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Abstract

The well—known option pricing formula of Black and Scholes

depends upon the assumption that price fluctuations are log—normal.

However, this formula greatly underestimates the value of options with

a low probability of being exercised if, as appears to be more nearly

the case in most markets, price fluctuations are in fact symmetric

stable or log—symmetric stable. This paper derives a general formula

for the value of a put or call option in a general equilibrium, expected

utility maximization context. This general formula is found to yield

the Black—Scholes formula for a wide variety of underlying processes

generating log—normal price uncertainty. It is then used to derive

the value of a short—lived option for certain processes that generate

log—symmetric stable price uncertainty. Our analysis is restricted

to short—lived options for reasons of mathematical tractability.

Nevertheless, the formula is useful for evaluating many types of risk.
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I. Introduction

The famous option pricing model of Black and Scholes (1973)

relies on the strong assumption that stochastic price fluctuations are

log—normal, so that in continuous time the path of the logarithm of

the price is almost surely everywhere continuous. This continuity

enables them to exploit an arbitrage consideration to obtain a formula

for the price of a put or call option that depends only on the current

price, the contractual execution price, the rate of accumulation of

variance, and the riskiess rate of return.

However, in many markets the observed distribution of price

changes is far too fat—tailed or leptokurtic to have been drawn from

a normal distribution. This led Benoit Mandeibrot (1960, 1963) to

propose the Paretian stable distribution as an alternative to the con-

ventional normal assumption. Like the normal, these distributions are

bell—shaped, with an infinite negative tail. However, negative prices

can be ruled out by postulating that it is the changes in the logarithm

of the price, rather than the changes in the price itself, that follow

a stable distribution.

Fania (1965), Roll (1970), Dusak (1973), and Cornell and Dietrich

(1978) have found evidence supporting Mandeibrot's stable hypothesis in

the context of corporate stock, U.S. Treasury bill, commodity futures

contract, and forward foreign exchange prices, respectively. The most

general stable distribution may be skewed, but most of these observers

have found that the data are consistent with the simplifying assumption

of symmetry or log—symmetry. Fama and Roll (1968, 1970) have developed
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simple procedures for estimating the parameters of symmetric stable

distributions. DuMouchel (1973, 1975) has developed more sophisticated

(and expensive) maximum likelihood procedures for estimating the

parameters of general stable distributions, along with previously

unavailable measures of the sampling errors of these estimates.

Unfortunately, the logic of the Black—Scholes model cannot be

applied to stable processes because the sample paths of the latter are

full of discontinuities. In fact, in any finite time interval there

are almost surely an infinite number of discontinuities. Thus the

crucial arbitrage consideration of the Black—Scholes argument is

inapplicable. Cox and Ross (1976) are able to apply Black—Scholes

logic to a certain class of jump processes to obtain an option pricing

formula, but the class they consider is not very general. Merton (1976)

uses the Sharpe—Lintner—Mossjn capital asset pricing model to evaluate

options on securities involving more general jump processes. However,

the capital asset pricing model explicitly assumes that relative prices

of consumption goods are constant, an assumption that is often

violated when we are referring to price speculation itself. Fama (1970)

demonstrates that if peoples' market portfolio behavior under certainty

were unaffected by relative prices, then their behavior under uncertainty

would be unaffected by the actual distribution of relative prices, and the

conclusions of the capital asset pricing model would still be valid, in

spite of the price uncertainty. However, this strikes the present

author as an unacceptably strong assumption. We therefore do not

expect the capital asset pricing model to be useful in the present

context.
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If we are to evaluate options in a stable context, we must

therefore start from scratch, and build up from expected utility niaximi—

zation in a general equilibrium model of the economy. In Section II

we build a general model of forward contract and option pricing in a

simple two—good world with identical, risk—averse individuals. In

Section III the endowments of the two goods are assumed to be bivariate

log—normal, and the common utility function to be additively separable

with constant relative rates of risk aversion. The considerable atten-

tion we pay to this case is motivated by a desire (prompted by a

suggestion from John Cox) to relate the stable case to the Black—Scholes

model. We find that the general option pricing formula we will apply

to the stable case does indeed lead to the Black—Scholes formula in the

normal case, for all values of the unobserved variables governing the

price—generating process. Finally, in Section IV we apply our general

option formula to the case of log—symmetric stable price changes. The

formula we obtain rests on a certain specification of the unobserved

variables generating the process governing price movements, and on the

condition that the option have a short life (approaching zero), so our

formula does not have the generality in the stable case that the Black—

Scholes approach has in the normal case. In the concluding Section V

we note that it does have a simple interpretation in terms of the

actuarial value of the option, and is useful in many contexts.



