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ABSTRACT

This paper derives optimal weights for current—account and reserve

indicators for adjusting the exchange rate (a "crawling peg"). Keven (1975)

showed that use of a current account indicator alone would not stabi1ie

reserves, while a reserve indicator results itt unstable fluctuations in the

exchange rate. This paper begins by analyzing the problem in the framework

of Phillips (1954), in which the current account indicator is "proportional"

and the reserve indicator is "integral." We then analyze the problem in a

deterministic optimal control framework, and finally as a problem in stochastic

control. In all cases the optimal combination is a weighted average, which

we call the Keven—Phillips formula. With a fairly low variance of the

current account, its weight falls in the range 0.47 — 0.65. Rising variance

reduces its weight in the optimal formula.

William H. Branson
Woodrow Wilson School
Princeton University
Princeton, New Jersey 08544

(609) 452—4830

Jorge Braga de Macedo
Woodrow Wilson School
Princeton University
Princeton, New Jersey 08544

(609) 452—6420



I. Introduction

The problem of choosing indicators for exchange—rate adjustment

will be relevant for some time to come. Most countries do not permit their

exchange rates to float freely, and others must choose some rule, implicit

or explicit, for adjusting the rate. In any program of exchange—rate

surveillance, the IMF staff will have to take a view on the appropriate

indicators. Indeed, in the early seventies, sore work was done at the

Fund along these lines, namely by Underwood (1973) and Williamson (l937b)

and the problem was discussed by the Committee of Twenty (1974).

To our knowledge, the definitive study of the problem to date

Is Kenen's(l975). He did an extensive simulation study of ni.erous

alternative schemes and found that a reserve change or basic balance

indicatQr would not stabiljze reserves whilst a reserye indicator resulted

in large fluctuations in the current ccQunt. He also noted that this

reflected the problem of smp1e proportional or integral stabilization rules

ana1yzed by Phillips (1954), but did not pursue a Phillips' analysis.

Even though the importance of Phillips's early contribution has

been more widely noted in the macro literature, perhaps because the title

of his paper refers to a "closed economy", the open economy Implications

are pointed out. Thus, it is said that "a country which attempts to regulate

its current balance of payments, whether by means of Internal credit policy

or quantitative import restrictions, and in doing so responds mainly to the

size of its foreign reserves (i.e., to the time integral of its current

balance of payments), is applying an integral correction policy which is

likely to cause cyclical fluctuations similar to those illustrated (in this paper).
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The short cycles that have occurred in the balance of payments of. a number

of countries since the war may be in part the result of such action".

Phillips also notes that "The general principles of stabilization C...)

could equally well be used, for example, in investigating the stability of

adjustment in international trade or the problems involved in commodity

price stabilization schemes."

In this paper we generalize Kenen's results and relate them

to an optimal control approach to the problem. Kenen studied arbitrarily

specified adjustment mechanisms; we wish to derive an optimal specification

explicitly. In section II we generalize Kenen's results analytically,

and derive weights for the current account and reserve target that yield

monotonically stable adjustment. We see that a current account (or, in

general, flow) indicator is stable but randomizes reserves, while a reserve

indicator yields a limit cycle. Conditions for a Kenen—Phillips formula

weighting the two to give stable results are presented and illustrated.

In section III we derive an optimal control solution for adjustment

to a given current account disturbance. Since this formula is a linear control

rule, it can be derived as the solution of the minimization of a quadratic

minimum energy loss function subject to a linear equation of motion. Thus

optimal weights for the current account and reserve target are derived for

various values of the derivative of the current account with respect to the

exchange rate (B), and the weights of the output variables in the social

loss function a.

Finally in section IV we derive the adjustment equation in a

See Phillips (1954), p. 298 footnote 1 and p. 305 footnote 1
respectively. The importance of this work is emphasized in the first paragraph
of Turnovsky (1973) and in the preface of Aoki (1976), for example.
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stochastic framework with Continuous current account and exchange rate

multiplier shocks. The separation theorem of stochastic control, known in

economics as the principle of certainty equivalence, implies that the linear

control rule renains applicable, given the expectation on the state variables

conditional on the path of the output variables. If the two are Uncorrelated,

we therefore have an expression in the Kenen—Phillips form of section II.

