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Abstract

This paper describes the results of a Monte Carlo study of certain aspects
of robust regression confidence region estimation for linear models with
one, five, and seven parameters. One-step sine estimators (¢ = 1.42) were
used with design matrices consisting of short-tailed, Gaussian, and long-
tailed colums. The samples were generated from a variety of contaminated
Gaussian distributions.

A number of proposals for covariance matrices were tried, including
forms derived from asymptotic considerations and from weighted-least
squares with data dependent weights. Comparisons with the Monte Carlo
"truth" were made using generalized eigenvalues. In order to measure
efficiency and compute approximate t-values, linear combinations of parameters
corresponding to the largest eigenvalues of the "truth" were examined.

For design matrices with columns of modest kurtosis, the covariance
estimators all give reasonable results and, after adjusting for asymptotic
bias, some useful approximate t-values can be obtained. This implies that
the standard weighted least-squares output using data-dependent weights need
only be modified slightly to give useful robust confidence intervals.

When design matrix kurtosis is high and severe contamination is present

in the data, these simple approximations are not adequate.
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1. INTRODUCTION

In the past few years, a number of ways have been
proposed to perform robust regression. Perhaps
the simplest to implement is called iteratively
reveighted least-squares. Initial values for the
coefficients are found, a scale for the residuals
from this start is computed, and then a set of
weights is determined by using a weight function
applied to the scaled residuals. The weight func-
tion usually gives a value near one for small
residuals, and near zero (or equal to zero) for
large residuals. The weights are then used as if
they were the weights for a weighted least-squares
(WLS) regression. The above process can, of
course, be iterated.

Therefore, all one needs is a device to compute
the start, scale, and weights and the rest of the
computation (the hard part) can be done with a
standard WLS routine or by multiplying each obser-
vation by the square root of the corresponding
weight and using an LS routine.

Naturally, the question arises - can we use the
output from the WLS routine to find confidence
regions for the regression parameters? This
would make life simpler and make robust regression
more readily usable. Cne purpose of our study of
robust regression was to see if it would be feasi-
ble to use WLS output in a simple way.

This paper is organized as follows: section two
discusses the robust estimator (weight function)
we used, section three covers the covariance for-
mulas, section four examines the design [X] matrix
we used, and section five summarizes the parameters
and distributions used in the Monte Carlo. In
section six, we discuss our results for the loca-
tion case. The seventh section covers our work on
the regression problem and in the last section, we
try to give some advice and indicate where we
think we stand at this point.

2. THE REGRESSION ESTIMATOR
We want to estimate the parameter vector B in the
model -

y=X8+e

where y is the n x 1 response vector, X is an
n x p design matrix, and e is an n x 1 random vec-
tor whose ccordinates are independent and identi-

cally distributed symmetric random variables.

Only one family of estimators is used, the one-
step sine M-estimators, which have been found to
have good rcbustness properties in a number of
previous studies. As starting values for this
estimate, we used the least absolute residual esti-
mator (called LAR):
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Several efficient algerithms exist for finding
this estimate. (See [ 3] for an exarple.) If
only least-squares is available as a start, then
it may not be wise to use a one-step estimator.

For an initial scale, we form r

L~ X Bppand
compute

-1 o - ,
S = —gFpg median {largest n-p+l elements of [r] 1.

This modified median absolute deviations scale
[HMMAD] is discussed in [ 7] and is especially
designed for an IAR start.

The weights are found from the function

1 t=0
w () KL e cre D)
o} [t] > 7 ¢

where t is replaced by the scaled residual, ri/ s.
Often w (t) is approximated by [1 -(5—)2]2 which is

the bisquare weight function. In this study we
used ¢ = 1.42 (or 2.° if the .6745 in s is omit-
ted). This choice or ¢ correspends to about 96
percent asymptotic efficiency for the Gaussian
error model.

