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Abstract

This paper is concerned with the estimation of the parameters in a dynamic
simultaneous equation model with stationary disturbances under the assumption
that the variables are subject to random measurement errors. The conditions
under which the parameters are icdentified are stated. An asymptotically
efficient frequency-domain class of instrumental variables estimators is
suggested. The procedure consists of two basic steps. The first step
transforms the medel in such a way that the cbserved exogenous variables

are asymptotically orthogonal to the residual terms. The second step involves
an iterative procedure like that of Robinson [131. »
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1. Introduction

We assume the existence of an underlying economic system of the form

J=0

(1.1) | jEOBJ(Et'j-UE) +

g Fj(xt_j-ux) =€ t=1,2,... .

Here Et’ Xt and e, are discrete vector-valued covariance-stationary
processes of dimension G, K and G, respectively; they have mean vectors
“g’ UX and zero, respectively, and satisfy E xte; =0, all t, s, the

prime denoting transposition. The Bj and Fj are matrices {of dimen-

sions GxG and GxK respectively) B0 being nonsingular and all zeros

of det{ E szJ} being outside the unit circle.
J=0
In this paper we assume in general that all the gquantities in (1.1)

are unknown or unobserved (except for certain elements of the Bj and Pj,

knowledge of which will identify the model -- see below). The estimation
of (1.1) in the case where one observes Et and Xt exactly for
t=1,2,...,T, 1in the absence of stringent restrictions on the autocovariance

structure of ¢ has been considered by Hannan and Nicholls [8] (for the

t’
case G = K = 1), Hannan and Terrell [9] (for the case p = q = 0), Espasa

and Sargan [1]. We relax this requirement by assuming that we observe
Ye TE L s X T Xt st 1,...,T .

The and n, are Gx1 and Kx1 vector processes which satisfy

“t
= ' = = ' = ' = L
Egt 0, ECtCS GtSZHQ, Ent 0, Entns 6t52n6, EEth 0, ECtnS 0,

Egtn; = 0, 6t being Kronecker's delta. . Clearly, and u_ are con-

U
T €
sistently and efficiently estimated by q, = 77! Y Yes M
. € t=1 t X .
respectively. However, it will be apparent from knowledge of the classical

S ?I(T
=T ) x
t=1 ¢

errors-in-variables problem that standard estimators of the Bj’ Fj, that




would be asymptotically efficient if o weré a null métrix, will not in
general be consistent or efficient when © is non-null. We shall not be
concerned with estimating Q because under our assumptions it will not
be identifiable. We do wish to estimate ©, however, along with the B,,
rj, by consistent and efficient methods. Since the Ny s like the T
Play the role of white noise measurement errors, an a priori assumption
that will often not be unreasonable, and will prevent too large an expan-
sion of the parameter space over that in [8], [9], is that the elements of
n, are contemporaneous]y4qncorre1ated. Therefore, we assume throughout
that 0 1is a diagonal matrix. Moreover, we shall allow for the possibility
that we know that one or more of the elements of X¢ is, almost surely,
ob;erved without error for all t, 1in which case we fix the corresponding
diagonal element of © as zero. (We nowhere require 9, or Q, to be
nonsingular). Therefore, we have achieved a generalization of the usual
dynamic simultaneous equations model: prior information that an exogenous
variable is error-free is equivalent to an exclusion constraint on é para-
meter. This will fit in well with our other constraints on the Bj’ Fj,
for we assume, for simplicity, that all these are also of the exclusion
type (apart from a normalization and sign constraint on each equation).
Measurement errors with similar properties were considered by Goldberger
[4,5], Geraci [3], Hsiao [10], etc. However, in their work, only the
static case of (1.1) (;he case p =q = 0) was considered, and the X €t
were assumed to be white noise. The most significant difference is that
we are principally concerned here with the case where Xt is not white
noise, when the identification problem may be solved by the use of 1aggéd

observable exogenous variables as instruments. We pay some attention also

to the case where Xt is white noise, when the lagged exogenous variables



are useless as instruments and a basically different approach is required.

