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Abstract

The identification of time-varying coefficient regression models is
investigated using an analysis of the classical information matrix.

The variable coefficients are characterized by autoregressive stcchastic
processes, allowing the entire model to be case in state space Iorm.

Thus the unknown stochastic specification parameters and priors can

be interpreted in terms of the coefficient matrices and initial state
vector. Concentration of the likelihood function on these quantities
allows the identification of each to be considered separately. Suitable
restriction of the form of the state space model, coupled with the
concept of controllability, lead to sufficient conditions for the identi-
fication of the coefficient transition parameters. Partial identification
of the variance-covariance matrix for the random disturbances on the
coefficients is established in a like manner. ‘Introducing the additional
concept of observability then provides for necessary and sufficient
conditions for identification of the unknown pricrs. The results so
‘obtained are completely analogous to those already established in the
econometric literature, namely, that the coefficients of the recuced
férm are always identified subject to the absence of multicollinearity.
Some consistency results are also presented which derive from the above

approach.
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1. INTRODUZTION

Identification 1s an issue which arises in connection with all perametric
statistical models. Simv’v stated the issue is whether one can infer
from observed samples the existence of 2 unique underlying theoretical
structure. Econonetricians have long concerned themsleves with establish-
ing the conditions for the identifiability of structures whose perameters

ar
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assumed to be constant over time. In this paper we address the
seemingly more complex issue of the 1deit1:i bility of structures when
the regression coefficients themselves zre verying stochastically over
time. This is a relevant problem becauss in recent years increasing
attention has been focused on the probiem of estimating time varying
structures.l Although estimation methcds nave been suggested by several_
authors, little attention has been paic¢ to the problem of identification
or to the asymptotic theory for these estimetors. Many of the issues
we address in this paper have been investigated by others (Tse & Anton
[1972] and Mehra [1974] for example) bu= the context and the results,

as we shall elaborate, are quite different.

The identification problem for the trzditional linear econcmetric
model with uncorrelated errors was first recognized by Keopmans and
Reiersol [1950] and solutions were provided by Koopmans et al. [1950].
This theory was later extended and ele>crated upon by Fisher [15253]
in his comprehensive book on the subject. Two important papers by
Hannah [1969, 1971] generalize the eariier theory to encompass models
with moving average error processes. lost of this prior theory

concentrates on conditions w%lch guarentee unigue solutions to the set



of equations which characterize the structural form paramsters in terms
of the reduced form parameters as manifest by Hannan's solution.
Rothenberg [1971] takes a different approach in characterizing the
identifiebility criteria in terms of the information metrix of classical
mathematical statistics. Rothenberg's approéch has been nicely extended
to a more general representation by Bowden [1973]). It is this latter
approach which is most appropriate to problems we are considering because
of its relative independence from concepts related to stationary
stochastic process theory.

- The problem we are addressing can best be illustrated by consider-
ing the state space representation of a model with stochastically varying
coefficients. We characterize the problém in terms of a‘regression relaticn
(or observation equation) and a "state" equation which describes the

evolution of the coefficients over time:
: = X B, +
(LD y =X B +e

(1.2) 8t+l = @Bt + W,

The variables y and X represent the observables of the system, ¢ is a (KxK)
matrix which governs the transitions of the K component coefficient Bt’ and
e, and W, are independently and identically distributed random variables
with mean zero and covariance matrices 02 and Q respectively. It is
clear that the identification is quite complex in this context because

we must establish the conditions for the existence of a unique s*ochastic
characterization of the process governing the coefficiénts. Identifica—'

tion of the coefficients B, depends on the identification of the transition



ratrix ¢, the covariance matrix Q and the inltial corditions of *tha
coefficient process or By- The literatire on varying parameter estima-
tion has focused on the problem of estimzting the initial conditions,
but there has been no discussion of the conditions under which tﬁe other
parameters will be identified
In the following section we formul=te the general estimation problem
for time varying coefficients and present the recursive (Kalman filtering)
solution. The initial condition problen is discussed and the likelihocod
function, concentrated with respect to the irdtial éonditions, is pfesented'
to facilitate the derivation of the identification conditions. In
Section 3 the Information Matrix is derived and analyzed to give simple
sufficient conditions for the icentificztion of ¢ and Q. It is shown
that there are restrictions on the fofrs of ¢ and Q which can be identified.
Section 4 briefly states the conditions for the identifiability of
8, using the results of Section 3. Asyrptotic properties of the estimators
are also discussed. The final section surmarizes the results ard draws

some conclusions.

2. TEE ESTIMATICHN THECRY FOR TIME VARYDNG STRUCTURES

In the introduction we represented the troblem of time varying structures
in terms of a single equation regressicn relationship and an equztion
which characterizes the evolution of trz coesfficients as a first order
Markov process. As a point of departure for this section let us considef

how we might generalize this representztion. Ideally, we would iike to



be éble to coﬁsider general simultansous equation regression relation-
ships. In practice, however, we must restrict oﬁrselﬁes +0 the consicera-
tion of reduced form relationships because the estimation.theory for time-
varying structural forms of simultaneous equation systems has not yet
been deVeloped.