The values of the optimal weights for various values of the

parameters of this problem are compared with those obtained for the deter-

minIstic case. It is found that the weight of the current account in the

optimal control rule is generally higher than the welfare weight, and also higher

than the lower bound of Section II. When the variance of the effect of the

exchange rate on the current account increases, however, the optimal weight

approaches the lower bound and becomes smaller than the welfare weight, as

was to be expected from the static analysis in Brainard (1967). The results

are summarized and conclusions are drawn in Section V, which includes the

summary Tables. 6 and 7.

II. Flow vs. Stock Indicators

The purpose of this section of the paper is to expose the an-

alytical problem of the choice of indicators as clearly as possible,

setting the stage for the optimizing approaches of the following sections.

Therefore we begin witi-. the simplest model that illustrates the problem.

Assume that the monetary authority in a given small open economy has al-

ready decided not to permit its exchange rate to float freely. This is

necessary for the question of choice of indicators to arise. Further,

assume zero capital mobility so that the current account balance B in

foreign currency Is the rate of accumulation of reserves,

(1) R = B.
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These two assumptions are consistent; with no stabilizing speculation

on capital account, a foreign exchange market based on trade flows alone

might well be unstable.

The current account balance is an increasing function of the

exchange rate e (units of home currency per unit of foreign exchange):

(2) B = B(e) ; B ) 0.
e

The sign of the derivative Be reflects the Marshall—Lerner condition.
2

By appropriate choice of units equilibrium imports and the equilibrium

exchange rate are set to one, that B = d + d — 1, where d and d

are the absolute values of the export and import price elasticities of demand.

We assume that domestic absorption is manipulated by aggregate demand policy

so that we can focus on the dependence of B on e alone.

The model could be amended to include capital flows as a function

of uncovered interest rate differentials In that case, given interest rates,

1
Branson and Katseli—Papaefstratiou (1978) for the fully—developed

argument.

2Writing the current account more explicitly as B(p) = X(p)Ip — M(p)
where p = eP*/P is the real exchange rate and P/Pt an appropriate relative
price index and differentiating around equilibrium, we have

dB = M Cd + d — 1)p. x m

where d. = I = x,m1

Is a combination of supply (n) and demand (c) elasticities of exports
and imports. We setP = P*,= 1 in the analysis so as to preserve the simplicity
of equation (1) in the text.
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exchange rate expectations would have to depend on the current level of the

exchange rate, and be such that B > 0, including capital flows in B. This

is achieved by regressive or weakly extrapolative expectations. Adding

capital movements in this "old" way would reduce analytical clarity without

adding anything to the results.

A position of external balance is defined by attainment of a

given target level of reserves R*, with a zero balance on current account.1

The latter condition defines a target value for the exchange rate:

(3) B(e) = 0,
* *

and R = R , e = e defines external balance. The problem of choice of

objective indicators is to choose a rule for adjusting e, following ob-

servations on B or R, that converges to external balance.

One candidate suggested by Cooper (1970) would be to key

adjustment of e to reserve changes, which, given (1), amount to the

current account balance:

(4) = —XB(e).
-

This is a proportional stabilizer, in Phillips' terms. As Kenen says,

"It matches a flow control to a flow target."2 Given our assumption

that Be > 0, it is stable around e.- Linearizing, we have

(5) é=_ABe(e_e),
and dé/de = — A B < 0. But there is no mechanism to move R to R* with

this rule. The time path of R will resemble a random walk. A current

1The extensive literature on optimal reserves was surveyed in Williamson
(1973a). See also Bilson—Frenkel (1979).

2
See Kenen (1975) p. 128. Cooper's proposal is analyzed on p. 118

and "given good marks" in the conclusion on p. 147.
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*
account disturbance moving e will be eliminated gradually as the adjust-

ment rule (4) moves e to the new e*. During the adjustment period R

will change. When e reaches e and B is again zero, there will be no

further change in B....

