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This paper considers the formulation and estimation of simultaneous

equation models with both discrete and continuous endogenous variables. The

statistical model proposed here is sufficiently rich to encompass the álassjcai
simultaneous equation model for continuous endogenous variables and more

recent models for purely discrete endogenous variables as special cases of
a more general model.

Interest in discrete data has been ftsledby a rapid growth in the

availability of microeconomic data sets coupled with a growing awareness

of the importance of discrete choice models for the analysis of uiicroeconomic

problems (see McFadden, 1976). To date, the only available statistical

models for the analysis of discrete endogenous variables have been developed

for the purely discrete case. The log—linear or logistic model of Goodman

(1970) as expanded by Raberman (1974) and Nerlove and Press (1976) is one

such model that has been widely used. The multivariate probit model of

Ashford and Sowden (1970), Mnemiya (1975) and Zeliner and Lee (1965) is

another widely used model. This paper expands the multivariate probit

structure to accomodate continuous endogenous variables. Alternatively,

the model presented here expands the classical, simultaneous equation theory
to encompass multivariate probit models.

The models developed below rely critically on the notion that discrete

endogenous variables are generated by continuous latent variables crossing

thresholds. Such models have an honored place in the history of statistics

and were first advanced by Pearson (1900). The theory of biserial and

tetrathoric correlation is based on this idea. (See Kendall and Stuart,
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Vol. II, 1967; Lord and Novick, cbs. 16—20, 1967.) It is argued in this

paper that this class of statistical models provides a natural framework

for generating simultaneous equation models with both discrete and continuous
random variables.

In contrast, the framework of Goodman, while convenient for formula-

ting descriptive models for discrete data, offers a much less natural
apparatus for analyzing econometric structural equation models. This is so

primarily because the simultaneous equation model is inherently an uncondi-

tional representation of behavioral equations while the model of Goodman is
designed to facilitate the analysis of conditional representations, and

does not lend itself to the unconditional formulations required in simultaneous

equation theory.

The structure of this paper is in four parts. in part one general

models are discussed. Dummy endogenous variables are introduced in two

distinct roles: (1) as proxies for unobserved latent variables and (2) as

direct shifters of behavioral equations. Five models incorporating such

dummy variables are discussed. Part two, also the longest section, presents

a complete analysis of the most novel and most general of the five models

presented in part one. This is a model with both continuous and discrete

endogenous variables. The issues of identification and estimation are

discussed together by proving the existence of consistent estimators.

Maximum likelihood estimators and alternative estimators are discussed. In

part three, a brief discussion of a multivariate probit model with structural

shift is presented. Part four presents a comparison between the models

developed in this paper and the models of Goodman and Nerlove and Press.
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I. A General Model for the Two Equation Case

Since few new issues arise in the multiple equation case, for

expositiona]. simplicity the bulk of the analysis in this paper is conducted

for a two equation system. All of the models considered in this paper can

be subsumed as special. cases of the following pair of simultaneous equations
for continuous latent random variables and

Cia) 1i x1a1 + d181 + +

(lb) x2a2 + diB + + 112i

where dummy variable di is defined by•

(lc) di=l iff

di 0 otherwise,1
-

and

E(Uji) = E(U) =
E(UiiU2i) a12, j=l,2, i=l,. ..,I.

.E(Ujitljtit) = 0, for j, j' 1,2, i # i'.

and "X21' are, respectively, lxK1 and lxK2 row vectors of bounded

exogenous variables. The Joint density of continuous random variables

U1, U2 is g(U11, U2i) which is assumed to be a bivariate normal density
in the analysis of Sections II and III. In order to focus attention on the

essential features of the argument, the conventional assumptions of classical

tClearly, a second dt.immy variable could be defined as arising from
crossing a threshold.. Note, too, that the choice of the zero threshold

is an arbitrary normalization.
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simultaneous equation theory are maintained. In particular, it is assumed
that equations (la) and (lb) are identified if 8i — 0 and both

and. y1 are observed for each of the I observations.' In this special
case, which conforms to the classical simultaneous equation model, standard
methods are available to estimate all of the parameters of the structure.

The full model of equations (la)—(lc) is sufficiently novel to

require some discussion. First, note that the model is cast in terms of
latent variables y and which may or may not be directly observed.

Even if y is never observed, the event y1 > 0 is observed and its
occurrence is recorded by setting a dury variable, di equal to one. If

C 0, the dummy variable assumes the value zero. Second, note that if

> 0, structural equations (la) and (lb) are shifted by an amount

and 82 respectively.

To fix ideas, several plausible economic models are discussed that

may be described by equation system (la)—(lc). FirSt, suppose that both

and are observed outcomes of a market at time i, say quantity and

price. Equation (la) is the demand curve while equation (lb) is the supply

curve. [f the price exceeds some threshold (zero inequAlity

(lc), but this can be readily amended to be any positive constant), the
government takes certain actions, that shift both the supply curve and the

demand curve, say a subsidy to consumers and a per unit subsidy to producers.

These actions shift the demand curve and the supply curve by the amount

and 8z respectively.

As another example, consider a model of the effect of laws on the

status of blacks. Let be the measured income of blacks in state i while

Tor reasons that become clearer in the analysis of Section II, identi-
fication is assumed to be secured through exclusion restrictions or through
restrictions on reduced forms for covariance parameters that are estimable.
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y* is an unmeasured variable that reflects the state's population sentiment

toward blacks. If sentiment for blacks
is sufficiently favorable, (y > 0),

the state may enact antidiscrimjnation
legislation and the presence of such

legislation in state 1, a variable that can be measured, is denoted by a

dummy variable di — 1. In the income equation (la), both the presence of

a law and the population sentiment towards
blacks is assumed to affect the

measured income of blacks. The first effect is assumed to operate
discretely

while the second effect is assumed to operate in a lore continuous fashion.
An important question for the analysis of policy is to determine whether or
not measured effects of legislation are due to genuine consequences of
legislation (8 ,' 0) or to the spurious effect that the presence of legisla-
tion favorable to blacks merely proxies the presence of pro—black sentiment
that would lead to higher status for blacks in any event 0). in
Section II, methods for consistently estimating the separate effects (n and

y1) are presented! This example is valuable because it illustratei two

conceptually distinct roles for dummy variables: (1) as indicators of

latent variables that cross thresholds and (2) as direct shifters •of behafloral
functions. These two roles must be carefully distinguished in the ensuing

analysis.

The model of equations (la)—(lc) subsumes a wide variety of
interesting econometric models. These special cases are briefly discussed

in turn.

Case 1. The Classical Simultaneous Equation Model

This model arises when and are observed, and there is no
structural shift lathe equations

(81 82 0).

1Note that even if sentiment were measured (i.e., were known),
least squares estimators of equation (la) are inconsistent because of thecorrelation of di and y1 with

U1.
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Case 2. The Classical Simultaneous Equation Model with Structural Shift

This model is the same as that of Case 1 except that Etructural

shift is permitted in each equation. It will be shown below that certain

restrictions must be imposed on the model in order to generate a sensible

statistical structure for this case.

