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observed interest: rate, -While this model does explicitly relfect the depen-
dence of the market experience return .on the interest rate, it does not
take into account the effect of changes in the level of risk associated
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this dependence are analyzed in this paper. Estimation procedures are
derived which incorporate the prior restriction that equilibrium expected
excess returns on the market must be positive. The parameters of the models
are estimated using realized return data for the period 1926-1978.

" The principal conclusions from this exploratory investigation are:
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ON ESTIMATING THE EXPECTED RETURN ON THE MARKET:
'~ Anh Exploratory Investigation

Robert C. Merton*
Massachusetts Institute of Technology

I. Introduction

Modern finance theory has provided many insights into how security
prices are formed and has provided a quantitative description for the
risk structure of equilibrium expected returns. In the most basic form

1/

of the Capital Asset'Pricing Model,~ this equilibrium structure is given

by the Security Market Line relationship: Namely,

o -r=8@=-1) (1.1)

where ai and o denotes the expected rate of return on security i and
the market portfolio, respectively; r 1is the riskless interest rate; and
Bi is the ratio of the covariance of the return on security i with the
return on the market divided by variance of the return on the market.
.This same basic model tells us that all efficient or optimal portfolios
can be represented by a simple combination of the market portfolio with
the riskless asset. Hence, if ae and oe are the expected rate of
return and standard deviation of return on an efficient portfolio, then
af = w(lad - r) +r and o = wo where w "is the fraction allocated to
the market and ¢ is the standard deviation of the return on the

market. From these conditions, we have that the equilibrium tradeoff

between risk and return for efficient por;folios is given by

of - r = [(a - r)/o]c® . (1.2)
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(1.2) is called the Capital Market Line and (a - r)/o, the slope of
that line, is called the Price of Risk.

From (I.1) and (I.2), one can determine the optimal portfolio
allocation for an investor and the proper discount rate to employ for the
evaluation of securities. Moreover, these equations provide the critical
"cost of capital” or "hurdle rates' necessary for corporate capital
‘budgeting decisions. Of course, (I.1l) and (I.2) aﬁply only for the most
basic version of the CAPM, and indeed, empirical tests of thelsecurity
Market Line have generally found that while there is a positive relation-
ship between beta and average excess return, there are significant
deviations from the predicted relationship.g/ However, these deviations
appear principally in very "high" and very "low'" beta securities.
Moreover, there is some question about the validity of these tests.éj
The more sophisticated intertemporal and arbitrage—model versions of the
CAPM&/ show that equilibrium expected returns on secﬁrities may depend
upon other types of risk in addition to "systematic" or "market" risk,
>and hence, they provide a theoretical foundation for (I.1l) and (I.2) not
to obfain. However, in all of these models, the market risk of
a security will affect its equilibrium expected return, and indeed, for
most common stocks, market risk will be the dominant factor.é/
Thus, at least for common stocks and broadeased equity portfolios, the
.basic model as described by (I.1l) and (I.2) should provide a reasonable
"first approximation" theory for equilibrium expected returns.

Of course, all one needs to know to apply these formulas iﬁ solving

portfolio and corporate financial problems are the parameter values.
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And as might Dbe expected, considerable effort has been applied to
estimating them. However, this effort has not been uniform with respect
to the different parameters, and as will be shown, this nonuniformity is
not without good reason.

For the most part, r is an observable, and so that parameter is
gotten for free. Among the other parameters,‘beta is the one most widely
estimated. In dozens of academic research papers, betas have been
estimated for individual stocks; portfolios of stocks; bonds and othér
fixed income securities; other investments such as real estate; and
even human capital.éj For practitioners, there are beta "books" and
beta services. While for the most pa:t tﬁese betas are estimated from
time series of pasf returns, various accounting data have also been used.

In their pioneering work on the pricing of options and corporate
liabilities, Black and Scholes (1973) deduced an option pricing formula
whose only nonobservable input is the variance rate on the underlying stock.
As a result, tﬁere has been a surge in researcﬁ effort to estimate the variance
"ratés for returns on both individual stocks and the ﬁarket. Although this
research activity is still in its early stages of development, variance rate
estimates are already available from a number of sources.

In contrast, there has been 1little academic research 6n
estimating the expected return on either‘individual stocks or the market.
Ibbotson and Sinquefield (1976; 1979) have carefully cataloged the
historical average retﬁrns on stocks and bonds from 1926 to 1978.

However, they provide no model as to how expected returns change through

time. There is no literature analogous to the term structure of
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interest rates for the expected return on stocks, although there is
.research going on in this direction as, for example, in Cox, Ingersoil,
and Ross (forthcoming).

One possible explanation for this paucity of research on expected

returns is that for many applications within

finance, only relative pricing relationships are used, and therefore,
estimates of the expected returns are not required. Some important
examples of such applications are option and corporate liabilities pricing
and the testing for superior performance of actively-managed portfolios.
However, for many if not most applications, an estimate of.the expected
return on the market is essential. For example, to implement even the
most passive strategy of portfolio allocation, an investor must know

the expected return on the market and its standard deviation in order to
choose an optimal mix between the market portfolio and the riskless asset.
Indeed, even if one has superior security analysis skills so that the
optimal portfolio is no longer a simple mix of the market and the riskless
asset, Treynor and Black (1973) have shown that the optimal strategy will
still involve mixing the market portfolio with an active portfolio, and
the optimal mix between the two will depend upon the expected return and
standard deviation of the ﬁarket.» For a corporate finance example, the
application of the model in determining a "fair" rate of return for
investors in regulated industries requires not only the beta but also an
estimate of the expected return on the market. As these examples
illustrate, it is not for want of applications that expected return
estimation has not been pursued.

A more likely explanation is simply that estimating expected returns
from time series of realized stock return data is very difficult. As is

shown in Appendix A, the estimates of variances or covariances from the
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available time series will be much more accufate than the corresponding

_ expected return estimates. Indeed, even if the expected return on the
market were known to be a constant for all time, it would take a very long
history of returns to obtain an accurate estimate. And, of course, if
this expected return is believed to be changing through time, then
estimating these changes is still more difficult. Further, by the
Efficient Market Hypothesis, the unanticipated part of the market return
(i.e., the difference between the realized and expected return) should not
be forecastable by any predetermined variables. Hence, unless a significant
portion of the variance of the market returns is caused by changes in the
expected return on the market, it will be difficult to use the time

series of realized market returns to distinguish among different models
for expected return.

In light of these difficulties, one might say that to attempt to
estimate the expected return on the market is to embark on a fool's
errand. Perhaps, but 6n this errand, I present three models of expected
‘return and derive methods for estimating them. I also report the results
of applying these methods to market data from 1926 to 1978.

The paper is exploratory by design, and the empirical estimates
presentgd should be viewed with that in mind. Its principal purpose is
to motiﬁate further research in this area by pointing out the many estiﬁa—
tion problems and suggesting directions for possibly solving them. The
reasons for taking this approach are many: First, an important input for
estimating the expected return on the markgt is the variance rate on the

market. While there is much research underway in developing variance
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estimation models, their development has not yet reached.the point where
_there is a "standard" model with well-understood error properties.

Because this is not a paper on variance estimation, the model used to
estimate variance rates here is a very simple one. Almost certainly,
these variance estimates contain substantial measurement errors, and these
alone are enough to warrant labeling the derived model estimates for
expected return as "preliminary." A second reason is that the expected
return model specifications are themselves very simple, and undoubtably
could be improved upon. Third, only time serieé data of market returns
were used in the estimations, and as is indicated in the analysis, other
sources of data could be used to improve the estimates. As a reflection
of the preliminary nature of this investigation, no significance tests are
provided and no attempt is made to measure the relative forecasting

performance of the three models.



II. The Models of Expected Return
The appropriate model for the expected return on the market will

depend upon the information available . For example, in the absence of

any other information, one might simply use the historical sample average

of realized returns on the market. Of course, we do have other informa-

tion. For example, we can observe the riskless interest rate. Noting

that this rate has varied between essentially zero and its current double-~

digit level during the last fifty years, we can reject the simple sample

average model for two reasons: First, it can be proved as a rather

general proposition that a necessary condition for equilibrium is that

Athe expected return on the market must be greater than the riskléss rate

(i.e., o > r);l/ Hence, if the current interest rate exceeds the long

historical average return on stocks (as it currently does), then the

sample average is a biased-low estimate. Thus, one would expect the

ngpected return on the market to depend upon the interest rate. Second,

the historical average is in nominal terms, and no sensible model would suggest

-that the equilibrium nominal expected return on the market_is independent

of the rate of inflation which is also observable. Both these criticisms

are handled by a second-level model which assumes that the expected excess

return on the market, o - r, is constant. Using this model, the current

expected return on the market is estimate& by taking the historical average excess

return on the market and adding to it the current observed interest rate.