Another candidate, proposed in 1972 by the U.S. Secretary of the Treasury

would be to key adjustment of e to deviations of reserves from the target:
1

*
(6) è=—À (R—R).

This is an integral stabilizer in Phillips' terms. As Kenen says, "The

rule marries a flow control to a stock target, a union that is always

apt to be unstable."
2

Indeed, it leads to a limit cycle in e (t). To see this, differentiate

the rule in (6) with respect to time, and linearize around e

(7) è = — A R = — A B(e) = — XB( e_e*).

This is a second—order differential equation without a term in é:

+ AB e = 0e
The roots of the equation are purely imaginary and equal to

I (A Be) h/2 If the system were to begin at -

1
The outline of the proposal presented at the Annual Meeting of the

IMF is in IMF (1972), p. 34—44, esp. p. 39—40. The full document is in CEA
(1973), p. 160—174. Alternative proposals in the C—20 are reproduced in Committee
of Twenty (1974) and discussed in Wil1iamson (1977). See Underwood (1973) for
a listing of similar proposals.

2Kenen (1975) p. 128. The conditions for the instability of the reserve
target indicator, as well as the change in reserves indicator when there
are capital flows, were derived in a complete model of the "small open
inflationary economy' by Martirena—Mantel (1976), who concludes that her
results "seem to agree' with Kenen's. Recently,particularly in connection
with the "Southern Cone problem" discussed by Diaz—Alejandro (1979), this
instability was obtained in a variety of portfolio balance nodels: see
Rodriguez (l978),Kouri (1979), Dornbusch (1979), Calvo (1979) and Krugman (1980).
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R = R, e = e*, a current account disturbance would set off an infinite

cycle in e, B, and R.

Phillips'.. prescription was to combine the two rules. in (4) arid

(6). The essential idea is to add a bit of the integral stabilizer as

in (6) to the proportional rule of (4) in order to keep a stable ad—

justnient system moving toward
the reserve target. We can express this

by weighting the two rules:
*

(8) é., — [XB(e) + (l—X)(R—R )]; 0 <X <1.

Here gives the sensitivity or spead of adjustment of e with respect

to the weighted average of off—target
values of B and R. By appropriate

choice of units, we can scale to unity.

We can find a range of values for X which will yield mono—

tonically stable adjustment of e as follows. Differentiate (8) with re—

*

spect to time and linearize B around e to obtain the second—order

differential equation.

(9)
•• + ABe + (1—A) Bee

0.

The roots are given by

rl r2 =•(-
AB 2e - (1-A) Be) 1/2) /2.

For monotonic stability, A should be chosen such that both roots are

real and negative, which requires that the square root term be

positive, or that -

4 B

This, in turn, gives us a quadratic in A with roots given by

2

r1, r2 = e —1± (1 + Be)
1 2

Since A is positive, we discard the negative root. This yields the

expression for the permissible range of A, depending on B.
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(10) 1>A>

To obtain an intuitive understanding of the result, recall

that B d + d — 1. If both demand elasticities are unity (ine x m

absolute value) so that Be = 1, we have A > 0.83. As B gets smaller,

the bound for A approaches unity; as
Be gets larger, it approaches

zero. Some values for Be and A are given in Table 1.

Table 1: Lower Bound for A, Depending on Be

B
e

0 .25 .50 1.0 1.5 2.0 10.0 100.0

A 1 .94 .90 .83 .77 .49 .46 .18

As Be increases, less weight must be given to the current account

balance to get a given adjustment of the current account. A "reasonable"

weighting of the two targets with Be around unity would be 0.8 for the

for the current account and 0.2 for the reserve deviation.

III. Optimal Adjustment in a Deterministic Framework

Equation (10) and Table 1 give the permissible range of weights for the

stock and flow targets that yields monotonically stable adjustment to a current

account disturbance in the Kenen—Phillips framework. Stillconsideringadjustment

to a one—6hot current account disturbance, we now turn to an optimal control

analysis from the viewpoint of external balance. In this context, the problem

- involves minimizing the square of the difference between actual and desired

current account and level of reserves, with minimum exchange rate changes. The

desired level of the current account and the deviation of reserves from some given

level R* is taken to be zero. The quadratic minimum—energy loss function is then



L = - [a B(e)2 + (l_a(R_R*)2 + (.)2]

Here a is the welfare weight for current account imbalance and — a

weights the distance from the reserve target, both being measured relatiye to the

unit cost of exchange rate variability.