Case 3. The Multivariate Probit Model

This model arises when and y, are not observed but the events

0 and 0 are observed (i.e., one knows whether or not the latent

variables have crossed a threshold). The notation of equations (la)—(lc) must

be altered to accommodate two dummy variables but that modification is obvious.

No structural shift is permitted =
82

= 0). This is the model of Ashford

and Sowden (1970), Amemiya (1975) and Zeliner and Lee (1965).

Case 4. The Multivariate Probit Model with Structural Shift

This model is the same as that of Case 3 except that structural shift

is permitted l' 82 ' 0).

Case 5. The Hybrid Model

This model arises when y is observed and is not, but the event

0 is observed. No structural shift is permitted.

Case 6. The Hybrid Model with Structural Shift

This model is the same as that of Case 5 except that structural
shifts in the equations are permitted.

The hybrid models of Cases 5 and 6 are the most novel and general.

Accordingly, these cases receive the greatest attention in the ensuing analysis.

Models 2 and 4 are also new but since the analysis of these models follow
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directly from the analysis of the hybrid model they receive less attention

in this paper. Case 4 is briefly discussed in Section III while Case 2

is never explicitly developed.

It. The Hybrid Model with Structural Shift

In this section, a model with one observed continuous random
variable,

and one latent random variable is analyzed for the general case of structural

shift in the equations. The argument proceeds in the following steps. First,

a condition for the existence of a meaningful statistical model is derived.

Second, consistent estimators of identified parameters are presented. Third,

marfminn likelihood estimators are discussed. Finally, some alternative

estimators are presented and discussed.

To facilitate the discussion, equations (la) and (ib) may be written

in semi—reduced form as

=
X11it11 + X2ir12 + d1yr13 +

=
xliw2l+ x2i22 1 i'23 +

dma1 1ff

0 otherwise,

where

a ay ay a
(2)

1
ii a 12 • 21 _____

1]. l—y1y2
' 21 l—y1y2

'
12 l—y1y2

' 22 l—y1y2

8132 1281+82 v13 l—y1y2 ' 23 l—y1y2
' li 1—1112

v
+ Ufl

2i l_1112
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In the ensuing analysis it is assumed that exogenous variables included in
both and X21 are allocated to either

X11 or X2, but not, both. The

absence of an asterisk on
y1 denotes that this variable is observed.

is not observed. Random variables and U2 are assumed to be bivariate

normal random variables. Accordingly, the joint distribution
of V113 V2,

h(V11, V211,is a bivariate normal density fully characterized by the

following assumptions:

E(V1i) 0 E(V21) a

E(V1) w11 E(V11V21) W12 E(Vi) =

To obtain the true reduced form equations, assume that the conditional.

probability that di is unity given X11 and X exists, and denote this
probability by P. Then the true reduced forms may be written

(3a) iili + X21tr12 + P1w13 + + —

(3b) 1i 1i21 + X2w22 + Pi2a + V21 + (di —
Pi)7123

(3c) di=1 iff Yri>o

= 0 otherwise.

The error term in each equation consists of the sum of continuous and discrete
random variables that are correlated. The errors have zero conditional

mean but if is a nontrivial, function of
X11, X2,, heteroscedasticity is

present in the errors.
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(i) Conditions for Existence of the Model1

The first order of business is to determine whether or not the

model of equations (la)—(lb) as represented in reduced form by equations

(3a)—(3b) makes sense. Without imposing a further restriction, it does

not. The restriction required is precisely the restriction implicitly

assumed in writing equations (3a) and (3b), i.e., the restriction that

permits one to define a unique probability statement for the events

d — 1 and di O.so that P in fact exists. A necessary and sufficient

condition for this to be so is that it23 = 0, i.e., that the probability

of the event di 1 is not a determinant of the event.. Equivalently, this

assumption can be written as the requirement that 1281 + 82 = 0. This

condition is critical to the analysis and thus deserves some discussion.

The argument supporting this assumption is summarized in the following

proposition.

Proposition. A necessary and sufficient condition for the model of equations

(la)—(lc) or (3a)—(3c) to be defined is that 1123 = 0 =
1281

+
82.

This

assumption is termed the Principle Assumption.

Proof. Sufficiency is obvious. Thus, only necessary conditions are discussed.

Denote the joint density of V2, d1 by t(V2i di)
which is assumed to be a proper

density in the sense that

E I t(V21, di)dV2j = 1

dio,l —
From equations (3b) and (3c), the probability that > 0 given di 1

am grateful to Peter Schmidt for correcting an important error
in the argument of this section in a previous draft.
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must be unity, so that one may write,

P(V2i > — 1) — 1

where the symbols and are defined by

£ a_(7 I +( T +11 )i 1.i21 2i22 2
and

LI =L iii-I i 23

Alternatively, one may write this probability as

(4a)
£ t(V21, 1)dV21
I

and obviously

£
(4b) I

t(V2, 1)dV21

Using similar reasoning, one can conclude that

LI
(4c) I

t(V2i. O)dV21 —
1

and

(4d) I t(v2, 0)dv2 — 0.

I

The sum, of •the left hand side terms of equations (4a)—(4d) equals the sum

of the right hand side terms .which should equal one if the probability of

the event di — 1 is meaningfully defined. If = 0, this is the case.

But if 1123 'c 0, the sum of the left hand side terms falls short of one

while if 1123 > 0, this sum exceeds one. Q.E.D. Notice that this argument

does not rely on the assumption that V21 is normally distributed but does
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rely on the assumption that has positive density at almost all points

on the real line.

An intuitive motivation for this condition is possible. Suppose

that one rewrites equations (la)—(lc) to exclude dii i.e., write

— a +v +U'li li 1 '2i'l li

+ 'ti2 +

di=l iff

di = 0 otherwise.

Note that is an unobserved latent variable. The random variable

is observed and is defined by the following equation

, +d3li 'li il

Making the appropriate substitutions of for in the system given

above, one concludes that
-

-

+ diB1 + iil + lJii
= + 'li — d181)y2 + U2.

Invoking the Principle Assumption, one reaches equations (la)—(lc) including

di. Thus the dummy shift variable diB1 may be viewed as a veil that obscures

measurement of the latent variable But, as will be shown, the veil can

be removed, i.e., l can be estimated.

It is important to note that the principle assumption does not rule

out structural shift in equations (la) and (ib). It simply restricts the

nature of the shift. However, the Principle AsSumption does exclude any
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structural shift in the reduced form equation that determines the probability

of a shift (equation (3b)).

(ii) Identification of Parameters: Indirect
Least Squares Estimators

Given the principle assumption, equation system (3a)—(3c) may be

written as
-

(5a) — + + + V1 + (di — 2i'l3

(5b) 1 ii21 + 2i22 2i

(5c) dial 1Sf

di
0 otherwise.

