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Abstract
This paper uses the concept of the triad census first introduced by Holland
and Leinhardt, and describes several distributions on directed graphs.
Methods are presented for calculating the mean and the covariance matrix of
the triad census for the uniform distribution that conditions on the number
of choices made by each individual in the social network. Several complex
distributions on digraphs are approximated, and an application of these

methods to a sociogram is given.
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1. Introduction

This paper discusses some recently developed methods for the analysis
of social networks. The directed graph, or more briefly "digraph", a set
of "nodes" or "points" and a set of directed "lines" or "edges" connecting
pairs of nodes, is the basic mafhematical concept in this paper.

This paper utilizes concepts of graph theory which have been found
useful in discussing social networks. Pecently, many structural models of
social science have adopted the graph thecry notation. These concepts will
be introduced as needed in this paper, without going into a full exposition.
Those readers unfamiliar with these ideas will find Harary, Nerman, and
Cartwright (1965) a valuable reference.

In a digraph, node i and node j are connected with a directed line
running fromri to j, if and only if person i chooses person j according to
the sociometric choice criterion emploved. Note that the digraph defined
here is a "binary" directed graph. The "strengths' attached to individual
choices are irrelevant. A binary digraph does not allow signed choices
(each line is designated +1 or -1) or multiple choices (each line receives
a value). It is alsc important to note that a directed line from node 1 to
node 3 does not rule out the possibility of a directed line from node J to
node 1i.

The central analytical tcol in this presentation is the triad census,

-intrcduced by Holland & lLeinhardt ¢1970). The main interest in this paper

ig the random directed graph distribution obtained as a result of condition-
ing on the number of choices made by each person. Under this distribution,

all social networks which have exactly the specified number of choices for

each person are equally likely.




Secticns 3 and 4 of this paper are devoted to brief discussicns of
various randem directed graph distributioris and the triad census. Secticn
5 shows how to calculate the first two moments of the triad census under
the digraph distribution menticned above. An example of a social network

is given in section 6, and then analyzed with the distributiocn.

?. Netation and Definitions

Let g denote the number of members in the group. Order the individuals
in the group from 1 to g in an arbitrary manner. Define the (gxg) sociomatrix
£ as a representation of a labeled binary directed graph. (A different order-
ing of the individuéls produces a socicmatrix which differs from ¥ by a simul-
taneous row-column permutation.) The notation 1 » J imples that in the digraph
there is a directed line from node i to node j. let the (i,3) entry of X be
defined as follows:

1, if i > j

X'j ) {0, otherwise.

i
Self-choices are not allowed; consequently, the diagonal elements of X, Xii’
i=1,2,...,g, remain empty, or conveniently are set tc zero.

Two sets of quantities associated with X are of particular interest to
the investigator of the group. The outdegree of node i, written Xiyo is the
number of lines in the digraph originating at node i. The indegree of node j,
written X+j, is the nurber of lines in the digraph terminating at nocde j. The
row sung and colum sums, respectively, of the sociomatrix give the outdegree
and indegree of each node. These two sets of quantities {Xi+} and {X+j} may

be calculated as follows:

Xeo 3 i=l, 2, ..., g

and




X+j = ; Xij s =1, 2, ..., g.

In a group of size g, the nurber of choices made by each person and the
nurber of choices received by each person, the outdegree and indegree,
respectively, take a value between 0 and (g-1).

A mutual relationship between person i and persen j exists when i -+ ]
and j » i in the digraph. The mutual bond is dencted by i <+ j. In the
sociomatrix X, this situation occurs when xij=l and inzl' An asymmetric
relationship occurs if and only if i + j or § + i but there is nc mutual

relationship present. A null relationship between i and j occurs if there

is neither a mutual nor an asymmetric bond hetween these persons. Let M,
A, and N, respectively, be the number of mutual, asymmetric, and null
relationships in the group.

It is possible to represent each of these three relaticnships graphi-
cally. These representations of palrs of nodes are commonly referred to as
dyads. Each pair of points, and the lines comnecting them, are isomorphic
to one of these three representations; consequently, the three dyad types
are often referred to as isomorphism classes. The classes are named null,
asymetric, and mutual to correspond to the sociological concepts. Figure

2-1 illustrates the dvad types.

. Null

¢ m—— e Asymmetric
¢ 4——» + Mutual

Figure 2-1: The three Isomorphism classes for Digraphs with g=2 (i.e., the
Dyad Types). Figure taken from Holland and Leinhardt (1976).




Now consider all possible isomorphism classes of triples of points, .
or triads. By enumeration, it is edsy to show that there are 16 classes.
These are 1llustrated in Figure 2.2. The naming convention employed in
the figure was introduced by Holland and Leinhardt (1970), and uses the
nurber of mutual, asymmetric, and null dyads within each triad as its -
basis. N
In a digraph with g nodes, there are (%) triads formed by selecting
each triple of nodes and all lines connecting them. Suppeose each of these
triads is examined in twmn, and the isomorphism class of each recorded.
Let Tu denote the number of triads of type u (u ranges over the 16 triad

types shown in Figure 2-2). The triad census T is the 16 ccmponent vector

defined by

T = (Tpga> Togge «oes Tapp)-
Adhering to an established convention, the crdering of the compcnents of T

is as follows:

eos, 012, 102, 021D, 021U, C021C, 111D, 111U

030T, 030C, 201, 120D, 120U, 120C, 210, 300. (2.1)

The trailing letters U, C, D, and T stand for, respectively, up, cyclic,
down, and transitive. The triad census is discussed in more detail in

section L.