In many instances one might expect +o observe variation thaf is

systematic but non-stochastic, or variation that is purely rancom. To

include these possibilities we can modify our state equation to the form

(2.1) By 7 OB *DE H

t
the variation is purely systematic. Thus, if the parameters follow a

nich admits variation of all three types. If w, is equal to zero then

timé trend, a sinusoidal pattern, or are correlated witﬁ eyogenous vari-
ables it can be represented in this fashion. Similar models have been
considered by Beléley (1973]. 1If £y is a unit vector, v, is nonzero
while ¢ = 0, then the formulation is equivalent to the rardom éoefficients
model considered by Swamy [1970] and otﬁers where the perameters are
regarded as random drawings from a multivarizte distribution with mean
vector D in the above representation. Although this is rnot properly a
state space formulation it can still be handled within this framework.
Thus, the evolution of the state of the system represented by equation
(2.1) is a general one which encompasses many possibili‘cies.2 In this
paper we concentrate on stochastic coefficient variation because it is

)

this which presents the most difficult problems of iden‘cification.3



We wish to extend the basic state stace rodel to permit the

coefficients *to be characterized by more general stochastic Drocesses.

let each of ths Bkt obey an autoregressive process of order nk, k=1,2,...X.
Thus | '

(2.2) B B

kt © “kaPr,t-1 Y ¢k28k,t-2+‘“+¢}mk8k,t-nk + M -1

where ¢y # C and L is a normally distributed zero mean sequentially

independent random process with E{n. .n..} = c. .. The model can t-2n
4 kt Lt x4

be representad compactly as

e voa
(2.3) y‘t )L'J‘t+ei
(2.4) Bt = thc

(2.5a) z_= ¢z 4 * An__

1
where Z is the state vector of the mocdel describing the evoluticn of
Bt'

l/ ‘ 2 }'Qill K\} bl
zy = [(Zt) '(Zt) i p (20071

k . . . .
Viith z, representing the Ny, Sstate variedble (the "substate" vecter) for By'
N N

H is a Kxn (n= % nk) matrix of the form

h

P o= -




and h; 1s a row vector of zeros except for a one in the 1 + n1+...+nk 1

column. The matrix ¢ is now assumed to be of the form

-
%11 939 v O
o= | %1 . i
4 O]
where
¢k
8 T
= |
1k I
nk-l l 0
¢ 7 [¢JJ< Sy -0 ¢nk:]

The assumed form of @kk is a natural one given the autoregressive repre-
sentation of the process governing each coefficient. In the following

discussion we assume that the off-diagonal blocks are null matricss

O.

ct

<
o

(@ij = 0 ; 1#3) since this is a restricfion whi;h must be imposed
derive a sufficient condition for identificafion. In Secticn 3.3 we
present a counter example showing that a model without this restriction
1s underidentified.

To further simplify derivation of the identifiability condibidhs
we replace the stochéstic term of the state equation, Ant by an ezuivalent

term Tut where Uy is Kx1 vector of stochastic elements such that
E[ut] = E[nt]:O , E[utut] =1

and



E[ntné]EQ = E[(HAnt)(HAnt)'] = E[(Hfut)(HFu)'].

I' is an nxK matrix of the same structure as A with the exception that the
‘nenzero rows contain the corresponding rows of the unique lower triangular

factorization of Q. Henceforth, (2.5a) will be replaced by

(2.5) z, = 0z + T'u

Models like the one described by ecuations (2.3) - (2.5) have been
extensively explored in the engineering literature following the work
of Kalmen [19605] and Kalmen and Bucy [1351]. The first recognition of
the applicability of stéte space representations and Kalman filtering
solutions to the problem of estimating szo ”;strlc relatlonshlps
with time varying structure was by Roserberg [1968]. Other approaches to
estirating models similar to the one described above have been suggested
by Cocley and Frescott [1873, 1978] anc Sarris [1973]. Here, however,

we shall briefly review only the optimz> recursive estimation method

bscause it is the most convenient for establishing the identifiability

Tha estimation prchlem is to obtai- “sleatec of the states, Zis

based on the observations [yl ..... yT]. If we let Zt/t* be an estimate

o
[}

of z, based on observations [y1 ..... /.4 vihere t¥<t and define the error

t

covariance metrix of the estimated statzs as

(2.6) Pt/t = E[z -z

then the solution is easily obtained vhen 2 o, 02 and I' are kncwn.

The form of the solution is known as tre Kalman filter and is rezresented

JO3 i

as



(2.7)

Zt/e-1 T Zeo1/t-1
\ - & -~ p—_—t
(2.8) Py q = OP__ . 07 +II
(2.9 wp =y - X 2t/t-1
(2.10) M =X P %7+ o2
e t T %t Tt/tel Bt
(2.11) X_= P o
: t T Trsee1 A M
pu ”~ =/\ +\
(2120 2epp = 200 * Ko Wy
(2.13) P, = (T-KXO P, o

where Xf = Xt H .