Once we have found the weights, our estimate is:

= w0 Xy (2.2)

Bsmv
where W is an n x n diagonal matrix of the weights.
For reference purposes, we also computed the stan-
Bse The weight func-

tion for least-squares is, of course, w (t) = 1,
Same properties of SINL are explored in [ 71.

dard least~squares estimate

3. COVARTANCE ESTIMATORS

In order to construct confidence regions, we would
like to estimate the covariance matrix for Bsm1-

A WLS program automatically gives us

n a
(W) wr? o (3.1)
is1
n-p

where i =y-X8 SINL* Viewing the sum of weights
as a measure of 'degrees of freedom" (note that the



weight function has been standardized to unity at

the origin), led us to propose
’z‘ 2

w,ry
i=1

(3.2)
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as an easily computed alternative.

Asymptotic considerations (see [ 91) 1mply that
a good choice might be

£
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vwhere y(r) = rw(r). . Another alternative that we
began to use after a part of the study was comple-
ted combined part of (w) with part of (A) to get

(3.4)

Many other forms have been proposed in [ 9] and
f131.

What is the truth to which we should compare these
forsis? There is no agreed upon answer, but we
chose the unconditional covariance matrix

R ..T

Z B:B.

(3.5)

P TN

A=

the number of samples used in the Mente
cmphasize the word unconditional be-

where R is ¢
Carlo. We

cause a covariance matrix proportional to (X Tixy~L
invclves the weights and is clearly conditional on
the data.

How can we measure the difference between, say,
(2.1) and (3.5)? Basically, we are seeking con-
fidence intervals for linear combinations of the

parameters, &T_B_ . If the true covariance matrix

is A, then .TAZ is the variance of this linear
combination. ~Since we did not want to consider,
at this Do:mt, specific linear comb;matlons we
chose to examine for an estimated covariance

matrix, B,

’TA-!L -T/ 2 —l/ 2
max i' —— = max —_ —_— (3.5)
x lrﬁ g uTu
where u = 21/2 2 and 21/2 denotes one of the stan-
dard ways to find a square root of a positive

definite matrix. The right-hand side of (3.6) is
equivalent to finding the largest value of A in

-

det (A-AB) = (3.7)
The solutions of (3.7) are known as generelized
eigenvalues. Instead of censidering just Ao

and A .., We followed a suggestion of Tukey [13]

and camputed

2

. H® = (3.8

1 If & - 2,2
) = X‘i 1
The quantity, H, is not scale :anar'lant. In order
to measure difference in shape we followef’ a
suggestion of Paul Holland and put A arg
correlation form. Since correlation nar:;ces are
not invariant (i.e., do not remain correlation
matrices) under changes in the basis of the X-
space, this approach is very X dependent. H does,
however, use more than one parameter to remove
llscalell.

A one parameter scale-free approach would be -

to consider the minimum over 4 of H (d) where
2
1R fa M

. (3.9)
Py A, d

H2(d) =

We did not do this for the full covariance matrix
but we did use it for the diagcnal elements (the

variances). We computed
vi = 835/bss
P ) /4
d = 2 {3.10)
Lo T
i=1
P L,
i=1 v
2
Ve
% E ( IF (3.11)

02 is, of course, invariant under a change of
basis.

H was tried on the full covariance matrix after
some adjustment factors, suggested by Colin
Mallows [11] were used to correct for asymptotic
bias.

The above measures could be termed "diagnostic"
and are useful in finding which classes of covari~-
ance estimate seem reasonable. We would still
need, however, to consider the "scale" of the
covariance matrix and find something like t-
statistics. There are two kinds of scalar multi-

pliers of <)t or (X WX)'l those that depend
on the data and those that do not. The later
kind are very difficult to separate from t-
statistics and can make it hard to develop useful
approximate t tables.

We can choose among data dependent scalars by
looking at confidence region "size". In the




-3

TABLE 4=1

FINAL, STANDARDIZED COLUMNS OF VDATAL

ROW CoLl CoL2 CoL3
1 0.2712 0.2712 -0.0453
2 0.2712 0.1627 0.1092
3 0.2712 0.0542 0.4513
Y 0.2712 -0.0542 -0.1605

5 0.2712 -0.1627 0.2242
6 0.2712 -0.2712 0.0107
7 0.1627 -0.2712 0.1937
8 0.0542 -0.2712 -0.2435
9 -0.0542 -0.2712 -0.0094%

10 -0.1627 -0.2712 0.1382
11 -0.2712 -0.2712 0.0956
12 -0.2712 =0.1627 0.0597
13 -0.2712 ~0.0542 -0.0613
14 -0.2712 0.0542 0.1282
15 -0.2712 0.1627 ~0.0966
16 -0.2712 0.2712 -0.1060
17 -0,1627 0.2712 0.2013
18 ~0.0542 0.2712 -0.4324
13 0.0542 0.2712 0.0914
20 0.1627 0.2712 ~0.5486

location case this can be accomplished by comput-
ing average confidence interval length once a t-
statistic has been determined.