As in section II the model of the economy is given by

R = B(e) B(ee*),

where B(e*) = 0 defines e*. In this simple case, the output vector is just

=rR_R*1
LB J

and we write

howhere C =

[0 Be

rR-R*1and z ILee*J
The state vector is

desired values, so that we

output regulator problem.

zero we cannot assume that

problem is finite, or that

9

(11)

(12) w = Cz,

is the state vector.

also expressed as a difference of actual and given

can treat the problem as a simple time invariant

Strictly speaking, when the desired values are not

the minimum loss of the .time invariant

a control exists. By writing the state variables

in deviation form, however, we are able to ignore the forcing function and

therefore work with infinite horizon. We write our objective function as

J = - f (w'Dw + ju) dt2o

where u = is the control vector

Le]

and D — a]
The homogeneous system we work with has of course the same eigenvalues

as the inhomogeneous one. The consequences of discounting are analyzed below.
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Given (12),we have a convenient state space representation

of our problem.

(13) MLn 4 t (z'Qz + u'u) dt

subject to = Az + Bu

z(o) = z,

where Q = C'DC =
(1—s) B2] ;

íö B1A1 et

Lo oj

B = (

yl
Defining the vector of costate variables y = C ) we have the Hamiltonian

1
y7

(14) H = - (z'Qz + u'u) + y' (Az + Bu),

which is minimized at each instant of time. The marginal conditions then

are

(15) u' + y'B = 0,

2
since = I is positive definite.

au

By the minimum principle, we have

(16) z = Az + Bu;

(17) y = —Qz
— A'y.

Using (15) transposed we write the canonical equations

1 Note that th? system (l2), (13) is both controllable and observable,
since the rank of (BiAB) and (C'i A'C) is two.
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(18) z = Az — BB'y;

—Qz — A'y.

For time invariant A, B, Q and an infinite horizon problem, the costate

variable is given by

(19) y = Kz,

where K = [ii k121 urn K(t)

[12 k22j
is a positive definite matrix given by the Riccati equation:

(20) —KA -A'K + KBB'K — Q = 0

By substitution we derive from (20) equations for the elements of K:

=

(21) k12k22 = k B
11 e

— 2k2 = (1—a)B2.22 el e

Given the positive definiteness of K, k11, k12, k22 > 0, so that the solution is

(22) k12 = f
k = B /2J/B + (1—ci) .22 e e

k /2cz/B + (1—ci)c&11 e

The optimal control is linear in the state vector and, from (15)

and (19) satisfies the equation

(23) —B'Kz



so 'that it can be written as a function of k12 and k22:

(24)

= _R*) — /2v/B + (1—ct) BCe — e*)

Defining 0 = v" + /2vc/B + (1—a)

and 1 — y = /&i 0

this yields a familiar expression for the optimal rate of crawl

e = — 0 [yB(e) ÷ (1 —i) (R _R*)}

Some values of 0 and y for values of Be and a are shown in Table 2.

Table 2

Alternate values of Q and I

12

Values of. a

' o. ,s, i

e 0 y
'0 y 0 y

01 1

1.0. 1

10.0 1

0 1

1

1

1

1

4,54

2.09

1.51

1 43

,84

!66

.53

50

5.47

2.41

1.45

1 14

.82

.59

.31

12

The table is consistent with the result of the previous section that the

weight on the current account increases as Be decreases, but by less. In the

case of Be = 1, weighting equally the two targets implies that the optimal

current account weight is .66, rather than .8 from Table 1. Note, however,

that the change in the exchange rate is 2.09 as large as was the case before.

For the same change, the lower bound at the current account weight is .38

(see Table 6 below). The optimal value is thus substantially higher than the
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lower bound, confirming the need to supplement the instability analysis of

section II by an optimizing approach.