3. Random Digraph Distributions

In this section several distributions on digraphs are described.
Simple distributions are presented first, followed by conditional uniform

distributions of increasing complexity. The probability mass functions
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. Figire 2.2: The 16 Isomorphism Classes for digraphs with g=3 (i.e., the
Triad Types). Triad naming convention: first digit=number of mutual
dyads; second digit=nunber of asvrmetric dvade; third difit=number of null °
dyads; trailing letters further differentiate among triad types. Figure

taken from Holland and lLeinhardt (1976).
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defined here are not used in latter sections of this paper; however, a
review of the distributions will enable the reader to better understand
~the calculation in section 5 of the first two moments of the triad
census.

Define Dg as the set of all labeled binary directed graphs on g
nodes. A sociomatrix ¥ will dencte the random digraph generated by the
distribution of interest. A possible value of X will be denoted by x,
with elements %q5° Most of the distributions will be described in terms
of X, whose elements are Xij'

Some of the material presented in this section is borrowed from
Holland (1872).

A, Simple Distributicns on Dg

glg-1)

D_may be considered a finite set with 2 elements. The uniform

g
distribution, U, on D_, with probability mass function

4
pix=xt = EE I fop a1 | (3.1)

considers all elements of Dg as equally 1likely. It is perhaps simpler

to describe the Xij as independent, Bermoulli random variables with

b5 = 1725 i
137 7005 i=g (3.2)

A digraph is easily simulated under this distributicn using (3.2),
The uniform distribution may be generalized to a family of Bernoulli
distributions cn Dg. Specifically, let

Dre 3 1F3
Pyl {é ;1= (2.3)

where { < Pis < 1. This distribution permits some directed lines in the

digraph to have greater probabilities of being present than other lines.

If pij=1/2 for all if3, then U is obtained. After specifying the full set




of pij’ these distributions are also easily simulated using uniform
pseudo-random numbers,

several classes of uniform distributions on digraphs can be formed
by conditicning U on certain functions of X fixed at specific values.
let %, = E. Xij’ the total number of directed lines in the digraph.
Define the iandom variable C as the number of lines in the random
sociomatrix X. The simplest conditional uniform distribution conditions
on the random variable C.

The U|C = %, 1S the conditional uniform distribution which gives

equal probability to all digraphs with C lines and zero probability to

the elements of D, with C $ X_,. Tt has probability mass function
[%(g—li}_l if %,,=C
P{x=x} = {\ ¢
L‘ 0 , otherwise. (3.4)

i

For computer simulaticn, it is more informative to consider UIC=x++
as allocating C directed lines at randem to the g(g-1) possible edges
without replacement.

B. The U|MAN Distribution

The UlM=m, A=a, N=n distribution is the conditional uniform distribu~-
tion which puts equal probability on all digraphs in Dg with M=m mutual,
A=a asymmetric, and N=n null dyads. Note that unless m+a+n=(%), the

subset of digraphs of Dg with the given values of M, A, and N will be

empty. The U|MAN distribution has been popularized by Holland and Leinhardt.
It provides a large amount of conditioning, and calculations are made more
‘easily than under other conditiocnal distributions.

To find the probability mass function of X under U|MAN, number the

(%) pairs of nodes in the digraph from 1 to (%). Choose m of these numbers




at random and without replacement. Mutual dyads are assigned to the m
rairs of nodes corresponding to the chosen numbers. From the remaining

(%)—m numbere, select a numbers also at random and without replacement

as asymmetric dyads. The direction of each of these asvmmeiric dvads
is decided randomly (e.g., by tossing a fair coin). The remaining pairs

whose numbers have not been chosen, are assigned null dyads. Thus U]MAN

is given by (
o -
1 & 1
P A=xa =ﬂza'\m ; ; 1f M=m, A=a, Nen
§ /
l 0 ; otherwise. (3.5)

This distribution will ke compared to the more complex uniform conditional

distributions on digrarhs in section 3-E.

C. The U[{X;,} distribution

The U|{Xi+=ri} distribution iz the uniform distribution conditional
on a fixed set of outdegrees. FEqual weight is given to all digraphs in
Dg with Xl+:rl’ X2+=r2,..., Xg+:rg. Fach r, may take on all integer
values between 0 and (g-1). Sociometric interpersconal preference data may
be collected under either a "fixed choice" or a "free choice" procedure.
In a fixed cholce experiment, the investigator may instruct each member in
the group to "Name your four best friends in the group”. If each group
member fully cooperates then the ocutdegree of each node is fixed at a
specific value. A free choice experiment places no restrictions on the
number of individuals chosen by each group member. In either situation,

the UI{Xi+} distribution is very useful in calculaticns because it allows

the investigator to "control" for the outdegree of each node. This outdegree .

adjustment removes the effects of the procedure used to gather the data.




The U|{Xi+=ri} distribution has probability mass function
!;— g 1 -1
{ UG B & 3 X; 70 for all i,
1]
P{{(:{c} =

0 3 otherwise. (3.6)
Ul {X;,} may be generated by regarding each row of X as stochastically
independent. If %i denoteslthe i row of ¥, then r, ones are distributed
at random and without replacement to the (g-1) possible locations in X,
(remember Xii:D). When all the r; are equal to a fixed value, r, (3.6)

simplifies to
I

‘ -g
S(g"l)
r

; if Xs 50, i=1, 2, «cus E

P{X=x} =
0 ; otherwise. (3.7

D. The U|{X+j} distribution

The U|{X+j:cj} distribution is identical to the U[{Xi+} distribution
except that the conditioning is on the set of indegrees of ¥X. The probabi-
lity mass function of U|{X+j} is

1 .g=-1 -1
5 (Cj ) ; 1f %y57Cs for all j
P{¥=¥} =
0 ; otherwise. (3.8)

This distribution may be simulated in a manner similar to UI[Xi+} by regard-
ing the columns of X as stochastically independent. Conditioning on the set
of indegrees of the digraph is not as useful as conditioning on the outdegfees;
however, using the ealculations of the means and variances of the triad

census develcoped in secticn 5 of this paper, the U!{X+j} distribution is

helpful in approximating more complex conditional uniferm distributions.
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E. Complex Conditional Distributicns

There are several highly important conditional uniform distributions
that are so complex that no simple way exists for generating random digraphs
with these distributions. This section briefly discusses several of these.

