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Abstract

This paper describes the results of a Monte Carlo study of certain aspects

of robust re'ession confidence region estimation for linear rrdels with

one, five, and seven parameters. One—step sine estimators Cc l.2) were

used with design matrices consisting of short-tailed, Gaussian, and long-

tailed columns. The samples were generated from a variety of contaminated

Gaussian distributions.

A number of proposals for covariance matrices were tried, including

forms derived from asymptotic considerations and from weighted-least

squares with data dependent weights. Comparisons with: the Monte Carlo

"truth" were made using generalized eigenvalues. In order to measure

efficiency and compute approxizxte t-values, linear combinations of parameters

corresponding to the largest eigenvalues of the "truth" were examined.

For design matrices with columns of rrcdest kurtosis, the covariance

estimators all give reasonable results and, after adjusting for asymptotic

bias, some useful approxizrate t-values can be obtained. This implies that

the standard weighted least-squares output using data-dependent weights need

only be modified slightly to give useful robust confidence intervals.

When design matrix kurtosis is high and severe contamination is present

in the data, these simple approximations are not adequate.
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1. ThTRODUCION

In the past few years, a number of ways have been
proposed to perform robust regression. Perhaps
the simplest to impleirnt is called iteratively
reweighted least-squares. Initial values for the
coefficients are found, a scale for the residuals
from this start is computed, and then a set of
weights is detenidned by using a weight function
applied to the scaled residuals. The weight func-
tion usually gives a value near one for small
residuals, and near zero (or equal to zero) for
large residuals. The weights are then used as if
they were the weights for a weighted least-squares
(WLS) regression. The above process can, of
course, be iterated.

Therefore, all one needs is a device to compute
the start, scale, and weights and the rest of the
computation (the hard part) can be done with a
standard WLS routine or by multiplying each obser-
vation by the square root of the corresponding
weight and using an LS routine.

Naturally, the question arises - can we use the
output from the WLS routine to find confidence
regions for the regression parameters? This
would make life simpler and make robust regression
more readily usable. One purpose of our study of
robust regression was to see if it would be feasi-
ble to use WIS output in a simple way.

This paper is organized as follzs: section two
discusses the robust estimator (weight function)
we used, section three covers the covariance for-
mulas, section four examines the desigo CX] matrix
we used, and section five sumiarizes the parameters
and distributions used in the Monte Carlo. In
section six, we discuss our results for the loca-
tion case. The seventh section covers our work on
the regression problem and in the last section, we
try to give some advice and indicate where we
think we stand at this point.

2. THE REGRESSION ESTIMATOR

We want to estimate the parameter vector in the
model

+

where y is the n x 1 response vector, X is an
n x p design matrix, arid e is an n x 1 random vec-
tor whose ccordinates are independent and identi-
cally distributed symmetric random variables.

Only one family of estimators is used, the one-

step sine M-estisnators, which have been found to
have good robustness properties in a number of
previous studies. As starting values for this
estimate, we used the least absolute residual esti-
rnator (called LAR):

in
BIAR:min fl x.. .

. ic]. 5:].

Several efficient algorithms exist for finding
this estimate. (See C 3] for an exa'r'.ic.) If
only least-squares is available as a tort, thenit may not be wise to use a one—step estimator.

For an initial scale, we form r - X arid

compute

=
.6745 median (largest n—p+l elements of rj }.

This ncdified median absolute deviations scale
CHMAD] is discussed in C 7] arid is especially
designed for an LAR start.

The weights are found from the function

1 1 tO
., Jsin (tic)w (t, - t/c
Lo

itt C

itt > 7T C

where t is replaced by the scaled residual, ri/S.
Often w (t) is approximated by Cl _(.)2]2 which is
the bisquare weight function. In this study we
used c 1.42 (or 2.' .f the .6745 in s is omit-
ted). This choice or c corresponds to about 96
percent asymptotic efficiency for the Gaussian
error imdel.

Once we have found the weights, our estiate is;

- -lT- (X ) X (2.2)

where W is an n x n diagonal matrix of the weights.
For reference purposes, we also computed the stan-
dard least-squares estimate. The weight func-
tion for least-squares is, of course, w (t) 1.