In the regression case measuring "size" is more
complicated. Here we chose to consider specific
lireor eembinoticrs of the parameters wo that the
problem could be reduced to considering t-
statistics and average confidence interval lengths.
The linear combination we chose was the eigenvector
of the largest eigenvalue of A, the Monte Carlo
"truth". This corresponds to the linear combina-

tion giving the largest variance, &TA_E. This

means, of course, that & changes with the sampling
situation.

4., THE X-MATRIX

All of the X-matrices used in our Monte Carlo
study were derived in various ways from a basic
20 x 6 matxix, VDATAL. First we describe the
constructicn of VDATAL and then indicate how the
X-matrices uszed in the study are derived from it.

The 6 coluwrns of VDATAL were divided into 3 groups
of z. Column:z 1 and 2 were chosen so that their
scatter plot forms a perfect square centered about
the oriuzin., Thus the first two colums correspond
to variayies like those in a designed experiment.
Colurrns 3 @md 4 were chosen to be roughly indepen-
dent biveriste Caussian.

CoL4 COLS oOLS
0.0257 -0.0880 0.0298
-0.1268 -0.0509 5.0470
0.0963 0.0140 0.0682
0.2977 -0.1065 0.0225
-0.3618 0.2463 0.3193
0.1246 -0.0814 0.0461
0.1006 -0.0373 0.05823
0.3205 -0.1373 0.0404
-0.4123 -0.0852 0.0228
0.4631 -0.0630 -0.0112
0.098% -0.0489 0.0388
-0.1136 -0.0732 0.0327
-0.1263 -0.0944 0.0303
0.0598 -0.0680 0.0691
-0.0085 0.1387 -0.0672
-0.3819 -0.1340 0.0559
0.0145 -0.0290 0.0966
-0.2083 -0.1520 -0.9198
0.0840 -0.0417 -0.0620
0.05k4 0.8917 0.0833

vhly indepen-
Two

Columns 5 and 6 were chosen to he e :
dent bivariate variabies with cuwellooo,
independent Cauchy samples of si+e ! were drawn
and then the largest observaticns ir cioh sample
were reduced in magnitude until they contributed
80% ar? 5% of the total sum of sqm-:res of their
cclumns, respectively.

After the 6 colums of VDATAL were selected each
column was standardized to have mean zero and unit
sum of squares. In Table 4-1 we give the final,
standardized columns of VDATAl. Further details
about VDATAL can be found in [ 7].

The two X-matrices we used were formed by append-
ing a colum of ones to the first 4 columns of
VDATAL to get V5 (where 5 refers to the nurber of
fitted parameters) and to all of VDATAL to get V7.
Thus V5 could be considered to be well-behaved
while V7 contains outliers.

5. THE MONTE CARLO

The Monte Carlo work was done in two parts. The
first dealt with the location problem for samples
of size 10, 20, and 60 using SIN1. Swindling
techniques, such as those described in [12] and

[ 1], were used tixwughout. The Gaussian and the
slash (see [ 11) were the ervor distributions.
The slash distribution has the varv long tails of
a Cauchy distribution, but with a Gaussian-like
center.



The second part using V5 and V7 relied on samples
generated by Richard Hill and Paul Holland for
their related study [ 7] where it was felt that
Monte Carlo swindling would not be worth the cost.
Unfortunately, this meant we could not use swind-
ling for out study, except in the Gaussian case.
The regression results are therefore less precise
than we would have liked. For details on the
swindles used in the Gaussian case see [ 81.