Solving (18) explicitly we find that the system is inonotonically stable

with eigenvalues given by

Be i—ct + 2/ li—ct— 2c
(25) r1r2

—

2{ Be

The absolute values of r1 and r2 are displayed In Table 3 for the same

values of a and Be as Table 2.

Table 3 Eigenvalues of (6)

for values of a and B
e

Values of
B
e

Values of a
0 .5 1.0

r1 r2 r1 r2 r1 r2

.1

1.0

10

100

—.1

—1.0

—10

—100

0

0

0

0

—.192(1+1)

—.69(1+1)

—7

—70.7

—.l92(l-1)

—.69(1—i)

—1

—1

—.223(l+i)

—.707(l+i)

—2.23(i+i)

—7.07(1+1)

—. 223(1—I)

—.707(1—i)

—2.23(1—i)

—7.70(1—i)

The solution is of the form

[R - R*l R -
(26) I I exp(Gt)( °

1
Je — e*J te — e*JLt J \O /

where C = A — BB'K, and

exp(Ct)
8e

r

1 1

7 FxP(nit) 0
r r2/Be

—

r2—r1 r1/B r2/Bj L
0

exP(r2t)J [_r1/B+ 1

In the case where reserves
are initially at their desired level,

R = R*, the deviation of the exchange rate from
its long run equilibrium value
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is given by

(27) e_e* (e — e*)
[e2_o1/

_(02+ O)J

/B(1_a)_2

-

where 'F =
Be(1_a)+2vc

and 0 = exp(r.t); i = 1, 2.

In the case of a pure current account target, 'F = 1 and the exchange rate

is a weighted average of the initial and long run levels, with the former

weight declining over time, as in the analysis of Kouri (1978):

(28) e = e01 + e* (1 — Oi).

If et = 1, however, 'I' = i and the exchange rate is given by the limit

cycle

(29) e - (e0_e*) [(02_el) — (02 + 01)i] +

Associated with the. rule in (23) is a minimum value for the loss

function in terms of the deviations of the state variables from their given

equilibrium levels and the Riccati' matrjx, so. that loss is zero in the

steady—state. This, can be wrjtten as

(30) = 4 z'Kz =
4 k11(Rt_R*)2 + 4 k22(et_e*)2+ k12(Rt_R*)(et_e*)

Let us now consider the case in which future utility is discounted

at a rate p, so that the minimand in (13) becomes

1 -t
(31) 1 (z'QZ ÷ u'u) e dt

Then the Riccati equation in (20) becomes
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(32) -KA -A'K + pK + KBB'K - C) 0

and equations (21) for its elements becorne

— a + p k11 0

(33) k12k22 — kiiBe + pk12 = 0

k2 — 2k12B
— (1 — a) B2 +

pk22
0

Solving out for k11, which does not enter the optimal control solution

in (23), we obtain two second—order equations which can be represented in

k12, k22 space. This is done in Figure 1, for p = .2, a = .5 and Be .1.

The intersection of the two curves at E is clearly to the southwest of

R, where the rate of discount is zero and the coefficient on reserves is

independent of the coefficient on the current account. Note that larger

values of Be bring E closer to R, as shown in the e column of Table 4, which

Table 4

Alternate values of

O and ,

forp

NN
.1

1

.41

91

y

1

1

o

2.51 .84

1.78 .67

e

3.34

2.07

.,.

.81

.58

10

100

.99

.99

1

1

1.35

1.35

.47

.47

1.38

1.13

.31

.12



Figure 1

The effect of discounting

on the coefficients of

the Riccati Matrix

J0r :-1_ i. & sic Fw

16

.5.

0 .1

3

.2
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is comparable to the 0 column of Table 2 above. The weights y are

however closer to those of Table 2 for lower values of B. As expected,

discounting reduces the sensitivity of the rate of crawl to the indicators

but this reduction is more than offset by a large value of the Marshall—

Lerner condition so that when Be = 100 (and a = .5), y = .47 rather

than .50 as in Table 2.