Estimation of equation (5b) is a problem in probit analysis. Subject to

the standard requirements for identification and existence of probit estimates

(see Nerlove and Press, 1976), one may normalize by u4 and estimate

'21 'p22
(6) —

21 , l/2' 22 ,
22'

by using the reduced form probit fniction to estimate the conditional

probabilities of the events di = 1 and di = 0.

To determine how to estimate the parameters of the equation (5a),

it is useful to write the conditional expectatiàn of 7jj given di, i and

i.e.,

(7) E(YjiIXii X2, di) = + X2ir12 + dun3 + E(ViuIdi X1, X2).

Utilizing a result familiar in the theory of biserial correlation (see, e.g.,

Tate, 1954 or Johnson and Kotz, 1972, Vol. 4),
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E(V1iId1 X, X21) 1/2 (A1d1 A(1 —
d1))

c)where A — ________
1 — •(ci)

with c = — (xiTr + X2ir2). where $ and • are the density and distribution

function of a standard normal random variable and

- fl—c)A a_Ai iflc)
If one knew, or could estimate, E(Viildi, X11, X2), it could be

entered as a regressor in equation (7) and parameters i.v it13 and

could be estimated by standard least squares methods. Since

the normalized parameters of equation <5b) are estimable, so is ci and hence

A. A1 and E(V111d1, X11, X21). Elsewhere (Heckman, 1977) it s shown that

use of estimated values of A1 and Ai instead of actual values as regressors

in equation (7) leads, under general conditions, to consistent parameter

estimates of all the regression coefficients in that equation.

Given this result, all of the parameters of equation (7) are estimable.

Note in particular that the correlation between and = is also

estimable even though there are no direct observations on22 y. This

result is a familiar one in the theory of biserial correlation.1

To see how to estimate the reduced form variance,
w11, note that

the general model, of which equation (7) is the conditional expectation, may

be written as

hiote that the use of the estimated value of E(V1iJdj X11, X1) as a

regressor to estimate the parameters of the disturbance covariance structure
closely parallels Telser' s (1964) procedure of utilizing least squares
residuals from other equations in a system of equations to estimate the
parameters of the inter—equation covariance structure.
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(8) Y1j E(yiilXii, X2, di) + Ilj

where

E(nilXii, X2, d) 0

and

E(r)IXii X2, d) w11[(1 — 2) + 2(d1 + (1 —
d)s1]

where

Wi2pa
1/2

(w11us22)

q1l+A1cA
1 — Xc —

A1.

(See Johnson and Kotz, 1972, Vol. 4).

Since can be consistently estimated, süd since =

a consistent estimate of ca is possible using the estimatedresiduals from

leaat.squares estimates of equation (8). Denote the estimated residual for

observation 1 by rj1. Then estimate from the foflowing formula:

a a Ia I E + w2)2 (1 — F d1q1 + (1 —
i=l i—i

where estimated values of q and are used in place of actual values. This

estimate is consistent)

Given consistent estimators of reduced form coefficients, estimators

of the structural parameters are easily obtained. Since the coefficient of

equation (5b) can only be estimated up to an unknown constant of proportionality,

1Further, it is guaranteed to be positive. One can prove that the
second term on the right hand side must be positive.
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1/2 it is not possible to estimate all of the coefficients of equations

(la) and (lb). Some of these coefficients can only be estimated up to an

unknown constant of proportionality.

From equation.(2), it is clear that if some exogenous variables

appear in equation (la) that do not appear in (ib) it is possible to

estimate y Take the th variable in X11, denoted X1 , and its

associated estimable reduced form coefficients
it11

and w* . Assume that

j zljthis variable is not included in X2. Taking the ratio of the estimate of

the second coefficient to the estimate of the first yields a consistent

estimator of

11*

.1

'Il—jilli
'

1

where IfAIt denotes an estimate and where is the number of variables in

not contained in X, adopting the harmless convention that the first
variables in are such variables. Similarly, one may consisteutly

estimate if some variables included in do not appear

in X1. Utilizing notation previously introduced,

l2 N 1/2) v* 1a JA '1 99 '1' ' 2
11*

22j

where is the number of variables in not contained in and the

first variables in are assumed not to be included in

In general, the model will be overidentif led if it is identified
at all. The procedure for resolving the overidentification problem is

entirely conventional and will be discussed below. Assume, for the moment,

that this problem can be resolved. Given unique estimates of and
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one can exploit the information in equations (2) and (6) to estimate

Cl, a2(w22Y"2 a a, B2(0122)U2 a and
B1.

The only parameters that remain to be identified are the disturbance

covariance terms of the structurai. equations. Without further information,

it is not possible to estimate all of the parameters of the structural

equation covariance. matrix, just the normalized parameters c, t2

a (1* — -1
12 22 ' 22 22 22

To see this, note that

2 ll + 2y1a12 + ya22
(9) to11

—

E(Vii)
—

2
(1 —

+ +

(1 —

a
+ (1 + y1y2)a12 + y1a22

0)12 li2i 2
(l—y1y2)

w12 E(ViiV2i) + (1 + 44°f2 + t 12(10) 1/2a 1/2 2
(1 — 11

+ 2y2a2 + 22
22 — E( wi?

(1 — yy)2

E(Vi) (y*)2 + 2(1)0t2 + !2 j/
(11) 1— —

222 (1—y1y)

Since nA are estimable parameters, and since consistent estimators

of the left hand side terms of equations (9) and (10) are available, these

'This final restriction was suggested to we by Professor L. Lee.
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equations, supplemented by equation (11) provide three linear equations in

the three unknowns
at2 In general, these equations can be solved

for unique estimators.

(iii) Maximum Likelihood Estimators

The preceding analysis not only yields criteria for the identification

of structural coefficients but also produces consistent estimators for

identified coefficients. These estimators are useful for providing estimates

enroute to deriving maximum likelihood estimators, but they are not, in

general, efficient. The mnvlmum likelihood estimator that is discussed
nextis asymptotically efficient.

The density function for the disturbances V1, V2 is bivariate

normal. For notational simplicity normalize V2 by l/2 and define

v2w"2. The joint density of V1, V1 is h(Vii .12*i) Since di I

> 0 and di 0 otherwise, the density of y1, di is given by

idi
(12) f(y, di) = — X1w — — din13. vp

d9J

r 1di
— liil x2ilflz — du3, 9)

dV!j

where c has previously been defined as

kil +

Using equatioa (2), the density may be rewritten in terms of identified

structural parameters.

1For a discussion of this rather unusual density see Appendix A.
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Assuming random sampling, the likelihood function for the hybrid

model with structural shift is

(13) — It f(1 d)i—i

where I is sample size. Under conditions specified below, this function

possesses an optimum, and the maximum likelihood estimators have desirable

large sample properties. The identification procedure previously discussed

provides an algorithm for generating initial consistent estimators so that

one Newton step produces asymptotically efficient estimators. These initial

estimators are particularly valuable because likelihood function (13) is not

a globally concave function of the structural parameters.