2. lIdentification and a Consistent Initial Estimator

When (1.1) is transformed in tgrms of the observables yi, Xys . We have

§ Tilxg_g7u) = up »

(2.1) E Bj(yt_j-ug) + X

j=0
(2.2) . uy = €, + .g

j=0

We define the discrete Fourier transforms

T .
-1/2 tA
w (2) = (2nT) /tzlxte‘

z

——

>

g
1

T .
- -1/2 ¢, it
y (2nT) tZ]yte

T e
w (2) = (ZWT)-]/Z ) uteItk .
t=1

and replace {2.1) by an asymptotic approximation to its Fourier transform,
(2.3) B(k)wy(k) +TMw (A) =w (A) . A#0,
where

B(A) = '§ Bjeijx , T\ = _? rjeijx‘

j=0 j=0

omitting the terms in Mgs My which are 0(T°]/2) when X # 0. The
transformed system can be treated as a contemporaneous model. Thus,
because {et} and {ct} are incoherent of '{xt}, but {nt} js not,

wu(x) can be decomposed into a sum of two orthogonal components, one of




which (depending upon {nt}) is correlated with wx(k), and the other
(depending upon {st}, {gt}) is not. Therefore, the measurement errors in
{yt} can be ama]gamafed with {st} to produce a composite, stationary,
residual term. It would be possible to identify @ if, for example,

€ = 0, almost surely, all t, whence (1.1) is a homogeneous structural
relation between Xg» gt, and uy is a moving average sequence of order
max(p,q), but we shall not do this; we prefer to allow for the presence
of a stationary €4 in (1.1), to possibly represent exogenous variables
that should have been included in (1.1). We could, indeed, have omitted
explicit reference to 5 measurement error bertaining to Et’ and indeed
the assumption that this measurement error is white noise essentially plays
no role in our results. In any case, if O = 0, there is no problem in

consistently estimating the Bj’ r but merely an efficient estimation

5
problem caused by the moving average in gy in (2.2): if e, 1s a moving
average sequence of order r then the residual term is a moving average
of order max(p,r), and a vector extension of the methods of Hannan and
Nicholls [8] may be appropriate. We are concerned only with the case
® # 0, however.

For simplicity, we assume that B(X) and T(X) are relatively left
prime, so that the redundancy in the specification can be eliminated

(Hannan [7]) and the a priori information on the Bj’ Fj is entirely in the

form of exclusion restrictions. We also assume that
oo . _ . .
C(3) = Blxgm M xgyyu ) 5 3= 00,.uur

are nonsingular and unrestricted for some r > 0. Furthermore, because of
the requirement that the instrumental variable estimates discussed in §3 do

not involve a singular matrix, we follow Fisher [2, Condition 6.2.1] in

i



assuming that the pG+ (gq+1)K elements of _nt-l""’nt-pfxt""7X§-q are
not connected by any linear identities, where ﬁt = (EBjLJ)'](ZFjLJ)xt,
with L the lag operator. A sufficient condition for this to hold is:

(a) all zeros det{ E szJ} and det{ % szJ} are outside the unit circle;
. =0, . =0 |
(b} { E B.29}, { g szJ} are relatively left prime; i.e., they have IG as

P L

greatgsg common %e?t divisor; and (c¢) rank(B ,I' ) = G. Then, by the same
reasoning as in Hsiao [11], one can show that the number of excluded predeter-
mined variables be at least as great as the number of included joint dependent
variables less one is what is necessary for the identification of the ith
equation. If we let one element in each row of B0 be prescribed as unity
the necessary and sufficient condition to locally identify (2.1) is that at

least (G-1) zeros be prescribed in each row of

>A=[B0 B] Bp PO I‘q]

and the rank of each submatrix of A obtained by taking the columns of A‘

with prescribed zeros in a certain row is (6-1).

If X isva white noise, i.e., Cx(j) =0 for j>0, we need a
much stronger condition to identify the unknown parameters of the ith equa-
tion of (2.1). In particular, in addition to the condition that the number
‘of excluded predetermined variables has to be at least as great as the
number of included joint dependent variables plus the number of unknown
measurement error variances (associatéd'with the included current and lagged
e*ogenous variables) less one, we need additional conditions on the way the

th

included current or lagged exogenous appear in the i~ behavioral equation.

tet hj denote the number of jth lagged included exogenous variables which
are not measured exactly. We arrange them in increasing order so that
i i-1 h
. > hoy
hJ = 7 h
variables contain more inaccurately measured variables than j't Tagged

for i =1,2,...,4. That is, the jt lagged included exogenous

variables. Then this additional necessary condition is that the number of .