IV Optimal Adjustment in a Stochastic Framework

To analyze the problem within a stochastic framework, we will modify

the model given by equations (1) and (2) above. While we still assume that

the exchange rate can be controlled exactly, we introduce an additive current

account disturbance w2. We also introduce uncertainty regarding the effect

of the exchange rate on the current account. This "statedependent noise"

is modelled as an additive disturbance to Be possibly correlated with

WV If we assume further that and are Brownian motion with dt

and adt as variances of their respective increments, the change in reserves

can be approximated around equilitrium by a linear stochastic differential

equation of the form

(34) dR = (Bdt + du1) (e — e*) + du2.

The state representation of our system becqmes

(35) dz (Az +Bu) + S1zdt +
S21 dt,

rc.oiwhere S. =11 I' j — iL,
LooJ

1' = El 11
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We now wish to minimize

(36) E fT 1
(z'Oz + u'u) dt00 2

where the expectation is. taken conditional on the steady state of the

system, z 0,

subject to (35) and to

z(0) z.

Define 1/

T

(37) J(z,t) = mm Et ! 4 (z'Oz+u'u) ds
t

and

(38) (u,z,t) = (z'Oz+u'u)+(J)

whereis the Dynkin operator.

By Ito's Lemma we find

2 22dJ = + z. dz + - E Jz.z. dz. dz.
i=1

1 i 2 1 1

By definition

(39) (J) = -- E (dJ)

so that

(4O)(j) = + J'(Az+Bu) + 4 (z'S + 1'S) J (S1z+S21)

See a similar derivation in Macedo (1979), Appendix 1. Also Chow (1979).
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By Bellman's theorem we know that there exists a control rule such that
from (38),

(41) (u,,t) = 0.

Given (4l),we minimize (38) with respect o u and obtain the control

rule

(42) — B'J
z

Substituting (42) into (40), we can 'write the optima] value of as

(43) --z'Oz — J' BB'J + J' Az + z'S'J S z + 1'S'J S z
2 z z z 2 izzi - 2zz 1

+ 11'S'J S 1 + J = 0
2,-. 2zz2_ t

To evaluate the partial derivatives of J consider terminal loss from time

1/zero to time zero + .— This can be written as

T
mm i

(44) j(z0t0) = J (z ,t + ) + E I —(z'Qz + u'u)dtz 0 0
T— 2

Make T very large so that the expected value of the integral

approaches the steady state value L... Then,dropping T subscripts, we obtain

(45) J(z,t) = J(z,t + A) + AL

so that

(46) —L

1

See Chang—Sketler (1976) for a similar derivation.
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Consider now J as a polynominal in z. such as

(47) J = z'Kz + kz + C,

where k =
(k1 k2) ,

(48a) so that J = Kz + k' , and

(48b) Jzz

Substitutin" into (43) and collecting terms we have

(49) 0 = 4 z' [ + A'K — KBB'K + SKS1 + ] z

+ [k'A — k'BB'k + l'SKS1] z

-L - 4 kBB'k + 4 1'SKS21

- The terms in brackets are equations for and , which for

sufficiently large T roximate solutions

(50) KA + A'K — KBB'K + SKS1 + Q 0 ;

(51) k'A — k'BB'k + lSS = 0

(52) 4 1'SKS1 — 4 kBB'k' = L

From (50) we find the equations for the elements of the Riccati

matrix as

2 2
k12 — = a

k12 k22 = k11 Be -

k2 _2•k12Be = (1—a)B2
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Eliminating k11, we find that the first and third equations define

a hyperbola and parabola respectively in k12, k22 space, just as in equations

1/(33) above. — Now the parabola is the same as the third equation in (21) above

whereas the hyperbola is upward sloping; their intersection E is to the north

east of point R, as shown in Figure 2 for a = .5 and Be = = 1. The

larger a, the further away will be from R, in the same way that a larger

p brought E closer to the origin and away from R.

Given the elements of K, we solve for k in (51) to find

k7= —

(53)

k22k2 T 12
Even though we minimized loss conditional on z = 0, the variance teris

make it non zero in the steady—state, as can be seen by solving for the value,

of the loss function in (52):

2

1 2 k12 k22 i k2 2
(54)

L =
2 a2 B

—
a12

e e

Note that if the two disturbances are uncorrelated the optimal control

cannot reduce the loss and that the zero loss optimal weights are independecit

of a2.