The U|{Xi+}’{x+j} distribution simultaneously conditions cn both the
indegrees and the outdegrees of the digraph. All digraphs with the speci~
fied values of {Xi+} and {X+j} are equally likely. This distribution is
extremely important in sociometric data analvsis, since it controls for both
the choilces made by each group member and choices received. TFord and
Tulkerson (1962) give necessary and sufficient conditions for the existence
of at least one element in Dg with the specified outdegrees and indegrees.
Unfortunately, no one has been able to develop a scphisticated technaiue to
simulate this distributicn.

Also worth noting is the U|M,{Xi+} distribution. Since & X, =¢C
and C~2M = A, this distributicn alsc controls the total numberlof choices
made and the number of asymmetric choices. Little is known about UIM,{Xi+};
even though it is important.

Perhaps the most impertant distribution in socicmetric data analysis
is the U|M,{Xi+},{X+j} distribution. Its value derives from the fact that
it controls for choices-made, choices-received, and mutuality. As with
UJM,{Xi+}, and U|{Xi+}, {X+j}, there is no sophisticated way to generate
randem sociomatrices under this distributicn.

To reiterate, there are many possible distributicns on Dg' At the

present time, ocnly a few of these distributions are fully understood. The

U[MAN distribution was chosen by Holland and lLeinhardt (1970) because it

best approximated the U[M,{Xi+}, {X+j} distribution. Unfortunately, it does
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not contrcl for either the set of indegrees or outdegrees in the digraph.
The attitude taken in this paper is that although U|MAN is the most complex
uniform distribution in use at present, scciometric data analysis should
not overloock the information to be gained from considering the

Ul{Xi+} and U!{X+j] distributions.

b, The Triad Census

The triad census has been effectively used in the analysis of socio=
metric data, reducing the eﬁtire sociomatrix X to a set of 16 summary
statistics. In sections B and C, sumarizing some of the earlier work of
Holland and Leinhardt, various aspects of the triad census are discussed.

A. Naming Conventions

The U|MAN distribution has been the only distribution employed for
computing the first and second moments of the triad census. Holland and
leinhardt (1971), Davis (1970), and Davis and Leinhardt (1972) have used
the first 2 moments of the triad census for testing structural hypothesis
concerning social networks. Censequeritly, the convention for labeling the
16 components of the triad census utilized in Figmure 2.2 is well established
in the literature, but impractical in the discussion of the U|{Xi+} distribu-
tion. The labels should conmunicate the outdegree of each node in the triad,
'rather the number of mutual, asymmetric and null dyads. Figure 4.1 illustrates
the 16 isomorphism classes for 3-subgraphs with both the U|MAN and U[{Xi+}
designations. The *trailing letters in the figure, M, A, C, and T, respectively,
stand for mutual, asymmetric, cyclic and transitive.

So as not to confuse the reader familiar with the U[MAN naming convention,
the U|{Xi+} labeling scheme will not be employed in this paper. However, a

knowledge of this new scheme will aid in the interpretation of the calcula-

tions in section 5.
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Figure 4,1: The 18 isomorphism classes for 3—subgraphswithlj]{xi+} labeling.
The label directly under each triad is defined by the number of mutuals,
asymmetric, and null dyads in the triad (see Figure 2.2). The label in
parentheses is based on the outdegree of each node in the triad: first
digit = number of nodes with outdegree equal to 2; second digit = number

of nodes with outdegree equal to 1; third digit = rumber of nodes with
outdegree equal to 0; trailing letters further differentiate triad types.
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B. ILinear Combinaticns of the Triad Census

Many quantities can be determined by taking linear combinations of
the 16 triad frequencies of T. Suppose £ is a vector with 16 elements,

A linear combination of T will be denoted

' T =z 2 T
u u

~ =~ u (4.1)

where the subscript u runs over the 16 triad types enumerated in (2.1).
Dencte the variance of the {Xi+} by Sgut and the variance of the

2
{X+j} by Sin where

2 - , = 7
Sout = (1/7¢) ; (ki+ - X}
i
and
2 _ - o 2
Sin = (/g z (X+j - X}
]
Among the quentities calculable from T are g, M, A, N, C and Sin, and
Siut’ the variances of the indegrees and cutdegrees of the digraph. To

compute g, recall that there are (%) triads in a digraph with g nodes.

Therefore, if 2'=e=(1,1,...,1), then

T = (2 (4,2)

? ? - u 3

Z
u
and g may be found by finding the single real root of the cubic equation
£y - =
() -17T, =0].
u
Holland and leinhardt (1976) discuss in detail the calculations
involved in finding the values of M, A, N, C, Sin and Séut from the triad

census. These details will not be reproduced here. Table (4,1) presents

the various 2 vectors needed to calculate these quantities, and the last

row of the table gives I &, Tu for each vector.
u
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Table W4.1: Selectad Weighting Vectors.