Price is thus a function of i and .

Figure 2 illustrates income expansion

paths along which price is constant.

These lines are not necessarily

straight, unless utility happens to

be homothetic. However, if we plot U

and U on the axes, as in Figure 3,

equal price lines are straight rays

from the origin, now in reverse order.

If we plot this diagram logarithmically,
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II. Forward Contract and Option Pricing in a Simple General Equilibrium Model

Consider a world in which there are two goods, x and y, whose

random endowments at some future time at which consumption is to take

place we denote by and . Everyone agrees that they have some joint

probability density function defined on the non—negative quadrant, such

as that illustrated in Figure 1. Each

individual has an equal share in the

y
output of these goods, and tries to

maximize the expected value of some

concave utility function U(x, y),

which is the same for each individual.

The market—clearing (zero—trading)

price of x In terms of y will then be

IJ(i, )
P =

Uy(* ))

x

Figure 1

y = 2

= .5

x

Figure 2
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the equal price lines become parallel,

as in Figure 4.

Today people can enter into

forward contracts to deliver one

unit of x at the forward price
Pf.

If someone were to buy ix units of x

at this forward price he would

be obligated to deliver PfX units

of y. The first—order condition for

utility maximization and zero—trading

market clearing condition require that

dEU(i+&, 9PfX)
dx = O

txO

or

EU(ic, ) = PfEU( sO,

so that

EU
Pf = (1)

y

is the general forward contract pricing

formula. Note that in general

U

Pf E(jj).
y

U
x

Figure 3

log U
y

= .5

=1

=2

log Ux

Figure 4
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There are two types of simple options, "puts" and "calls". A

call is an option entitling one to "call forth" a certain amount of a

good at a pre—arranged execution price p. It is advantageous to

exercise such an option whenever > p. One must pay p for such an

option. A put is an option entitling one to unload or "put off" a

certain amount of a good at a pre—arranged execution price that we will

again designate by e This right w:ill be exercised whenever <

and is worth p. A call on ix units of x at e is equivalent to a put

on pex units of y.

Buying a call and at the same time selling a put, both on Lx

units of x at p is equivalent to buying Eix forward at price e Such
a forward contract would be worth (Pf — PeC so arbitrage requires

Pf — e = c —
pp. (2)

If someone buys a call for 1x units of x and turns out to be

less than 1e' he will simply be out PcLIX units of y and utility will be

U(, — If > e' utility will be U(i+x, — (p+p)x).
The first—order condition for expected utility maximization with respect

to x, evaluated at the market—clearing condition tx = 0, now yields

J UdP(. ) — J (Pc+Pey(*

-
J PcUy(* ) = 0,

or
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=
x

PP---.

—p UdP
ej y

EU

7

J'>e
U dP
x

y

PC =

Utilizing (1), we have the general formula for the price of a call

option:

'e
U dP - —
x EU I'

U dP.
y (3)

Similar reasoning yields the general value of a put option:

Equations (3) and (4) satisfy the arbitrage condition (2).

(4)
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III. The Normal Case

Now let us assume that * and are bivariate log—normal such

that

2
a p-at

Cov(log i, log ) =
2

pat T

Assume also that utility has the particular form

1 .l—a 1 l—bU(x, y) = i— x + y . (5)

The positive constants a and b are the (Pratt—Arrow) constant relative

rates of risk aversion for gambles involving x and y respectively. This

form implies

U = -—a
(6)

and

—b
U = y , (7)

or

log U = —a log * (8)

and

= log U = —b log y. (9)

Our two assumptions together have the convenient implications

that U and Uy and therefore , are also log—normal. Define

= log = (10)

and note that
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22
a paboi

Cov(, =
2 2 ' (11)

pabaT b r

=
(12)

and

2 22 22v = var(rr) = a a — 2pabaT + b r . (13)

Let z be a log—normal variable such that = log z has mean

and variance s2. Then it is well known that

I ZO

J
zdP(z) = e s2/2

N(d), (14)

0

r —2

j

zdP(z) = eC /2

(15)—2
= e /2

N(—d),

and

Ez =
JzdP(z)

= e52I2, (16)

0

where N(d) is the cumulative standard normal distribution function and

log z0 — — s2
d=

S

(17)

log z0 — log Ez — s2/2
S

These identities have been exploited by Case M. Sprenkle (1964) and

others, in the context of option pricing.