Some properties of SIN1 are explored in C 7].

3. COVARIANCE ESTIMATORS

In order to constrict confidence regions, we would
liice to estiiMte the covariarice matrix for
A WLS program automatically gives us

(W) w2 (xT)-l (3.1)

where r: - Viewing the sum of weights

as a measure of "degrees of freedom" (note that the

—1—

(2.1)



The solutions of (3.7) are known as gtnara1izad

eigenvalues. Instead of onsidering uot

and we followed a suggostion of key [13]
and computed

A one parameter scale—free approach would be
to consider the mirthnujn over d of H2 ( d) where

H2(d)

a1fb

d= il
•L 2i1

2

2 1 Id:: v1
D

is, of cot'se, invariant under a. change of
basis.

We can choose among data dependent scalars by
looking at confidence region hsizeT. In the

—2—

det (A—AB) = 0. (3.7)

2H' £ (......_ A.) (3.2)
p=1 A i

The uantity, H, is not scale invariant. In order
to measure difference in shape we followed a
suggestion of Paul Holland and put A er 3 in
correlation form. Since correlation matrices are
not invariant (i.e., do not remain correlation
matrices) under changes in the basis of the X-
space, this approach is very X dependent. H does,
however, use more than one parameter to remove

"scale".

weight function has been standardized to unity at
the origin), led us to propose

(WW) wi'i2 (XTWX) (3.2)

wi_pi1
as an easily computed alternative.

Asymptotic considerations (see £ 9]) ialy that
a good choice might be

2 n r•
(A) 2 — (XTx)_l (3.3)P5

where (r) r w(r). Mother alternative that we
began to use after a part of the study was comple-
ted combined pert of (W) with part of (A) to get

(AW)
()2

2(r (XTO_l (3.)
2

Many other forms have been proposed in C 9] and
[13].

What is the truth to which we sluld compare these
foii:? There is no agreed upon answer, but we
chose the unconditional covariance matrix

A

where R is the number of samples used in the Monte
Carlo. We omphasize the word unconditional be-

cause a covariance matrix proportional to (XTWX)_l
involves the weights and is clearly conditional on
the data.

How can we measure the difference between, say,
(3.1) and (3.5)? Basically, we are seeking con-
fidence intervals for linear combinations of the
parameters, If the true covariance matrix
is A, then .QTAC is the variance of this linear
combinatioriT ince we did not want to consider,
at this point, specific linear combinations We
chose to examine for an estiwated covariance
matrix, B,

T —T/2 —1/2t. . (3.6)

1/2
——

where u B
'

2, and denotes one of the stan—
den ways to find a se;uare root of a positive
definite matrix. The right-hand side of (3.6) is
equivalent to finding the largest value of A in

(3.9)

We did not do this for the full covariance matrix
but we did use it for the diagonal elements (the
variances). We computed

(1.10)

(3.11)

H was tried on the full covariance matrix after
some adjusthent factors, suggested by Cohn
Mallows Cli] were used to correct for asymptotic
bias.

The above measures could be termed "diaostic"
and are useful in finding which classes of coven—
ance estimate seem reasonable. We would still

need, however, to consider the "scale" of the
covariance matrix and find something like t-
statistics. There are two kinds of scaler multi-
pliers of (XTXY or (XWXY1, those that depend
on the data and those That do not. The later
kind are very difficult to separate from t-
statistics and can make it hard to develop useful
approxisite t tables.



location case this can be accomplished by cornput-
ii average confidence interval lungth once a t—
statistic has been determined.

In the regression case measuring "size" is nre
complicated. Here we chose to consid& specific
1irar tem tior of -the parmeteru that the
problem could be reduced to considering t-
statistics and average confidence interval lengths.
The linear combination we chose was the eigenvector
of the largest eigenvalue of A, the Monte Carlo
"truth". This corresponds tothe linear combina-
tion giving the largest variance, mis
means, ot course, that 9- changes with the sampling
situation.

14. THE X—MATRIX

All of the X-rnatrices used in our Monte Carlo
study vere derived in various ways from a basic
20 x 6 matrix, Vrt'TA1. First we describe the
constructi:- of VDATA1 and then indicate how the
X-rnat'ices ised in the study are derived from it.

