ROSEPACK Document No. 2:

AUTOMATING STEM-AND-LEAF DISPLAYS

David C. Hoaglin*
Stanley S. Wasserman**

Working Paper No. 109

COMPUTER RESEARCH CENTER FOR ECONOMICS AND MANAGEMENT SCIENCE National Bureau of Economic Research, Inc. 575 Technology Square Cambridge, Massachusetts 02139

November 1975

Preliminary

NBER working papers aie distributed informally and in linited numbers.
This report has not undergone the review accorded official NBER publications; in particular, it has not yet been submitted for approval by the Board of Dinectors.
*NBER Computer Research Center and Harvard University. Research supported in part by National Science Foundation Grants DCR 75-08802 to the National Bureau of Economic Research and SOC 72-05257 to Harvard University.
$\%$ NBER Computer Research Center and Harvard University. Research supported in part by National Science Foundation Grant DCR 70-03456 A04 to the National Bureau of Economic Research.

Abstract

The stem-and-leaf display is a natural semi-graphic technique to include in statistical computing systems. This paper discusses the choices involved in implementing both automated and flexible versions of the display, develops an algorithm for the automated version, examines various implementation considerations, and presents a set of semi-portable FORTRAN subroutines for producing stem-and-leaf displays.

1. Introduction 1
2. Stem-and-Leaf Displays 2 3
Exhibit 1
Exhibit 1 5
3. How Many Lines? 6
4. What Scaling?
5. A Scaling Algorithm 8
6. Stems, Units, and Leaves 10
7. Some Refinements 11
8. Examples 12
Exhibit 2 13
Exhibit 3 14
Exhibit 4 15
Exhibit 5 16
Exhibit 6 17
18
9. Acknowledgments19
References
Appendix: A FORTRAN Implementation Al
Al. Onganization of the Subroutines Al
A2. Numerical Aspects A4
A3. Calculating the Depths A5
A4. Installation As a Command A6
A5. Error Checking A6
A6. FORTRAN Listings A7

1. Introduction

The stem-and-leaf display has so many uses in everyday data analysis that it should be a natural component of any modern statistical computing system. In implementing it, however, one must make many decisions. For example, how many lines of output should the display occupy? How should it be scaled to give a pleasant and effective appearance? How many different leaf digits should fall on one line -- ten, five, or two? Some of the answers doubtless involve personal taste, so the system must have enough flexibility to produce the display the user really wants. Why, then, should one consider automation, which would seem to deprive the user of that control? There is actually a strong justification for trying to produce automatically a reasonable stem-and-leaf display for a given batch of data. If the system is interactive, the user will usually need to ask for only minor changes in order to produce the finished display. More extensive trial would be easy, but it would generally be unnecessary. In a non-interactive system the much longer delay in receiving the next output places a premium on getting close to the "right" stem-and-leaf display on the first try so that at most one further iteration is necessary. In what follows we discuss several basic rules which lead "automatically" to a reasonable stem-and-leaf display. An appendix presents a set of "semi-portable" FORTRAN subroutines and discusses some of the details of implementation.

2. Stem-and-Leaf Displays

For starting to look at a batch or sample of data the stem-and-leaf display, developed by John W. Tukey $[7,8]$, provides a flexible and effective technique. The basic idea is to let the most significant digits of the data values themselves do most of the work of sorting the batch into numerical order and displaying it. In the simplest form one chooses a suitable pair of adjacent digits in the data, splits each data value between these two digits, allocates a separate line in the display for each possible string of leading digits (the stem), and writes down the first trailing digit (the leaf) of each data value on the line corresponding to its leading digits. (The name "stem-and-leaf" comes about by analogy to espaliered trees or shrubs, which are trained so that their trunks grow vertically against a wall and their branches grow horizontally along it.) An example readily shows how the process works.