Note that if — 0, so that the reduced form disturbances V1 and

are independent, density h(V1i factors into a product of marginal

densities h1(V1i)h2(Vi) and i(1 d) bdcomeS

f(y11, di) — h1(71i
—

X1f11
— — ir13d1)

id rc-

dV*J

i
h(9)dVj

i

so that regression estimators of equation (5a) and probit estimators of

equation (5b) are maximum likelihood estimators. In most practical problems

the assumption that = 0 is untenable.

In addition to the ordinary identification conditions previously

discussed, another condition is required in order for likelihood function

(13) to possess a well defined maximum with respect to its parameters. In

order to understand this condition, it is helpful to use conditional

normal theory to write density f(y1 di) as
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f&1. d1) — h1(y11
— — X211E12 —

din3) (t(ri)ldi(sc_ri)11_thi

where 4' is the cumulative distribution of the univariate normal, and

1/2c —p(V 1w )r — 1. LI. Li.

(1 — p2)1t2

where — — X11T1l — X2fr12
—

din13

and pa
1l0)22)

This representation of the density is both coinputationally and theoretically

convenient.

In a sample of size I, classify the observations into two groups

depending on whether or not the dummy variable di is one. Among the

observations with di 1, denote the smallest r by riin., and the largest
by 4Niax. Among the to(= I — 1i observations with di a 0, denote the

largest ri by r{°lax, and the smallest by r°2iin. Then, likelihood

function (13) possesses no interior optimum in a compact parameter set if

(14) 4°iax C r'iin or if r°un > riiax

so that there is no overlap among the values of the ri classified by the

occurrence of the event.'

This condition arises in étandard probit analysis (see Nerlove and

Press, 1976). To understand it, consider estimates of an ordinary probit

model. If any variable perfectly classifies the outcomes of a discrete

experiment, the coefficient of that variable becomes unbounded and is not

similar condition arises in the conditional logit model. See
McFadden (1974, Appendix).
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identified. This phenomenon may arise in the current problem even if no
linear

exogenous variable (or/combination of exogenous variables) perfectly

classifies outcomes because of the presence of random variable in r.

There is a positive probability that condition (14) will be met and

maximum likelihood estimators will fail to exist. However, using standard

results in the theory of order statistics, it is trivial to establish that

the probability that condition (14) is met tends to zero if sample size

expands by "fixed in repeated samples" sampling) Given their existence,

maximum likelihood estimators are consistent, asymptotically normal and

efficient.2

1Briefly consider the condition 4°iax < r{4in. If one data
configuration (i.e., a choice of XL X2i) is considered and the number of
observations on that configuration becomes large, the condition becomes

II I
wax — —

(1 — L)SfL 1i1
—

(1 — i51/2 li
il

where is random variable conditional on di 1 while is
random variable V11 conditional on di a o One may write

Vj.'k1+fl11andV1, _ko+llzit. il•• i 1,...,
where

1i and fl1,
are continuous independent random variables. The probability

that — n2> k0 — k is less than one for any pair of observations from the

disjoint sets. Hence, in large.samples, condition 40)max c rniin occurs
with probability zero.

21t is a straightforward exercise to verify that LeCain's (1953)
generalization of the classical Cramer conditions applies to the model in the
text for suitably chosen values of the parameters. These conditions are local
in nature and imply the existence of some root of the likelihood equations
that is consistent and asymptotically normally distributed. Olsen (1977)
verifies the Lecam conditions for a model based on the one in the text. Olsen's
structural model is the reduced form of the current model with the exception
that 1113 is set at zero in his work. His proofs carry over to the more general
case.

One point is not obvious, and is not covered in Olsents work. Since
a model with # 0 superficially resembles the model advanced by Memiya (1974)
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(iv) Sane Alternative Estimators

Since maximum likelihood estimation is computationally cumbersome,

it is useful to consider alternative estimators for the hybrid model. In

addition, the problem of the multiplicity of consistent estimators that

arises in an overidentified model remains to be resolved. It.will be shown

that the fact that is never observed has important consequences that

cause the analysis in this paper to differ dramatically from conventional

simultaneous equation theory.

Consider equations (la)—(lc), rewritten below to facilitate the

exposition. Because it is assumed that is observed, it is replaced

by With this change, the equations become

to demonstrate the inconsistency of maximum likelihood estimators for the
parameters of a discontinuous density, it is worth verifying that the
expectation of the first partial of the log of the density of f(y11, di)

with respect to vanishes when the expectation is taken with respect to
the density evaluafed at the true parameter values.

Denote as the expectation taken with respect to the density of

and di when the true parameters are used in the density. Let V11 =
— — — din3. Then

—
h(V1, li)d91

a In f(y , d ) c c11i12 w11l/2
E li J. =E i
a 0 —

13
1 h(V v* )dV

ii' 2i 2i
i

Since

V h(Vii. V)d9dV1 V h(V1i V)dVdv1
p

1/2—c c II — c (w11)

(See, e.g., Johnson and Katz, 1972, Vol. 4), it follows that

£fl f(y, di)1

3ir13. J°
as desired.
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(la) y1 — + d131 + 1i + U1

(ib) y1 X2ia2 + d182 + y1r2 + U2

where dummy variable di is defined by

(lc) d1 —1 1ff Yi> 0

di
0 otherwise,

and the Principle Assumption is invoked so that y2G1 + O•

Using the results of the previous analysis, it is possible to

estimate equations (la) and (ib) directly using the reduced form coefficient

estimates to generate instruments. To see this, note that it is possible

to use equation (5b) to estimate the expectation of y*/42 conditional on

5.i and X2.

fly 7*.2i 22 1121 2i22

From the probit estimates of (5b) it is possible to estimate the

probability of the event di = 1 conditional on values of and X2
Replacing and di by their estimated expectations, equation (la) becomes

(la') 'li = X11a1
+ + (YiwY2h't

+ U1 + (d - + y*(y*wh/2 - 2i°2
Least squares applied to equation (la') yields unique consistent estimators
of c1, l and y. The proof is trivial and hence is omitted. Estimation of

this equation resolves the problem of the multiplicity of estimators that

arise from the application of indirect least squares discussed in Section (ii).

Precisely the same procedure may be used to estimate, the parameters

of equation (lb). There is one new point. The choice of a normalization
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rule in a simultaneous equation system is usually arbitrary. Here the

choice is important because Yj is never observed, although its expectation

can be estimated. In equations (la) and (lb), y1 is selected as the depen-

dent variable. Substituting estimated conditional means for endogenous

variables, equation (lb) may be written as

(ib') Y1j
— + Pi8 — (y*l"2)) —

1 (U2w"2 + (di — — — —l/2))

It is straightforward to prove that least sqmres estimators of equation (lb')

are consistent. -

There is one further problemJ Although the Principle Assumption

requires 1281 + 82
= 0, this constraint is not imposed in the preceding

analysis. One way to impose the constraint is to estimate equation (la')

and use the fitted value of 82*112* (
—8) as a parameter in equation (lb').