Although the Kalman Filter has appeéred many othér places in the
literature a brief interpretation may be useful. - Eqﬁation (2.7) represents
- the one step ahead prediction of fhe states based on observations through
period t when t% = t-1. The quantity Wi which is called the "irnovations"
series, is obviously the one period prediction error‘for the V¢ The
quantity Kt is called the gain of the Kalman Filter and My is fhe covariance
matriz of the innovations. In this light it is easy to see that <he gain
| of the filter is simply the optimal prediction correction factor.

It is obvious that zo,-PO, o, 02 and T will not be known in rost
applications. . The log likelihood of the system represented by (2.7) - (2.13),

however, is (see Mehra [1972]);

- 1ot -1
(2.14) z(zo,Po,e> = ~1/2 t:l[log]Mt| S [P Wl TV [



vhere O = (02, T,'@). Thus, estimation proceeds by selecting initial
.values of Z Po’ é and using the equaticns of the Kalman Filter =o
defire the likelihood function. This process procseds lteratively and
is known in the engineering literature as "tuning the Filter". Tre
engineering literature, however, has not in generel been sensitiv= to
problems of estimating the initial state vector zo; Most of the literature
‘assumes that zo'has a proper prior distribufion which eliminates the
problem. That this is seldom the case, however, is not a serious Droblem
in dealing with real time systems with many cbservations (as in most
engineering applications) because it is easily shown that under tre
agpropriate conditicns’ the discrete Kalman Filter is asymptoticalily

stable and the effects of the initial conditions ére uitinately forgotten
(see Jazwinski [1970, pp.'2§0-2§3]). In econometrics, however, tre
situation is scmewhat different in that we do not deal with real time
systems, our observation intervals are often relatively short, and we

are often primarily interested in how the structure of the system evolves
over time. For a1l of these reasons it is particularly impoftant to bev
sensitive to the starting problems. Tha first correct solution +to the
starting problem was proposed by Rosenberg [1968] and later seperziized

by him [1973b]. The solution involves concentration of the likelinood
function with respect to the initial state vector Zoe - This permits

2 % and T. The

raxinum likelihood estimation of z  conditionzl on O
o)

recursive equations for z, are
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(2.17) \‘/t/t = ‘i’t/t_l - Kt+1xt+1\yt/t—1
1 = (X% ’ :
(2.18) Ht (Xtyt/t-l) + (>t t/t- l)
(2.18) h_= (X V¥ M
. t tot/t-1 t t
_ v T —l T
(2.20)  z, =( F, HQ™W L

t21 Bt

where Kes M, and N% are as defined in equations (2.7) - (2.13). The matrix
¥ then is simply a function of the transition matrix which extrapolates
the initial parameter vector into the future

Equaticns (2.15) - (2.20) show that the likelihgod function cf
the system can be concentrated with respect to the initial state vector
and t?ué, the identifiability of Zo simply requires the invertability
of (tgl Ht) which in turn depends on the identificaticn of ¢ and T
and the properties of the %t., Consequently vie can approach the problem
at hand by first looking at the conditions for the identificafion of ¢
and P.v |

It is worth noting that the initial condition approach outlined
above does not provide estimates of the initizl covariance matriy Po.
The consequences of this have recently been discussed in a paper by
Garbade [i975a]. In econometric applications one should be most
interested in obtaining "smoothed" estimates of the states (z,
that is, estimates wﬁich use all of the information in the sample.
A smoothing algorithm which avoids all of the initial condition troblems

has been derived in Cooley and Wall [1976].



3. IDENTIFICATION COWZITIONS FCR 3 AND T

The idéntifiability of the unknown stocrzstic specification paremeters
can be determined through an investlgati:n of the classical Information
matrix. This approach has two advantagzs: TFirst, it permits the
identification problem to te studied wiThin the general framework of

statistical information theory - a poin~ well emorzsized by Bowden [1973].

®

Also, it provides = useful connection between cerTain CO“Ccp+s in control

systems theory and mathematical statistics.

3.1 The Infermation Matris

- The classical Information Matrix ¢ R. A. Fisher is defined as

(see Rothenberg [1971] or Eowden_[l971]):

\
. 3 !
1(¥) = g [2BF )( in 5|
_ AN .
=y
where, ¥ 1s the Nx1 vector of unknown tzrameters with true value uO;

an? in p is the natural loz zérithm of ths density function for the jointly

observed outputs over the interval 1 < = < T. Thus, the First step is

to derive the den81Ly function for the “ointly obssrved outputé.
Combining the state erd . output ecuzticns (2.3) - (2.5) permits

the formation of an expression for Ve (= =1,2,...,T) exlicitly in

terms of the vector of unknown parametsrs.