The error distributions, £(:), for the regression
case are a simple 2-parameter family of a mixture
of a N(0,1) density with a N(0,k?2) density. This
is given by

glu) = L

where 0 < @ < 1, and 1 < k < =. These are denoted
CCGka so that CG3.1 indicates a choice of g where
k=3 and a = .1. In all cases the scale of f(u)
was selected so that the errors had unit variance.
Thus

f(u) =

A

u
g(?)
where12=l—a+ak2.

Both of the estimators LAR and SIN1 are regression
invariznt in the sense that if the vector of
observed values y is transformed to y = X g¥* for
some 8* then g is transformed to g + B*. Here all
of the Monte Carlo results were computed with the
true values of B set equal to O.

In all cases the number of Monte Carlo samples

was 500. Standard errors were computed directly
except in the case of the t-statistics where §
blocks of size 100 were used to obtain an estimate
of standard error.

6. LOCATION

The location problem with X equal to a colum of
ones provided a basic starting point for our study.
Location has been extensively studied by Gross [ 5]
who found that an estimator similar to SINL per-
formed very well when used with the (A) variance
to consiruct confidence intervals. Of course, we
were mainly interested in seeing if (W) would -
also work, since it ccmes naturally from weighted
least-squares.

For each sampling situation and variance estimator
we computed a value, t*, corresponding to the .975
point of the empirical distribution of the t-
statistics, and a measure of sampling error. We
will study t* in detail later.

As a measure of efficiency, we computed the average
length of the intervals [ACIL] that resulted when
t* was_used to form confidence intervals. These
nurbers (times 1000) are their standard errors are
displayed in Exhibit 6-1 as tables that have been
analyzed by using medians to decompose each col-
unn into:

ACIL = residualtcolum fit (CE). 6.1)

The standard errors (SF) displayed at the bottom
of the table are the median of the standard errors
of the ACILs in the respective column.

' TABLE 6-1
ACTL (x1000)
n=10 n=20
G s G s
W 57 5 w10 2
W -5 -60 w0 -9
A 0 0 A -4 0
CF 1673  39u4 CF 991 2343
SE 23 90 SE 8 3y
n=60

G s

w1 0

W0 -2

A -1 0

CF 538 1231
CE 2 10

We see that in all cases, (W) is worse than (A),
but probably not enough to warrant writing special .
programs to compute (A). Except for two cases

(WW) is better than (A), but the gain is within a
single standard error.

To make these confidence procedures werk, we need
to find a t-like value that is independent of the
underlying distribution, since we do rot know

what that distribution is. Our t* values are list-
ed in Exhibit 6-2. The standard errors listed are
the median of the column standard errors.

In this case, the t* value at the Gaussian is al-
ways larger than that for slash, so we will focus
our attention on the Gaussian values.

TABLE 6-2
t*
n=10 n=20
G S G S
W 3.21 2.88 W 2.53 2.49
WW  2.93  2.53 wWW 2.39 2.23
A 2.71 2.43 A 2.21 2.13
SE .09 .06 SE .03 .04
n=60
G S
W 2.30  2.27
WW 2.20 2.05
A 2.08 1.95
SE 01 03




This leaves us with a table of t* numbers that we
could use with formula (W) and feel reasonably
sure of getting 95% confidence intervals of moder-
ately high efficiency for distributions in the
"neighborhood" of the Gaussian.

We had originally hoped to base the degrees of
n

freedom on I wi-l, i.e., to have a conditional
i=l
degrees of freedom formula. This has not worked
well, giving t-numbers too small at the Gaussian
and too large at the slash. A close lock at our
tables of t* for (W) shows that it is not easily
related to the standard t-tables. However the t¥*
tables for (A) seem to be approximable by the
standard t on (n-1)/2 degrees of freedom. (Gross
[ 5] also noticed this.)

Mallows [11] had proposed a form of asymptotic
adjustment for covariance formulas that would
remove any asymptotic bias relative to the correct
asymptotic formula, (A). For example, the adjust-
ment factor for (W) is:

. EGA2))  Ewi)

AF, 3 ,
E%(p'(2)) E(Zy(Z))

where Z is N(0,1) since we want to do the adjust-
ment for the Gaussian case. To adjust t* we use
(AF)~1/2, Table 6-3 lists these t¥ adjustment
factors which have been camputed by using the
bisquare approximation to the sine weight function
with b = 4.72 (or 1.5w).