Frohliger and Kane [2] report the pH values for 26 samples of precipitation collected at a location in Allegheny County, Pennsylvania, from December 1973 to June 1974. In chronological order the data values are

$$
\begin{aligned}
& 4.57,5.62,4.12,5.29,4.64,4.31,4.30,4.39,4.45, \\
& 5.67,4.39,4.52,4.26,4.26,4.40,5.78,4.73,4.56, \\
& 5.08,4.41,4.12,5.51,4.82,4.63,4.29,4.60 .
\end{aligned}
$$

In this case it is reasonable to split between the second and third digits; for example, 4.57 yields $4.5 \mid 7$. The necessary lines (17 in all) run from 4.1 to 5.7, and writing down the leaves in chronological order gives the raw display on the left in Exhibit l. In the finished display the decimal points have been dropped in favor of a reminder that all data values are in units of .01 , an occasional asterisk indicates that the leaves are one-digit, and a column of depths (which we will shortly define) has been added to the left of the stems. In overall appearance the display is similan to a histogram with an interval width of.l; the leaves add numerical detail.

Exhibit 1

Stem-and-Leaf Displays for Precipitation pH Data

raw	
4.1	22
4.2	669
4.3	1099
4.4	501
4.5	726
4.6	430
4.7	3
4.8	2
4.9	
5.0	8
5.1	
5.2	9
5.3	
5.4	
5.5	1
5.6	2.7
5.7	8

finished

(unit $=.01$)

2	$41 *$	22
5	42	669
9	43	1099
12	$44 *$	501
(3)	45	726
11	46	430
8	$47 *$	3
7	48	2
	49	
6	$50 *$	8
	51	
5	52	9
	$53 *$	
	54	
4	55	1
3	$56 *$	27
1	57	8

A data value can be assigned a rank by counting in from each end of the batch. The depth of the data value is the smaller of these two ranks. Since a number of summary values (such as the median and the quartiles or the hinges) can easily be defined in terms of their depths, it is helpful to present a set of depths with the display. Except for one middle line, the number in the depth column is the maximum depth associated with data values on that line. Thus the depth of 4.29 is 5 . The "middle line" (absent when the batch size is even and the median falls between lines) includes the median, and the depth colum shows in parentheses the number of leaves (in the example, 3) on this line. If the display has been prepared by hand, adding the count on the middle line and the depths on the two adjacent lines provides a simple check that no data values have been omitted. In the example, $12+3+11=26$.

Either display in Exhibit 1 reveals quite a lot about the behavior of the precipitation pH data: a rather flat distribution of values from 4.1 to 4.7 with scattered values trailing off above that to 5.3 and a clump of four values from 5.51 to 5.78. It is worth remarking that Frohliger and Kane give the range and average of their data but do not comment on the distribution of the sample, which hardly lends itself to such a simple surmary and may suggest a mixture of two populations.

3. How Many Lines?

Experience suggests that an effective choice of the number of lines involves the number of data values in the batch as well as the range to be covered. In view of the similarities between stem-and-leaf displays and histograms, we should be able to calculate the maximum number of lines according to a rule given by Dixon and Kronmal [l]:

$$
\mathrm{L}=\left[10 \times \log _{10} \mathrm{n}\right],
$$

where n is the number of data values and [x] is the langest integer not exceeding x . (Interestingly, Dixon and Kronmal based their histogram rule on a suggestion by Tukey!) This seems to give very reasonable values of L over the range $20 \leq n \leq 300$, where almost all applications fall. Values of n smaller than 20 may need special treatment. These cases are also more likely to arise when comparing several batches in parallel stem-and-leaf displays, a situation we would want to handle differently anyway. Batches of 300 on so are usually cumbersome in a stem-and-leaf display, but the rule should still cope with them reasonably well. There is nothing sacred about the constant factor 10 in the definition of L , and further experience may lead to a different value. As an alternative rule, Velleman [9] has suggested $L=[2 \sqrt{n}]$.
4. What Scaling?

Using L as a rough limit on the number of lines in the display, we must now determine the interval of values corresponding to each line. The simple way to do this (implicit in the earliest form of stem-and-leaf display, as in Exhibit 1) is to arrange that the interval width be a power of 10 . This we can easily accomplish by dividing R, the range of the batch, by L and rounding the quotient up (if necessary) to the nearest power of ten. A segment of the stems for such a display might look like this:
and each line would receive leaves 0 through 9 . It soon became clear that the display was sometimes too crowded, having too many leaves per line. Tukey's response was to split the lines and repeat each stem:
putting leaves 0 through 4 on the * line and 5 through 9 on the - line. In such a display the interval width is 5 times a power of 10.