T
yp = X [HO I HT] Tl s e
Uil )
(3.1)

Wy +
AMW * ey



T where,

R P b . -
o Lo | ]
ET 0 _;'_';l_ S Lo S S o v
AN | l

R T X T 0w u 0 +ee 0
Y S M T =13 N S

: | I [.] { o : : Lot
““o“‘T"E“’T-T'Tfjﬂ"ﬁ—“‘o‘_“—o"—o“_uff_
| l I R | -1

wt is thus a KxN matrix with its first n columns exhibiting a bleck diagonal
strﬁcture, the (k,k)th block having dimsnsion 1xn and containing the sub--
state vector associated with thé K h fegfession coefficient. The last K(K+1)/2
columns form a matrix in the elements of U q» with the last K colums of ths

last row consisting of u{_l. The joint observation can now be written

compactly in terms of (3.1):

(3.2) ¥

T T Xt

where,

o T
>\l IO IQ.Q IO
L L — ] —
, ) O IX2 ll.. IO
X = bkt v e — =+
N A R
R
L 1 [
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Wl

W
W= ..___Z__._
__._w__..._

ET = [el,ez,...,eT]' .

The e, arve independently apd identically dismributed normal random
variables so the probability density function for VT conditicnal on X
and ¢ is;

1
1/2 2

(3.3) p (Y X Y) = =75 @D {- — [y -xTw] Ly, -XTW]}

(2m) )t 2c*

Taking natural logarithms and then partially diffsrentiating with respect
to ¥ gives

9 in 1,)(5('1,',_)_{_T P)

3 1 . .-
R € S A AL - A ¥
(3.4) _ AT 7 {202 Y= ] xT\u]}
1 L e ~ T.1
=T Wiy L)
- T

Finally, the above expression may ke subd

UJ

tituted Into the definition for

I(y) to yield
(2.5) 1(Y) = -E{<—-w Er < EZS0)

The replacement of Y —szw by ET follecws from the evaluation of T
at w:wo. The Information matrix is sezn to de eper.l on the expectation of

a product of random matrices.
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In order to facilitate the evaluaticn of the expectation oparetion

T L

. . _ T ool '
we resort to consideration of the (i,3) 7 element of I(y):

1 [E’ EK e Xng W ][gg EK e W ]
| —_ L 91 e
(3.6) {T(v)}ij T E pEy gEy TOATA Z ey Sem T

0]

T
7 L

N E{(Etwi)(ztwj)}

l T rd rd
= = E{x, "w.)(wix)}
ot thy Tt 1T

—
1 ~3

lzt E{wiwj} X,

)

ot

o . th
Here 5{ denotes the t

g

W of ET and W with 10 colurm of W. It is now
possible to construct the Information Matrix, element-by-element once the
expectation of the outer product.wiw5 is computed.

Appendix A contains the details of the element-by-element constructic
of T(y), along ﬁith some additional steps required to put I(¥) into a more

useful form for analysis. The end resuit is:

-~

t

[
1R

3.7 | 1) ==L Q.
o t

ne- 3

1 T
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gt =P gtls a nonsingular elementary transformation of the data ratrices:
B |
1 | 0
Z9 n
I
. l
. “K|
= I e -1 v T T T T T
T |1 v
[ 2
1 .
0 : Yx

A
o

Ve ® ¥l
s. .l o
t-1 |
8= F--+-
o Ip

The n*n matrix St—l is the generalized variance-covariance matrix for the

o

state-space process z, ;. i.e. St-l= E{Zt—lzé—l} (See Bryson & Ho [1969]

PE. 320-325). The K(K+1)/2 x K(K+1)/2 matrix D, has a block diagorzl

I

structure

> )




where each,Ak (k= X, K-1,..., 1) iz a kxk matrix with unity in
‘every location. In view of (3.7), it is clear that the idertificaticn

of the unknowns in ¢ and I depends upcn the rank (or, equivalently,

the positive definiteness) of both S and D, .

t-1 k

3.2 Identification Conditions

Lol

Two points are immediately evident from (3.7). First, D, is never
. aN _—
of full rank since each Ak has only one linearly independent column.
Thus ail the unlnown elements in I can never be identified simultanecusly.,

but K linear combinations of these elements are identified. Second,

ct
oy
[t

identifiability of the ¢ parameters depends on whether or not S, .

-~

is positive definite. If conditions can be found which establish this,
then the unknown elements of ¢ will be identified.

[east

The questicn of identification of & can rezdily be resolved with

the aid of the concept of controllability;s

Definition 1. The state-space model (2.5) is said to be
uniformly ccmpletely controllable (UCC) with respect to
the disturbances, ui.j, if and only if there exists an .
integer Nl > 0 and constants ¢is Cy > 0 such thatb

0 < CII 5_C(t,t~Nl) 5_c2I <

for all t > Ny, where the controllability matrix C(t,t—Nl)
is defined by

=1 t=1=Tyamoy t=lTy~
. (o )IT (0 37
3. - = z
(3.8) C(t,ﬁ Np) TEEN
1
Definition 1 and the restricted structure of & are all that is needed to'

prove the main result of this paper:



Theoren 1. If the Llne—var7+nc ccaellicients of (2.3) have
thelr transition relationships rez’lzed by (2.5) with o4 :Lk;fj)
and if (2.5) is UCC then: (i) o = fkﬁ’fn stochastic specifica-

tion parameters in ¢ are glo“*l‘
linear COﬂblnarlons of the unkncimsz

Proof: The identifiability res

ied; and (ii) only X
I are dentlfled

has already been

established from our cbservations concerming the 2, matrix, so
we shall concentrate on the proof of (1. TIrom the state equaticas for
Zos the gensrelized variance-covariance o —riyes zre seen to ova the equaticn
S, =¢8,_ ., ¢ +TTI”
t t-1 ’
ch hao a unique solution given by .
o t=lg (gt-ly- 4 T5l jTolon, oo t-loT
(3.9) St =9 Sl(¢ )~ ? T T ).
T= 0
The second term on the righthand sids ¢ (2.%) is nothing more trzn the
controllability matrix C(t,0) defined . (2.£) wizh Ny=t. Trom tha UCC

of (2.5) there will always exist & t=t,

a-.\..~-..-
3T
~wLl L

Thus for all t>t (3.9) will be

1

of & is established.

3.3 Remarks

~

72 csiinzte

L= talel
—_——

hat C(t,0) > 0 for =211 T2ty .

and the identification

The identifiability of & relies &lzmost exclusively on the soecial
structure underlying the state-space mcizl, with the principle ccndition
being the block diagenal form. This resilts in ean gt with its uzzer left-
hand block identically equal to St _r2 controllability condition is

i
faon}

then imposed to guar arantee that S

Control_zbility

alone is not a sufficient condition Zor ZZsrzification of ¢ - it —ust be



accompanied by arpropriate structure in 9¢' Actually, eny (€,T) nair

which yields this structure in £, has YT linear in v, end is UCC will
L
give exactly the same conclusions as Theorem 1.
e

[re controllability requirement may appear irpossible to verlfy

g 104

a priori since it is stated in terms of the urknewms. In practice,

i

hovever, this is no real limitation sin the bleck dlagonaltwy of o

vermits (2.5) to be viewed as a grouping of K indspendent subsystems

(see Luenberger [12€7]. Each "subsystem" will be UCC if and only if

lD

Gy # 0 and at least ore nonzero elemsnt apzears in the corresponding
row of T'. If each subsystem is UCC, then thz overall state-space model

will be UCC. The first requirement is met if the spec1f1ed order, )

-
P
N

is less than or equal to the "true" autofeo‘ ssive order, while the
second 1s met if'there is any'trace of randcmness in each coefficient.
It is difficult to concieve of a realistic situation where such conditions
will be abzant.
In the case where all K coefficients obey “ﬂst orcer autoregressive

D

prccesses each lagged Bkt becomes an element of the state vector (i.e. ,H=1),
.and our results regarding the lack of complete identification of T agree
with the results of Mehra [1871] concerning the ifemtifiability of Q.

His other results are not generally comparable to ours because nhe considers
only rodels with stationary regression relationships, i.e. Xt = censtant
for all t.

The res#lts in the control theory literaturs (see Tse and Yeinert [197:%])
suggest that more general forms for ¢ can be identified (specificzlly, block
triangular ¢). The following counter evample, hcwever, demonsirztes that
this specification for ¢ will not be identified in the time-varying coefficizsnt

— i

problen.

Lo
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Consider the special case where Kz2, nyEn, = 1 (which more closely

resembles the control thecry case), and let some interccupling betwesn

Tnis lower (bleck) triangular @ is not identified, as cen bes seen by

constructing the associated I(y) following the steds cortained in the

{8

Appendix:
T . .
IWw = - lﬁ- T = 9 =
C t=1_ t t t
] ]
>~lt| : :
F?t |
X, |
- _J___._KL__L._._
= = %
4 __| 1
ez
B o T
11 511 512! i
! 0
11 S11 S12 :
Q = |®12 512 S22
o B o
b1 1 0
!
0 I 11 0
L bog g1 4
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Clearly the upper-left 3%3 block of £, is singular so that all ¢..

elements are not identified. Whereas tne control theory state mocel

has one substate-vector associated with each element of v _, the

-

time—
varying coefficient model has one substate-vector associated with each

7
B_t _eluu:n't .

4. CONTROLLARTLITY, OBSERVARILITY, AND CONSISTH CY8

In Section 2 it was shown that the likelihood function aﬁ be corcentrated
with respect to BO, the initial vector. This allowed us tO consider the
identification of ¢ and I separately. -VWe now turn to the establishment. -
of the identification conditions for BO.V Conditions which establiish the
identification of any‘Bt can easily be derived with the aid of certain
qualitative concepts from control theory as in the previous section.