10

Equations (1), (12), (13) and (16) imply

— 22 22
Pf =

a —b T
(18)

Note that a2a2 = b2T2 implies

log Pf = E log . (19)

Osborne (1964) based his log—martingale model for prices on the assump-

tion of logarithmic utility (a = b+1). We can now see that this is

unnecessarily strong. A martingale in logarithms results whenever x

and y make equal contributions to price uncertainty (var log U = var log U),

a condition which depends in part on the relative values of a and b,

but not on their absolute values. A further implication is that the

levels martingale

Pf = Ep

postulated by Samuelson and others is only a special case (arising when

= 0, b=0, or p=+l), and a rather extreme special case at that. In

particular, Samuelson's "theorem of the virtual certainty of (relative)

ruin" (1965, p. 17) 1s valid only if a2c2 > Note also that

the Boyer inequality (1972, 1977),

1/E(1/) Pf E, (20)

holds whenever P 0 (with equality obtaining only if a, b, 2 or is

zero). We could have

E Pf



11

• 22 22
only if p >> 0 and a a >> b t , and

Pf � l/E(l/)

• 22 22only ifp>>Oandaa <<bT

To evaluate our call price

formula (3) we need to integrate

U dP and U dP over states of thex y

world in which > p. These states

are illustrated by the shaded area in

Figure 5, where e is arbitrarily _______

shown as being greater than Pf. This

calculation is simplified by noting

that and = log p are bivariate

normal, with

— 22
Cov(, 11) = a a — pabar. (21)

For convenience, define

22 20 = (a a — pabar)/v , (22)

so that

lrf
= log Pf = + (0 - (23)

and

Cov(, ) = 0v2. (24)

Note that

— -----— -—- log U
- x

Figure 5
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E(it) = + cov(, )—)
var r

(25)

= + O( — ii)

and

var(I) = var - COV2 )
var

(26)

22 22= aa —&v.

Equation (16) now implies that

E(I)E(U ) = e ex

e1
22 22

— '(a a —O v ) O(—)— e

is a log—normal variable. Set ir = log p and = O(—ii). Note thate e
22

is normal with mean 0 and variance 0 v We then have, with the help

of (15),

j UdP(, ) J E(Ul)dP()
p>p ir>rre e

a a —O v ) o() dP()e
I

e 2 2 2 2

e

22 22
— +½(aa—gv)-

J
e dP()

20(i —)e

= (acy—0v)2 2 2 2
e022hi'2

N(—d)
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22
=

N(—d)

= EU
N(d1), (27)x

where
O(rr —) —

2 2Ov
d = e

Ov

— — ev2
— e

V

ir —ir
— e fV

V

so that

log(pf/p) + v2

d1 d= — = (28)

By similar reasoning,

j UdP(i, ) = EU
N(d2), (29)
y

where

log(pf/p) — v2

d2 (30)

Combining these results with (3) yields

=
Pf N(d1)

—

1e N(d2). (31)

Similar reasoning (or the arbitrage condition (2)) yields

PP
= p N(—d2) — Pf N(—d1). (32)e
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Equations (31) and (32) are essentially the Black—Scholes option pricing

formulas. The full Black—Scholes formulas emerge if we set v2=vt and

discount 'ic' P and Pf to the present at the riskless own interest rate

on y—denominated loans. (The current price of a costlessly stored asset

that provides no current services is its discounted forward price.

Furthermore, we developed (3) and (4) as if payment for the option were

to be made on the execution date, rather than the present date as is

conventional.) Note that these formulas only involve Pf e' and v2,

2 2
the variance of log p. They do not depend on a, b, c , r , or p, which

is convenient, since these variables cannot be inferred from price

behavior alone. The sunmiary variable Ocould be inferred from the relation

between Pf and E log , but even it drops out.

The model from which we have derived (31) and (32) is perhaps

not the most general that produces log—normal price behavior with two

consumption goods. The assumption of a constant relative rate of risk

aversion made the log—normality of i and carry over to U and U, but

may not be necessary. Certain forms of interaction between U and U
x y

merely alter the (inunaterial) correlation coefficient between and ii

and therefore do not disturb our formulas. But other, more complicated,

interactions may still produce log—normal prices, yet require new

reasoning. Although our model is not completely general in the log—

normal case, it does cover enough different variations on the underlying

process that we believe it is at' least approximately valid in all cases

leading to log—normal prices of consumption goods.

Two important markets do not fit our model precisely. First

is the foreign exchange market, where it is more realistic to postulate
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one aggregate consumption good and random (log—normal) price levels in

both countries, with the exchange rate determined by purchasing power

parity. This is the model of Boyer (1972, 1977). Second is a "stockt'

market, in which the price in question is the price of shares in the

total output of a single consumption good. In spite of the dissimilarity

between these markets and the one we have modelled, we would not be

surprised to find that (31) and (32) remain valid.