A more satisfactory approach that is computationally more burdensome is

to impose the constraint directly in formulating joint least squares

estimators for equations (lat) and (1W).

- It is tempting to use the residuals computed from the fitted equations

(la') and (lbt) to directly estimate the structural covariance terms
a11, at2

and
q2. A direct application of structural two stage least squares formulae

will not work precisely because y is never observed. If estimated values

of are used in place of actual values, the residuals from (lc) and (lb)

will not permit identification of the structural covariances.

One method for circumventing this difficulty is to use the estimated

structural parameters to solve for the reduced form parameters
'!l'

li owe this point to Tom Macurdy.
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l2 and it13.
These estimates may be treated as known parameters in

estimating equation (7). Hence it is possible to estimate and

and by use of equations (9), (10) and (11) to obtain unique consistent

estimates of a11, a12 and
022•

While these estimators are simply computed, consistent, and free of

the nonuniqueness problem that plagues indirect least squares estimators in

the overidentified case, they are not asymptotically efficient nor are their

asymptotic distributions simple. The standard formulae used for the computation

of large sample parameter variances is inappropriate. This is so because

is never directly observed and only an estimated value of this

variable is available.

To understand these difficulties, it is useful to discuss two

special cases that are of interest in practical empirical work. First

consider estimation of equation (la) when 0 so that no direct structural

shift is present in that equation. Then consider a case in which 0

so that no unobserved latent variable is present in equation (la). In both

cases consistent parameter estimates are available, as has been shown.

Consider the disturbance from equation (la') under the assumption

that = 0. Denote the composite disturbance by U1

- —1/2 —1/2U =U +/*(v*cu )li li '1 2i 22 '2i°'22

The crucial feature of these residuals is that they are not independent

across observations nor are they identically distributed. Accordingly,

standard central limit theorems do not apply to regression coefficient

estimates of equation (la'). In particular, it is not the case that the

standard estimator of the regression parameter variance—covariance matrix,
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E

1/2

—1

E X1y1w22 E (72iw22

is the appropriate asymptotic variance—covariance matrix for the regression

coefficients.

The source of the problem comes in the final term in U11. Utilizing

the reduced form for Yiw'2 this term becomes

—1/2 A —1/2 A A

)1itü22
—

yci322
=

x1j(q1
— 2l + — 22 + li

is an iid random variable. But the first two terms are not iid. Since

and are maximum likelihood estimators, they possess asymptotic

normal limiting distribution, and in large samples the first two terms

converge in probability to zero. But their rate of convergence is not

fast enough.

In fact, regression estimates of equation (la') with 0 obey

the following relationship.

—
a1

E X1Xj E

if =1
r z X1(y1w2) E

(xj1(u1 + V1i)

z (y1w2)(U11 + Vii)

+

1
E (xi(x1[ir1 — + x2i[W2 — 7T]

A
2 A A

E(y1w (X11[w1 - + x21[ir2 -
1T221
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Both terms on the right hand side converge to proper normal random variables.1

Accordingly1 the standard formula for the asymptotic variance—covariance matrix

is inapplicable. Although the correct asymptotic variance—covariance matrix

can be estimated, the computational burden of doing so is greater than direct.

optimization of the likelihood function.

Now turn to the second case. Consider the estimation of equation Cia')

for a case in which 0 so that no latent variable is present in equation (la).

The analysis of this case is thoroughly conventional.

The estimated reduced form probability P may be used as an instru-

mental variable for di. Standard instrumental variable formulas may be

used to estimate the appropriate asymptotic variance—covariance matrix of
the coefficients.

The procedure to be used is as. follows. may be employed as an

instrument for di in equation (la'), and consistent estimators of
a1 and 81

may be produced. Using actual values for di and the estimated coefficients,

one may estimate the residuals for each observation which when squared,

summed and divided by I yield an estimator of a11. The appropriate asymptotic

variance covariance matrix for the regression coefficients
a1, B may be

consistently estimated by the standard instrumental variable formula

E XiXh I X1d
—l & S I Z

II A -
tkY Edi IxuPi Pi2 EXiidi Edi

Note that since the residuals from the prediction of
di (di — F) are not

guaranteed to be orthogonal to the X1 regressors, the instrumental variable

formula is not equivalent to the standard two stage least squares formula, and

1The proof is straightforward. See Heckman (1977a, Appendix A for a
more complete discussion).
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the instrumental variable estimator is not equivalent to the standard two

stage least squares estimator.1

Note further that if the sole purpose of the analysis is to estimate

equation (la), it is not necessary to estimate probit functions at all. It

is possible to generate an instrumental variable for di by estimating a

simple linear probability model with di as a dependent variable that contains
and some other xogenous variable

at least all of the variables in X11/as regressors. If these estimators are

utilized, the standard two stage least squares procedure applies and

predicted values of di may be utilized as regressors since in this case

the regression residuals from the prediction of di are constructed to be

orthogonal to the regressors. This result simply restates the well

known point that it is unnecessary to obtain consistent estimates of the

parameters of reduced form equations in order to consistently estimate

structural equations.
-

Since the linear probability procedure is the simplest one to use,

it is recommended. However, it is likely that the use of the probit

instrument results in more efficient estimates although no proof of this

assertion is offered.

The discussion of these two cases is illuminating. For both cases

simply computed consistent parameter estimates are available. In the first

case, with an unobserved random variable present, the estimators converge

to a normal distribution but the theoretically appropriate asymptotic

covariance matrix is cumbersome to compute. In this case it is suggested

that analysts utilize the consistent estimators discussed in this section

as starting values for at least one Newton step towards the likelihood

optimum to produce estimators with desirable large sample properties.3 The

1See Sant (1975).

follows directly from the analysis of Kelejian (1971).

copy of a computer program to produce both one step Newton iterates
and full information maximum likelihood estimates is available, on request,
from the author for the cost of duplication, postage and handling charges.
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second case requires only a simple application of conventional instrumental

variable estimator theory. For both cases and in the general case that

contains both special cases, full system maximum likelihood estimation will

produce asymptotically efficient estimates and is certainly recommended for

all but the special second case.
The hybrid model can be generalized in several ways. Two extensions

are particularly important. First, several dummy indicator variables can

be introduced into the model. Two types of multiple dummy shj.ft variables

can be introduced. The first type of dummy variable represents a poly—

tomization of a single latent variable and is appropriate for the case of

ordered dichotomous variables. The second type is for intrinsically

unordered case.1 These models, and obvious multivariate extensions, are

briefly discussed in Appendix B. Second, the random variable may be a

truncated variable. This case, which nests robin's model (1958) into a

simultaneous equation system, follows as a trivial extension of the previous

analysis and hence is not discussed here.

III. Multivariate Probit Models with Structural Shift

In this section maltivariate probit models are discussed. In these

models there are no observed latent variables so that the only information

available is that y 0 and 0. These models are superficially

different from those considered in the analysis of the hybrid model. Appear-

ances are deceiving. Both models are generated from underlying continuous

latent variables and the analysis of one model readily applies to the analysis

of the other.