The 6 colurns of VUTAl were divided into 3 groups
of 2. Colurnz I and 2 were chosen so that their
scatter plot forms a perfect square centered about
the cri i. Thus the first two coltrrs correspond
to va i:lc like those in a designed experinent.
Colurrr 3 d 14 were chosen to be roughly indepen-
dent biveritte Gaussian. -

Colunns S and 6 were chosen to be r inc1epn-
dent bivrizite variabicu vitil 1
independent Cauchy samples of st- were dra
and then the largest observatics c:h sample
were reduced in ms.gnitude until they contributed
80% ar 5% of the total s.zn of squ:res of their
coluzt, respectively.
After the 6 cohsrus of VDATA1 were selected each
colrnm was standardized to have mean zero and unit
sum of squares. In Table 14-1 we give the final,
standardized colusms of VDATA1. Further details
about VDATAJ. can be found in C 7].

The two X-matrices we used were formed by append-
ing a colus7l of ones to the first 14 columns of
VDATA]. to get VS (where 5 refers to the number of
fit-ted parameters) and to all of VDATA1 to get V7.
Thus V5 could be considered to be well-behaved
while V7 contains outliers.

5. THE MONTE CPdLO

The Monte Carlo work was done in two parts. The
first dealt with the location problem for samples
of size 10, 20, and 60 using SThIl. Swindling
techniques, such as those described in [12] and
C 1J, were used th'oughout. The Gaussian and the
slash (see C 1]) were the error distributions.
The slash distribution has the vcrv long tails of
a Cauchy distribution, but with a Gaussian-like
center.

—3—

TABLE 14—1

FINAL, STANDARDIZED COUJMNS OF VDATA1

ROW COL]. COL2 COL3 COL14 COL5 COL6

1 0.2712 0.2712 0.01453 0.0257 —0.3880

2 0.2712 0.1627 0.1092 —0.1268 —0.0509 0.01470

3 0.2712 0.05142 0.14513 0.0963 0.01143 0.0682

14 0.2712 —0.05142 —0.1605 0.2977 —0.1065 0.0225

5 0.2712 —0.1627 0.22142 —0.3618 0.21463 0.3193

6 0.2712 —0.2712 0.0107 0.12146 —0.08114 0.01461

7 0.1627 —0.2712 0.1937 0.1006 —0.0373 0.0583

8 0.05142 —0.2712 —0.21435 0.3205 —0.1373 0.014014

9 —0.05142 —0.2712 —0.009'4 —0.0852 0.0228

10 —0.1627 —0.2712 0.1382 0.14631 —0.0630 —3.0112

11 —0.2712 —0.2712 0.0956 0.09814 —0.01489 0.0388

12 —0.2712 —0.1627 0.0597 —0.1136 —0.0732 0.0327

13 —0.2712 —O.05142 • —0.0613 —0.1263 0.0914l4 0.0303

114 —0.2712 0.05142 0.1282 0.0598 —0.0680 0.0691

15 —0.2712 0.1627 —0.0966 —0.0085 0.1387 —0.0672

16 —0.2712 0.2712 —0.1060 —0.3819 —0.13140 0.0559

17 —0.1627 0.2712 0.2013 0.01145 —0.0290 0.0966

18 —0.05142 0.2712 —0.143214 —0.2083 —0.1520 —0.9198

19 0.05142 0.2712 0.09114 0.08140 —0.01417 —0.0620

20 0.1627 0.2712 —0.51486 0.051414 0.8917 0.0833



The second part using VS and V7 relied on samples
generated by Richard Hill and Paul Holland for
their related study C 7] where it was felt that
Monte Carlo swindling would not be worth the cost.
Unfortunately, this meant we could not use swind-
ling for out study, except in the Gaussian case.
The regression results are therefore less precise
than we would have liiced. For details on the
swindles used in the Gaussian case see C 8],

The error distributions, f(S), for the regression
case are a simple 2-parameter family of a mixture
of a N(0,l) density with a N(0,k2) density. This
is given by

r 1u21
g(u) _L I(l_a)e_u/2 +

ei
where0<a<l,andl<k<. Thesearedenoted
COke so that CG3.l indicates a choice of g where
k 3 and a = .1. In all cases the scale of f(u)
was selected so that the errors had unit variance.
Thus

where 1 — a + a k2.