Indeed, a model of this type represents essentially the state-of-the-art

with respect to estimating the expected return on the market.§/

This mbdel explicitly recognizes the dependence of the market
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expected return on the interest rate and in so doing, it implicitly takes
_iuto account the level of inflation. However, it does not take into accouné
another important determinant of market expected return: Namely, the level
of risk associated with the market. At the extreme where the market is risk-
bless,-then by arbitrage, o = r, and the risk premium on the market will be
zero. If the market is not riskless, then the market must have a positive risk
premium. While it need not always be the case;gja generally-reasonable
assumption is that to induce risk-averse investors to bear more
risk, the expected return must be higher. Given that, in the aggregate,
the market must be held, this assumption implies that, ceteris paribus, the
equilibrium expected return on the market is aﬁ increasing function of the
risk of the market. Of course, if changes in preferences or in the
distribution of wealth are such that aggregate risk aversion declines
between one period and another, then higher market risk in the one
period need nct imply a correspondingly higher risk premium. However, if
aggregate risk aversion changes slowly through time by comparison wi;h
"the changes in market risk, then, at least locally in time, one would
expect higher levels of risk to induce a higher market risk premium.

1f, as shall be assumed, the variance of the market return is a
sufficient statistic for its risk, then a reasonably general specification

of the equilibrium expected excess return can be written as

o - r = g(od) | | (11.1)

where g is a function of 02 only, with g(0) = 0 and dg/dc2 >0.

In the analysis to follow, we shall assume that the function g is
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known and that 02 caﬁ be observed. It is also assﬁmed that there is a
set of state variables S in addition to the current 02 that can be
observed. The specific identity of these state variables will depend upon
the data set available. However, Y is not one of these.state variables.
Hence, conditional on this information seﬁ, the expected excess return on

 the market is given by
' 2 2
Ela - rlS.c?'] = E[Yg(c") |S,0] - (I1.2)
where E[ IS,UZ] is the conditional expectation operator, conditional

on knowing S and 02. Since Y is not observable, for (II.2) to

have meaningful content, the further condition is imposed that

E[Y|S] = E[YISV,G?'] . (11.3)

That is, given the state variables S, the conditional expectation of Y
does not depend upon thé'current 02. This condition, of course, does
not imply that Y is independent of 02.’ Thus, from (II.3), we can

‘rewrite (II.2) as

E[a - r|s,0%] = E[Y]Slg(cD) . (11.4)

Since it has already been assumed that variance is a sufficient statistic

for risk, with little loss in generality, it is further assumed ﬁhat
market returns can be described bf a diffusion-type stochastic process
in the context of a continuous-time dynamic model.lg/ Spécifically, the
instantaneous rate of return on the market (including dividends), dM/M,
can be represented by the ItG-type stochastic differential equation

dM(t _ '
_ﬁéﬁl = adt + 0dz(t) (11.5)
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where dZ(t) is a standard Wiener process and (Ii.S) is to be inter-

. preted as a conditional equatioﬁ at time t, conditional on the instan-

taneous expected return on the market at time t, o(t) = o and on the

instantaneous standard deviation of that return at time t, c(t)_= O,
Under certain conditions,ll/ it can be shown in the context of

an intertemporal equilibrium model that the.equilibriﬁm instantaneous

expected excess return on the market can be reasonably approximated by

alt) - r(t) = chz(t) (II.6)

where Yl is the reciprocal of the weigh;ed sum of the reciprocal 6f each
investor's relative risk aversion and the weights are»related to the distri-
bution of wealth among investors. To add further interpretation for Yl,
in the frequently-assumed case of a representative investor with a constant
relative risk aversion utility function, Yl would be an exact constant
and equal to this representative investor's relative risk aversion. The specifi-
cation for expected excess return given by (II.6) which will be referred
’to as "Model #1" is indicative of models where it is assumed that aggre-
gate risk preferences remain relatively stable for appreciable periods of
time.

"Model #2" makes the alternative assumption that the slope of the

"Capital Market Line or the Market Price of Risk remains relatively stable

for appreciable periods of time. 1Its specification is given by

a(t) = r(t) = Y,0(t) (I1.7)
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where Y2. is the Market Price of Risk. Like ''Model #1," it allows for

changes in the expected excess return as the risk level for the market changes.
"Model #3" is the state—of-the-art model which assumes that the

expected excess return on the market remains relatively stable for

appreciable periods of time even though the risk level of the market is

changing. 1Its specification is given by
a(t) - r(v) = Y, . (11.8)

0f course, if the variance rate on the market were to be essentially
constant through time, then all threé models would reduce to the state-of-
the-art model with a constant expected excess return. However, from the
work of Rosenberg (1972) and Black (1976) as well as many others, the
hypothesis that the variance rate on the market remains constant over any
-appreciable period of time can be rejected at almost any confidence level.
Moreover, given that the variance rate is changing, the three models are
mutually exclusive in the sense that if one of the models satisfies
.condition (II.3), then the other two models cannot. To this, note that

Yj = Yi[c(t)]j_i for 1i,j = 1,2,3. Therefore, if Y, satisfies (II.3),

i
then E[les] = E[Yils]E{[o(t)]j'ils}. E[les,cz(t)] = E[Yi]s][c(t)]j“i.
Therefore, for 1 # j, Yj can only satisfy (II.3) if
E{[G(t)]j-iIS} = [c(t)]j—i for all possible values of o(t), and this
is not possible unless the {o(t)} are constant over time.

While we have assumed that Gz(t) is oBservable, in reality, it is
not, and therefore, like a(t), it must be estimated. Hence, these

models as special cases of (II.l) will be of empirical significance only
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if for the available data set, the variance rate can be estimated more
accurately than the expected return. If the principal component of such
a data set is the time series of realized market returns, then it is
shown as a theoretical proposition in Appendix A that, indeed, the
variance rate can be more accurately estimated when the market return
dynamics are given by (II.5). As an empirical proposition, the studies
of both Rosenberg (1972) and Black (1976) show that a nontrivial portion
of the change iﬁ the variance can be forecasted by using even relatively
simple models. Further, along fhe lines of Latane' and Rendleman (1976)
and Schmalensee and Trippi (1978), it is possible to use observed option
prices on stocks to deduce "ex-ante'" market estimates for variance rates
by "inverting" the Black-Scholes option pricing formula. Hence, models
of the type which satisfy (II.4) hold out the promise of better estimates
for the expected return on the market than can be obtained by direct
estimation from the realized market return series.

While (II.5) describes the dynamics of realized market returns,
we have yet to specify how o(t) and Yj’ j = 1,2,3 change through
time. Although o(t) changes through time, it is assumed to be a
slowly-varying function of time relative to the time scale of market
price changes, and: therefore, over short intervals of time, the variation in
realized market returns will be very much larger than the variation in
the variance rate. That is, it is assumed that
for satisfactorily small §, there exists a finite time interval h such

s g

that the Prob{lCZ(S) - cz(t)l > §|se(t,t + h)} will be essentially zero

| H
where Gz(t) = [.t h UZ(S)dS]/h. In essence, we assume that the variance
t
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rate can be treated as constant over finite time intervals of length h
and that h >> dt. In a similar fashion, it is also assumed that the
riskless interest rate can be treated as constant over this same finite
time interval h.

Under the hypothesis that Model #j is the correct specification, we
agssume that Yj is a slowly-varying function of time relative to the
time scale of changes inrthe variance rate. That is, there exists a
finite time interval T, T >> h, such that Yj can be treated as
essentially constant over intervals of that length. Again, because
Yj = Yi[o(t)]j—i, i, j = 1,2,3 1if one of the models satisfies this

assumption, then the other two cannot.

-

It follows immediately from these hypothesized conditions and the
model specifications that the expected rate of return on the market,
a(t), can be treated as essentially constant over time intervals of
length h. Therefore, over short intervals of time, the variation in the
expected return on market will be similar in magnitude to the variations
“in Gz(t) and r(t) and very much smaller than the variation in
realized market réturns.

Let RM(t) = M(t + h)/M(t) denote the return per dollar on the
marketkportfolio between time t and t + h. Under the hypothesized
conditions for the dynamics of 0(t) and Y,, we have from (II.5) that

k|
conditional on knowing M(t), o(t), and r(t), RM(t) will be lognormally

distributed.
t+h
Let R(t) = exp j.r(s)ds denote the return per dollar on the
) t

riskless asset between t and t + h and define X(t) ln[RM(t)/R(t)].
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Under the hypothesis that Model #j is the correct specification, we can
12/

esxpress X(t) as—

x(e) = {3, o)1’ -1 P + oz (11.9)
t+h
where 2Z(t:h) = j. dZ is a normally distributed random variable with
‘ t

mean equal to zero and a standard deviation equal to \[E: Moreover, for
all t and t' éuch that |t' - t] >h, 2Z(t;h) and 2Z(t';h) will be
independent.