TRLAD
TYPES e m, 4 ny ¢, Dip 1 boutzu
T
003 1 0 0 3 0 0 0
012 1 0 1 Y, 1 0 )
102 1 1 0 2 2 a - 0
021D 1 0 2 1 2 0 1
021U 1 0 ? 1 Vi 1 0
021C 1 0 2 1 2 0 0
111D 1 1 1 1 3 1 0
111U 1 11 1 3 0 1
030T 1 0 3 0 3 1 1
030C 1 0 3 0 3 0 0
201 1 2 0 1 4§ 1 |
120D 1 1 7 0 v 2 1
120U 1 1 2 0 L 1 2
120C - 1 1 2 0 4 1 1
210 1 . 1 0 5 2 2
300 1 3 0 0 B 3 3
ENCN (g) (g=2)M (g=2)A (g-2)N (g-2)C B, B
u 3 in out
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The vectcrs Bin and Bo shown in the last two colurms of Table (4.1),

ut

are used to calculate Sin and Siut' Holland and Leinhardt (1976) prove
2 —_—
o = A —
Sin F (2/g) i Bin,u T, X(X-1) (4.3
and
2 —
= T - {— .
SouJE (2/g) z Eout’u T, XE-1 (4.4

where ?EC/g=X++/g, the average number of choices per group member. Since
C can be expressed as a linear combinaticn of triad frequencies, o can X.

Thus Sin and Siut are easily calculated using linear combinations of T.

C. Testing Structural Hypothesis

Perhaps the most important use of the triad census is testing
propositions about local structure in a sociomatrix. Holland and
Leinhardt originally proposed the triad census to test the proposition
that interpersonal choices tended to transitive; i.e., if person
i chooses person J and person j chooses person k, then person i should
choose person k. In their 1970 paper, the following triads were classified
as "intransitive": 021C, 030C, 111D, 111U, 120C, 201, and 210. The
occwrrence of any of these 7 triad types indicated that the group violated
the transitivity hypothesis, since each of these triads had at least one
intransitivity. Holland and Leinhardt developed a measure, r(%), which
was used as a "transitivity index".

They define r(%) as follows:

' tmo_ '
(- §T- M

SR Ik

a

(4.5)

where ¢ iz the weighting vector that counts the number of intransitive

triads, and ¥p and L are the mean and covariance matrix of T as computed
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using the U|MAN distribution. A computer simulation showed that for
large g, 1(%) was approximately distributed as a standard Gaussian randem
variable.

Helland and Leinhardt (1976) generalize this procedure so that any
structiral hypothesis may be tested. The triads that will inviolate
the hypothesis in question merely need te be discovered, and the corres-
ponding weighting vector found. Mazur's (1871) proposition concerning
"clese friends disagreeing" is discussed and t(%) for this hypothesis is

computed for 408 sociomatrices.

5. Moments of a Triad Census

In this secticn the means, variances, and covariances of the triad
census of a random digraph are given, assuming that the digraph is dis-
tributed according to the U|{Xi+} distribution. Alsc discussed are the
formulas for the above quantities assuming that the digraph follows the
U]{X+j} distribution. The section concludes with a consideration of the
moments of a linear combination of the triad census under a general dis-
tribution, and the development of a method useful in approximating the moments
of the triad census under the unifcrm conditicnal distributions mentioned
in Secticn 3 as too difficult to work with.

A. Notaticn and Few Derivations

There are (%) triads in a digraph with g nodes. Iet K and L be sub-
scripts that refer to the (%) distinct triads of a given digraph. The
letters u and v will refer to two of the 16 isomorphism classes of the
triad census, discussed in Section U4-A. This secticn concludes with the

formula to be used in section C for calculating the variances and covariances

of the 16 triad types.




-17~

Define the indicator variables TKFu) as follows:

1 if triad K is of isomorphism class u

TK(u) = {D otherwise.

Tu’ the number of triads of isomorphism class u is found by summing TK(U)

over all possible triads:

Tu = i TK(u)

Notation is also needed for the varicus probabilities that arise

in the calculations given here. Define

pK(u) = P{triad K is of type ul} = P{TK(u) = 1}

and

PKL(u’V)

P{T (W) = 1 and T, (v) = 1}

P{triad K is of type u and triad L is of type v}

Tormula (5.4) is a joint probability invelving triads K and L.

Consider the number of nodes that triads K and L have in commorn

. Let

|KaL! = number of nodes trat ¥ and L have in commen.

Obviously, |KAL] takes on the values 0, 1, 2, and 3. If |KAL|=
the two triads are disjoint, and if |KAL|=3, triads K and L are
identical. Let

p(j)(ugv) = P{T

(uw) = 1, TL(V) = 1, and |KaL| =
XL

K

j=0,1, 2, 3.

g,

3t

(5.1)

(5.2}

(5.3)

(5.4)

(5.5)

(5.6)
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For a fixed u and v, the four probabilities defined in (5.6) for vary-

ing 3 provide a decomposition of the joint probability (5.4) as follows:

(D (2) (3)

(D)(u K, (u,v) + Pyy, (u,v) + Py,

F_(u,v) = p
o KL

V) + D (u,v).  (5.7)

Formula (5.7) is important for calculations involving variances and covari-
dnces.

B. Expressions for Means, Variances, and Covariances

Holland and leinhardt (1$768) give formulae for the first two moments
of the triad census under a general distribution using the average values

of pK(u), plii)(u,v), plg:)(u,v), plii)(u,v) and plii)(u,v). The moments may

also be given in terms of summations, which defines the U|{Xi+} distributicn

more easily. Theorems 1 and 2 given in this paper are equivalent to Corollary

1 presented in Section 5.A of Helland and Leinhardt (1976).