Both of the estimators LAR and SIN1 are regression
invariant in the sense that if the vector of
observed values y is transformed o X " for
some then 3 is transformed to + 8'. Here a.].].
of the Monte Carlo results were computed with the
true values of i set equal to 0.

In all cases the nurrer of Monte Carlo samples
was 500. Standard errors were computed directly

except in the case of the t-statistes where 5

blocks of size 100 were used to obtain an estimate
of standard error.

6. LOCATION

The location problem with X equal to a colunn of
ones provided a basic staring point for our study.
Location has been extensively studied by Gross C 5]
who found that an estimator similar to SIN1 per—
formed very well when used with the (A) variance
to construct confidence intervals. Of course, we
were mainly interested in seeing if (W) would
also work, since it comes naturally from weighted
least-squares.

For each sampling situation and variance estinator
we computed a value, t", corresponding to the .975
point of the empirical distribution of the t—
statistics, and a measure of sampling error. We
will study t in detail later.

As a measure of efficiency, we computed the average
length of the intervals [ACIL] that resulted when

was used to form confidence intervals. These
numbers 'times 1000) are their standard errors are
displayed in Exhibit 6—1 as tables that have been
analyzed by using medians to decompose each col-
umn into:

ACIL residuaJ.+coLsin fit (Cr). . (6.1)

The standard errors (SF) displayed at the bottom
of the table are the median of the standard errors
of the ACILs in the respective colunn.

TABLE 6-1

ACIL (xl000)
nlO n20

G S 0 S

n 60
G S'

W 1 0
WV 0 —2
A -l 0

CF 538 1231

CE 2 10

We see that in all cases, (W) is worse than (A),
but probably not enough to warrant writing special
programs to compute (A). Except for two cases
(WV) is better than (A), but the gain is within a
single standard error.

To make these confidence procedures work, we need
to find a t-like value that is independent of the
underlying distribution, since we do not Iciow
what that distribution is. Our t" values are list-
ed in Exhibit 6-2. The standard errors listed are
the median of the colusri standard errors.

In this case, the t' value at the Gaussian is al-
ways larger than that for slash, so we will focus
our attention on the Gaussian values.

TABLE 6—2

—4—

V 57 5
WV —5 —60

A 0 0

CF 1673 39LL

SE 23 90

W 10 2

WV 0 —9

A _!4 0

CF 991 23'43

SE 8 3L

f(u) . g()

tA

nlO n20

G S G S

W 3.21 2.88 W 2.53 2.149

WV 2.93 2.53 WV 2.39 2.23

A 2.71 2.143

SE .09 .06

A 2.21 2.13

SE .03 .014

n60

G S

W 2.30 2.27

WV 2.20 2.05

A 2.05 1.95

SE .01 .oa_



This leaves us with a table of t nwnbers that we
could use with fovmu].a (W) and feel reasonably
sure of getting 95% confidence intervals of ncder-
ately high efficiency for distributions in the
"neiborhood" of the Gaussian.

We had originally hoped to base the degrees of
n

freedom on E w.-1, i.e., to have a conditionalil 1
degrees of freedom formula. This has not worked
well, giving t-numbers too small at the Gau.on
and too large at the slash. A close look at our
tables of t for (W) shows that it is not easily
related to the standard t-tables. However the t'
tables for (A) seem to be approxinable by the
standard t on (n-l) /2 degrees of freedom. (Gross
[ 5] also noticed this.)

Mallows [11] had proposed a form of asymptotic
adj ustoent for covariance fcrmlas that would
renove any asymptotic bias relative to the correct
asymptotic forrnla, (A). For example, the adjust-
ment factor for (W) is:

E(w(Z))

W E2p'(Z)) E(Zi(Z))

where Z is N(0,l) since we want to do the adjust—
rnent for the Gaussian case. To adjust t we use
(jJ')l/2 Table 6—3 lists these t adjust!Ent
factors which have been computed by using the
bisquare approximation to the sine weight function
with b .72 (or l.5r).