In preparation for the model estimation, wé proceed as follows:

Let T denote the total length of time over which we have data. The
first step is to partition the data into n(T)(Z T/T) nonoverlapping
time periods of length T. By hypothesis, Yj will be constant within
each of these n(T) time periods. The second step is to partition each v
of these n(T) time periods into N(Z T/h) nonoverlapping subperiods of
length h. By hypothesis, the variance and interest rates will be
.constant within each of these N subperiods.

Since by hypdthesis none of the variables relevant to the estimation
changes during any of the nonoverlapping subperiods of length h, there
is nothing to be gainéd by further subdivisions. Hence, the interval

" between observations will equal h, and by appropriate choice of time

units, h can be set equal to one. Therefore, all time-dimensioned

variables are expressed in units of the chosen observation interval.
Because within each of the n(T) time periods, the subperiods are

of identical length and nonoverlapping, it should cause no confusion to
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redefine the symbol "t" to mean "the B subperiod of length h" within
a particular time period of length h. So redefined, t will take on
integer values running from t = 1,...,N. There is no need to further
distinguish "t" as to the time period in which it takes place because
(a) the posited stochastic processes are time homogeneous; (b) the
length of the subperiods are the same for all n(T) time periods; and
(¢) the n(T) time periods are nonoverlapping. By the choice for time
units, "t" will also denote the 1:1:-1—1 observation within a particular
time period.

With t redefined and h =1, (II.9) can be rewritten for a

particular time period as

X(t) = Yj[c(t)]3_j - —%— o2(t) + o(t)e(t), t=1,.0.,N (11.10)

where ;(t) is a standafd normal random variable. Because the subperiods
are nonoverlapping, e(t) and e(t') will be independent for all t and
t' such that t # t'. For the N observations within this time period,
,Yj is, by hypothesis, a constant.

With this, the descriptions of the models are complete, and we now

turn to the development of the estimation procedures.
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I1I. The Estimation Procedures

Given a time series of estimates for o(t), the natural estimation
procedure suggested by (II.10) is least-squares regression. (Ii.lO) is put
in standard form, by making the change in variables X'(t) = x(t)/o(t)

+ g(t)/2 and rewriting (II.10) for Model #j as

X' (t) = Yj[o(m’"j +et) . (III.1)

Given the N observations within the time period over which Y, is

k|
constant, we have that the least-squares estimator for Yj’ Yj’
j=12,3, can be written as
~ N N ) .
Model #1: Y, = |2 X(e) |/ {2 0" (0)| + .5 (111.2.1)
1 . 1
N N N
Model #2: Y, = DX o(e)] + .5 D o(t)p/N (I11.2.2)
1 1

R N N | |
Model #3: T, = {Z [X(t) /o> ()] + .sw}/ S [1/62() 1. (II1.2.3)
1 1 o

From (III.1), all the conditions for least-squares are satisfied, and

~

therefore, Y, appears to be the best linear unbiased estimator of Y

k| i
Since realized rates of return on the market can be negative, it is certainly

A

possible that for a particular time period, Yj- could be negative. In such a

case, 1s that value for Yj an unbiased estimaté of Y,? From prior knowledge,

k|
a(t) = r(t) must be positive. Therefore, each of the Y

3

positive, and the answer to the question is "no." Thus, (III.1) is not a

must be
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complete description of Model #j's specification. A complete description
must include the condition Yj > 0.
While there are a variety of ways to incorporate this restriction,
it is done here by assuming a prior distribution for Yj and applying
Bayes' Theorem to deduce a posterior distribution based upon the observed
data. The specific prior chosen is the uniform distribution so that_the prior

density for Y, is given by f(Yj) = 1/b where 0 <Y, <b.

i ]
Conditional upon knowing Y, and o(t), t =1,...,N, we have

h|
from (III.1) that the X'(t), t=1,...,N are independent and joint
normally distributed. Using the uniform prior assumption for Yj’ it
is shown in Appendix B that the posterior density function for' Yj’

F[lex' (t),o(t),t = 1,...,N], will satisfy j§ = 1,2,3,

) - - 2 _ 2 _
FIle 1 Qexpl nj(Yj Aj> /2]/{\/2ﬁ[¢(pj) <I>(nj)]}v, 0<Y <b (III.3)

where &( ) is the cumulative standard normal density function;

N N
Aj = Z[G(.t)]z-jx'(t)/z[c(t)]"_?'j : (I11.4.1)
1 1
2 _ 3 423 |
2y = > o] ; (III.4.2)
1

pj = Qj(b - Aj) ‘and njE —Aij.

By inspection of (III.3) and (III.4), the way in which the data enter
the posterior distribution can be summarized by two statistics: Aj and

Q;. Moreover, by comparing (III.4.1) with (III.2), we have that

Aj = Yj sy J= 1,2,3 . - (I11.5)
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To reflect these observations, the posterior distribution is written as
F[leYj,Qi;b]. Further inspection of (III.3) will show that F 1is a

truncated normal distribution on the interval [0,b] with characteristic

A

parameters Y, and 1/9?.

J
As Figure III.1 illustrates, the posterior density function will be a

monotonically decreasing function of Y, 1if Y, < 0 and a monotonically

i J .
increasing function if YjQZ b. If 0 < Yj < b, then F monotonically -
increases for 0 j_Yj < Yj; reaches a maximum at Yj = Yj; and monotoni-~

cally decreases for Yj < Yj_g b. It follows immediately that the

maximum likelihood estimate of Yj based upon the posterior distributien,

L

Y., will satisfy

j’
Yl =0 for ; <0
J i—
= Yj for 0 < Yj_g b (111.6)

’However, for the purposes of this analysis, the maximum likelihood
estimator is not the proper choice. The objective is to provide an
estimate of Yj for the prediction of the expected excess return on the
market, conditional on knowing the current variance rate, Oz(t).
Conditional upon Model #j being the correct specification, we have

from (I1.3) and (1I.10), that



 FIGURE II.1 POSTERIOR DENSITY FUNCTION
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Ela(t) - z(t) |0 (t),8] = E[X(t) + .50°(t) |o®(t),S]

[U(t)]3-jE[Yj|02(t),S] (II1.7)

[o<£>13'3E[Yj Is1

where in this context, S denotes the set of data available to estimate
the distribution for Yj' From (III.7), it therefore follows that the
correct estimator to use for estimating the expected excess return is the

expected value of Yj computed from the posterior distribution.

As is derived in Appendix B, Yj = E[YjIYj’Qi;b]’ j=123, is

given by
1.2
7, =t4e 2 nju-exp[-bsz"'(; ¥ )14+/{3f 22 [8(p,)~8(n,) 1} (111.8)
3 ] 4 373 3 3 i/ 3 )
where ;j = b/2 1is the expected value of Yj based upon the prior
distribution. '
From (III.6) and (III.8), the relationship between Yj’ Y?, and §j

for a finite number of observations can be summarized as follows:



-20-

- 2' A A
Yj>Yj>Yj for ngo
T >y'=Y, for 0<¥ < b/2
J J h | -3
v - 2’=A v = =-
Yj-Yj Yj for Yj b/2 Yy (I11.9)
§<Y'.Q'=§ for b/2<§ <b
J h | h | b
Y <Y2'<§ for §>b .
h | h | h | h|

If the model is correctly specified so that in the limit as the number of

observations N becomes large, Y, converges to a point in the interval

B h| .
(0,b], then Y; = Yj’ and from (III.8), Yj converges to Yj. Hence, both
Y§ and Yj are consistent estimators.

Having established the model estimator properties, we now turn

.to the estimation of the?models.
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IV. Model Estimates: 1926 to 1978

In this section, market return and interest rate data from 1926 to
1978 are used to estimate each of the thrée models presented in Section
II. The model estimators are the ones derived in Section III. The
monthly returns (including dividends) on the New York Stock Exchange
Index are used for the market return series. This index is a value-weighted
portfolio of all stocks on the New York Stock Exchange. The u.S. Treasury
Bill Index presented in Ibbotson and Sinquefield (1979) is used for the
riskless interest rate series. The monthly interest rate from this
index is not the yield, but the one-month holding period returns on the
shortest maturity bill with at least a thirty-day maturity.

The interval h over which it is aésumed that the variance rate on
the market can be treated as constant was chosen to be one month. The
riskless interest rate is also assumed to be constant during ﬁhis interval,
and one month is, therefore, the observation interval. The choice of
a one-month interval wéskcertainly influenced by the availability of Aata.
JHowever, a one-month interval is not an unreasonable choice. At least
in periods in which daily return data are available, this interval is
long enough to permit reasonable estimates of the variance rate along
the lines discussed in Appendix A, and it is shqrt enough so that the
variation in the variance rate over the observatiop interval is |
substantially smaller than the variation in realized returns:

Other than satisfying the condition that T be significantly
larger than h, I have no_é priori reasons for choos;ng a specific

value for the length of the time period over which Yj is assumed to be‘
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constant. Perhaps other data besides market returns would be helpful.