7
jth lagged excluded exogenous variables be at least as great as the number
of additional unknown measurement error variances which were not introduced
by hq ,...,hi'! . It seems unlikely that x, will be white noise, in
g J,i-1 t

the context of a time series model such as (1.1). Given the assumption

that ny -is white noise, Xt will be white noise if and only if X4 is
white noise, and the latter question can easily be resolved by looking at

the data.
Anotheriway of stating the identification conditions is that there
exists a sufficient number of instrumental variables. Thus, provided the

‘model is identified we can apply an instrumental variables method equation

by equation to obtain consistent estimates of the Bj's and Fj's and © (see below).

The standard instruments will be the current or lagged exogenous variables
which do not appear in the equation under consideration. Since the measure-
ment erro}s among the exogenous variables are assumed to be.uncorreiated,
the excluded exogenous variables can be used as instruments irrespective
of‘whether they are observed exactly.

| Theoretically, all the lagged exogenous variables can be used as
instruments and the addition of new instrumental variables will increase
the efficiency unless the partial correlation between each variable in the

relationship and the new instrumental variables is zero after the effects
:dn the other instrumental variables have been allowed for. In practice,
if the first few instruments are well chosen, there may be no great advan-
tage in increasing the number of instruments. Sargan [15] has shown that
the estimates have large biases if the number of instrumental variables
becomes too large. Actually, he suggested that the number of instruments

should not be greater than T/20.

i i)
Nas’

{k“,/



3. Efficient Estimation

We assume that the normalization conditions on the equations (1.1) are
that the diagonal elements of BO are all units. We write

(3.1) B(A)-IG = B(ep(A)@IG) , T(A) = r(eq(x)alk)

B = [BO-IG,B],...,BP] , TI'= [ro,r],...,rq] .

e, (1) = (e, e, eqg(M)" = e, ...,/ .

Al prior constraints on B and T are zero ones, and we incorporate them
in a way like that in Robinson [12]. Suppose there are G] zero constraints

B. Then the unconstrained ones may be written as the Gz(p+1)x 1 vector

on
B = L]vec(B), where L] is obtained from IG%pfﬂby e]fminating rows
corresponding to zero elements. Likewise, if there are 62 zero constraints
on T we write the unconstrained parameters as vy = szec(F), where L2

is obtained from by eliminating rows corresponding to zero elements.

Lakg+y
Also, we write 6 = L3vec(o), where L3 is obtained from the (K—F)><K2
matrix obtained from I 5 by eliminating rows corresponding to the off-
diagonal elements and tﬁe F, 0<F <K, apriori zero diagonal elements
of O.

Since all processes are covariance stationary, we define the auto-

‘covaraince and cross-autocovariance matrices

C(3) = ELGEX ) (x5 Bx )D€ (3) = ELYmByp (e yoEx )" o

and we assume the existence of the spectral and cross-spectral density

matrices
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N -SSR £ 7Y .17 =13 '
f.(0) == J_=§Z_mCx(J)e o F ) = ?F'jjlmcyx(J)e »oomer<T,

Similar notation will be used to denote second order properties pertaining
“to other sequences. We note that fn(x) =0, ~T<A<T.

Now it is known that, under fairly wide conditions (see Hannan [6,
Chapter IV]) the limiting covariance between the discrete Fourier transforms

of two stationary sequences is the cross-spectral density of the sequences.

Thus

(3.1) lim EQU(A)wx(A)*= fLO)=T()e, Afo0.

T
We therefore rewrite (2.3) as

 (3.2) Wy (1) = (Ig-8(x)w (1) - I‘(A)(IK-Ofx(A)'])wx(l) +w(2) ;

wi(0) = W (A) - F(A)ofx(x)']wx(x) ,

when fx(x) is nonsingular, and where I, is the GxG identity matrix.

Now because of (3.1) and because
. * _
}12 wa(x)wx(x) = fx(x) s A#O0,
we have

}12 Bug (Aw, (1) = £, () - P(A)Ofx(x)']fx(x) = 0.

Thus, (3.2) possesses (asymptotically) the classical property of orthogonality

between the "exogenous variable" wx(k) and the "residual" wa(x).
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We now rewrite (3.2) as

(3.3) w3 = -Ble () @w (1) - Tle (M) @w, (1)
. + r(eq(x)mK)ofx(x)’]wx(x) + ‘”um .