Now using (42) and (48a) we find the optimal control rule to be

(55) il = — B'(Kz + k')

1
If we were discounting and a > p the intetactioh 1ould be on tIe hyperbola

to the left of E, (on the parabola cutting the k22 axis at Be(I1_a + — 5).

2 The similarity between state dependent noise and a "negative discount' has

been pointed out by Turnovsky (1.973). Note however
the difference in this model

between (32) and (50) and the difference in the magnitudes of the parameters

discussed below in the text.



Figure 2

The effect of state—dependent

noise on the coefficients

of the Riccati matrix

22

Ed

Rei.
tJ3k s k po e r S'"

2i



23

Thus, as expected from the separation theorem, the rule is the same as in

the deterministic case when the two disturbances are uncorrelated, so that the

forcing term k' is zero. Using (53) we can express the rule in terms of the

k12 and k22 coefficients, or in the 8, y notation of (24) as:

(56) é = -6 [ y (BCe) + a12) + (l—y) (R_R*]

whereG = k + k lB
12 22 e

l—y = k1210.

Some values of 0 and y for the usual values of B and and three values
e

of a1,are shown in Table 5. The optimal rate of crawl depends, in addition, on

the covariance term a12. If the additive and state dependent disturbances are

negatively correlated, the optimal rate of crawl is less than if they are

uncorrelated. However, in (54), loss only depends on a and the square of the

correlation coefficient, so that the sign of the covariance has no effect on

loss.

Aside from the effect of the covariance, which is not included in Table 5,

the interpretation Is similar to Tables 2 and 4 above. In fact, we notice

that the offsetting of the overall sensitivity 0 by the size of B, which was

pointed out in connection with Table 4, holds for the stochastic case. The

strong effect of the variance term of the state noise is also evident from the

table. Indeed, when the standard deviation of the state—dependent noise is 2,

the optimum weight on the current account is 0.2 for virtually all of the values

of a and Be that have been used. The exception is the combination of a pure

reserve target and "infinite" elasticities (a = 1 and Be = 100). In that case

-

the table shows a drop in the weight on the current account from 0.2 to 0.11.

In the case of a pure flow target (ci = 0) we find that, just as in Tables 2 and

4, the optimum current account weight does not .depend on Be• The weight is not
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unity, however, as in the deterministic case. Also, the sensitivity parameter

6 declines with increases in B whereas it increased with B in the discount case
e e

of Table 4. Thus, the current account weight can be as low as 0.2 when variance

is large, and is only 9l when variance is 0.L

In the equal weight case (a = .5), low variance yields optimal weights

that are very close to the ones obtained in the deterministic analysis. For

large Be in fact, these weights are close to the no discount case of Table 2.

For example, when Be = 10, y = .53 in Table 2 and y = .47 in Table 4. When Be

= 100 y remains unchanged in the discount case and it is equal to 0.5 in the

no discount and low variance stochastic cases.

When variance is unity, however, the current account weight drops

substantially and the range is reduced from .82 — .50 to .51 — .39. As mentioned,

the uniform value for a variance of 4 is 0.2. As y varies less, the range of the

sensitivity parameter 0 increases substantially with the variance. Thus, when

2 = .1 0 has a range of the same order of magnitude as in Table 2. (5.35 to

1.45 vs. 4.54 to 1.43) whilst in the high variance case the range is 400 to 4.

It should be pointed out that the effects of state—dependent noise on the

Kenen—Phillips formula might be less drastic when control—dependent noise is

incorporated in the analysis, particularly if it is inversely correlated with

state—dependent noise.