For example, if the data on large samples of individual investors'

holdings of various types of assets such as those used in the Blume and

Friend study (1975) were available for different points in time, it

might be possible to use these data to estimate the changes in aggregate

relative risk aversion over time. However, given the exploratory nature

qf this investigation, the route taken here is simply to estimate the models

assuming differehﬁ values for T ranging from one year to fifty-two years

and to examine the effect of these different choices on the model estimates.
A third choice to be made is the value to assign to b in the

uniform prior distribution for Y,. Unlike the lowerbound nonnegativity

3
restriction on Yj’ there are no strong theoretical foundations for an
upperbound on relative risk aversion, and therefore, for an upperbound on
equilibrium expected returns. For b to be part of a valid prior, the
market return data used to form the posterior cannot be used to form an
empirical foundation fog/the upperbound restriction. Again, estimates of
"aggregate risk aversion from the investor data used in the préviously-
cited Blume and Friend study might provide some basis for setting b.
However, in the absence of such other information, aAreasonablé choice

is a diffuse prior on the nonnegaﬁive real line with b = ., Taking the

limit as b goes to ® of the posterior distribution given in (IIIL.3)

leads to a well-defined posterior which can be written as

5 02l = 2y o 82 _ . |
F[YjIYj,Qj, 1 Qjexp[ Qj(Yj ?j) /2]/{‘/2“1 ‘I’(“j)]}_’ ong< . (IV.1)
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From (III.8), the corresponding limit applied to Yj can be written as

ij = gj + exp[-n:?/Z]/{\/ 2m Qj [1- @(nj)]} (Iv.2)

where nj = —gjgj' While a diffuse prior is the working assumption for
the bulk of the empirical analysis, some estimates are provided for
finite values of b to demonstrate the effect of an upper bound restric-
tion on the model estimates.

The moéf important choice for the estiﬁations
is the selection of an appropriate method to generate the time series for
the market variance. The derivations in Sections II and III assumed
that 02(t) is observable. Of course, it is not, and therefore, must
be estimated. As discussed in the "Introduction,"” this is not a paper
on either variance estimation or variance forecasting. Hence, a simple
variance estimation model is used. The use of esfimated values for the
time series of variances introduces measurement error into the model
estimators. Given the exploratory nature of the ﬁéper and the relatively
unsophisticated variance- estimation model, no attempt is made to adjust
“for these measurement errors. In using the estimation formulas from
Section III, it is assumed that the estimated variances are the true
values of the variances. This is the principal reason why the empirical
results presented here must be treated as "preliminary' and it is also
the reason why no significanece tests are attempted.

As discussed in Appendix A, a simple but reasonable estimate for
the monthly.variance is the sum of the squares of the daily logarithmicv
returns on the market for that month with approﬁriate'adjustments for

weekends and holidays and for the "no-trading' effect which occurs with a
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portfolio of stocks. Unfortunately, daily return data for the NYSE Index
is available only from 1962 to 1978. A long time series is essential

for estimating expected returns on stocks and sixteen years of data is

not a long time series. Therefore, to make use of the much longer monthly
time series, a variance estimator using monthly data was created by
averaging the sum of squares of the monthly logarithmic returns on the
market for the six months just prior to the month being estimated and for
the six months just after that month. That is, the estimate for the

variance in month t, gz(t), is given by
~p 6 ) 6 ‘
o (t) = § 20 (IR (eHID® + 3 (IR (e-IDIp/12 . (1.3)
k=1 . k=1

With this variance estimator, all the available market return data except
the first six months of 1926 and the last six months of 1978 can be used
to estimate the models.

Although no explié¢it consideration is given to measurement errors in

.

"the variances, some indication of their effect on the model eétimétes
is provided by estimating the models using both the daily return and the -
monthly return estimates of the variance for the period July 1962 to June
1978.

In Table IV.1l, estimates for Model #1 are reported for the two
different variance estimates and for different values of the upperbound

restriction on Y, under the assumption that Y is constant over this

1 , 1
sixteen-year period. As might be expected, for a "tight" prior (i.e., b

small) and Y, different from the prior expected value of

1
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Y1(§1 = b/2), the data have little weight in the posterior estimate ?1.

For this reason, with b small, the differences in Y for the two

1
different variance estimators are quite small. As b is increased,
the data have greater weight in the estimate of ?1 and the effect on

Yl of the different variance estimators also increases.

Figure IV.1 plots
Yl as a function of b using the daily data estimates of the

monthly variances. As shown thefe,

the differences between Yl for b as small as six and ?1 for the
diffuse prior (b = «) are rather small. Since no information is
available which might provide a meaningful upperbound on aggregate
relative risk aversion, the effects of a finite b are analyzed

no further and the diffuse prior assumption (b = ®) is made for the
“balance of the paper. That is, only the nonnegativity prior restriction
is imposed upon the Yj’ i=1,2,3.

From Table IV.1l, the effect of the two différent variance estimators
on the estimatés of Model #f1 is moderate with a percentage difference in
‘the unrestricted regré;;;on estimate §1 of about five percent and a
percentage difference in the posterior estimate Yl of about four
percent, Both model parameter estimates were larger for the monthly-
data variance estimates. However, as reported in Table IV.2, the
effect on the estimates of Models #2 and #3 is in the opposite direction
and of considerably larger magnitude. As with Model #l1, the percentage
differences in the posterior estimates are somewhat smaller than the per-
cent;ge differences. in the unrestricted regression estimates for both
Models #2 and #3. However, for all estimates in these latter two models,

the percentage differences are in excess of 30 percent. The effect of the

two variance estimatorson the posterior density functions for each of



Monthly Data Esti-
mates of Variance

Daily Data Estimates
of Variance

~ Percentage Dif-
ference _

Table IV.1

The Effect of Daily Data Versus Monthly Data Estimates for
Variance on Model #l1 Estimates For Different Prior Restrictions

Least~-
Squares
Estimate
2 3
1 _ 1
0.3482 1.5914
0.3733 1.5181
-60 7270 4083%

July 1962 - June 1978

Model Estimate Y For Different Prior Restrictions

1
b:o ) b=1 b=2 b=3 b=4 b=5 b=6 b=
612597 0.5312 1.0653 1.5215 1.8436 2,0213 2.0931 2.1180
0.2598 0.5312 1.0612 1.5045 1.8054 1.9605 2.0173 2.0341
~0.04% 0.0% 0.397 1.13% 2.12% 3.10% 3.76% 4.12%
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Table IV.2
The Effect of Daily Data Versus Monthly Data Estimates
of Variance on Different Models Estimates

with Nonnegative Restriction Only

July 1962 - June 1978

Model #1: o(t) - r(t) = Y102(t)

A ¥
2 1
i A W )
Monthly Data Estimates of Variance 0.3482 1.5914 2.1180
Daily Data Estimates of Variance 0.3733 1.5181 2.0341
Percentage Difference -6.727% 4.83% 4.12%
Model #2: a(t) - r(t) = YZU(t)
A ¥
2 2
v B )
Monthly Data Estimates of Variance 192 0.1123 0.1214
Daily Data Estimates of Variance 192 0.1806 0.1818
Percentage Difference 0% -37.82%2 -=33.22%
Model #3: o(t) - r(t) = Y3
o2 Y 3
3 3 (b=x)
Monthly Daté Estimates of Variance 172185 0.0052 0.0053
Daily Data Estimates of Variance 221708 0.0082 0.0083

Percentage Difference -22.34% =36.59%2 -35.37%
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FIGURE IV.3  POSTERIOR PROBABILITY DISTRIBUTION FoR Y,,
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the three models are illustrated in Figures IV.2,.IV.3, and IV.4.

While these brief comparisons cannot be considered an analysis of the
effects of measurement error in the variance estimates, they do serve

as a warning against attaching great significance to the point estimates
of the models. |

From Table IV.2, it appeafé that for this period, the prior nonnega-
tivity restriction is'important only for ﬂodel #1 where for the same -
variance:estimate, the percentage,difference_between .Yl and ;1 is
approximately 25 percent. The differencés between the posterior
estimate and the unrestricted regression estimate for Model #2 and Model
#3 are negligible. This result is further illustrated by inspection of
the shapes and domains of_the posterior density functions as |
‘ plotted in Figures IV.2, IV.3, and IV.4.

To further investigate the importance of.the prior nonnegativity
reétriction, the differences between the pasterior and unrestricted
regression estimates Efg_examined for fifty-two years of data from
’July 1926 to June 1978. These estimates are presented in‘Table Iv.3
for both T = 52 years and T = 26 years. As inspection of this table -

~

. immediately reveals, the percentage differences between Yj and Yj.
are negligible for all three models with T = 52, and for Models #2 and
#3.with T = 26. For Model #1 with T = 26, the differences are Smali
with an average about half of that found in the previous analysis from
1962-1978. As ﬁefore, the posterior density functions for each ofithe

models with T = 52 are plotted in Figures Iv.5, IV.6, and IV.7.