An equation like (31) was first obtained by Sprenkle (1964, p. 434)

as the actuarial value of an option, when the present price equals the

expected future price. He quickly dismissed the (valid) simple form as

allowing no compensation for risk aversion, and insisted that it should

instead be adjusted by an arbitrary risk factor. The actuarial formula

turns out to have been valid after all. When b=O or actuarial

calculations are valid since U is then constant. The formula remains
y

valid when b and are not zero, since their values are immaterial.

Apparently the Pf that appear in the formulas already contains all the

adjustment for risk aversion we need to make.

The novelty of the Black—Scholes model is not, therefore, so

much in the formula itself, but rather in the claim that the naive

actuarial Sprenkle formula is actually universally valid, at least for

log—normal processes. While we concur with its validity, it is not

clear to the present author why their reasoning should establish that

validity. Their argument rests on the assertion that a portfolio whose

price cannot fluctuate is riskless. Yet it is clear from our model that

utility can fluctuate while price remains constant, as c and move along

one of the income—expansion paths of Figure 2. Furthermore, price can
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fluctuate while utility remains constant, as i and move along an

indifference curve. It may be that the validity of the Black—Scholes

formula, like that of the (essentially identical) actuarial Sprenkle

formula, derives from the case IJy = constant, in which event their

reasoning is definitely valid.

IV. The Log—Symmetric Stable Case

We have seen that the Sprenkle/Black—Scholes formula apparently

covers the field when price variation is log—normal. However, it will

generally underestimate the value of an option with low probability of

exercise when (as appears to be more nearly the case empirically) price

variation is log—symmetric stable. In this case we must resort to the

basic option pricing formulas (3) and (4). Our somewhat lengthy discus-

sion of the log—normal case was necessary in order to establish the

consistency of these formulas with the pre—eminent Black—Scholes

formula.

If ic and are log—stable and utility exhibits constant relative

rates of risk aversion as in (5), price will also be log—stable. There

is a covariability concept for stable distributions, analogous to

covariance when variance is finite, but since our p did not affect the

normal case, we will assume that log * and log are independent stable

variables.

If log * and log were themselves symmetric stable variables,

and the relative rates of risk aversion were strictly constant as in (6)
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and (7), the denominators and at least two of the numerators in the

right hand sides of (3) and (4) would be infinite, so that evaluating

them would involve problemmatic ratios of infinities. We could easily

eliminate this problem by postulating any bounded utility function

a la Karl Menger, but then the stability of log * and log would no

longer carry over to log U and log Uy so that log might not be

precisely stable. More radically, we could challenge the whole rationale

for expected utility maximization (e.g. Meginniss, 1977).

What we will do instead is make the special assumption that

log i and log are not symmetric stable (skewness parameter equal to 0),

but rather are maximally positively skewed (=+l). In an early article

Mandeibrot (1960) actually proposed these maximally skewed stable vari-

ables, rather than the symmetric case, as the premier model for economic

variables. Equations (8) and (9) then imply that and ij are maximally

negatively skewed ( = —1). When = —1, the upper tail of a stable

distribution completely loses its Paretian component. The upper tail

is still infinite, but it falls off even more rapidly than the upper

tail of a Gaussian distribution, so that EU and EU become finite.
x y

If and fj are skewed, then , in accordance with (12), will

be somewhat less skewed. It can be exactly symmetric, but only if the

variability of and n are equal. This is analogous to the case

2 2acy = in the normal case. As in the normal case, we will then have

the "log—metric" forward price of equation (19). Note once again that

this Osbornian log—random walk does not require logarithmic utility,

but only that the contributions to price variability from U and Uy be

equal. We will assume this is approximately true, in order to generate
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the observed approximate symmetry of iT, given our assumption that and

are maximally skewed.

When variability is finite, the stable distribution is defined

in terms of the inverse Fourier transform of its characteristic function,

which is unenlightening to most non—mathematicians, including the present

author. However, in continuous time, when the variability over one

instant goes to zero, it becomes more tractable. Let c0 be the "standard

scale" that accumulates in 1.0 time unit in a continuous time process

1/ce.with independent symmetric stable increments, so that c = c0t is the

scale that accumulates in t time units. Such a process consists of a

linear drift plus the sum of a number of discontinuities. The probability

that a discontinuity greater than x0 > 0 (or less than —x0) in size will

not occur in t time units is et, where the average rate of occurrence

A is given by the formula

k c
A = () . (33)

The constant k is defined by

2k = — r(a) sin(-—), 34

and is tabulated in McCulloch (1978b, ins. p. 19), where these formulas

are derived. When a discontinuity greater than x0 (less than —x0) does

occur, the probability that it is less than x (greater than —x) is

governed by the simple Pareto distribution (whence the "Paretian"

character of the stable distributions):
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o

F(x; x0) = x0 a
0

(34)
1—(-—-) x�x0.