Theorem 1: Assuming that a random digraph is gemerated by some random
digraph distribution, the first mement of T, e given by:

E(Tu) = i pK(u).

Proof: HNote, by (5.2), that

E(T.) = E(z T (W) = & E(T_(w).
u X K K K

Since TK(u) is an indicator variable, it follows that
T = = . 0Q.E.D.
E(T) i E(T, (W) i pp(w). Q.E.D

Lefine ﬁ

census. The (u,v) element of ZT is dencted GT(u,v). For Theorem 2, let

as the covariance matrix of the 16 components of the triad

| L | denote a sumation over all pairs of triads with j nodes in common,
KaL| =]

where 7 = 0, 1, 2, or 3.
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Theorem 2: With the same assumptions as in Theorem 1, the (16x16) covari-

ance matrix Lps Of the triad census has representative terms:

3 .
OT(u,u) = T z péi)(u,u) - (T pK(u))2
3=0  |KkaL|=3 K
; (3)
ogn(u,v) = L z pos (u,v) - (2 pK(u))(E pK(v)).
T j=0  |kaL|=j B K K

Proof: OT(u,v) 1g the covariance between Tu, and Tv' Since Tu and TV
are sums of indicator variables, the procf of this theorem is straight-
forward, and will not be given here, The reader is referred to

Theorem 1 in Holland ard Leinhardt (1976) for an analogous proof. Q.E.D.

From these theorems, the quantities that must be computed to find

up = [E(Tgoas E(T)s ven s E(T,001" and
Zp are:
i PK(u) ;
|Kni|:0pég)(u,v), for ail u,v ;
|th|_lP§i)(u,v), for all u,v ;
|Kn5l:29§£)(u,v), for all u,v
and
]Kﬂi|=apéi)(u,v), for all u,v

Note that if u=v, péi)(u,v) reduces to pK(u), and if ufv, péi)(u,v)=0.

(5.8)
(5.9)
(5.10)

(5.11)

- (5.12)
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C. Derivations of Probabilities Under U|{Xi+}

A random digraph with the U|MAN distribution is characterized by
certain properties that greatly simplify the calculation of the quantities
(5.8)-(5.12). Consider the triad 030T illustrated in Figure 5.la.

The 3 nodes of this triad have been labeled, in a clockwise manner
beginning at the lower left vertex, node i, node j, and node k. Note
the same triad 0307 in Figure 5.1b where the ncdes j and k have been
interchanged. Under the U|MAN distribution, the only relevant features
of this triad, and in fact all triads, are the numbers of null, asynmetric,
and mutual dyads. Thus, the two triads in Figures 5.la and 5.1b while
dietinet by a permutation of the labels attached to the nodes, are considered
identical by the U|MAN distribution. The U|MAN distribution on a digraph
is "homogeneous” in the sensge that it is invariant under permutaticns
of the labels given to the nodes.

Now, consider the outdegree of each node in the two triads shown in
Figure 5.1. The two triads have one node with the same outdegree (node i).
In the top triad, node 7 has outdegree 0 and node k, cutdegree 1. In
the bottom triad; node j has outdegree 1 and node k has outdegree Q.

These triads, under U]{Xi+}, are obviously not invariant under permutations.
In general, the outdegree of each node changes with a rearrangement of the
node labels,

Due to the lack of homogeneity of a digraph under UI{Xi+}, it is
necessary to examine every triad, and every pair of triads with 0, 1, and
? nodes in common, to compute each term of the sums (5.8) - (5.11). This
iz in stark contrast to the same calculations under U|MAN giﬁen by Helland

and Leinhardt (1874). With the U|MAN distribution, the probabilities

defined in (5.3) and (5.6) do not depend cn K or L. so that
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. Figure 5.1: Triad 0307 as illustraticn of a homogeneous digraph.
node j
[
node 1 * > ® ode k
Figure 5.1a

node k

node 1 @ ———— 9 "¢ riode

Figure 5.1b
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pK(u) = plu) = P{triad involving ncdes 1, 2, 3 is of type u} (5.13) .

and
(3 RERGD. g
Pyt (u,v} = p- " (u,v), for j=0, 1, and 2. (5.1%)
Finally, under U|MAN,
pm)iu,v) = p(l)(u,v) (5.15)

A relationship which does not hold under U

(X, 3.

(0)

2 Py, (u,v}, péi)(u,v), and

To illustrate the calculations of pK(u}

péf)(u,v) under the U|{¥,,} distribution on digraphs, some additional

notatiocn will be needed. Let the ordered triple (i,j.k} refer to the nodes

in triad K, and the triple (&,m,n) refer to the nodes in triad L.

First consider the quantities pk(u) needed to campute E(Tu). Define

the variable Ci(K) as the cutdegree of node 1 in triad K. Obviously, Ci(K)
equals either 0, 1, or 2. Let ci(K) equal the actual value of Ci(K). The
variables Cj(K) and C, (K) are defined in a similar way. When no confusion
may arise, the triad in parantheses of Ci(K) and Cj(K) will be dropped.

Iet

[ci,cj,ck] = P{C;=es,s Cj=cj, Ckzck} (5.16)
For a fixed (4,j,k), the possible values of [ci,cj,ck] form a 3x3x3 array
of probabilities, with one dimensicn each feor Ci’cj’ and C . There are (%)
such three dimensicnal tables. It will be convenient to abbreviate

[Ci(K) 3Cj (K) ,Ck(K)] as [Cincj ’C‘)\‘:]K.