We use the relation _vec(ABC) = (C'®A)vec(B) to rewrite (3.3) as

(3.4) wy(k) = X(A)L'S + wu(k) .
.6' = (BI,YI’BI) s
K(2) = [-(e) (M @w () @ 1g)-(e (N @w () @1 ) w () () er(n]

L] 0 O
L= 0 L2 0
0 0 L3
We shall consider (3.4) for T equally-spaced values of X over .

(-n,n], denoted w, = 2me/T, -T/2 < & < [T/2]. Now it is known that under
fgir]y general conditions (see Hannan [6, Chapter IV]) the wu(wz) are
aéymptotica]]y independent (complex) normally distributed, with zero means
and covariance matrix fﬁ(wz)' Now, fx(k) and T(}), in
X(1), are unknown but consistent estimation of both is possible. Thus,
an asymptotically efficient instrumental variables method will be possible
after we find an appropriate instrument for wy(k), and a consistent
estimate of

f(A) = ]TLT Ewa(x)wa(x) .
The method we propose follows that of Robinson [12]. One major difference
is that in Robinson [12] no measurement error was allowed for. A second

" major difference is that in [13] a system of differential equations was to




N

be estimated. The discrete approximation used there led, in the frequency
domain, to matrix polynomials in iXx rather than, as here, in eix As

noted in [13], the method applies to difference equation models if one

replaces 1iA by e'*. A third departure from [13] lies in the identifi-

cation conditions. In both cases, a fundamental feature of the idéntifi-
cation problem is an aliasing problem connected to the exogenous variables.
However, in [13] the problem is concerned with identifying a continuous-time
signal from knowledge of a discrete one, whereas here it is concerned with
extracting a signal in the presence of noise. A fourth difference from [13]
is that here an_initiai consistent estimate of vy, as well as of B, is
essential.

As in [13], iteration may well be desirable, and so we describe our
procedure as if it were 1tekative, although iteration produces no improve-
“ment in efficiency. Our procedure is efficient in the sense that the limit-
ing covarfancé matrix of our estimates is the same as that of maximum-
likelihood estimates based on Gaussian wﬁ(x). Efficient estimates could
also be obtained by a minimum-distance procedure, using a suitable metric
(like that in Robinson [14]). They could also be obtained by replacing
wy(x) in (3.2) by its instrument, and then using a type of generalized
least squares (1like that in Hannan and Terrell [9]). With all these procedures,
again, iteration is probably desirable, but providing they are initiated
with consistent estimates, and providing the type of iterative step taken
is appropriate, asymptotically efficient estimates will result after a
single step. The reason we concentrate on our procedure is that it seems
among the simplest to computé and to describe.

Before describing the method, some interim computations must be detailed.

For an integer M, much less than T (see below) we introduce the 2M sets

>



Vi
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- = M -

%1—{A|Am-2M<A<A +2M,x =%t s Imf < M-
1

By = {}I '“<>‘i'"(]"—2M)’ n(]-—ZM)<A_<_M} ,

with X =0 omitted from By Then for all m, -M-1 <m <M, we define

£0 = Lugloghu (o) o R0 = & T lahwy ()
(3.5) m m

Foo) = Ay w i w) . By = ()"

yx''m TBylxz’xym yxt'm’ ?

m

where the sums are over w, € Bm. We assume that 2M/T 1is sufficiently

small for the number of w, in each Bm to be at least max{G,K). In

that case, ?X(Am) will in general be nonsingular.

Now denote by f‘(J)(A), @(j) the estimates of T'(A), 6 obtained on

th 0)

the j© iterative step, with f(o)(k), (3( the consistent ones referredtoin §2 .

and below. Then define f(j) so that f(j)(k) = f(j)(eq(k)®IK). Returning

to (3.2), we consider the first-order Taylor approximation

(3.6) (1 -0f, )71 2 (1,608 (17T

+ 100(1,-09¢ () - FE oy (g-er, (07

P(A)(IK-@(j)fx(k)']) + f(j)(x)(o-é(j))fx(x)’]

We replace X by Wy s and then replace fx(wl) by fx(km), where

w, € Bm. Then we approximate (3.2), with A = W » by
A(J) A(j)A "] - (J) 1
wy(wl) ¢+ T (Am)O fx(km) wx(wz) = X (wﬂ,’)‘m)" s + wa(wz) , w €8 ,

- (w)@w (w)@I
X3 ) = | e (w)@(I (J)f e (el
$ (x) ", (w)@I‘(J)(A)'




An estimate of fﬁ is needed. We first put

MA) = - (1-0F, (07N L w(n) = BTN .