This has density

o x<x
f(x; x0) =

—a—i
0

(35)

ax0x xO.

Consider now a continuously renewable option, which has life

dt -- 0 (so that Pf becomes the current spot price p) and in which the

ratio r = es is held constant. Such a call option with r < 1 would

have infinite value per unit time since it could be executed each instant

for a profit of roughly ps—p every time. Similarly, a put option with

r > 1 would have infinite value per unit time. We therefore assume r > 1

for call options, and r < 1 for put options.

Let us take the particular case of a continuously renewable put

option with life dt, and with r < 1. The price may fluctuate, but p

is immediately adjusted to return r to its initial value. The only way

it can become desirable to exercise such an option is for to fall

below 1e through a (negative) discontinuity in it smaller in algebraic

value than log r. Letting c0 be the standard scale of that accumulates

in 1.0 year, the rate of occurrence of such discontinuities is

x = -lo r (36)

In order to evaluate (4), we must investigate the origins of

the discontinuities. Since a maximally skewed stable variable has no

Paretian component in its thin tail, a continuous time process with
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independent maximally skewed stable increments only has discontinuities

in the direction of the fat Paretian tail, with drift in the opposite

direction to balance the discontinuities. Such processes are illustrated

by Cross Cc 1975). Since log U and log U are each maximally negatively

skewed, positive jumps in p must be coming from U, and negative jumps

from U. Both types are occurring with frequency X as in (36), but only

the negative ones (from U) can cause < with a continuously renewable

put. We therefore have

J UdP( ) = E(Uy/<Pe)Xdt

(37)

= EU ..Xdt,
y

and, setting —

J UdP(i,) =

f+logr
=

J
e -log r)dXdt (38)

= e
J

e f(; -logr) dXdt.

—log r

As in the log—normal case, we have

EU = e(l + o(dt)), (39)

where o(dt) indicates an unspecified function such that urn o(dt) is

dt÷O
bounded.
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Putting together (4), (37), (38) and (39), we obtain

Pp = Pet — 1+d) J
e f(c; -log r)dyXdt. (40)

—log r

The term in o(dt) leads only to terms in o(dt2), so we may eliminate it.

We then have the following expression for the value per unit time of a

short—lived put, as a fraction of the current price of the good or

asset in question:

= AH(r, a), (41)dt

where

H(r, a) = r — e f(; —log r)d (42)

—log r

and

P ,,r = (43)
PS

The function H(r, a) depends on the integral in (42), which is

the expected reciprocal of a log—Pareto variable. This integral must

be evaluated numerically, which we have done with the computational

assistance of Tom Mroz. Selected values of this function are indicated

in Table 1. They should be accurate to the precision shown.

an earlier paper (l978a) the present author used a heuristic
argument to evaluate a short—lived put as A log (lIr)/(a—l), which, as
can be shown, turns out to have the same behavior as (41) in the limit
r+l. However, for r<l, the present formula gives a somewhat lower
value.
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By analogous reasoning using (3), or by interchanging the roles

of x and y and observing that a put on y is the same contract as a call

on x, we have the following formula for the value per unit time of a

continuously renewed call option:

* —s = AH(r,

where now

p
r = (44)

V. Conclusion

Although our put pricing formula has a somewhat roundabout

derivation, its interpretation is quite simple: It is simply the

actuarial value of the option, given the good's forward price Pf (which

has converged on PS). In this respect it resembles the Sprenkle/Black—

Scholes model. Note, however, that while the latter can be interpreted

as fully actuarial, with Pf = E, in our formula we have

Elogp —

p =e <Ep=.

In a stable world, the actuarial value of a call, even a short—

lived one, is infinite. However, this is irrelevant, since in the case

of a short—lived call, the appropriate valuation formula is actuarial in

reciprocal prices (the price of y in terms of x). (The Sprenkle/Black—

Scholes formula has the remarkable property that it is simultaneously

fully actuarial in prices and reciprocal prices.)
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The assumption of a short option life undoubtedly restricts the

precision of our formula for highly speculative options with a moderate

to high probability of execution. We see its chief application as the

evaluation of default risk on the part of relatively safe firms with

limited liability, such as banks, commercial corporations, and imperfectly

covered commodity and stock brokerage firms, and of non—performance risk

on speculative options. Perhaps others can extend our results to more

risky options, and to more general underlying processes.
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