Tt is not difficult to compute [Ci’cj’cK]' Specifically,
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/2 \ f8-3 N f2 " fg=3 N "2‘” ‘g-3 \\
\ C. I\Xl cl: : cj : \Xj-c. ‘ \Xfl(_
[Ci)cj QC]<] - /g 1\ . K g—l T (5-17)

N

\Xl j EXﬁ“; { ij)

Where X. is a sho;thand notation for Xi+’ the outdegree of node i in the
digrapn. If c; should exceed X. {or e exceed Xj or ¢ exceed Xk), (5.17)
is identically zero. The notation E [Ci?cj’ck]K will refer the summation
of the (ci,cj,ck) cells over all (%) three dimensional tables. These 27
quantities, formed by collapsing all the (%) tables into one table, will
be used to calculate the 16 components of ..

An example will illustrate this calculation. Consider the triad 021U.
With a fixed triple of nodes (i,7,k), there are three ways that this triad
may be "oriented", as shown iﬁ Figure 5.2.

Examination of the three orientations and the outdegree of each node

)

within each orientation yields the following expression for E(TOZIU

Y = {1,0 1] + 5 [1,1, 0] + T [0,1,1JK. (5.18)
K K K

ETpo1y

Table 5.1 gives the expected values of the 16 isomorphism classes.

Consider p(O)(u v), the joint probabilities of triad K and triad L

assuning |KaL[=0. Triads K and L are disjoint; thus

)

(u,v) = ¢ zp(w pv)=1Ip(u Ip (¥ (5.19)
|KaL|=0 k L ¢ b K K7 b
|KaL|=0 LK

The quantities [c 50458 used to calculate the expected values of the

k]K
triad census are also employed in the calculation of the probabilities

pﬁi)(u,v).
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Figure 5,2: The 3 possible orientations of triad 021U,
The outdegree of each node in the triad is given in
parantheses next tc the node.

Crientation 1. (0)
]
®
(1y i » ek (1)
Orientation 2. (1)
]
»
(Li o Dok (0)
Orientation 3, (1)
3
®

(0Y i '<: e k (1D
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Table 5.1: Expected Values of Triad Census under Ul{x,,}.
; . 1
Sums are over all possible triads.

A

Triad Expected Value

003 £{00,0,01,}

012 2{2[1,0,0]K + 2[0,1,0]K + 2[0,0,1]K}

102 z{(1,3,0], + [1,0,1], + [0,1,11,]

021D {(2,0,0], + [0,2,01, + [0,0,2],}

021U Z{[l,l,OJK + [1,0,1]K + [0,1,1]K}

021C z{2[1,1,0], + 2(1,0,11, + 200,1,11,}

111D E{B[l,l,l]K}

111U Z{[?,l,O]K + [2,0,1]K + [1,2,0]K +{1,0,2] + [0,2,1]K + [0,1,?JK}
00T B{I2,1,0] + [2,0,1]) + [1,2,0], + [1,0,2 + [0,2,1], + [0,1,21,3
030C 2{2[1,1,1JK}

201 2{l[2,1,1], + [1,2,1]K + [1,1,2]K}

120D E{[2,1,1]K + [1,2,1]) + [1,1,21,}

120U 2{[2,2,0]K + [2,0,2], + [0,2,21,}

120C 2{2[2,1,1]K + 2[1,2,1]K + 2[1,1,2]K}

210 2{2[2,2,13K + 2[2,1,2]K + 2[1,2,2]K}

300 Z{[2,2,2,]K}
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(1) (2
KL KL

will be discussed only briefly here. The (18x16) tables of I
|KnL|=1
(2

and I p )(u,v) will not be presented here in order to save space.
koL|=2 &

)(u,v) are quite involved and

p;i)(u

The camputations of p. - (u,v) and p

SV)

éi)(u

the common node. Triad L contains nodes (k,i,m);' Let

First consider the probabilities p ,v). Node k will be designated as

Eck’ci’cj’CR’CmJ = P{Ck:ck, C;=cys Cj:cj’ CQ:CE, Cmégm} (5.20)

Ci, Cj’ Cy adC  are defired identically as in (5.16), while C, takes on
the values 0, 1, 2, 3, and 4. (There are five variables within the brackets
in formula (5.20) because node k is commen to both triads K and L; con-

sequently, there are five nodes, not six, to consider.) There are g(gEl)(g53)

distinct 5x3x3x3x3 arrays of the [ck’ci’cj’cﬂ’cng probabilities. By "summing"

all of these five dimensicnal arrays there remain 405 quantities necessary

. . (1) :

in the calculation of I P’ (u,v)., The notation I lc ,c.,c.,c,,c ]
[KML]=1 KL [BnLJ=l S0y 1774 ' m KL

will refer to the summation of the (ck,ci,cj,cg,cm) cells over all tables. The

value of [ck,ci,cj,cl,qm] ig also a product of hypergecmetric probabilities
similar to (5.17).

An example will help to illustrate. Figure (5.3) shows all 9 possible
orientations of triad 120D and triad 021U with one node (node k) in common.
Table (5.2) lists all the orientations, and the outdegree of each node in
each orientation. |

From Table (5.2), after rearranging the orientations to have decreasing

(1)
KL

valueg for €, , & P
|¥L] =1

X (120D, 021U) is as follows:
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. Figure 5.3: The 9 Orientations of Triads 120D and 021U
with one node in cammeon.

Y N
O, >

i j i ]
[ 2

e .

Orientation 1 Orientation 2 Orientation 3
i ] i ] T J
‘l’ ° . * C—u o ——
\ \ / \ /
k ® kK ke
/\ / 7N\
; G;-""T E E <&—————-—-— 5 5? <$-—-———-»I;

Orientation 4% Orientation 5 Orientation &

X

VAN
o L —» L N L

Orientation 7 Orientaticn 8 Orientation 9
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Table 5.2: The cutdegree of each node of the 9 crientations of
Triads 120D and 021U with one node in commom.