The “solution" of (3.2) is thus

(3.7 W) = 80w () +u () 4w 00 = B ()

where 1lim wa(x)wv(x)* = 0. We have, therefore,

T
(3.8) fx(A) = af, (),
(3.9) £, = £,00) - 80)F, () - fux(MAA* + A(x)fyx(x)A(x)f
= 1,00 - £, 006,007 ()
(3.10) - fy(A) = B(A)fE(A)B(A)* .
‘We thus define, using (3.9), (3.10), )

,.(0) _ 2 ~ ~ 12
fy Og) = 5,000 - £ 008007F 00

#00 = 8O0 s

where ﬁ(J)(A) = §(J)(eq(A)G>IK), ﬁ(J) being the estimate of . B from
the jth step. On later iterative steps an estimate of A(\) that incor-
porates the prior constraints may be used. If 6(3) is the estimate of ©

h

from the jt step, define

(3.11) 34 (a)

390,69

,I)(J)()‘) = §(J)(>‘)']f-(3)(>‘) .



As already noted, the ﬁgo), f(.o)‘ may be one of many consistent instrumen-
tal variables estimates. A consistent (3(0) may be found by appliying
minimum distance methods to (3.2), after replacing B(}A), I'(d), fx(A) by
ﬁ(o)(k), f(o)(k), ?'X(A). Then from (3.8), (3.10), put

13a




#00 =10, - 800, 0 - £, 008000
+ KU)()‘m)?x()‘m)&(j)()‘m)*
?i(]\])()‘m) = @(J)()‘m)?\(l\])(xm)ﬁ(\])(xm)*

for j > 1.
We now discuss the instrument for wy(x). From (3.7) we would like to

use A(A)wx(x). The instrument for wy(wl) on the jth step will therefore
be

(3.12) | A3 (4 Yu (o))

w
moox R

where Z(j)(x) is (3.11) for j > 1, and
(3.13) 200y - P, 007

‘(cf. (3.8)). As noted earlier, we could replace wy(wl) by (3.12) in (3.6),
and then use GLS 1like in [9]. Our procedure might be preferred in that it
seems to involve one less approximation. On the other hand, the GLS approach
has the advantage in that, uniike ours, it involves the inversion of a
sxmmetric.matrix. (Of course, our matrix converges to a symmetric matrix.)
Both types of procedure reduce, essentially, to three stage least squares
(3SLS) in the classical simultaneous equations case p = q = K' = 0, fa(k)
constant, a priori. As noted in Robinson [13], (3.13) is a narrow-band
version of the reduced form estimate used in 3SLS.

We are now able to define our efficient estimates,
(3.14) 30 L oWy i@ s,

where

14

-
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nld) 21 (3) *(3)¢

DY/ = Tz} wzzBmz I wg A )X (w2 )
(3) _ (3) N *

d = TZ} wzzBmZ J (wz,lm) wy(wﬂ,)

, ep(w)@f\(j)(k)wx(w)®?éj)(>\)-]
7)) - eq(w)e’(IK-é‘(j)?)s(x)'])w)f(w)@?éj)(x)"
20w () erld )2y

To prove asymptotic properties, conditions additional to those in §§1,2
are needed. We describe these as follows. Let {nt}, {C.t} be mutually
indépendent sequences of independent, identically distributed (i.i.d.)
random vectors. Let {Xt}’ {et} be mutually independent sequences, inde-

pendent also of {Ei}, {ct}, with representations

(3.15) X¢ = ) ajTt-j s € = } b

j:-oo j:-co

ivt-3

where {Tt}, {vt} are i.i.d. sequences with finite second moments. Also,

2
conditions of order greater than one half, see Zygmund [16]). (This is

let the spectra fX(A), fe(l) e lipa, a> 1 (i.e. satisfy Lipschitz

slightly stronger than assuming Z[lajll < ®, Zl]bjll < o, where f+} is

2

det{fx(x)} is bounded away from zero, fx(A)-1 e Lip a, a > ]2— also, since

it is a rational function of the elements of fX(J\). Therefore,  A(A) e Lip a,

the Euclidean norm.) Therefore, fX(A) e Llipa, a> l. Thus, assuming

a > % Also, from (3.1), (3.2) it may be inferred that
) -1
fu(A) = fu(A) - I‘(A)G)fx(A‘) or(x) .