By the assumption that the Yj’ j=1,2,3, are constant over such a



Table IV.3

Different Model Estimates for 52-Year and 26-~Year Time Intervals
July 1926 - June 1978

52~Year Intervals

26-Year Intervals

7/26-6/78 7/26-6/52 7/52-6/78 Average

Model #1: a(t) - r(t) = chz(t)
Qi 2.16246
Y1 1.8932
Y, 1.8988
Percentage Difference -0.30%
Model #2: oa(t) - r(t) = Yzc(t)
2
92 624
Y, .1867
- .
Y, - .1867
2
Percentage Difference 0.0%
Model #3: oa(t) - r(t) = Y3
2
'93 423624
Y3 ;0082‘
Y .0082
Y, 008

Percentage Difference 0.0%

1.6617

1.5112

1.5588

-3.05%

312

.2012

.2012

0.0%

144884

.0109

.0109

0.0%

0.5007

3.1608

3.2076

-1.467

312

.1723

.1725

-0.16%

278740

.0068

.0068

0.0%

1.0812
2.3360
2.3832

~2.26%

o312
.1867
.1869

-0.08%

211812
.0089
.0089

0.0%
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long time period, the number of observations N is quite large (624
-for T =52 and 312 for T = 26). Given the previously-demonstrated
asymptotic‘convergence of ij +-§3 for large N, these findings were
not entirély unexpected. Howéver, if shorter time intervals over which
Yj is assumed to be constant are chosen, then the differences between
Yj and fj are not negligible.

In Table IV.4, the different model estimates are presented for
T = 13 years (with N = 156). The average percentage difference
between ;; and §j for the four 1l3-year time periods ranged.from
a high of 28 percent for Model #1 to a low of 6 percent for Model #3
with Model #2 in the middle at a 12 percent difference. However, the
percentage differences for each of the time periods are more important
'than the average since by hypothesis, the Yj can oﬁly be esﬁimated
using 13 years of data.

In the 1965-1978 périOd, the percentage differences between the
posterior estimate and the unrestricted regression estimate are
" substantial for all three models. This was a'period with a number of
large negative realized excess returns on the market, and this is
pfécisely the type of period in which the-prior nonnegativity restriction
can be é#pected to be important. The periods 1935-1952 and 1952-1965 |
did not have these large negative realized excess returns and corres-
pondingly, the nonnegativity restriction was (expost) unimportant.
The period 1926-1939 appears to be different from the other thfee
in that the effect of the nonnegativity restriction is quite large for

Model #1; small for Model #2; and negligible for Model #3. However,



Model #1: a(t) - r(t) = ¥,0°(t)
2
Ql 1.3344
Yl 0.6281
Y, 0.9747
Percentage Difference -35.56%
Model #2: a(t) - r(t) = Yzc(t)
2
92 156
Y, .1569
Y, 1617
Percentage Difference -2.97%
Model #3: a(t) - r(t) = Y3
2 ,
93 44439
Y, .0146
Y, .0146

Table IV.4

‘Different Model Estimates for 13-Year Time Intervals
July 1926 - June 1978

7/26-6/39 7/39-6/52 7/52-6/65 7/65-6/78 Average

Percentage Difference 0.0%

0.3273

5.1114

'5.1211

-0.19%

156

.2454

.2457

-0.12%

100445

.0092

.0092

. 0.0%

0.1936
7.5772
7.5807

-0.05Z

156
.2982
.2983

-0.03%

164110

.0096

.0096

0.07

0.3072
0.3777
1.5858

~76.18%

156

.0464

.0840

~-44.76%

114630
.0029

.0038

-23.68%

0.5406
3.4236
3.8156

-28.00%

156
.1867
.1974

-11.97%

105906
.0091
.0093

-5.927
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the results from this period are consistent with-the,othefs. This was
a period of both large positive and negative realized excess returns
with both large changes in variance and large variances especially in
the early 1930's when the market had a large negative average excess

A

return. From the regression estimators, (II.2), Yl_ has in its

numerator the unweighted average of the (logarithmic) realized excess
A

returns. Y2 has in its numerator the weighted average of these

excess returns where the weights are such that each excess return is

"deflated" by that month's estimate of the standard deviation. That is,

A
unlike Yl in which each observed excess return has the same weight,

A

Y2‘ puts more weight on observed excess returns which occur in lower-
than-average—standéfd-deﬁiation months and less weight on those that
occur on higher-than-average-standard-deviation months. Inspection

of the regression estimator for Model #3 will show that the weighting
of the realized excess returns is similar to that of §2 except the
effect is more pronounced because eéch month's return is divided

" by that month's variance. Hence, in a period such as the early

1930's when, expost, large negative excess returns occur in months
”iwhere the variance is also quite large, the differences between §j
and §j- will be 1argest in Model #1 and smallest in Model #3. Of
course,vjust the opposite effect will occur in periods when, éxpost,
.either large negative excess returns occur in months when the variance
is small, or more likely, large positive excess returns occur in months

when the variance is large and a number of negative excess returns

occur in months when the variance is small.
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To provide further evidence in support of this explanation and to
further underscore the importance of the nonnegativity constraint,
especially as T becomes smaller,-Tables Iv.5.1, IV.5.2, and IV.5.3
prdﬁide the estimates for all three models for T = 4 years (N = 48).
In the 1930-1934 period, the regreesion estimates were negative for all
three models with the largest percentage difference between §j> and

Yj- occurring for Model #1 and the smallest for Model #3. 1In the 1938
~1942 period, the regression estimatés for Model #2 and Model #3 wére

~

negative, and the ranking of the models by percentage differences between Yj

and Yj was reversed from that of the 1930-1934 period. In the 1966-1970

period, the regression estimates for Model #1 and Model #2 are

negative with the same model rankings as in the 1930-1934 period.

While the periods in which the_regressidn estimates are negative
demonstrate the necessity for the nqnnegativity restriction most
dramatically, it is not necessary that the estimatesbe negative to
‘have large percentage differences between gj- end Yj’ Two cases
in point are the 1970-1974 and 1974-1978 periods. As expected,
when T 1is further reduced from four years to one year, the effect
of the nonnegativity restriction is even more pronounced. The
summary statistics for this case are presented in Table IV.6.

| As a final illustration of the necessity for including the
nonnegativity resfriction, Fhe estimates of gj and §j (G =1,2,3)

using the monthly-data variance estimator for the period 1962-1978

are compared with the corresponding estimates for the,period_l§65-1978.



7/26
7/30
7/34
7/38
7/42
7/46
7/50

7/54 .

7/58
7/62
7/66
7/70

7174

- 6/30

6/34
6/38
6/42
6/46
6/50
6/54
6/58
6/62
6/66
6/70
6/74
6/78

Average

Table IV.5.1

Model #l—Estimates for 4-Year Time Intervals

July 1926 - June 1978

a(t) - x(t) = Y,0°(t)

2
A

.1785
.8365

+2276-

.2226

.0860
.0787

.0553

.0685 -

.0607

.0507.

.0863
.0909
.1204

.1664

n

2.4778
-0.1097
1.9389
0.2156
12.6511

1.9159.

12.2185
7.6509
4.3146
9.0518

-2.2060
0.9986

1.6183

4.0566

]

S

3.1184
0.8337
2.6017
1.7721
12,6525
3.6625
12.2459
7.8610
5.3906
9.2786
2.0534
3.0443
2.9964

5.1932

Percentage

Difference

-20.5%
-113.2%

- =25.5%

-87.8%
0.0%
~47.7%
~0.2%
-2.7%
=20.0%
-2.4%
~207.4%
-67.2%
-46.0%

-49.3%



7/26
7/30
7/34
7/38
7/42
7/46
7/50
7/54

7/58 -

7/62
7/66
7/70
7174

6/30

6/34
6/38

6/42

6/46
6/50
6/54
6/58
6/62
6/66
6/70
6/74
6/78

Average

Table IV.5.2

Model #2-Estimates for 4-Year Time Intervals

July 1926 - June 1978

a(t) - r(t) = Y,o(t)

N

48

48

48
48
48
48
48
48

48

48
48
48
48

48

<>

2

.2658
-.0084
.2549
-.1288
.5509
.1206
.4109
.2954
.2171
.3293
-.0355
.0653
.0901

.1867

all

2

.2768
.1122
.2675
.0790
.5510
.1715
.4119
.3027
.2370
.3336
.1032
1424
.1547

.2418

Percentage

Difference
-4.0%
-107.5%
-4.7%
-263.0%
0.0%
=29.7%
-0.2%
~2.4%
-8.4%
-1.3%
-134.4%
-54.1%
-41.8%

-50.1%



7/26
7/30
7/34
7/38
7/42
7/46
7/50
7/54
7/58
7/62
7/66
7/70
7/74

6/30
6/34
6/38
6/42
6/46
6/50
6/54
6/58
6/62
6/66
6/70

6/74

6/78

Average

Table IV.5.3 . .