Orientation E}E E}}_ ?j_ E_f 5, C_m
1 2 1 1 1 1
2 3 0 1 1 1
3 3 1 0 1 1
4 1 1 1 1 2
5 2 0 1 1 2
B 2 1 0 1 2
7 1 1 1 2 1
8 2 0 1 2 1
9 ? 1 0 2 1
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) Pyr (120D, 120U) = I {[3 1,0,1, 1] +
K L|=1 |K L|=1
[3,0,1,1,1]KL +[2,1,1,1,1],, +
[2,1,0,2,1JKL + [2,1,0,1,2]KL + (
5.21)
[2’0,1’2,1]1<]-_| + [2)0,1,1,2]10-_' +
[1,1,1,2,1]KL + [1,1,1,1,2]KL}
The remaining probabilities involving two triads with one node in common
are found in a similar way.
Lastly, consider the probabilities p(?)(u,v), the joint probabilities
of trlads Kand L with 2 nodes in cammon. Nodes j and k are the common
nodes, so that triad L contains nodes (j,k,%). Let
[Cj ’%(’ci’cﬂ] P{C -C s Ck Qk, l 1, C2=c£} (5.22)

where Ci and Cg equal 0, 1, or 2, and Cj and Ck take on the values

0, 1, 2 or 3. There are (%) (g;2) distinet UxUx3x3 arrays of these

probabilities. As before, by summing all of these four dimensional arrays,

(2)

the 144 quantities used to calculate Py,

z
|KnL|=2

(u,v) are found. The notation

|K§T| i j’ck’cl’CQJKL will be used here to indicate the summation.
Also note that

g—a

6. ) gl U
K/ Xk—o?{; \CJ.,; LXJ. i/ ‘?2}1 ’\XJL €2/
[Cj ackac aC ]l = - y'g—l g—l\ . f’g T (5.23)
i X X !
\ J / \ X 1// l L

Again, an example is helpful. Figure (5.4) illustrates the 6 possible

positions for the triads 102 and 111U with nodes j and k in commeon.
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Figure 5.4: The 6 orilentations of Triads 102 and 111U
with two nodes in common.
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Recording the outdegree of each node as in Table (5.2) results in
the following:

] P (102, 1) = B {[2,1,0,0) + [2,0,1,2] +
KnL|=2

|KaL|=2
(5.24)

[1,2,O,O]KL + 2[1,1,1,2]KL + [0,2 ’1’2]KL}

The calculation of My and ET under U Xi+ have been written in FORTRAN
code. The calculations performed in Section 6 were done on the TROLL interactive

computing system, maintained by the Computer Research Center for Economics and

Management Science of the National Bureau of Economic Research.

D. Moments of a Triad Census under U|{X+j}

Once the machinery necessary for finding Hp and ET assuming the
U|{Xi+} distribution has been developed, it is quite simple to determine
the same first two moments under the Ulfx+j} distribution. Take the set
of indegrees of the digraph which are to be regarded as fixed, and assume
that this set of g numbers is actually a set of outdegrees of the digraph.

With the above assumption, three pairs of the 16 isomorphism classes
will have to be interchanged. The other 1C triads are invariant under this

fdrced reversal of all directed lines. The three pairs are

021D and 021U,

111D and 111U, (5.25)

120D and 120U,

i.e. all the "downs' become "ups" and vice versa. Thus, if b and ET

are calculated under U[{X.,} by assuming the set of indegrees to be

the conditioning set of outdegrees, only several pairs of rows of

uT and several rows and columns of §T need to be switched. These rows

-~
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(of ET) or rows and columns (of §T) are as follows:

Row 4 (and Column 4 of I ) interchanged with
Row 5 (and Column 5‘of‘§T),
Row 7 (and Column 7 of ET) interchanged with
Row 8 (and Column 8 of ET)’
and
Row 12 (and Column 12 of I.) interchanged with

Row 13 (and Column 13 of ZT).

E. Moments of a Linear Combination of a Triad Census
After u. and I, have been computed with either the U|MAN, U|{Xi+},

or UI{X+j} randam digraph distributions, it is very simple to calculate the

moments of any linear combination of T. If &'T and s'T are any two linear

combinations of the triad census, then

E(L'T) = L'y, | | (5.26)
Var(L'T) = L'Ip 2 (5.27)
Cov(2'T, s'T) = 2'§T s . (5.28)

Holland and Leinhardt (1974) suggest a "partial conditioning" scheme
using a set of linear combinations as an approximation to one of the more
complex conditicnal uniform distributions mentioned in Section 3. They

reascn that T has an approximate nultivariate Gaussian distribution, because

T is a sun of "loosely correlated indicator variables". It is a well known
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" pesult that if T ~ N(p £) and LT is a vector of linear combinations

of the elements of T, then

E(T|LT = Lt) =y + ZL'(LZL') L (t- ) (5.29)