TABLE 6-3

Mjustnent Factor
W .89
WW .93
AW l.0L
A 1.00

}thinit 6-4 contains the adjusted Gaussian t
volues. W sce that the values are much nore com-
parable and that is a useful, but not perfect
degrees of freedom approximation.

TABLE 6-

Adjusted t
n 10 20 60

W 2.86 2.25 2.05
WW 2.73 2.22 2.05
A 2.71 2.21 2.05
t 2.78 2.26 2.05

L2

7. REGRESSION RESULTS

For the regression problem we only used one sample
size, 20, and the matrices VS and V7, giving 15
arid 13 degrees of freedom or 3 degrees of freedom
per praneier for V5 and aobut 2 degrees of free-
dom per parsmater for V7. For location we had 9,

19 and 59 degrees of freedom, so we were not
expecting and did not get the pleasant —'c-suits
obtained in the location case. On the other hand,
we see many regressions n with 2 and 3 degrees -
of freedan per parameter and we felt it was
necessary to gather soma infoziration about these
cases.

We first computed H [see (3.8)], comparing the
Monte Carlo th to (XTXY1 and (XTWX)_l where
all matrices have been t in corr1ion form.
The results are contained in Exhibit 7-1 where
we have included the midspread (interquortile
range) of the H values for (XTWX)_l and also the
values of H obtained when th andard least-
squares Monte Carlo truth is compared to (XTX)_l
in correlation farm (LS). — —

DJIBIT 7—1

H(xJ.00) for (XTWX)

VS (LS:lO)

G 3.1 3.25 10.1 10.25

8 12 17 21 42

12 18 23 32 53

MS 8 10 11 17 19

V7 (LS23)

(XTX)_1 28 28 32 108

27 31 36 119 100

MS 2 7 8 16 17

These results seem to indicate that (xTX)_l is a
bet-tar choice than (XTWX) wost of the time. In
other words, for overalT shape, it may not pay to
use a forn conditional on the data. On the other
hand, we have been comparing both forms to the un-
conditional Monte Carlo truth. We do rioL yet ce
how to do these comparisons in a conditional way.

Next we looked at D [see (3.ll):1 and found a simi-
lar story (Exhibit 7-2) although less pronounced.
The worst cases occurred, as we might expect, for
V7 and for CG1O.1 and CG1O.25. We are still
puzzled by the fact that for V7, CG1O.l is worse
than CG1Q.25. Similar results show up in later
tables.

At this point we decided to look at six covariance
formulas - the four discussed in section three and
(W') which is (W) but using (XTX) instead of
(XTWX)_l and (riM') which rrodifies (WW) in a simi-
lar way. The asymptotic adjusthent factors devel-
oped in section six were applied (the factors for
Wt arid WW' are .85 and .89) but this tire we used
AF and not since we. were looking at vari-
ances and not t-statistics.

H, as defined in (3.8), was then computed for all
these cases; the results form Exhibit 7-3. The

—5—

(XTx) -1

814



E)IBIT 7—3

Median H(xlOO) fox' P4justed Covariances

VS (LS57)

G 3.1 3.25 10.1 10.25
0 5 1 5 1

NW 1 0 —3 —3 —30

AW 5 1 6 1 —2

0 7 —1 2 17..
ww' 0 0 —3 —8 —20

A
CF

SE

2 —1 3 —2 19

60 78 100 l])4 29'4

88 130

V7

119

(LS—614)

152 381

0 1 —1 20 12

—3 —2 1 —17 —76

4 8 15 51 1414

0 -3 —S —17 —12

4 5 7 ...49 —100

4 3 9 18 11+

75 102 113 456 573

155 2114 227 600 1052

- medians of the standard errors for each column, SE,
show that these n.rrers are quite variable and
comparisons will be difficult. Generally speak-
ing (NW) and (NW') perfono well, confinning soma
of our earlier results. It also appears to be
the case thr fonos involving cxTxYl perform a
littic better, which agrees with Exhibits 7—1
and 7-2. We decided not to continue to look at
(W') a.-id (WV') because (XTX) is not available
when computing SIN1 using weighted least-squares
The form (A) was cr'ried along as a benchmark.
We now u-'ied to measure efficiency by using the

eigenvectors discussed in section three. As in
the location case we computed a t for each
situation and then the average cc fiünce interval
length. The ACIL results are listed in Exhibit
7—4.