Model #3-Estimates for 4-~Year Time Intervals

July 1926 = June 1978

a(t) - r(t) = Y

3
2 Yy T, Difterene
22344 .0165 .0167 -1.2%
4091  -.0015 L0119 -112.6%
16124 .0183 .0185 -1.1%
19633  -.0149 .0026 -673.1%
29693 .0222 .0222 0.0%
33517 .0062 .0075  =17.3%
47626 .0126 .0126 0.0%
35062 .0111 .0113 -1.8%
43347 .0084 .0088 4.5%
73342 .0088 .0089 -1.1%
30920  .0014 0051 -72.5%
35864 .0031 0056  ~44.6%7
32059 .0029 .0057  -49.1%
32586 .0073 0106 -75.3%



Summary Statistics of Different Models Estimates

Model #1: a(t) - r(t) = Yloz(t)

~

Y

Y

1

1

Model #2: oa(t) - r(t) = Y?_o(t)

i

Y

2

2

Model #3: a(t) - r(t) = Y3

Y

Y

3

3

Table IV.6

for 1-Year Time Intervals

July 1926 - June 1978

Monthly Estimates for 52 1l-Year Intervals

Standard
Average Deviation High

4.7982 8.4217 26.2476

8.5001 6.0049 26.3422

0.1867 0.3791 0.8987
0.3719  0.2086 0.8996
0.0061 0.0316 © 0.1322
0.0181 0.0173  0.1323

Low

-9.5025

0.7471

-0.6214

0.1029

-0.1119

0.0040
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Since the variance estimates and return data are identical for the 13-year
overlapping period 1965-1978, the differences between the estimates
presented in Table 1IV.2 and those‘presented in Table IV.4 reflect the
effect of a change from a l6-year to a l3—year observation period. The
three—year ﬁeriod 1962-1965 eliminated by this change was one in which
the realized excess returns on the market were mostly positive .and the
variances were relatively low.

For Model #1, the effect of this change on the posterior estimate
?1_ is a 25.1 percent decline. While this was substantial, the effect
on the regression estimate was much greater with a decline in Qi of

76.3 percent. The effect on the other model estimates is similar.

For Model #2, the posterior estimate Y, changes by 30.8 percent

2.
of 58.7 percent. For Model #3,

A

with a corresponding change in Y2

the change in Y is 28.3 percent and the change in Y is 44.2

3 3

percent.
~ -
The substantial percentage change in both the Yj and Yj'
" estimates from a relatively small chaﬁge in the observation period
illustrates the general difficulty in accurately estimating‘the
parameters in an expected return model and underscores the importance
of using as long a historical time series as is available. However,
very long time series are not always available, and even when they
are, it may not be reasonable to assume that the parameters to be
estimated were stationary over that long a period. Therefore, given
N

the relative stability of the §jv'estimator by comparison with Yj’

it appears that the nonnegativity restriction should be incorporated
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in the specification of any such expected return model.

Having analyzed the empirical estimateé of the Yj, we now examine
the properties of the expected excess returns on the market implied
by each of these models. For this purpose, it is assumed that the

Y (j =1,2,3), were constant over the entire period 1926-1978, and

32
therefoge, T equals 52 years. Of cdurse, this assumption is
certainly opeﬁ to question. However, given the much-discussed problems
with the variance estimators and the exploratory spirit with which
this paper is presented, further refinements as to the best estimate
of T are not warranted here. Moreovef, as discussed in Section II,
.the current state-of-the-art model implicitly makes this assuﬁption
by using as its estimate of the expected excess return on the market,
the sample average of realized excess returns over the longest data
period available.
Using thg'estimated ?j and the time series of estimates for the'
market variances, monthly time series of the expected excess return on
" the market were generated for each of the three models over the 624
‘months from July 1926 to June 1978. As shown in Figures IV.5, IV.6,
and IV.7, with T equal to 52 years, the posterior density.functions
for all three models are virtually symmetric and the differences between ?j
and gj are negligible. Hence, for T = 52 years, the monthly time series
of expected excess returns using the unrestricted regression estimates
. would be identical to those preseﬁted here.
Ihe;summary statistics for thése monﬁhly timé series are reported

in Table IV.7 and they include the sample average, standard de?iétion
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and the highest and lowest values. Of course, the expected excess
roturn estimate for Model #3 is simply a constant. 1In Table IV.7,
the same summary statistics are presented for the realized excess
returns on the market and for the realized returns on the riskless
asset.

Inspection of Table IV.7 shows that the average of the expected
excess returns varies considerably across the three models. The
"Constant-Preferences" Model #1 is the lowest with an average of 0.665
percent per month or, expressed as an annualized excess return, 8,28 :
percent per year. The “Constant-Price-of-Risk" Model #2 is the
highest with an annualized excess return average of 12.04 percent per
year. The "Constant-Expected-~Excess-Return' Model #3 is élmosﬁ exactly:
midway between the other two models with an annualized average of
10.367%. The sample average of the realized excess returns on' the market
was 0.655 percent per month, or, annualized, 8.15 percent per year.

This sample average is also the point estimate for the expectedvexcess
" return on the market according to the state-of—the—aft model.

Even with these large differences in the average estimates, it is
unlikely that any of these models could be rejected by the realized
‘return‘data. The variance of the unanticipated part of the returns
on the market is much larger than the variance of the change in expected -
return. That is, the realized returns are a very '"noisy" series for
detecting differences among models of expected return.

In examining the average excess returns in Table IV.7, one might

be teﬁpted to conclude that Model #1 "looks" a little better because its.



Table IV.7

Summary Statistics of Model Estimates for the Monthly
Expected Excess Return on the Market and Sample Monthly
Realized Returns for the Market and U.S. Treasury Bills

July 1926 - June 1978

Monthly Expected Excess Return on the Market

Standard
Average Deviation High Low
Model #1: a(t) - r(t) = Yloz(t) 0.665%  1.032% 7.1612  0.048%
Model #2: oa(t) - r(t) = Y,0(t) 0.952% 0.570% 3.628% 0.297%

Model #3: at) - r(t) = ¥, 0.8257 -- — —
.Mbnthly Realized Returns
Standard
Average Deviation  High Low
U.S. Treasury Bills: r(t) 0.207% G.1847 0.810% -0.240%
NYSE Excess Returns: 0.655%7  5.881%  38.408%  -29.137%

RM(t)/[l + r(t)] -1
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average is so close to the sample average of realized excess returns.

However, as inspection of (II.2.1) makes clear, the regression estimator
A C '

Yl is such that this must always be the case when the variance estimator

is of the type used here. Tﬁis observation brings up an important issue
with respect to estimates based uponvﬁhe_state—of-the-art model.

| If the strict forﬁulation of thét'model is that the expected
excessbreturn on the market is a ﬁonsﬁant or at least, stationary over

time, then the least-squares estimate of that constant is given by

A

Y3 in Model #3. However, from Table IV.7, .the annualized difference

between Y3 and the‘sample>realized return average is 221 basis points.

This difference is quite large when considered in the context of

A

portfoiio selection and corporate finance applications. Thé féasoh for
the difference is that the sample average of realized returns is onmnly

a least-squares estimate if the variance of returns over the

period is conztant. If the variance is not constant, and it isn't,
then the estimator should be adjusted for heteroscadasticity in the
‘"error" terms. This is exactly what the estimator §3 does.
of coursé, the sample averagé‘of realized returns is a consistent
estimator and the measurement error problem in the variance estimates
rule out.formal statistical comparison. However, the iarge difference
reported here should provide a warning agéinst neglecting the effects
of changing variance in such estimations and simply relying upon
"consistency" efen when the observation period is as long‘as 52 years.

As mentioned, the sample average of the realized returns will

provide an efficient estimate of the average expected excess return if
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Model #1 is the correct specification. However, éven if that is the
belief, then for capital market énd corﬁorate finance applications,
§1 times the current variance will provide a better estimate of the
current expected excess return than the state-of-the-art model because
it takes into account the current level of risk associated with the market.

A similar argument applies to using the ratio of the sample
average of the realized excess returns to the sample standard Aeviation
for estimating the Price of Risk under the hypothesis that it is
constant, or at least, stationary over time. From Table IV.7, using the
realized return statistics, the estimate of the Price of Risk is 0.114

A

per month whereas the least-squares estimate Y2

account the changing variance rates is 0.1867 per month. Again, this

which takes into

difference is quite large.