TABLE 6-3

Adjustment Factor

W .89
LW .93
AW 1.04
A 1.00

Exhibit 6-U contains the adjusted Gaussian t¥
values. We sec that the values are much more com-

parable and that [n;—l] is a useful, but not perfect
degrees of freedom approximation.

TABLE 6-U4
Adjusted t*®
n 10 20 60
W 2.86 2.25 2.08
W 2.73 2.22 2.05
A 2.71 2.21 2.05
t 2 78 2.26 2.05
[——]

7. REGRESSION RESULTS

For the regressicn problem we only used one sample
size, 20, and the matrices V5 and V7, giving 1§
and 13 degrees cf freedom or 3 degrees of freedam
per parameter for VS and acbut 2 degrees of free-
dom per parameter for V7. TFor location we had 9,

=5=~

19 and 59 degrees of freedom, so we were not
expecting and did not get the pleasant results
obtained in the location case. On the other hand,
we see many regressions run with 2 and 3 degrees ..
of freedam per parameter and we felt it was
necessary to gather same information a.bout these
cases.

We first camputed H [see (3 8)], comparmg the

Mente Carlo truth to (X and (X W)~ L sihere
all matrices have been | put in correlation form.
The results are contained in Exhibit 7-1 where
we have included the midspread (interquartile

range) of the H values for (XTVD()_]‘ and also the
values of H obtained when the standard least-

squares Monte Carlo truth is compared to (X X)
in correlation form (LS).

EXHIBIT 7-1
H(x100) for (XKt

V5 (LS=10)
¢ 3.1 3.25 10.1 10.28
«oT s 12 1 2 42
MED 12 18 23 32 53
MS 8 10 11 17 19
V7 (LS=23)
&0 28 28 32 108 8u
MED 27 31 3% 119 100
MS 2 7 8 16 17

These results seem to indicate that (X X) -1 is a

better choice than (X WX) -1 most of the time. In
other words, for overall shape, it may not pay to
use a form conditional on the data. On the other
hand, we have been comparing both forms to the un-
conditional Monte Carlo truth. We do not yet sce
how to do these comparisons in a conditional way.

Next we looked at D [see (3.11)} and found a simi-
lar story (Exhibit 7-2) although less pronounced.
The worst cases occurred, as we might expect, for
V7 and for CGL0.1 and CG10.25. We are still
puzzled by the fact that for V7, CGl0.1l is worse
than CG10.25. Similar results show up in later
tables.

At this point we decided to lock at six covariance
formulas - the four discussed m section three and
(w ) which is (W) but using (X X) mstead of

(X WX) ~L and (WW') which modifies (WW) in a simi-
1lar way. The asymptotic adjustment factors devel-
oped in section six were applied (the factors for

W' and WW' are .85 and .89) but this time we used
AF and not AF Y2 since we. were looking at vari-
ances ard not t-statistics.

H, as defined in (3.8), was then computed for all
these cases; the results form Exhibit 7-3. The
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' EXHIBIT 7-2
D(x100) for (XTWx)™1

VS (LS=5)
6 3.1 3.25 10.1 10.25
ot 7 s 12 18 21
MED s 1 1 19 28
MS 2 s 5 7 1
V7 (LS=8)
Tl 9 12 12 a 57
MED s 15 16 98 66
MS 2 5 6 8 9
EXHIBIT 7-3

Median H(x100) for Adjusted Covariances

V5 (LS=57)
G 3.1 3.25 10.1 10.25
W 0 5 1 5 1
WW 1 0 -3 -3 -30
AW 5 1 6 1 -2
W' 0 7 -1 2 17 .-
ww! 0 0 -3 -8 =20
A -2 -1 3 -2 19
CF 60 78 100 114 294
SE 88 130 119 152 381
V7 (LS=64)
W 0 - 1 -1 20 12
WW -3 -2 1 -17 -76
AW 4 8 15 51 Ly
W' 0 -3 -5 -17 -12
wWw! -4 6 -7 -49 =100
A 4 3 9 18 14
CF 75 102 113 456 573
SE 155 214 227 600 1052

-medians of the standard errors for each colum, SE,

show that these numbers are quite variable and
comparisons will be difficult. Generally speak-
ing (WW) and (WW') perform well, confirming some .
of our earlier results. It also appears to be

the case that forms involving (XTX).l perform a
little better, which agrees with Exhibits 7-1
and 7-2. We decided not to continue to lock at

(W) and (W) because (}__(_TK)-l is not available -
when computing SIML using weighted least-squares
The form (A) was carried along as a benchmark.