We note, parenthetically, that this is nonnegative definite, as is apparent




16

{ ;
Nt

on rewriting it as

Fa(0) = £ 00 + BOIBO)® + T (£, (1) + £, (01,0071, ())r()* .

-1 .. . .
Because fl~j is involved in our estimates, we must assume also that fl~j

is positive definite. Now from the above, we may infer that fu(x) e Lip o,

a > %3 and thus fu(x) e Lip a, o> %nv It follows from Zygmund [16] that

fu(x) may be written as

© Fine* © .
z;cje J | ) chﬂ <o,

(cheij)‘) ( L

Thus, in a mean squaré sense, we may take the time domdin structural resi-
dual process, orthogonal to {xt}, to be Dt, with spectrum fl~j and

representation

o

-] -]
i, = )c.p, . c.l <o
£7 Lepry s Liggl <,

with i.i.d. {pt}, the last fact being inferred from the fact that {Tt},

{vt} are i.i.d. sequences. Further, in the solution of the system,
(3.16) ‘ Ye © YAX, . +v

(i.e. the time domain version of (3.7)), Ve must have a representation

Vi 190y 0 Llogh <=,

-00

where {¢t} is an i.i.d. sequence. Thus, because {xt}, {vt} are strictly

stationary and ergodic sequences with continuous spectra, because also



Exsvi =0, all s, t, and because A(})) = EAjteA e Lipa, a> %, we

can, essentially, analyze the estimates in terms of the model (3.16), for

-0

which theorems in [6], [13] are available. A small additional condition
is meeded in order for the error of appréximation of the Fourier transform
of (3.16) by (3.12) to be asymptotically negligible in the central limit
theorem. Let Ny have finite fourth moments and cross moments and let
the fourth cumulant functions of all elements of Xt]’ xtz, Xt3’ xt4 be
finite and expressible as the (trivariate) Fourier transform of a continuous
fﬁnction for q]] t], tz, t3, t4. Then Xy also possesses the latter
propefty. '

It should be noted that the theorem below would hold under-weaker con-
ditions than those above; in particular our i.i.d. assumption could be
relaxed. We have used these conditions for simplicity of exposition, and

because the weaker conditions would be unfamiliar to many readers.

We define a matrix

Dy Dy2 Dy3
D=1 Dyp Dyp Doz | >
Di3 Dp3 Di3

where the partitions are (p+l)G2:(q+l)GK:K2, and

Dy = zl—n Knep(-;\)e")(x)®A(A)fx(-x)A(A)*®fﬁ(k)']dk s

0y = o I:ep(-k)e(‘](k)®A(>\)fx(->\)'®fu(>\)-]d>\ :

- 1
13 2m

o
|
[}

fﬂ e (-N)@a(2) ®F-(\)'r(A)dh ,
P i

17
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“—r (‘ Ve () 8f (-\)F 1 (-\)F (-2) e f.(2) Tdx
2n |_ Sq T8 M ST AT, AT A 8 Ty :

o
1

o , A
5" % J_“eq(-x)efx(-x)fx (N efyN 7T

Dyg = ” r‘f (-0 Ter() () Tr()d .
em | _x u
fheoreh.f Under the above conditions, there exists some seduence
M =‘M(T) increas{ng as T > o, such that S(j) + & almost surely (a.s.)
and T]/Z(S(j)-sj hasa limiting multivariate normal distribution wifh
zero means and covariance matrix (LDL')'], where D 1is strongly consis-

tently estimated by ﬁ(j), j>0.