To further.underscore the importance of taking into account the
change in the variance rate when estimating the expected return on the
market, we close this section with a brief examination of the time series
"of market variance estimates. The average monthly variancg rates for the
" market returns ére presented in Table IV.S for the thirteen successive
four-year periods from July 1926 to June 1978. Over the entire 52-year
périod, the average annual standard deviation of the market return was
20.4 percent. However, as is clearly.demonstrated in Table 1IV.8, the
variance rate can change by a substantial amount from one four-year
period to another, and it is significantly different from this average

in many of the four-year periods.



‘Table IV.8

Succe881ve Four-Year Average Monthly Varlance Estimates for

Dates
7/26 - 6/30
7/30 - 6/34
7/34 - 6/38
7/38 - 6/42
7/42 ~ 6/46
7/46 - 6/50
7/50 - 6/54
7/54 - 6/58
7/58 - 6/62
7/62 - 6/66
7/66 - 6/70

7/70 - 6/74
7/74 - 6/78

Averagé‘

The Return on the Market

Average

July 1926 - June 1978

Mbnthly Variance#*
a2 (t)

.003719
.017427
.004742
.004638
.001792
.001640
.001152
.001427
.001265
.001056
.001798
.001894
.002508

.003467

Percentage Change
From Previous Period

368.59%
~72.79%
-2.19%
-61.36%
-8.48%
-29.76%
23.87%
-11.35%
-16.52%
70.27%
5.34%
32.42%

~ *Using formula (IV.3) for the varian;e_esti@ator;
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It has frequently been reported that the market was considerably
more volatile in the pre-World War II period than it has been in the
post-war period. That observation is confirmed here with an average
annual standard deviation of 27.9 percent for the period July 1926 to
June 1946 versus 13.8 percént for the period July 1946 to June 1978.
However, a significant part of this difference is explained by the
extraordinarily large variance rates in the 1930-1934. period. Thus,
if this period is excluded, then the average annual standard deviation
for the other twelve four-year perioés is 16.6 percent.

Because the state~of-the-art model assumes a constant variance
rate, the large differences in variance rates among the various subperiods
causes this model's estimates to be quite sensitive to the time period
of history used. So, for example, if the 1930-1934 is excluded, then
the estimated Market Price of Risk based upon the other forty-eight
years of data changes by 33 percent for the state-of-the-art model

estimator. However, this same exclusion causes Model #2's estimate, Y2,

"to change by only 8 percent.
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V. Conclusion

In this exploratory investigation, we have established two substantive
results: First, whether or not one agrees with the specific wéy in
which it was incorporated here, it has been shown that in estimating'
models of the expected return on the market, the nonnegativity restriction
on the expected excess return should be explicitly included as part of
the specification. Second, because the variance of the market return
changes significantly over time, estimators which use realized return
-time series should be adjuéted for héteroscadasticity. As suggested by
the empirical results presented here, estimators based upon the“assuﬁption
Aof a constant variance rate, although consistent, can produce substan-
tiallyvdifferent estimates than the proper least-squares estimator even
when the time series are as long as fifty years. As demonstrated by the
analysis of Model #3, these conclusions apply even if the model specifi-
cation is such that the expected excess return does not depend upon
the level of market risk. | |

There are at least three directions in which further';esearch'albng
these lines may pro§e fruitful. First, becausehthe realized return data
provide "noisy" estimates of expected return, it may be possible to
improve the model estimates by using additional nonmarket data. Examples
of such other data are the surveys of investor holdings as used in Blume
and Friend (1975); the surveys of investér expectations as used in Malkiel
and Cragg (1979); and corporate earnings and other accounting data aé
used in Myers and Pogue (1979). Because these typés bf data are not
available with the regularity and complefeness of market return data, it

may be more appropriate to include them through a prior distribution
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rather than as simply additional variables in a standard time series
fegression analysis. If a prior distribution is to be used to incorporate both
these data and the nonnegativity restriction, then the sensitivity of
the model estimates to the particular distribution chosen warrants careful
study.

A second direction for further study is the length of tiﬁe over which
it is assumed that the Yj can be treated as essentially constant (i.e., T).
In ﬁhe analysis presented here, the estimates of Yj for different T
only used the data for the specific éubperiod. So, for example, the §j
for the period 1930-1934 was computed using only the observed returns
‘for 1930-1934. Clearly, better estimates could be obtained by including
the pre-1930 oﬁservations as well. Therefore, for a given T, the
estimates will be improved by developing a procedure for revising the
prior distribution using past estimates of §j'

The third and most important direction is to develop accurate
variance estimation models. As previously discussed, such models have
- applications far broader than simply estimating expected returns. Such
modéls should benefit from inclusion of both option price data and
accounting data in addition to the past time se?ies of market returns.
Perhaps other market data such as trading volume may improve the estimates
as well.

While there are obviously many probiems to be overcome in both
the estimétion and testing of expeCted_return models, it is hoped that
this paper will stimulate further research effort and with it, some

solutions to this important‘problem.
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1. See Sharpe [1964], Lintner [1965], and Mossin [1966]. For an
excellent survey article on the Capital Asset Pricing Model, see .
Jensen [1972].

2. See Jensen [1972]; Black, Jensen and Scholes [1972]; Fama and McBeth
[1974]; and Friend and Blume [1970]

3. See Roll [1977].

4. See Breeden [1979]; Cox, Ingersoll, and Ross (forthcoming); Ross
[1976]; Merton [1973] and [1980].

5. By "dominant factor," we do not mean that most of the variation in an
individual stock's realized returns can be "explained" by the variation
in the market's return. Rather, we mean that among the systematic
risk factors that influence an individual stock's equilibrium expected
return, the market risk of that stock will have the largest influence
on its expected return.

6. See Fama and Schwert [1977].

7. Sufficient conditions for this proposition to obtain is that all
investors are strictly risk—averse expected utility maximizers. For
a proof of the proposition, see Merton [1980; Proposition IV.6].

8. See Ibbotson and Sinquefield [1977]. In Ibbotson and Sinquefield
[1979, p. 36], they express the view that "The equity risk premium
has historically followed a random walk centered on an arithmetic mean .
of 8.7 percent, or 6.2 percent compounded annually."

9, It is shown in Rothschild and Stiglitz [1970] that the demand for a
risky asset in an optimal portfolio which combines this asset with the
riskless asset, need not be a decreasing function of the risk of that
asset. Hence, it is possible that an increase in the riskiness. of the
market will not require a corresponding increase in its equilibrium
expected return. For further discussion of this point, . see Merton
[1980]. '
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10. For a development of the continuous-time model with diffusion-type
stochastic processes, see Merton [1971;1978;1980]. As is discussed
at length in these papers, the assumptions of continuous trading anda
diffusion-type stochastic processes justify the use of variance as a
sufficient statistic for risk without the objectionable assumptions
of either quadratic utility or normally-distributed stock returns.

11. In the intertemporal model presented in Mérton [1973], (II.6) will be
a close approx1matlon to the equ ilibrium relationship if either
|BC /3X | << 3¢ IBW j=1,...,m3 k=1,...,K, or the variance of
the change in W is much larger than the variance of the change in
Xj, j=1l,...,m where Ck = Ck(W,X,t) is the optimal consumption

function of the investor k; W is the wealth of investor k; and
(Xl,...,Xm) are the m state variables (in addition to wealth and

time) required to describe the evolution of the economic system.
12, The reader is reminded that if lh{E[RM(t)/R(t)]} = [a(t)-T(t)]h,

then E{ln[R(t)/R(t)]} = [3(t)-T(t)-0%(t)/2]h.
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Appendix A

Estimating the Variance Rate From Time
Series of Realized Returns

In the Introdﬁction, it was claimed that the variance of returns can
be estimated far more accurately from the available time series of
realized returns than can the expected return. We now show that this
claim is correct provided that market returns can be described by a
diffusioﬂ-type stocﬁastic process as in (II.S)band that the mean and
variance of these returns are slowly-varying functions of time.

As discussed in detail in Section II of the text, under the hypo-
thesis that the mean and variance are slowly-varying functions of time,
the true process for market returns can be approximated by assuming
that u and 02 are constants over (nonoverlapping) time intervals
of length h where |1 is the expected logarithmic rate of return on
the market per unit time. and 02 is the variance per unit time.

Suppose that the realized return on the market can be observed over time
intervals of length A where A << h. Then n = h/A is the number of
observations of realized returns over a timé interval of length h.‘ So, -
for example, if h equals 1 month and A equéls 1 day, then n equals'
30 (neglecting weekends and holidays). Let Xk denote the logarithmic
return on the market over the kth‘ observation interval of leﬁgth A
during a typical period'of length h for k = 1,2,;..,n. From (II.5),

xk can be written as

X, = u + g\/A-gb;~ , k=120, , (A
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where the {ek}, k=1,...,n are independent and identically distributed
standard normal random variables.