In addition to controllability, the concept of Uniform Complete Observability

(UCO) is helpful. It is introduced by a second definiticn:g

Definition 2. The model (2.2) - (2.5) is said to be uniformly
complefu;y observabtle (UCO) with respect to the outzut, Yo if
and orly if there exists an integer u2>0 and constents cq,cu>0
such that

(4.1 0 < c3I o(t, t-N ) < c, T <

for all t>I, where the observability matrix 0(t,t-N, ) is
defined by '

t ~
(4.2) 0Ct,t-N,) = Z (¢ ") X 0T
Z +-]



Taken together, controliatility and obszrvebility imply the identification

Lo diedl
of each point on the tra’ectory for St' The main result is given by the

following theorem

r"heor*en 2. If the system defined =y (2.3) - (2.5) is bo+h
CO and UCC, then B_ is completely identifiec.
[

Proof: Each 2, can Le expressed in terms of z. via solution o

<

T

the underlying state equaticons, i.e.,

-t -1 .1-1-s )
z_=9¢ "z + Q Tu_ .
T t o I s
S=C
Substitution of this eVTYess ion into thzt for the cbserved outputs yields,
-t 5 1=l L T1-1-s_
y. = Xo Tz +5% ‘5T ¢ .. te
T T C L__‘_.t S T

1
=
=]

N
P
4
-

The jointly observed process, with zi s an unkno.m parareter vectcr, can

now be represented as in regrescion theor (let YN=max 1N LN 1)
2

=
3}

A zt+\7

where

Y= Dypgp Ve oy’

ek
[

< |
e e A Aot

Ve Ve t

The standard conditions Icr z_ to bs wicue are that both

. ra
MhE o E TR R T
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[1

¢ the variance-covariance matrix

(0. o ”

ull ublz LIS

921 {
E(w) =1

. . o=R- m, ,-2-1. .-
e ij i, ij IT7(e ij ) ]Xj

m:. = min {i,3}

11

&.. = Kronecker delts
1]

. . .. . . + o -
be nonsingular. The first of these is just UCO, while the seccrZ foliows

; 3 i , 2 = H~ A ig o -
lramediately from UCC. Finally, since Bt = H“t and H 1s full rar, Bt

is unique whenever z, is identified.
Theorem 2 can irmediately be specialized to the problem of sstimating
S 5 - - " e T e e e
unknown priors. In such a situaticn, the observation inmterval rins from

the point of interest, t=0, forward to T. Tnus, by setting N=-T ue

find that BO is icdentified if and only if

The above condition is equivalent to reguiring that the matrix

S : i T—l /~/"
- | - | |
[Xl {¢X2} ...;(- )XTJ

be of (full) rank K. The full rank interpretation of (4.4) can ==

-

interpreted as a generalized multicollinearity cordition.
[=]

OUbservability and controliabilitv are also quite useful in zyaminin
. Y g

consistency of time-varying coefficient estimates. Both C(t,=-}) and 0(z,t-N)

b

can be used to establish bounds on the estimation errol variance-zovariance



ratriz and thus to study the behavior of the error as T + ne sssence

oI tirse steps is contained in the fo 1lowing theorem.

Theorem 3. t the L;rc—/~fylng coefficient model (2.3) -
(2.5) be both UpO and UCC. If € > N = max {I,Np} then the
best linear unbiased estire<e of Bt 1s never consistent.

Proof: Tirst, consider the behavior of the filter estimaticr error
variance-covariance matrix P;/;. . Together UCC and UCC gLarantee The
(% [

-existence, uniqueness, and stazility of P

Pijs as tQ, the _anlal tive,
; 10 \ . .
tends toward -<.”" Furthermore, for any prior P > 0, UCC guarantess

that Pt/t > 0. (Sece Jazwifs 1 {18701, lemma 7.3, p. 238-239). Trus

The filtered estimate's error veriance-covariance matrix can never cecay

Lo zero no matter how much cata, up through time t, has bzen emplcyed.
Next consicer the behavicr of the smoothev estimaticn error wvariance-

covariance matrix, P%/ﬁ, wiich uses all data in the sample. Fraser and
L/ 4

Potter {19691 have shown that

—

TR

Pejr =

f

wiere P, 1s the filtered error variance-covarierce of e "forwar<”
tine filter begun at t = 1 and running forward to t = while PL/ —41
is the one-step prediction errcr variance-covarian-e of & "backwars"
e L. . 1 ..
Iilter begun at t = T and ruwning backverd urtil © = 1. Fixing =

et > Mmoo - ' b 2T Y o - .- .
enc letting T -+ « reveals trat cnly t/++1 will crhange since only It is
cdependent on T. Now, fron the pesitive definite Troperty of Pb+ - =410

no matter how far "back" it was started (i.e. how large T is), it is
b -~ T J Lans! 4 .:*.*

. >0 and hence 2_,_ > 0. The sicothed estimate w331
T/t+l . £/

alwzys be inconsistent

clear that P,



Speciali ing the theoream to the estimation of unlmewm pricrs,
Bo,-it is clear that inconsistency persists. For diffuss priors,
P =f0+ P2 )iyt opP
0/T 0/1’ 0/1

wiich reveals the lack of consistency under stochastic excitaticn for

the B'é.