The proof will not be given in detail, as it resembles theorems in
- [8], [9], [13], [14]. In any case, the theorem need be proved only for
J = 1. Me first deal with consistency. ?x(xm), ?éo)(xm), ﬁ(o)(xm),
3(0)(xm) were replaced by fx(wl)’ fﬁ(wl)’ F(wl)’ A(wl)’ w, € Bm’
strong consistency certainly follows. However, we note that under our
conditions, including those described in §2, the initial estimates will be

strongly consistent. Also, for some M(T) increasing with T,
f )= f0), fyx(x) — fyx(x) s () — (0

a.s. and uniformly in X, where the band is roughly centered on, and
degenerates to, X (see [14]). Because of these results, it follows that
there is an M(T) such that the above replacement is possible and so
3(]) + 8. Next we consider asymptotic normality. In this case, we can

2 ~(0) ~(0)
show that we may replace fx(xm), ?u(xm), T (Am), A (Am) by the

a.s. limits as T » o but M stays fixed. Then in this situation

S’



T]/Z(s(])-é) can be shown to be asymptotically multivariate normal, from -

[14]. On increasing M, then,the covariance matrix converges to (LDL')".
We note that LDL' 1is essentially the limit of the information matrix

based on Gaussian wﬁ(wl)' Therefore, its nonsingularity requireé local

identifiability of the model. Note that, if y(A) is identifiable, o

is identifiable by the relation

£+ BE0) = vln)e

(3.17)

4, Comhents
1 An'a1ternative frequency domain approach to the problem of dealing

with heasurement error is that of simply eliminating from one's estimate

those frequencies that seem 1ikely to have a small signal-to-noise ratio,

usually high ones (see [9], for examp]e). This approach has the advantage

over ours of making no explicit assumptions about the autocovariance struc-

ture of the measurement error, and of being somewhat easier computationally.

However, the portion of the frequency band with a small signal-to-noise
ratio mayvbe rather large, and so if all these frequencies are omitted

the resulting estimate may have rather large variance. Moreover, there may
be no frequencies for which the signal-to-noise ratio is really large; this
may be the case when, as we assume, the.measurement error has uniform
spectrum. On the other hand, our approach would often seem to be more
efficient, for F will tend to be small relative to the number of other
parameters. Its disaanntage, however, lies in the very strong assumptions

about fn’ which, if invalid, might lead to serious bias. The choice woyld

often seem to depend on whether the danger of bias in our method seems

greater or less than the danger of large variances, and possibly bias

19
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also resu]ting from the other one. Some clues may be available by inspect-
ing ?x(km).' If the diagonal elements tend, say, to be very large for
small xm but very small for large Xm’ the frequency—e]imination method
may be the more suitable. On the other hand, if ?x(xm) is more stable
over (-n,n],. ohr approach might be preferred. The assumption that fn

be diagonal, as well as flat, may also be examined. If it is reasonable,

the ?x(km) will tend to be very well conditioned with the praduct of the

th -th

i”" and j~ diagonal elements substantially greater than the squared modulus

of the (i,j)th element, for all i, j. On the other hand, this phenomenon
would occur also if the elements of Xt have low coherence. A more direct
way of verifying the flatness and diagonality assumptions would be to use

(3.17), investigating which matrices © approximately satisfy
p ~(0)(y \3 - 2(0)
fyx(lm) +y (lm)fx(lm) =y (Xm)O s

for each X .
m

2) It seehs that a frequency-domain approach is particularly natural
in the present case. With many time series models, an alternative efficient
time domain approach is based on an autoregression specificaﬁion for the
residuals. A low order autoregressive specification may produce better
results in moderate samples than a frequency domain one, which seems to
require both M and T/M to be fair]y large. Thus, Hannan and Terrell
[9] consider both types of approach for estimating simultaneous equations
with stationary errors. However, in our case, the effects of the meaﬁuré-
ment errors are such that in general no autoregressive transformation could
possibly produce a model with white noise residuals incoherent of {xt}.

3) Our procedure has been developed with computational considerations

in mind, and in this respect it seems simpier than some other procedures
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that might be used. However, the computation of the estimates still seems
a formidable task, particularly if there is iteration. Nevertheless, time
domain procedures, as well as seemingly rather inappropriate and inflexible
(see comment 2) seem unlikely to be much easier computationally, It is
true that it is a tedious task to express the components of the ﬁ(j),

a(j) in terms of the real and imaginary parts of the summands, particularly

as inverses of complex matrices are involved. However, complex arithmetic

can often be carried out directly on the computer.
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