w

NW

AW

A

DiB 7—4

ACIL (xlOO) for Regression

V5 (LS536)

1 3 —4 —1 0

566 481

V7

472

(LS=864)

217 220

21 6 26 14 —9

—4 —2 5 3 0

—5 2 314 7

5 —12 —6 —2 0

CF 984 826 812 464 522

The average standard error in this table is about
10 so -that it is hard to make any real distinc-
tions. Generally, (AW) seems to perform best.
As far as efficiency goes we see no reason to go
beyond (W) or perhaps (NW).

Finally we computed adjusted t*_valucs, as in the
location case. These numbers are listed in
Exhibit 7-5 where we have added a new column for
GS, the values obtained by swindling rather than
simple sampling. Since the maximum swindle gain
occurs at the Gaussian, we may not have lost too

ff BIT 7-5

Adjusted te

V5
(t7=2.37)

G GS 3.1 3.25 10.]. 10.25

W 2.32 2.35 2.37 2.38 2.53 2.149

NW 2.31 2.30 2.30 2.36 2.41 2.33

AW 2.26 2.38 2.25 2.33 2.47 2.48

A
SE

w

AW

A

SE

2.21 2.141 2.22 2.25 2.35 2.23

.10 .04 .06 .10 .14 .10

2.62

V7

2.44

(t6=2.45)

2.55 2.58 3,614 3.39

2.61 2.37 2.59 2.48 3.53 3.31

2.53 2.53 2.46 2.53 3.52 3.13

2.144

.13

2.55
.014

2.39
.03

2.141

.13

3.28

.28

2.97
.08

—6—

ttBIT 7—2

D(x100) for (XTWX)_1

VS (LS=5)

G 3.1 3.25 10.1 10.25
(XTxY1 7 9 12 16 21

9 U 114 19 28
MS 2 5 5 7 11

V7 (LS8)

(XTx) 9 12 12 91 57
NED 9 15 16 98 66

MS 2 5 6 8 9

C 3.1 3.25 10.1 10.25

W 14 —l 14 2 5

Nw —3 1 —l 1 1
—l —6 0 —5 —l

A

CF

W

NW

AW

W,

NW'

A

CF

SE



naich by our inability to swindle all of these num-
bers (see section three).

—7—

No longer can we say that the values at the Gaussian
are the largest, so perhaps adjustttent at the
Gaussian is suspect. However, for VS we would feel
reasonably happy with t7 2.37 as an approximate
t-value for SIN1 regression, especially for (M).

Clearly this breaks down for V7 and CG1O .1 and
CgiO.25 where t6 2.45 is not adequate. Severe
contamination coupled with adistorted X-matrix
(high kurtosis) has diminished our hopes for sin-
pie approximations.

8. CONCLUSIONS

Strictly interpreted our results only apply to the
specific situations and X-matrices examined in
this study. However, we would like to generalize
somewhat. Hill and Holland [7] have shown that
SIN1 is a reasonably good robust regression esti-
mator. We feel that the usual output fran the one-.
step of weighted least-squares can be used for
inference providing the t-statistic is found using
[fl2.] degrees of freedom and then divided by the
adjusthent factor (.89). If the X-matrix is really
unusual. then caution is advised.

We have most often used the above results in a
diagnostic way. The least-squares and SIN1 regres-
sion results are both obtained and then compared
in various ways. If the confidence intervals are
radically different (or test results reversed) we
explore further, attempting to diagnose the cause
of this instability.

We have left many questions unanswered. We are
examining what happens to our regression results
when n'+0. Why ['] for degrees of freedan? Why
doesn't sons condi ional degrees of freedom forym.ila
n n
E or Ejq'. work? For the abnonnal X-matrix

1=1 il 1
problem we siay have to examine the proposal of
Mallows [10 J which attemDts to smooth the X-matrix
and reduce its kurtosis.

Finally, there is the question of how these results
generalize to the F—statistics associated with more
complex simultaneous confidence regions.
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