This change made a great improvement, but there were still some cases in which the result was too crowded even in the split-stem form and too straggly in the original form at the next lower power of 10. To cure these troubles, Tukey added the third form, five lines per stem:
with leaves 0 and 1 on the * line, 2 and 3 on the t line, 4 and 5 on the f line, 6 and 7 on s line, and 8 and 9 on the - line. (As a reminder in starting to place leaves it is convenient that the three lettered lines contain leaves whose words begin with that letter.) Here the interval width is 2 times a power of 10 .

5. A Scaling Algorithm

Viewing the three forms together, all we need to do is divide R by L and round the quotient up to 1,2 , or 5 times a power of 10 . This rule of thumb is useful when one is preparing a stem-and-leaf display by hand, but we must formulate it as a specific algorithm for a computer. This is straightforward if we adapt the algorithm of Dixon and Kronmal [1].

Their algorithm, intended for scaling axes in graphs and histograms, uses a set of "round" numbers P_{1}, \ldots, P_{m} such that $1 \leq p_{1}<p_{2}<\ldots<p_{m}<10$. For scaling stem-and-leaf displays we need only $P_{1}=1, P_{2}=2, P_{3}=5$. To fix notation, we let

```
A = smallest value in the batch,
B = largest value in the batch, and
S = scale factor (the interval width)
```

and recall that

$$
\begin{aligned}
& L=\text { number of lines in the display, and } \\
& R=B-A .
\end{aligned}
$$

Thus we want $L \times S \geq R$ with S as small as possible and $S=p_{i} \times 10^{k}$ for some i and k. Like Dixon and Kronmal, we begin by taking $t=\left[\log _{10}(R / L)\right]$. If $(R / L) / 10^{t} \leq P_{3}=5$, we let $k=t$ and find the smallest p_{i} which is at least $(R / L) / 10^{k}$. Otherwise, $k=t+1$ and the desired p_{i} is $P_{1}=1$.

Next we calculate the number of stems actually required for the display and determine whether S must be increased. We easily find that the number of lines actually used is $\operatorname{sign}(B) \times[|B / S|]-\operatorname{sign}(A) \times[|A / S|]+1$ (plus 1 if
needed for the -0 stem). This can exceed L, and if it does, we replace S with the next larger "round" number, increasing k if necessary. This completes the scaling.

6. Stems, Units, and Leaves

In producing the display we must calculate the stems and then separate each data value into a starting part and a leaf. To do this, we recall that all entries in a stem-and-leaf display may be regarded as integer multiples of a power of 10 , referred to as the unit. If we denote this unit by U, we can very easily calculate it from S : When $S=2 \times 10^{\mathrm{k}}$ or $\mathrm{S}=5 \times 10^{\mathrm{k}}, \mathrm{U}=10^{\mathrm{k}}$; and when $S=10^{k}, U=10^{k-1}$.

In calculating the stems (or more precisely, the labels on the lines) we must take into account the special role of zero. We implicitly number the lines of the display in steps of S / U from $\operatorname{sign}(A) \times[|A / S|] \times(S / U)$ to $\operatorname{sign}(B) \times[|B / S|] \times(S / U)$, including -0 if it occurs. We drop the low-order digit of each such number, and when S is 2 on 5 times a power of ten, that digit indicates which of the special labels such as t and - to use for an intermediate line.

Finally we are ready to separate each data value into a starting part and a leaf and collect the leaves on their proper stems. We will generally cut each data value to a multiple of U by simply discarding low-order digits. (This makes it easy to match an entry in the display with its original data value whenever that value requires further attention.) In that integer multiple, then, the last digit is the leaf, and the other digits are the starting part. For example, with $U=.01$ we would cut 2.213 to 2.21 and separate it into a starting part of 22 and a leaf of 1 .