Equations (la)—(lc) apply to this case as well. As before, di is

defined as the dichotomization of

l important reference for such models is Amemiya (1975).
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dial iff y>O
d1 = 0 otherwise

and define dummy variable a as the dichotomization of

(15) a1 1ff

0 otherwise.

The argument of Section II may be applied to this case.

As in the case of the hybrid model, the Principle Assumption

+
82

= 0) is a requirement for a meaningful statistical modelto exist.

Accordingly, the argument of Section II (1) of this paper applies to the multivariate

probit model. The models of Ashford and Sowden (1970), Ameiniya (1975), and

Zellner and Lee (1965) satisfy this assumption since none of these papers

considers structural shift in the equations (i.e., they assume that =
82

= 0).

The identification procedure in Section II (ii) must be modified

since no observations are available on y1.. The analysis of identification

of and 22 is as before. But the analysis of equation (5a) must be

modified. Two distinct cases are worth considering. First suppose that

it13
0 so that there is no structural shift in the equations.

In this case, normalized parameters of equation (5a) may be estimated.

That is, one may use probit analysis to estimate

it11 l2
'tl 1/2

and
l/2

(w11) (w11)

The correlation between V1. and V2 may also be estimated, even though both

y and are latent variables. This result is well known in the theory

of tetrachoric correlation (Kendall and Stuart, Vol. II, 1967). To establish

this result is is useful to recall that c is defined as

c1 = - (X1i11 +

and that b1 can be defined as

bi = — (X11it1 +
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The probability of the events a and di can be written as

(16a)
P11(i) Prob(a 1 A di = 1) =

F(—b1, —c1,

(16b) P01(i) — Prob(ai
= 0 A

d1
1) —

F(b1,
—

c1,
— p)

(16c) P10(i) — Prob(a1 1 A di = 0) —
F(—b1, c, — p)

(16d)
P00(i) Prob(a1

o A di 0) — F(bi c1,

where F(,) is a standarized bivariate normal cumulative distribution.1

Substituting consistent estimators of b and ci in place of the true values,

these probabilities are solely a function of p. the correlation coefficient.

The sample likelihood function may be maximized with respect to p to achieve

a consistent estimator of that parameter. The appropriate likelihood function
is

- i=l 1p01(i)]di(l-al) [r10(i)](l_di)ai (00(1)JUaiX1_dp

There are alternative minimum chi square estimators and modified minimum

chi square estimators for this parameter discussed elsewhere
(Amemiya (1975);

Eeckman (1976)). All of these estimators are consistent but not efficient

since the information matrix for the reduced form coefficients is not block
diagonal in p.

Next suppose that # 0 so that there is structural shift in

reduced form equation (5a). For this case, initial consistent estimators
are also available. The conditional distribution of ai given di may be written as

1 bc
Thus, F(b1, c. p) — / f i

h(V. Vpd9dvt

where Vf =
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b [li(i)1aidj xo1 (ai) (1—d1) [1'O1(JYJ (la)d VOO1 (la) (1—di)ro (aj di)
[3,U)J [o.9J [P1,(i)j LPoJi?J

where
P0(i) F(o, c) and 21(i) 1 — P0(i), and where bi is replaced

everywhere by b defined by

c
b1

—
wt3di.

Since consistent estimators of c are available, these may be inserted as

parameters in the appropriate conditional (on di) likelihood function, If

that function is maximized with respect to p, lTb, t2 and 1T!l
consistent

estinators result. These estimators are not efficient since the full

system information matrix is not block diagonal with respect to these parameters.

This analysis establishes that it is possible to estimate all of the

normalized reduced form parameters: p, irk, w2, tr3, ,r1 andw2. Under

the identification hypothesis postulated in Section I, one can utilize

equation (2) to solve for normalized structural parameters

(17) = I et , y** =
y*iwiliZ

= c2íw2 q a y*1

Moreover, the argument presented in Section EI(ii) on the estimation of

structural covariances may be readily extended to show that it is possible

to estimate

(18)
at1 c1w11 , at; a!24(2 = and a =

This completes the analysis of parameter identification.
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The analysis of the full information maximum likelihood estimators
is straightforward and need not be belabored. The likelihood function is

00 1P01(i)Iii [P10u)]di _a1) [P11(i)]aidi=l

The function nay be maximized with respect to the parameters listed in

equations (17) and (18). As in the hybrid model, in a finite sample there

is some probability that maximum likelihood estimators fail to exist but this
probability becomes arbitrarily small as sample size becomes arbitrarily

large. The maximum likelihood estimators are consistent, asymptotically
normal and efficient.1

IV. The formulation of Simultaneous Equation Models
with Discrete Endogenous Variables2

In this section, the models developed in this paper are contrasted

with previous work on discrete models with jointly endogenous variables by

Goodman (1970) and Nerlove and Press (1976). These models deal with purely

discrete random variables. Accordingly, the appropriate comparison is one

between that work and the models of Section III although an important topic

to be considered is the issue of generalizing purely discrete models to

accommodate both discrete and continuous endogenous variables.

It is argued here that the log linear model of Goodman and Rerlove

and Press is an inadequate scheme for formulating the sbnu.ltaneous equation

model required in econometrics. This is so for two reasons. First, the log
linear model is designed to simplify the estimation of conditional probabilities

1The same sort of existence conditions are required as those presented
in Section II. With probability one, maximum likelihood estimators exist in
large sample samples.

have greatly benefited from discussions with Marc Nerlove on the
material in this section.
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whereas the simultaneous equation mode], is intrinsically on unconditional

representation of random variables. Estimators of conditional probabilities

in the log linear model have the same interpretation as direct least squares

estimators in classical simultaneous equation theory which are also condi-

tional probability statements. Both estimators confound true structural

parameters with eleme.nts of the equation error covariance structure. Second,

the log linear model does not readily generalize to accommodate continuous

endogenous variables while the multivariate normal structure can easily

be modified to do so, as has been shown.

To fix ideas, consider a log linear model for a two equation system

comparable to the model of Section III. Nerlove and Press (1976, p. 51)

explicitly consider a log linear model for this case. Altering their

notation to conform with the notation of Section III and suppressing

subscript i, the log linear analogue of equations (16a)—(l6d) is

Zn Prob (a = 0 A d — 0) Zn P00
=

a0 + a1 + + p

Zn Prob (a 0 A d 1) = Zn
P01

=
a0

—

a1
— B + i

Lu Prob (a 1 A d — 0) = Zn
P10 - + a1— B + i

Zn Prob (a — 1 A d 1) = Zn
P11 —a0

— + B + p

where p —Zn [exp(a0 ÷ a1 + $) + exp(a0 — a1
— ) + exp(—a0 + a1 — 8) +

exp(—a0 — a1 ÷ $)] and a0, a1 and may be paraineterized as functions of

exogenous variables.