V. .Summary and Conclusions

The numerical findings are from section II — IV are summarized in tables

6 and 7 where the values of the current account weight y, the sensitivity

coefficient 0, and the coefficient of the current account in the optimal

rule (y0) are listed a = .5 and for Be = 1 and Be = 100 respectively. The

implied lower bound is obtained by dividing .8 by 0 and permits comparison of the

weights for a given change in the exchange rate, this is subject to the proviso



Table 5: Alternate Values of e and -y for

Different Va1ue of
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ct=O cx=.5 a=l

0 y 0 y 0 y

.1

B = .1
e

1

10

100

2.66

122

1.11

1.10

.91

.91

.91

.91

5.35

2..23

.56

1.45

.82

.65

.52

.50

6.30

2.50

1.51

1.20

.79

.58

.31

.12

2

01=1
B = .1
e

i

10

100

40.10

4.82

2.20

2.02

.50

.50

.50

.50

40.55

4.80

2.14

1.87

.51

.48

.41

.39

40.60

5.02

1.75

1.20

.51

.46

.29

.12

a=4
B = .1
e

1

10

100

400.06

40.61

7.39

5.20

.20

.20

.20

.20

400.00

40.35

6.23

4.00

.20 400.00

.20 40.07

.20 4.56

.19 1.38

.20

.20

.19

.11
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that, in the stochastic case, the change in the exchange rate would be larger

or smaller depending on whether the state dependent noise is positively or

negatively correlated with the additive disturbance. If the variances are

equal, in fact, this might mean a difference as high as 4 multiplying the

coefficient on B in the tables.

The tables bring out the results that have been emphasized earlier.

They can be summarized as four points.

First, low variance (.1 in the tables) and discounting bracket rather

tightly the deterministic no discount case. For Be = 1 the range is 0.65 to

0.67 (no discount y = .66) and for Be = 100 the range is 0.47 to 0.50 (no

discount y = .50). The ranges of the implied lower bound are, respectively,

0.36 to 0.38 and 0.124 to 0.133. Second, as mentioned above, the effect of

discounting in reducing the sensitivity of the rate of crawl to the indicators

is more than offset by large values of B, so that in Table 6 y with discount

is higher than y no discount and y low variance and in Table 7 y with discount

is lower than the other two. Third, the finding discussed above that the implied

lower bound in the deterministic as discount case of section III is less than

half the lower bound of section II, the same holding for the low variance and

discounting cases, as shown in Table 6, is eliminated by a large B , as evident
e

from Table 7. There the values are 0.18 for the lower bound of section II and

.13 for the deterministic no discount case. Fourth, and perhaps most important,

both tables show again that the effect of a large variance — = 1 or larger —

are quite strong. When = 4 the lower bound goes to .02 in Table 6 and to

.05 in Table 7, while 0 increases to 40 and 4 respectively.

This paper has shown that the Kenen—Phillips formula for the optimal

weighting of indicators in a crawling peg is obtained in the various situations

of sections II — IV, given the simplest model of the economy and a drastic



Table 6

Values of Adjustment Paratneter for a .5; B
e

Section Description y 0

coefficient
of B

imniled
lower bound

II Lower bound .83 1

III
Deterministic

no discount .66 2.09 1.38 .38

III Deterministic
discount

p = .2 .67 1.78 1.19 .45

IV Stochastic

cy= .1

1

= 4

.65

,48

.20

2.23

4.80

40.35

1.44

2.30

8.07

.36

.17

.02

27



Table 7

Values of Adjustment Parameters

for a = .5; B = 100.
e

.' . -
coefficient irliDlied

Section Description y e of B lower bound

II Lower bound .18 1

Deterministic
p = 0 .50 1.43 .715 .126

no discount

III Deterministic
.:

discount

p = .2 .47 1.35 .635 .133

IV Stochastic

= 1
'

.50 1.45. .725
,

.124

= 1

= 4

.39

.19

1.87

4.00

.729

-
.760

.096

.045 .

I

28
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definition of the loss function.in terms of external balance only.

In all cases the optimal formula is a weighted combination of targets

with an additional parameter for the desired speed of adjustment. With a low

variance a reasonable range for the current account weight seems to be 0.65 to

0.67 when Be = 1 and 0.47 to 0.50 when Be = 100. The optimal speed of adjustment

o is very sensitive to the estimated value of Be and Thus while we have

shown that the optimal indicator is in general a weighted combination of the

flow and stock targets, the numerical results suggest that quantitative choice

of a formula will require careful econometric estimation in each particular

case.

t
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