We now tried to measure efficiency by using the

eigenvectors discussed in section three. As in
the location case we computed a t* for eact
situation and then the average cenfilance interval
length. The ACIL results are listed in Exhibit
7-4.

EXHTBIT 7-u4

ACIL (x100) for Regression

V5 (LS=536)

6 3.1 3.25 10.1 10.25
W L =1 4

Ww -3 1 -1 1 1
AW -1 -6 0 -5 =1
A 1 3 -4 -1 0
CF 566 481 472 217 220

V7 (LS=864)
21 6 26 1y -9
Ww -4 -2 5 3 0
AW =5 2 =34 -4 7
A 5 =12 -6 -2 0
CF 1L 826 812 ugy4 522

The average standard error in this table is about
10 so that it is hard to make any real distinc-
tions. Generally, (AW) seems to perform best.

.As far as efficiency goes we see no reason to go

beyond (W) or perhaps (WW).

- Finally we domputed adjusted t¥*-values, as in the

location case. These numbers are listed in

Exhibit 7-5 where we have added a new colum for
GS, the values obtained by swindling rather than
simple sampling. Since the maximum swindle gain
occurs at the Gaussian, we may not have lost too

EXHIBIT 7-5

Adjusted t*

V5 (t7=2.37)
¢ 65 31 3.25 10.1 10.25°
W 2.32 2.35 2,37 2.38 2.53 2.49
Ww 2.31 2.30 2.30 2.36 2.41  2.33
AW 2.26 2.38 2.25 2.33 2.47 2,46
A 2.21  2.41 2.22 2.25 2.35 2.23
SE 10 .04 .06 .10 .14 .10

V7 (£g=2.45)
W 2.62 2.44  2.55 2.58 3.64 3.39
WW 2.61 2.37 2.59 2.48 3.53 3.31
AW 2.53 2.53 2,46 2.53 3.52 3.13
A 2,44 2,55 2.39 2.41 3.28 2.97
SE .13 .04 .03 .13 .28 .08
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much by our mab:L..lty to swindle all of these num-
bers (see section three).

No longer can we say that the values at the Gaussian
are the largest, so perhaps adjustment at the
Gaussian is suspect. However, for V5 we would feel
reasonably happy with ty = 2,37 as an approximate

t-value for SIN1 regression, especially for (WW).

Clearly this breaks down for V7 and CG10.1 and
Cgl0.25 where tg = 2.45 is not adequate. Severe

contamination coupled with a-distorted X-matrix
(high kurtosis) has diminished our hopes for sim-
Ple approximations.

8. CONCLUSICONS

Strictly :.nter'preted our results only apply to the
specific situations and X-matrices examined in
this study. However, we would like to generalize
somewhat. Hill and Holland [7] have shown that
SIN1 is a reasonably good robust regression esti-
mator. We feel that the usual output from the one-
step of weighted least-squares can be used for
inference providing the t-statistic is found using

[n—;EJ degrees of freedom and then divided by the

adjustment factor (.89). If the X-matrix is really
unusual then caution is advised.

We have most often used the above results in a
diagnostic way. The least-squares and SIN1 regres-
sion results are both obtained and then compared

in various ways. - If the confidence intervals are
radically different (or test results reversed) we
explore further, attempting to diagnose the cause
of this instability.

We have left many questions unanswered. We are
examining what happens to our regression results

when n=40. Why [2;R] for degrees of freedam? Why
doesn't some conditional degrees of freedom formula
n

I w, or Z]J:' | work?
i=1 i=1
problem we may have to examine the proposal of
Mallows [10] which attempts to smooth the X-matrix
and reduce its kurtosis.

For the abnormal X-matrix

Finally, there is the question of how these results
generalize to the F-statistics associated with more
complex simultanecus confidence regiocns.
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