5. SUMARY AND CONCLUSICHS

The growing literature on the estimation of models with time verying
regression coefficilents has lar “gely ignored the issue of the identifi-
ability of such models and‘consequently has left in doubt the generaliity
with which they cén be specified. This paper hzas used the classical
information matrix of statistics to establish sufficient conditicns 5*5

~i

identifiability. The main result of the paper shows that the pzrametzr
tranblbloﬂ matrix ¢ will bL COo ,pletely identified if it is in blicck
diagonal form. This special form of the transition matrix permits

generality in the specification of the process zoverning each ccsfficien

iclen

T

in the regression relation but rules out the estimation of intercouplings
among cosfficients. This is an important restriction in that many
theoretical considerations which lead one to evpect stochastic variation
in cosfficients also suggest that the movements iﬁ the ccefficients will
be related. The restriction, however, does not preclude a priori specifi-
cation of known off diagonal transition parameters, and it may often e the

case that theory will suggest a priori values for parameters. The
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identifiability conditions also show that cnly X linear combinatisns

of the elements of the variance-covariance mairix of the coefficiznts

oLl
can be identified. Diagonal Q matrices will therefore always be identified.

The results of Section 3 are equally eptlicable to the muliivariate

utput modal where Ve 1s an Lx1l vector. The observation error variancs

0" is replaced by an LxL matrix R, which, as before, is always icentified.

———d g

In addition, the unknown priors are identifisd subject to exactly the’

same conditions as given in Section 4 (these co

itions being obtainad

independent of the dimension of y,). Tre only complication is in the
. v

e U B _ L2

development of the expression for I(¥). R ~ replaces the scalar 1/0

in the earlier stages of the algebraic manipuleticns and cannot bz S0

easily "factcored out" of the ensuing derivation. With the aid of the

Kronecker product, however, an expression similar to (3.9) can t=

obtained which yields exactly the same conclusions as before:

(5.1) IW) =

Since the Kronecker product of two positive definite matrices is itself

positive definite, the conditions for identification once agein darive

from an analysis of 2 defined in (3.8). Tne =, matrices above nave

[y

evactly the same form given in the aprendix with the exception that the

scalars ¥ Are replaced by LX1 columr vectors.
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The wimown priors ere always identified subject to the gersrzlized

multico}linearity concdition introduced in Section 4. If ¢ is krenm

a priori then the identification of the Kx1 prior BO, and hence z-y point
on the B traj@cLory can be established by examining the rank cf the
associated Observability Matrix of (4.3). Note that with ¢ Lnow" this
check can always be carried out before estimation is attempted. Zne
consistency of the prior estimate cannot, however, be establishec. The
analysis of the dynaric properties Ol tha estiration error variance-
covariance matrix reveals that random ercitation of the coe¢f1c1ent
‘always prevean the limiting distribution for 8 from atta1n¢ng & 2ero
dispersion. Given é rclete ooservaulll+y (1u°nL1L1catlon) the mest

that can be achieved is an asymptotically finite error d¢s+r1buLion for

the estimates of the randomly excited coefficients.



APFPENDIY

EXFECTATION EVALUATION AND “-£ FORMATZION OF

THE INFORMATICH M&TRIX

The Information Matrixz construction sresented in Section 3.1 reduces

i

: - a ! .th
to the evaluation of ﬁ{wi(wj)'} where w. and Wy dercts the 17 and j

colums, respectively, of \fLc (see ecuation (3.3))12 . since 3 <1, < N,

where N 1s the total nunber of unkncwn stochastic specification para-

" . s a2 .
metors for the Bt process, this amcunts to the evaluetion of 1Y matrix

expectations formed from vardious vecior outer products. These evalua-

tions are straightforward if care is teken to avold the poterntial for

confusion. This can be achieved by Zecomposinz the evaluations into
ps =B

three parts, depending on the relative value c¢f the sudscripzs i end j

To this end, let Ck deriote the set ¢f integers contairing the colum

. . . ' e th
nutbers of the states in L-Jt.a55031a—ef with the k°°

o coafficient. In

other words, CP contains the colum numbers in which *he n, states

.

e ! . .For SND
3,t-1 are located or exanple,

C; =1, 2, ooy my

C,=n,*l, ..., n

+r
2 71 o

1°2

1§
o]
=
L
-
}_J
joo]
[
+
3
D
+
4
7\‘J

——-

First, consider the case in wrich i,j <n, i.e., in which w, and

-

wj are both taken from the first n colums of Wt. Troos let 1€ Cg and

j e Cm, then



1o - ~
| o |
2w . (w.)'Y = F . i j A
E{Li(wj) } = E ﬂ 23 £ [0...0 zj,t—l 0...0] )
0
k.L 6 - J

. . - . th
KxX matrix of zeros with the (g2,m) N
position replaced by Z{z, Z. . . }.23

o 105 . 3 i noti 1 e +han “-‘hc‘ = th
The expectation E{z; -1 ],t—lf s nothing more than the (3i,3)
81€umﬂt of the generalized variance - covariznce functicn Sys =
E