7. Some Refinements

In a sense this discussion has removed the stem-and-leaf display from its natural context, exploratory data analysis. Since resistant analyses (which are little affected by changes in a small fraction of the data) are an important part of the exploratory mode, it is quite unwise for an automated stem-and-leaf display to depend so heavily on the extreme values, A and B. Instead, we should begin by setting aside any serious outliers and basing A and B on those values which remain.

Since the batch will already be sorted (or will be sorted as the first step in producing a stem-and-leaf display), it is easy to isolate outliers. One useful rule of thumb [7] finds the upper and lower hinges (approximate quartiles) and their difference $d H$ and sets aside any data values further than $1.5 \times \mathrm{dH}$ from the nearer hinge. In printing the display we can add the lines "hi" and "lo" beyond the set of stems and list those outlying values.

Another important refinement lets us handle parallel displays (with one common set of stems) for comparing several batches. Here the tentative rule (subject to further experience) is to regard the individual batches as combined into a single batch for the purposes of scaling and forming stems. This evidently provides a set of stems which covers the combined range, and using the total number of data values to determine the number of lines will accormodate moderate shifts from batch to batch. (Large shifts may lead us to line up the batches by subtracting at least a nough adjustment from each.)

8. Examples

A few examples should clarify the suggestions for automating stem-and-leaf displays. We present four which are representative of a broad range of possibilities.

In the first example (Exhibit 2) all steps are straightforward. We can easily round R / L up to give $S=5$ without using logarithms, and the line requirement (10) does not exceed L (14). The display seems quite satisfactory.

If we do not check for possible outliers, the new feature in the second example (Exhibit 3) is the need to increase S from .02 to .05 in order to keep the line requirement within L. The resulting display may seem rather bunched on the stems 23^{*} and $23^{\text {. . A closer look uncovers four possible }}$ stray values at the low end and leads to a somewhat more reasonable display (Exhibit 4). Since the four low values do not stray far, we might also use 15 lines and avoid separating the low values from the rest of the batch.

Exhibit 5 shows how to handle +0 and -0 when the batch contains both positive and negative values. In this case no data values need to be set aside, and it is a simple task to construct the display.

The fourth and last example (Exhibit 6) shows both parallel displays and an obvious outlier. After we set aside the one straying value, the display is reasonably effective, but the straggling behavior of the third batch has clearly taken a toll.

All in all, the present "automated" approach usually seems to produce the stem-and-leaf displays one might prefer after some trial and error.

Exhibit 2

Data (hardness of aluminum die castings [6, p. 42])

$$
\begin{aligned}
& 53.0,70.2,84.3,55.3,78.5,63.5,71.4,53.4, \\
& 82.5,67.3,69.5,73.0,55.7,85.8,95.4,51.1, \\
& 74.4,54.1,77.8,52.4,69.1,53.5,64.3,82.7, \\
& 55.7,70.5,87.5,50.7,72.3,59.5
\end{aligned}
$$

Calculations

$$
\begin{aligned}
& n=30, L=\left[10 \times \log _{10} 30\right]=[14.77]=14 \\
& A=50.7, B=95.4, R=B-A=44.7 \\
& R / L=44.7 / 14=3.19 ; S=5, U=1
\end{aligned}
$$

$$
\text { lines required }=[95.4 / 5]-[50.7 / 5]+1=10
$$

Display

$$
(\text { UNIT }=0.1000 E+01)
$$

$$
\begin{aligned}
& 5 \text { I O123334 } \\
& \text { 5. I } 5554 \\
& 6 \text { I } 34 \\
& \text { 6. I 7yy } \\
& 7 \quad \text { I } 001234 \\
& \text { 7. I } 783 \\
& 8 \text { I } 224 \\
& \text { 8. I 51 } \\
& y \text { I } \\
& \text { 9. I } 5
\end{aligned}
$$

Exhibit 3

Data

$$
\begin{aligned}
& 2.346,2.334,2.365,2.417,2.399,2.354, \\
& 2.339,2.368,2.257,2.358,2.326,2.334, \\
& 2.313,2.298,2.371,2.197,2.378,2.395, \\
& 2.335,2.207,2.398,2.211,2.273,2.213, \\
& 2.330,2.359,2.468,2.352,2.463,2.398
\end{aligned}
$$

Calculations

$$
\begin{aligned}
& n=30, L=\left[10 \times \log _{10} 30\right]=14 \\
& A=2.197, B=2.468 ; R=0.271 \\
& R / L=0.271 / 14=0.0194 ; S=.02, U=.01 \\
& \text { lines required }=[2.468 / .02]-[2.197 / .02]+1=15
\end{aligned}
$$

Since this exceeds L, S must be increased to . 05 .

