: Define the matrix H to be the Hessian associated

with (Al). Thus,




(A3) H = |

Hij] = [E{U"'(_Ri - R) (Rj - Rk)}].

Also define

(oA EYC !

BAl o 3Al

Brl Brk_l
(Ad) S = .

Af-1 aRL_1

! oty 1 |

The matrix S is therefore the upper (k-1l)x(k-1) submatrix of

S’(which we will recall is k x k).

Step 2: Totally differentiating (Al) and making use of

the assumption of constant absolute risk aversion we obtain

(a5) S =-g{u'} -85t

~

Hence, S is symmetric. Moreover, since the choice of which
asset to eliminate via the wealth constraint was arbitrary,

it must be true that S too is symmetric.




APPENDIX 2

Proof of Theorem 2:

Necessiﬁz:

Step 1: Since each column-of the substitution matrix

Q sums to zero, symmetry implies that each row must also sum to
zero. That is, an equivalent increase in all 51 leaves ali
asset demands unchanged. Equivalently, all asset demands are
unchanged if all gross yields ii are ihcreased by the same
n

proportional amount "Bg.

This can be shown to imply that

k ~ ~ ~ - ~
(a6) E{U" ] ] A (Ry - R+ WyR)(R; - RJI}=0 fori=1,...,k-1.
i=1 | |

~

Since this must hold for all joint distributions of the R, it must
k ~ ~ ~
] . n - :
be true that U' and U (izl Ai(Ri Rk) + WORk) are proportional.
This, however, is equivalent to the requirement that U[°] displays

constant relative risk aversion.

Sufficiency:

Step 1: Define

[ np % *
3A% 3A% )
99, 99p 1
(A7) Q = - ’ . .
*
3Rk, 3AX
kagl ag’]<__l )




~Ad-
Totally differentiating (Al) and invoking constant

relative risk aversion yields

[ A % . A fax ) % )

A% | 0 A ) (a3

(A8) @ = —E{U'-ﬁk}H"l - P SR ‘ .
. . ) Wy .

0 © R Pk-1) | Pk-1]

which is clearly symmetric. Since the choice of which asset to

drop via the wealth constraint was arbitrary, this implies

that © is also symmetric.




APPENDIX 3

Within the framework,described above transactions
costsmay be incorporated by positing that costs C[Al"“’Ak]
are incurred if the beginning-of-period portfolio is (A ,l..,Ak).
Conceptually, the scalar cost function cl+] is also parameterized
by the asset holdings inherited or carried forward from the
previous period. Since these are given at the time the current
portfolio decision is made, these additional parameters will be
excluded from our notation for simplicity.

Thus, the portfolio choice problem with transactions

costs may be written

k -
(A9) Maximize E{U[ | A.R.]}
A ... =1 1
17 By
subject to
k
_Z A, +cla,...n) =w,.

i=1

Under general conditions the portfolio holding of the

th

k asset can be solved as a function of Al""’Ak-l and W0

from the wealth constraint in (A9). Denote this function
(A10) A, = £A,,... A ;i Wyl.

Then the portfolio choice problem may be rewritten as an

unconstrained optimization over Al,...,Ak_l:




._A6..
k ~ -~ ~
(A11) iéx1mlzzk E{U[i_i_-1 A;(R; = R + f[Al,...,Ak_l;Wo]Rk]}.
1'.." _1 -

The first order conditions are:

L ~—~ E_f__.’.‘ —. ] = -
(a12) E{U [(Ri Rk) + 3] Rk]} = 0 for i =1,...,k-1.

Define the short-run substitution matrix to be

BA;
334) 2| =

5T
5

(A13) )

where A¥ = f[AI""'Ai—l;WO]‘ Also, let ] be the upper left-

hand (k-1) x (k-1) submatrix of ). Then totally differentiating

(Al2) yields: r .
- x 1 (&
Ry RKW
(a14) J = - M YE{U'}T + E{U" - || -+
Re-1 Ry
L, L L \ J \ /
[af i ]
By
+ R (A a7
Rl - 170 k-1
of
95, |

where M is the Hessian associated with (All). From the first
order conditions (Al2) and constant absolute risk aversion,
however, this expression is just:

A

(A15) § = -E{u'IM 1




_A'7_
which is clearly symmetric. Since the choice of which asset
to drop via the wealth constraint is arbitrary, this implies

that | is symmetric also.
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