The marginal probability of the event a 0 in the log linear model is

exp(a0
+ a1 + 8) + exp(a0 —

a1
— 8)

(19) Prob (a — 0) exp(— p)

This expression is to be compared with the corresponding probability given

in Section III for the normal model with structural shift
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(20) Frob (a 0) c S [F(b —
irt3d,

— c)J4 [F(b —
1T3d, c)]1d

d—0,l

Recall that F is a function of correlation parameter p.

When 3 0, the log linear probability model collapses to a simple

logit model

Prob(a0)
1

1 + e72%

With p 0, the normal model becomes a probit model with structural

shift

Prob (a 0) E [(b — ,rt3d)ID(_c)]d (,(b)G(c)]l_d
d=0 , 1

where •(t) is the standard univariate cumulative density ( F(°o, .t)).

Finally, note that if there is no structural shift (itt3 = 0), as well as

no covariance (p0)

Prob (a = 0) (b)

so that a simple probit model arises.

Further note that in the log linear model, the conditional probability

that a — 0 given d may be written as

(21) Prob (a Ojd) ÷ ezao e2
— 23(l—d))

The simplicity of this representation is the basis for the popularity of the

log linear model. The comparable expression for the normal model is

F(b — ir* ci, — cfld
Prob (a Ojd)

-
F(,— a) J
— ir3d, c)ll_d

F&,c) J
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Note that a0 and b, a1 and c play similar roles in the model in which they

appear. The important point to note, however, is that B and p and ir play

similar roles. In the normal model the probability that a 0 given d

depeüds on d for two conceptually distinct reasons: one related to the

true structure of the model Or!3 0) and the other due to covariance in

latent errors (p # 0). In the log linear model, these effects are

indistinguishable. Thus the log linear parameter of association, B,

corresponds to two distinct parameters in the normal model p and iT!3.

As long as one only seeks to estimate empirical relationships among

endogenous variables, this issue may be ignored. Suppose, however, that

one seeks to utilize fitted econometric relationships to answer policy

questions. Then, as liaavelnio (1944) has stressed, it is important to

identify structural parameters. A simple example will fix ideas.

Let a 1 if a family has a child and let a = 0 if it does not.

Let d = 1 if the family uses birth control and d = 0 otherwise. It may

happen that because of unmeasured taste and knowledge factors, families

more likely to contracept are more likely not to have a child. This effect

would be captured in a normal model by setting values of the parameter

p c 0. There is,. however, a second effect. For obvious structural reasons

families on birth control will have fewer children (iT!3 < 0 in the normal

model). For either reason < 0 in the log linear model.

Suppose that the government forces all families to contracept, say

through a sterilization program. The normal model would permit identification

of the effect of this policy shift through use of irs. Thus the predicted

change in the probability of a couple having no children as a result of the

policy would be derived from equation (20) as



36

AP(a 0) 1 [F(b — , — c)]d (F(b — ,
d=O,l 13 13

d 1/— Z [F(b —
dirt3,

— c)] [F(b — dnt3, c)]l_d
d= 0,1

Notice that if = 0, there would be no effect predicted for the policy,

whether or not p 0.

The estimate of the policy effect from the log linear model would

be given by subtracting the conditional probability that a = 0 given d = 1

(given in equation (21)) from the marginal probability (given in equation

(19)),

= Prob (a = Old = 1) — Prob (a 0).

Since it is not possible to disentangle purely statistical association from

purely causal association in the log linear model, it is not possible to

identify meaningful structural parameters interpretable within the classical

simultaneous equation framework. If one were to follow Ameniiya's (1975)

suggestion and use the log linear model to approximate a multivariate
normal model, misleading predictions of policy effects might occur. Indeed,

irb 0, but p < 0 in the normal model, the log linear model would predict

an effect of the program (B < 0) even when none in fact would occur. Conversely,

if 't3 > 0 and p < 0, estimated independence of events in the log linear

model (B 0) would lead to incorrect forecasts of policy effects. Mote,

however, that if dummy variables are defined S indicators of latent variables

that cross thresholds, and not as structural shift parameters (7r!3 = 0),

Amemiya's suggestion is appropriate, and the log linear model may be used to

approximate a multivariate normal, model. The parameters B and p then play

'The difference between the first term and the second term is that d
is set to one inside the brackets signifying that everyone in the populationis forced to use birth control. -
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the same role in their respective models.

A second, more minor point, concerns the computational intractability

of the multivariate logistic model when both continuous and discrete

endogenous variables are present. The reader is invited to differentiate
function

the cumulative distribution/of the multivariate distribution to confirm

this point.1 Further, as Amemiya (1975) has noted the multivariate logistic

distribution arbitrarily fixes the correlation structure among the random

variables, a highly unattractive feature.2 For both reasons, the log linear

structure does not generalize to accommodate continuous and discrete

endogenous variables in a simultaneous equation system.

1That distribution is

ft1l. = 1

1 + E exP(Yi)
i=l

2Note, however, that it is misleading to think that the cumulative
logistic distribution introduced in the previous footnote plays the same
role in the log linear model as the multivariate normal plays in the models
of Sections II and III of this paper. In the multivariate case, the log
linear probabilities are not dichotomizations of underlying continuous latent

logistic random variables. Thus, the transition from the log linear model
to the multivariate normal model involves more than a convenient choice of
a joint distribution for the latent variables introduced in Section I of this
paper. Moreover, if one were to alter the log linear model to incorporate
a structural shift term in a that would play the same role as parameter
ITt3 in the normal model, tha term would not be identified. This result is
simply a restatement of the argument in the text.
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Summary

This paper develops a class of econometric models for simultaneous

equation systenswith dummy endogenous variables. These models are based on

the pioneering work of Pearson (1900) on dichotomized variables. The general

model presented here includes simultaneous probit and ordinary simultaneous

equation models as special cases. Dummy endogenous variables are introduced

in two conceptually distinct roles: (1) as proxy variables for unmeasured

latent variables crossing thresholds, as in the classical quantal response

model (Amemiya, 1975) and (2) as direct shifters of structural behavioral

equations formulated in terms of latent variables. This distinction is

shown to be quite important in the formulation and interpretation of the

econometric models developed here. Maximum likelihood and alternative

estinators are discussed. Conditions for the existence of a meaningful

statistical model are derived.

The models presented here have already been put to practical use

(see Edwards (1975) and Heckman (1975, 1977)). They are computationally

tractable and in the applications cited have led to new interpretations

of old evidence.

The models formulated here are compared with alternative models by

Goodman (1970) and Nerlove and Press (1976). It is shown that the log linear

model does not provide a natural framework for formulating the simultaneous

equation model of econometrics whereas the models presented in this paper do.