{Zt-l % 1} a“SO”ldLed with the corplete state representaticn for
c

the cozfficient transitions defined by (2.5). If this eiemer® 1S

denoted by st s b thertt

E{wi(wj)'} = KxK matrix of zeroes with the (R,ﬂ)th

; -1 :
element replaced by SEj . , (A1)
Second, consider the case in which 1 ¢ Ck while J is asszciated

with any of the last K(K+1)/2 colurms of U Then it is easy *o see
that

E{wi(wj)'} = KxK null matrix, (A.2)
since 2o 4 and w4 are independent. The same result holds with the

roles of 1 and j exchanged.
Finally, consider the case in which both 1 and j are ta~zn fro
the last K(K+1)/2 columns in W,. In general the matriv expectaticns

become,



E{w (w '} o=

Uy
R N

)

|
gup,t-lg [O"'uq,t-l"'O] f
o |

Cbviously if q # q the end result is a KxK null matriy. If P = g then

the cyoectat¢on operaticn results in a KxK matrix of zeros wi<h one ele-

nt replacad by unity. Tne exact lccation of qr1+y depends, cf course,

on the respective row oositions of andu . .. A conclise charac-
- o, t-1 q,c—l
terization analogous to (n.l) ces not seem possible. This c¢ifficulty,

however, is of little consequence *to the final expression for 7(y) as
will become apparent belcw when rescrt is made to the use of slementary
row and colum transforrations.

The above results concerning +hz evaluation of the expeciations can

. . .vth —
now be combined with the definition of the (i,3)"" element of I(y) to per-

mit an element-by-elemert yonstrpcf;vn of T(¥). More speci allys
1. If 1,] belong *o the first n colums of Wt, then
13 -3
lj(w) :_.._0__2 tgu I Sijm"jt (A.3)

2. If 1 or j belongs to the first n columns of wt whils
the other is associated with the last K(K+L)/2 colu—s
of wt, than

Ilj(w) = 0. (A.4)

3. If 1 and j ars both associzted with the last K(X+1)/2

columns of VW, ., then



()

15
_QZX.
o t=1
1 T

= 1 x
o t=1

0

(A.5)

The element-by-element construction can finally be combined <o give

the complete Informaticn !

1H

4

A = e
atr

v"kt

ix:

0
1t

P

(A.8)
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S I
-1 '
Q_t.: —-——-—-l—_—-_._
e
_ | J
Although Zk and Vk-contain ths sams elements o the d_cvona_, they have

different dimensicns.

a scalar (1x1 metrix).

to write down in Zen

the pattern set out

.,
4

3
1"
O O - o o oo =

<

""',_J

The Information
form for analysis of identifica
column transformations

matrices P and Q, composed of elementary excl

The K(K+1)/2 x K(K+1)/7 matrix

Thus Zl is an nl ny :at:ix vhersas V1 is merely

Tk is 2ifflcult

CP&;, it contains only zerces and one's folloiing

below.

1010
1010
0101
1010
0101
000
1010
0101
0000
cooeo
1010

matriy

respectively, such that

D
(@]

(]
-

- O — O
o 0O o o o
5 oy o

[as)

(¢
o O = o
.

PO O
= o o
O O D

[

e O O O H O O O
- o
A o T o S o S W

e (O O K O O K O O O O

(@)
e e (D O
C

of (£.8) can be wrs

In particular, thers 311 al

WEAYS evist n

eV haked

1L L

tten in a T“O“— convenient

tion by resorting to elsmenterr row and

cnsingalar

rows and columms
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S |

,_
=
e

| SO

I

|

| |
Ps?tQ: -————l——-— L=

I

I

where

i
|
|

L -

with Ak a kxk matrix with 1l's everywhere.
"

of Ty reveils that for every row exchange

there 1s a corresponding colurn exchange.

In-addition, th

expression for the information matrix becores

.- 1
I(w) :-}_2_ = Pt o h
¢ t=1 *© —*

11 t~1+3

t

[}

Since P is nonsingular the rark o

cdepend on the rank and definiteness of @

=t

SToUcTUre |

equired to bring T, to D ,

1
8 S

, and the final

(A.7)

I(W), and hence its definiteress,
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Jazwinski 0]. The sole stochastic and determir-
istic versions 1s the inse ience-covariance of eg,
hattroen XL and X,.. This irmaterial so long as

R is assumed positive def
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Alternatively, the expression coull n
;n@ P2 /¢ with equal validity. In z con
rdlosyncracy disappears, i.e. besr Filte
employed.

ire timz dependence of each columm of V. is suppressed in crder to
avoid the use of double subscripts which are reservad for e sments
of matrices.
rom the definitiog cf the overall state vector, z , .glven In Section 2,
T 9 - 1. - s RN L AL T Lo R )
1t is clear Eﬂdt Zp,5-1 T 2i,t-1 1T p is sac“-bhat.zp,L_l =
1t W ARewise o= +-2 1f g 1s” such <
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