Display (unit = .01)

1	21.	9
4	22*	011
7	22.	579
15	23*	12333334
15	23.	555566779999
3	24*	1
2	24.	66

Exhibit 4

Data (in Exhibit 3)

Calculations

hinges: 2.313 and $2.378, \mathrm{dH}=.065$
cutoff values: 2.2155 and 2.4755
Set aside $2.197,2.207,2.211$, and 2.213 to get $A=2.257$ and $B=2.468$ with $n=26$ and $L=14$.
$R / L=0.211 / 14=.015 ; S=.02, U=.01$
Lines required $=12$

Display

4

$$
\begin{array}{lllll}
\text { L0 I } & 2.1470 & 2.2070 & 2.2110 & 2.21 .39
\end{array}
$$

($U_{\text {ivil }}=$ U.1000E-01)
5
6
7
3
14
5
11
7
3
2
2
2

	3
22.	9
23	1
T	233333
F	I 45555
G	I 6677
23.	19999
24	I
1	I
-	
S	I 30

Exhibit 5

Data

$$
\begin{aligned}
-1.4, & 1.2, \\
0.7, & -0.2, \\
0.1, & -0.3,
\end{aligned}-0.8,0.4,-1.3,0.5, ~ 0.1,-0.8,-2.6,0.7
$$

Calculations

$$
\begin{aligned}
& n=20, L=\left[10 \times \log _{10} 20\right]=13 \\
& A=-2.6, B=2.3 ; R=4.9 \\
& R / L=4.9 / 13=.38 ; S=.5, U=.1 \\
& \text { lines required }=[2.3 / .5]+[2.6 / .5]+2=11
\end{aligned}
$$

Display

$$
(\text { SNIT }=0.1000 E+00)
$$

Exnibit 6

Data (counties, including independent cities, by region in U.S. states)
Northeast: $8,16,14,10,21,62,67,5,14$
North Central: $102,92,99,105,83,87,115,93,53,88,67,72$
South: $67,75,3,67,159,120,64,24,82,100,77,46,95,254,130,55$
West: $29,14,58,63,5,44,56,17,32,36,29,39,33$

Calculations (scale as one batch)
Hinges: 24 and $88, \mathrm{dH}=64$
cutoff values: -72 and 184
Set aside 254 (Texas) to get $\mathrm{A}=3$ and $\mathrm{B}=159$ with $\mathrm{n}=49$ and $\mathrm{L}=16$
$R / L=156 / 16 ; S=10, U=1$
Lines required = 16

Display (unit $=1$ county)

9. Acknowledgments

The present implementation of stem-and-leaf displays has evolved from earlier one-line-per-stem versions progranmed by Michael D. Godfrey for the instructional computing package SNAP/IEDA on the IBM 7094 and refined by Hale F. Trotter when SNAP/IEDA was converted to the IBM 360. We are also indebted to Paul W. Holland, Paul F. Velleman, and Roy E. Welsch for articulating the needs of a variety of users, to Neil E. Kaden and Virginia Klema for valuable discussions of semi-portability, and to Stephen C. Peters for assistance in testing and debugging.