APPENDIX A

DERIVATION OF THE DENSITY di)

In this appendix, there is a brief discussion of the derivation of

density f(1 di) that is used in the text. This discussion is useful

because random variables that are the sum of underlying continuous and

discrete random variables are unfamiliar in econometrics. The joint

density of V1, V1 (= is given by h(Vii V1), a bivariate

normal density. The joint density of and di is

e(Vii d1) [7 h(Vii Vj)dVjJ
i

[ h(V1, Vi)dVi]i
where c = —(X11 w1 + X2i ,r22L

Define a random variable 2. = V1 + l3 di. The joint density of

di is simply

e(Zi — i3di di) [ f h(Z — ¶l3di Vi)dVi]ici

r il_di

U
h(Zi —

ir13d.
9i)dV!iJ

Substitute 7li — X1ilr1i
—

X2f12 for Z (noting that the Jacobian is

unity) to reach the density f(y1 di) used in the text.

The measured density for is

39
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ci
e1(Zi) [ h(Z —

it13, 91)dV1 +
J h(21, li)d9i

ci

Using conditional normal theory one can write

h(Zi — r13, V) = +(Zi
—

and also, clearly

h(Zi,
=

where $(j) is a conditional normal density. Then obviously e1(Z) is a proper

density since

J ei(Z)dz1 = [ (ZiJVi)u(v*)dzdv*

+
J j +(z —

=1

since
I $(zjl9i)dzj 1.



APPENDIX B

HULTIVARIATE EXTENSIONS

Nultivariate extensions of the models of Sections II and III in

the text are presented in this appendix. Let be a row vector of G

jointly endogenous latent random variables, some of which may be observed.

Let r be a C xG nonsingular matrix with unit diagonal elements. X is a

lxK row vector of bounded exogenous variables. A is a ICxG coefficient

matrix for the exogenous variables. Td1U is a 1 xc vector of dummy

variables (C c C). Only C1(c C) of these dummy variables act as shifters

of the structural equations. Associated with the C1 shift dummy variables

is a C1xG coefficient matrix B. U1 is a lxG vector of disturbances for

observation i, I = 1, . . . , I.
The structural equation system may be written as

(B—l)

where

E(Ui) = 0 E(UIUi) = E

and

EOJIUJ) = 0 i # j.

U is assumed to be a multivariate normal random vector. Z is positive

definite. For notational convenience, suppose that the first C latent

variables activate theC dummy variables
-

41
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d = 1 1ff Y. > 0ii iJ—

0 otherwise,j=1, - . .

and that the first C continuous variables in are unobserved while the

remaining C—C variables are observed.1 Finally, note that C >
C1, and

assume that the first C1 latent variables generate the C1 shift dummies.

The semi—reduced form for the system is

(B—2)

where

it = —Ar', = —Br1 and = ur1.

It is convenient to work with reduced form variance normalized versions

of these coefficients. Define fl as

= E(VV) = (r)' Er1.

Diagonal matrix D is defined by

D2diagfl.

D displays the population standard deviation for each element of V. Par-

tition 0, and define D* as

D 0
C

=

k-C

1Note that case 2 in Part I of the text is excluded by the assump-
tion that C1 c C and that only unobserved latent variables generate struc-
tural shift. The model can readily be generalized to include this case.
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where Dc is a C XC submatrix of the first C diagonal elements of D, and

is a (G—C) x (G—C) identity matrix.

Postmultiply equation (B—2) by to reach

(B—3)
xi,T*

+ +

E((V)' v) Q* = (D*) 2(D*).

This operation normalizes the first C semi—reduced form equations to have

a unit variance disturbance, on obvious generalization of the procedure

utilized in Section II in the text. Note that

= ,r(It), i =

In the notation of this appendix, the Principle kssumption in the

text requires that the first C1 rows of the first C1 columns of 0 should

vanish. Thus the Principle Assumption in this model becomes

= 0 i, j = 1, . , C1.

Assuming that the reduced form model is of full rank, the coef-

ficients in the first C1 columns of ir may be estimated by applying

probit analysis to each equation. If C > C1, the coefficients in the next

C—C1
columns of wS and ii may be estimated by applying the methods of

Section III to each equation. Assuming C > C, the coefficients of the

final G—C columns of ir and ff* may be consistently estimated by applying

the methods of Section II to each equation. Precisely the same type of

argument offered in Section II establishes that all elements of are

estimable.

Now consider the estimation of structural coefficients. Assume
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that through exclusion restrictions all nonzero coefficients in equation

(3—1) could be identified if were observable.1 Clearly, in the trans-

ition to equation system (B—i) with some continuous variables
unobserved,

the same regression coefficients that can be identified in the previous

case can be identified in the current model if they are suitably re—

normalized. To obtain the required normalization, rewrite
equation (3—1)

in terms of normalized latent variables

(3-1) Y(D*y- D*r + X1A + diE
= U.

For the normalization implicit in the choice of r, it is natural to post—

multiply this equation by to reach

(3—1') (Y(D*))(D*r(D*)) + X A(D') + di B(D*)' = Ui(D.*)_l.

Clearly, then, one can identify the following parameters:

(3—4) o*r(D*)JA* = A(D*) 13* = B(D*)l.

Finally, it is clear that one can identify the following parameters of

the structural covariance terms

(B—5) = (D*)l E (D*)'.

This completes the analysis of parameter identification.

The likelihood function for the model may be generated from the

density for random variables di and 4 where is the 1 X (C-C) subvector

of Y cortespondthg to the observed continuous variables. That density is

defined next. Let be defined as

1The restriction to exclusion restrictions is overly stringent.
Identification through use of covariance restrictions is also permitted
so long as such restrictions can be imposed on
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X1y' + dilr*.

Partition into and i.e., i Then the

density for di 4, g(d 4) is given by

£ & *g(d =
F2OPic *[2di_ O — * [2 —U[2ç —U')

where * denotes a Hademard product, ' is a lxc vector of "l's," and 2 is the

number "2". F2 is the derivative of the cumulative distribution for the

multivariate normal with respect to the final C—C elements of

U = U(DsYl, i.e.,

Ui1
Z*) c L I IzI exp _l/2(Ut (Z*) Ut')dUtc

where U = (Uc, U_c).
The sample likelihood function is

It g(d1, Y)
i=l

which is to be maximized with respect to the terms in equations (B—4) and

(B—5). As in the text, the identification analysis produces initial con-
sistent estimators to use as starting values.

- In large samples, maximum

likelihood estimators exist, and are consistent and asymptotically

efficient.

One final multivariate extension is worth noting. The models

developed thus far are for unordered dichotomous variables. In some cases,

dummy endogenous variables may be naturally ordered. For example, in an

analysis of the effects of legislation on the income of blacks, one might

distinguish existing laws by their "strength" and a natural ordering would
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exist. One simple way to generate such ordered dichotomies is to polytomize

a single latent continuous random variable. Thus, each element of
d. say

d1 might be replaced by a vector of dummy variables, with a typical

element defined as
ic

d{? = 1. iff

0 otherwise, j = 1, . . , 3,

where the categories are mutually exclusive, and the $, j 1, I are

a set of estimable constants (fixing $ = and = -°°).

Each of the C dummy variables may be polytomized in this fashion)

1This procedure for generating ordered dichotomous variables is
discussed in iire specialized cases by Johnson (1972) and Amemiya (1975).
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