From (A.1l), the estimator for the expected logarithmic return,
~ n

p = EXk /h , will have the properties that
1
Eln] = (A.2)
and
Varful = o%/h - . (A.3)

A

Note that the accuracy of the estimator as measuréd by Var[u] depends
only upon the total length of the observation period h and not upon
the number of observations n. That is, nothing is gained in terms of
accuracy of the expected return estimate by choosing finer observation
intervals for the returns and thereby, increasing the number of observa-
fions n for a fixed wvalue of h.

Consider the follbwing estimatof for the variance rate:

~

' n o : _
02 = ZX.E:! /h. From (A.l), this estimator will have the properties
1

that
B2 = o° + n2A | (8.4)
= 02 + uzh/n
and
Var(gz) = 204/n + 4u2h/n2 . (A.5)

A

. 2 .
Because the estimator for ¢ was not taken around the sample mean y,

02 is biased as shown in (A.4). However, for large n, the difference

between the sample second central and noncentral moments is trivial.



A3

For example,vtypical values for u and 02 in annual units would be
7.10 and 0.04, respectively. For daily observations, h/n will equal .
approximately 1/360. Therefore, substituting into (A.4), we have that
E(gz) will equal 0.0400277 when the expectation of an unbiased estimator
is 0.04. Even for monthly observations with h/n equal to 12,

E(gz) = 0.0408333 and the bias of this estimator is still trivial.

The advantage of this estimator is that the variance can be
estimated without knowing or even having an estimate of the mean u. It
also, of course, saves one degree of freedom. Thus, for stock réturn
data and observation intervals of a month or less, the bias from a non-
central estimator of the variance can be neglected.

More important than the issue of bias is the accuracy qf the esti-
mator. As inspection of (A.5) quickly reveals, Var(gz) does depend
upon the number of observations n for a fixed h, and indeed, to order
1/n, it depends only upon the number of obsefvations. Thus, unlike
the accuracy of the expected return estimator, by choosing finer observa-
tion intervals A, the accuracy of the variance estimator can Be improved
for a fixed value of h. |

To further emphasize the point, cbnsider fhe extreme case where both
the mean and variance are constant for all time. The accuragy of the
expected value estimator will depend only on the total length of
calendar time for which return data are available (e.g., 52 years).
However, the accuracy of the variance estimator will depend critically on.
whether these data are available annually, quarterly, monthly,.or daily.

The standard deviation of the variance estimate using annual data will
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be approximately ninteen times larger than the standard deviation of
the estimate using daily data over the same calendar period. Since
neither the mean nor the variance are constant for anything like this
length of calendar time, the pra;tical advantage of the variance
estimator's accuracy depending upon n rather than h is that a
reasonably accurate estimate of the variance rate can be obtained using
daily data while the estimates for expected return taken directly from
the sample will be subject to so much error as to be almost useless.
Additional discussion on these points can be found in Merton [1976,

p. 336-339].

In the theoretical limit of continuous 6bservation, n goes to
infinity for any finite h, and therefore, the variance rate could in
principle be estimated without error for any finite interval. However,.
in practice, the choice of an ever-shorter observation interval
introduces another type of error which will "swamp' the benefit of a
shorter time interval long before the continuous limit is reached.

This error is caused by not knowing the exact length of time between
successive trades. For example, suppose that the closing price of a
stock as reported in the newspaper was not thé result of trade at 4:00
PM, but rather the result of a (last) trade which occurred at 3:00 PM.
If A 1is one week and if the last trade the previous week did occur
at - 4:00 PM, then the observed price change occurred over a 167 hour
inferval and not.a 168 hour interval as assumed. While this actual
shorter time interval will cause an underestimate of the variance rate,
the magnitude of the error is only 0.6 percent. However, suppose that

A is the six-hour interval from the 10:00 AM opening to the same day
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v4:00 PM closing. Then, even if the first trade occurs at 10:00 AM,

the actual interval for the observed price change is five hours and not
six, and the magnitude of the error in the variance rate would be 16.7
percent. Of course, if the first trade actually took:placevat 11:00 AM,
" then the error would be 33.3'percent. Thus, the "true" time interval
between trades is a random variable.

For actively-traded stocks and a A of the drder of a week or more,
this error will generally have a negligible effect on the variance
estimates. However, for daily observations, it can have a nonnegligible
effect for individual stocks, and it will definitely be important for a
large portfolio of stocks such as the NYSE index. It is more important
for a large pdrtfolio because it is likely that a significant number of
the stocks in the portfolio will not have their last trade near the
closing time. Since the closing value of the index is.éomputed using
the last traded prices and since stocks tend to be contemporaneously
positively cofrelated with one another, thz observed daily changes in
the index will exhibit positive serial éorrelation. This positive
correlation is not "real" in the sense that ome could make money tfading
in the individual stocks contained in the inde# because at 4:00 PM;
trades could not have been executed at these last (and earlier) prices.
However, if no adjustment is made for this "nontrading" effect, then -
‘the sum ofbsquared daily logarithmic éhanges in the index will préduce
a gignifican dy 5iased-1ow estimate of the variance rate.

-A method for corfecting for this problem is as gollows: Let gk

denote the observed change in the index as contrasted with Xk “in (A.1)
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which is the true change. Since it is not known for how many days this
"non-trading" effect lingers, it was simply assumed that after three
days, there is no effect. A model specification which captures this

non-trading effect is given by

A

Ketua VB (808 + 818y * 8p8my * S38p3] (4.6)

where 0 < 6, <1; j = 0,1,2,3 and SO‘= 1-6,-6,-8

i From (A.6),

30

we have that . : :

noa 2 2 T3 2] | ,

E Z (Xk)' /hy= p"A + Z Gj o . (A.7)

1 7 J'=0 . )
Comparing (A.7) with (A.4) confirms that the unadjusted estimator is
biased low for the posited restrictions on the Gj. If the {Sj} were
known, then (neglecting the uZA term) there is a simple adjustment:

Namely, divide the observed sum of squares by ['éé 6;] . Of course,

3=0

they are not known, and therefore, must be estimated.

In Section IV, daily data are used in one of the variance estimators
for the period July 1962 to June 1978. To adjust the estimates for
serial correlation, the Gj were estimated using nonlinear procedures

on the following equation:
X =A+BX . +BX . +B% . " (A.8)
X X1 X TEX 4 .

- From (A.6) and (A.8), we have that

_ | 2 2, .2 |
B = [8) + 6,8, + 6,8,1/[1 + 65 + 68, + 6] (A.9)
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2 2.2 . 2
(A.9 Cont'd.)

3 _ 2 2 .2
B 63/[1+61+62+63] .

In the sample period, A = .0002 with standard error .0001 and
B = .2106 with standard error .011l4. The corresponding values for Gj

from (A.9) are §

0~ .7343 6. = .221; 62 = ,045; 6, = .010.

1 3

3 _
'2: 6; = .5854, and this was the number used to adjust for nontrading
=0

in the daily data variance estimator in the text. Adjustments were also
made for nontrading days (i.e., weekends and holidays) by dividing the

"daily" réturnsvby the square root of the number of déys between trades.
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Appendix B

The Posterior Distribution for Yj

In Section III, we have from (III.l) that

X' (£) = ¥, [0()1°7 + () @D

for j =1,2,3 aﬁd t=1,...,N Wherevthe prior demnsity for Yj is
uniform with f(Yj) =1/b for O S.Yj <b and:zero, otherwise.
Begause the {e(t)} are independently and identically distributed
standard normal, the joint density for X'(1),...,X'(N), conditional on

knowing Yj is given by

/2

[ (1), ey X' ) Y] = expd - L S (01, 1001273128/ om?
g R j p 3 Z j T
1

(B.2)

1
-39 /2

-e expl- § 22 (A )21/ 2"

N N s
where Q; = Y- IX'(e)1” - { ) [o(t)]z‘lx'm}’-/n?
1 1

and Qg and ).
J , J J

are as defined in (III.4.1) and (III.4}2).
By Bayes Theorem, the posterioi density for Yj given X'(1),...,X'(N)

can be written as, j = 1,2,3,

(B.3)
- et 202 [eml- 2 okonn
=expl- 5 Q=) .{‘XP 2 %7y 1Yy
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By the change in the variable of integration u = Qj [y j - Aj], we have

that
b pj -1 u2
1 2 2 _ 2
fexp[— 3 Qj(yj—}\j) ]dyj = e du /Qj
0 n.

i o C (B.4)

27 {<I>(pj) - @(nj)} /szj

where pj = Qj (b - Aj) and nj = -Ajﬂj. By combining (B.3) and (B.4), we
have expression (III.3) for F[Yj] ] given in the text.
To determine §j = E[Yj le,Q:?;b], we simply multiply F[le ] by

A

Yj and integrate from Yj =0 to Yj = b,'and note that Yj = }\j.
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