References

[1] Dixon, W.J., and Kronnal, R.A., 1965, "The Choice of Origin and Scale for Graphs," Journal of the Association for Computing Machinery 12, 259-261.
[2] Frohliger, J.O., and Kane, R., 1975, "Precipitation: Its Acid Nature," Science 189, 455-457.
[3] Hoaglin, D.C., and Welsch, R.E., 1974, "MIT-SNAP, An Interactive Data Analysis System," Sloan School of Management, Massachusetts Institute of Technology.
[4] Ryder, B.G., 1974, "The PFORT Verifier," Software -- Practice and Experience 4, 359-377.
[5] Ryder, B.G., and Hall, A.D., 1975, "The PFORT Verifier," Computing Science Technical Report \#12, Bell Laboratories, Murray Hill, New Jersey.
[6] Shewhart, W.A., 1931, Economic Control of Quality of Manufactured Product, D. Van Nostrand, Inc., Princeton, New Jersey.
[7] Tukey, J.W., 1970, Exploratory Data Analysis (Limited Preliminary Edition), Volume 1, Addison-Wesley, Reading, Massachusetts.
[8] Tukey, J.W., 1972, "Some Graphic and Semigraphic Displays," Statistical Papers in Honor of George W. Snedecon (T.A. Bancroft, editor), Iowa State University Press, Ames, Iowa.
[9] Velleman, P.F., 1975, "Interactive Computing for Exploratory Data Analysis I: Display Algorithms," American Statistical Association: Proceedings of the Statistical Computing Section, 1975, American Statistical Association, Washington, D.C.

APPENDIX

A FORTRAN Implementation

To illustrate various aspects of automating stem-and-leaf displays, we have developed a set of "semi-portable" FORTRAN subroutines. ("Semi-portable" implies that it should be possible to compile the subroutines under many different versions of FORTRAN, but that a few machine-dependent details remain. We have used the PFORT Verifier $[4,5]$ to check adherence to PFORT, a large, carefully defined, portable subset of American National Standard FORTRAN. Only one departure from PFORT remains: for clarity we have retained subscript expressions involving more than one integer variable, as in "N-I+1".)

In addition to presenting the FORTRAN listings for the subroutines, this appendix briefly describes the subnoutines and their roles in producing the stem-and-leaf display, discusses machine-dependent numerical aspects of the algorithm, explains the calculations of the depths printed with the display, reports on how stem-and-leaf has been installed as a command in a statistical computing system, and reviews the points at which error checking is desirable.

Al. Onganization of the Subroutines

In this implementation the process of producing a stem-and-leaf display for a single batch of data has been modularized into four components (SLDSPY, SLSCAL, SLLEAF, and SLPRNT) and two utility routines (SLSORT and IFLOOR). This particular arrangement provides the flexibility for pre-chosen scaling and for parallel displays using a common set of stems.

SLDSPY (sequenced SLAB) is the driver routine. It takes as input the batch of data and the necessary scratch storage, and it controls the
succeeding steps in producing the display. After calling SLSORT to sont the data, it checks for possible outliers and withholds them from the display. (Outliers are identified occording to a simple rule of thumb based on the "hinges" (approximate quartiles) of the batch: set aside any data value further than I step beyond the hinge, where a step is 1.5 times the difference between the hinges.) SLDSPY then calls SLSCAL to scale the display, calls SLLEAF to lay out the stems and calculate the leaves, prints a heading and the low outliers, calls SLPRNT to print the display, and finally prints the high outliers. The stem-and-leaf display is communicated from SLIFAF to SLPRNT in four armays: ISTEMS and LABELS together determine the starting part or stem to be printed on each line, LEAVES contains the single-digit leaves, and ILFCNT gives the number of leaves on each line of the display. Using this structure, one could display several batches side-by-side on the same page by having a common set of stems (in ISTEMS and LABELS) and one set of leaves (as in LEAVES and ILFCNT) for each batch. In practice it usually suffices to use a common scaling for the batches and print the displays one after another, letting the user cut and paste to achieve the desired effect.

SLSCAL (sequenced SLAD) uses the Dixon/Kronnal scaling algorithm to set the interval of values corresponding to all lines in the display at 1,2 , or 5 times a power of 10 .