Ay -~ -~

and

Cov(TILT Lt) £ -zL'(LL) ™ : (5.30)

o PP

wa that we know how to computer L and k exactly under UI{X 1 (5 29) and
(5. 30) will give an approx;matlon to I and v computed under UI{X oS X } and
UlM, {Xl+}, {X+j}. For instance, if we condition on the vector m shown in
colum 2 of Table (4.1), we obtain an approximation to Z and W computed under
UM, {X- 41 Also if we apply the above formulas to z and W computed under
UI{X } and let L be the vector B defined in colum 6 of Table (4.1), we
obtaln an approximation to U|{Xi+}, {X+j}. Uﬁfortunately, the approximation
may be poor as we are actually conditioning on the linear combination used
to compute Sin’ and not on the set of indegrees themselves. However, T
believe that calculations with the U|{Xi+} distribution will be quite important
‘inlsociometric data analysis, because of the "handle" fhat it gives in

approximating the more complex distributions via (5.29) and (5.30).
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6. Example
The data analyzed in this section were taken from McKinney (1948). Twenty-

nine individuals in a ninth-grade classrocm were asked to "Express (your)
attitude toward serving in a discussion group with the other members of
the class." Fach student rated his/her cohorts with an acceptance, indifference,
or rejection. The (10 x 10) sociomatrix in Table 6.1 represents the "acceptances"
made by the subgroup consisting of the first ten students. I have chosen to
ignore rejections, or negative choices, and treaf them as indifferences, of
null choices.

In the table, a mutual relationship between person i and person j is
characterized by a M in the (i,j) and (j,1) cells. M; =M . denotes the
mmber of mutual relationships involving persen i. Ai' and A_i are, respec-

tively, the rurmber of asymmetric choices made by person i and the number of .

choices received by perscn i. TFigure 6.1 disﬁlays the data in the form of a
sociogram. |

The sociogram displays the complex structure of this group. Persons 1, 2, 7,
and 10 form a pure M-clique. Person 6 receives 5 unreciprbcated choices, while
perscn 3 makes 5 unreciprocated choices. Person 1 appears to be the individual
with the most acquaintances in the group. Examining the individual choices
sheds little light on the group structure; however, choices 4+1, 10+9 and
10+5 seen out of place because cof the configuration of the sociogram.

For this sociomatrix, I found the triad census and computed up and i,

under U|MAN and U|{Xi+}. Using these two pairs of moments and the formilas
(5.29) and (5.30), I obtained approximaticns to the conditicnal distributions

Ul M, {X;,} and UM, {%,)s {X+j}. By partially conditioning U|MAN on the

vector B .+ (column 7 of Table 4.1) and partially conditioning U| {X; +} on the .

vector m (colum 2 of Table 4.1), I obtained the distributicns which I will
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Socicmatrix Derived from Choices Made in a

Table 6.1:

Ninth-Grade Classroom (see McKinney (1948)).

STUDENT

1

1+

40

10
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made in a ninth-grade clas
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ciogram
(see McKinney (1948)).
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denote U|MAN, Eout and U]{Xi+}, m respectively. These two distributions
are approximations to U[M, {X.,}. T next obtained the approximate distribu-

tions U|MAN, B

B ut® @in by .partially conditioning U]MAN on the vectors %o

ut
and B, (columns 6 and 7 of Table 4.1), and UI{Xi+}, @in’ m by partially
conditioning U[{Xi+} on the vectors B, = and m. U|MAN, Bt Biy and
U|{Xi+}, Bin’ T are approximations to the distributions U|M, {&i+}, {X+j}-
Table 6.2 presents the triad census and the expected value of the triad
- census under these 6 distributions.
This triad census has large numbers of 012, 021C, and 111U triads.
This indicates that the group has a considerable number of asymmetric relation~
ships. The lack of 030C triads is aiso of interest because the number of 021C
and 111U triads, each with two-thirds of a complete "aycle", would suggest the
. opposite. The abundance of asymmetric choices and 012 and 021C ﬁiads can be
easily seen by examining the sociogram in Figure 6.1. The small group size
aids in drawing conclusions from this figure. (As g increases, so does the
complexity of the group's sociogram, and the triad census becomes more Import-
ant in understanding group structure.) |
An examination of the expected values reveals that the partial condition-
ing slightly reduces the differences between the census and its expected values.
The distributions based on UJMAN have expected values which fit the data more
closely, in that the absolute differences between the expected and observed

quantities are smaller than those found using distributions based on U]{Xi+}.

It also appears that the differences between U|MAN and UI{Xi+} decrease when

examining u, computed under U|MAN, B

Bt B, and Ul {X;4}> Bsy» m (note the

changes in H1gp @d Hgaaq Over distributions).
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I tested the structural hypotheses of transitivity and intransitivity
by computing t(&) for both of these hypotheses using the six random digraph
distributions and the % vectors given in Holland and lLeinhardt (1976).
Table 6.3 presents these results.

The 1 values decrease as I partially condition U[MAN, and increase as
T partially condition UI{Xi+}. This may be due to the previously menticned
fact that u, computed under the approximate distributions based on U|MAN
provide a better "fit" to the observed triad census.

The example demonstrates the phenomenon that different conditional
distributions may produce differing Ko and Zpe An investigator using the
triad census to test structural hypotheses should compute the relevant (L)

under a variety of distributions, and then seek an explanation for the apparent

differences or similarities of the t values.
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‘I' 7. Summary
Figure 7.1 summarizes the relationships of the random digraph distributions
and the partially conditioned digraph distributions studied in this paper.
With the addition of the U] X} distribution, the network becomes quite
intricate. Note that the digraph distribution network is ordered so that
as one moves from the bottom to the top of the figure, the amount of condi-

ticning in each distribution increases. I have purposely left out the dis-

tributions based on U[{X;j} in order that the network remain comprehensible.
This paper has introduced two randeom directed graph distributions and
has given the methods needed to compute the first two moments of these dis-
tributions. Individuals interested in the analysis of social networks now
have powerful mathematical tools at their disposal to aid in their analyses.
. The example discussed in Section b demonstrates some of these. These methods
show how statistical analyses can be applied to a specific field of study in

the social sciences.
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Figure 7.1: Network of Random Digraph Distributions
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