SLLEAF (sequenced SIAF) handles the calculations involved in setting up the starting parts (in ISTEMS and LABELS), converting each data value into a leaf, and placing that leaf on the proper line. The statements from line SLAF1210 to line SLAF1540 may need some explanation. Basically, the statements involving stems implement the implicit numbering of lines in steps of S / U from $\operatorname{sign}(A) \times[|A / S|] \times(S / U)$ to $\operatorname{sign}(B) \times[|B / S|] \times(S / U)$, as described in the section "Stems, Units, and Leaves". The built-in

FORTRAN function $\operatorname{INT}(x)$ has the same effect as $\operatorname{sign}(x) \times[|x|]$, and the variable IS has the value S/U. The statement "KSI = KSF / 10" discards the low-onder digit of KSF and puts the digits of the stem in KSI. That low-order digit is recovered and saved in LAB. If the lowest data value in the display is negative, each negative stem is shifted down by 1 to allow for the stem "-0", which is represented by the value -l in ISTEMS. When the number of lines per stem (equal to $10 /$ IS) is 2 or 5 , this representation of negative stems actually introduces a jump in the implicit numbering scheme, and the test for $\mathrm{KS}=-10$ at line SLAF1530 resets KS so that the next iteration will continue with the stem "+0". The role of the factor "ONE + EPS" in calculating stems and leaves is discussed in the next section.

SLPRNT (sequenced SLAH) prints the numerical unit used in the display and then prints the display, accompanied at the left by the column of depths. More details on these depths are given in a later section. The parameter LINWID (passed from SLDSPY) provides flexibility in producing output for various devices (including interactive terminals and line printers) with different line widths. The value of LINWID is the number of spaces in the output line; if it is less than 24 , there will be no room for any leaves, and a value greater than 123 may produce incorrect output (because FORMAT statenents provide for at most 100 leaves per line).

SLSORT (sequenced SLAJ) is a conveniently available and fairly straightforward sorting, routine.

IFLOOR (sequenced SLAL) is simply the greatest integer or "floor" function required by SLSCAL. (If desired, it could readily be placed in-line in SLSCAL.)

A2. Numerical Aspects

In implementing a semi-graphic technique one might expect to have no difficulty with numerical details. As sten-and-leaf algorithms illustrate, matters are not quite so simple, but fortunately the numerical considerations are few and straightforward. In a naive algorithm the most likely indication of difficulty is the appearance of a data value as an incormect leaf, possibly on the wrong line. For example, a data value of 6.2 might appear with a leaf of l in the computer-produced display. The reason is that most computers represent numbers in a "binary" form (the common bases are 2 and 16) with a fixed number of digits. Since .2, for example, has a non-terminating binary expansion, it must be rounded to fit into the fixed-length computer word, and the result is a number slightly less than .2. The scaling calculations will not necessarily correct for this, and the leaf may appear incorrectly as 1 .

Since the floating-point representation error takes the form of a relative error and causes difficulty in calculating leaves only when the error reduces the magnitude of the data value, we use the factor "ONE + EPS" in SLSCAL and SLLLEAF to compensate for it. The machine-dependent constant EPS is a small positive number chosen to allow for representation error and the effects of succeeding calculation. For single-precision arithmetic on the IBM 360 or 370 the value EPS $=10^{-6}$ is a conservative choice which allows for an error of 1 in the next-to-last of the 6 hexadecimal digits in the floating-point fraction ($16^{-5}=2^{-20} \simeq 10^{-6}$). For a double-precision implementation on the same computers the corresponding value would be $E P S=2.5 \times 10^{-16}$.

Another numerical problem can arise when all data values agree in their first several digits. In this case the digits which determine the leaves may be affected by representation and roundoff errors, and a jumbled sten-and-leaf display may result. This is entirely a consequence of the finite-precision floating-point representation, and the best solution is for the user to drop the leading digits conmon to all data values before entering the data into the computer (otherwise the danage may already have been done). A conservative test for this problem is (in the notation of Section 5) to ask whether $S / \max (|A|,|B|)<10 \times E F S$. If so, it is desirable to give the user a warning.

A3. Calculating the Depths
The information necessary to produce the column of depths is readily available by summing the entries of the armay ILFCNT, and the calculations are handled in lines SLAH0920 to SLAH0940 in SLPRNT. If we let k_{i} denote the cumulative count of data values up through line i and n_{i} denote the number of values on line i (that is, $n_{i}=\operatorname{ILFCNT}(i)$), then the depth to be printed for line i is the smaller of $k_{i-1}+n_{i}$ and $n-k_{i-1 .}$. The exceptional "middle" line is defined as having $\left|\left(n-k_{i-1}-n_{i}\right)-k_{i-1}\right|<n_{i}$ (that is, the count above the line and the count below the line differ by less than n_{i}-- it is straightforward to show that this happens on at most one line), and the number printed is n_{i}. To avoid using additional FORMAT statements, it is convenient to print the "depth" value on the "middle" line without parentheses and also to print the value in the depth column when the line has no leaves.

A4. Installation As a Command
The subroutines we have developed are the basis for the STEM command in the instructional package MIT-SNAP [3]. In designing such a command it is important to offer a high degree of automation (so that beginning students need not grapple with a long list of options) as well as considerable flexibility (so that more experienced users can produce the displays they want). Thus in MIT-SNAP the simplest request for a stem-and-leaf display produces the automated version we have described, including lists of outlying values at each end of the batch. Optional parameters enable the user to control

- the maximum number of lines in the display,
- the basic unit (power of ten) for the data,
- the number of lines per stem (only 1,2 , and 5 are permitted),
- the cut-off values at each end (data values outside these are listed separately),
- the forced inclusion of all data values in the display, and
- the use of a common scaling for several batches.

Velleman [9] has described some alternative choices and options as used in LEDA.

A5. Error Checking

In preparing a program for general use, one should check for input which would cause errors or lead to garbage as output. An "automated" stem-and-leaf-display routine can avoid most problems by leaving few decisions to the user, but a few checks remain to be made:

- Is the number of data values too small ($n<4$)?
- Is the working storage (ILFCNT, ISTEMS, LABELS, and

LEAVES) large enough ($\mathrm{M} \geq$ MSTEMS) ?

- Is the output line too narrow (LINWID < 33) or too wide (LTNWID > 123)?
- Are the largest and smallest data values to be displayed different (XHI $\neq \mathrm{XLO}$)?
- Does the data have so many significant digits that the leaves are likely to be affected by roundoff error?

The parameter IERR, returned by the driver routine SLDSPY, indicates which (if any) of these difficulties has occurred.

Anyone who uses the component subroutines to get a display different from the automated one is expected to assume the responsibility of checking for errors. In MIT-SNAP the STEM command provides much greater flexibility and checks its optional parameters for validity.

A6. FORTRAN Listings
 08108875
02108875

$$
\times N
$$

[^0] co

 uscograis
uncugris

 SLABOZRO
SLARO290 SLABOZOO
SLABO SLABO310
 SI ABO330 SI $A B O 340$
SI $\triangle B \cap 350$ SI $\triangle A B O 350$
SI $A B O 360$ SI $\triangle B O 360$
SI $\triangle B O 370$ u8とugots

REAI DH，FI，FII，HI，HU，SCAIF，TEN，THREFH，TWO，UMIT，XHI，
INTEGER N，M，IFRR，ILFCNT（M），ISTFinS（AG），LAREIS（M）．

RFAI ＊＊＊＊＊IOCAI VARIARIES： ＊INTEGER I IHI，ILOW ＊NSTFMS，NDMVAI．ILOW，INUNIT，IS，J，Jl，J2，K，MSTEMS，NA，

$$
\begin{aligned}
& \text { REAI DH, FI, FII, HI_, HU, SCAIF, TEN, THREFH, TWO, UNIT, XHI, XIO } \\
& \text { *****FUNCTIONS: } \\
& \text { INTEGER INT, MINO } \\
& \text { RFAI AI-GGIO, FIOAT }
\end{aligned}
$$

THIS SUBROUTINE PREPARFS AND PRINTS A STFN－AND－LEAF DISPIAY FOR \triangle BATCH X OF SIZF N，USING THF ALGORITHM DISCUSSED IN（1）．
STEM－AND－LEAF OISPLAYS $\triangle R F ~ D F S C R I B E D ~ I N ~(2) . ~$ \triangle BATCH X OF SIZF N，USING THF ALGORITHM DISCUSSED IN（1）．
STEM－AND－LEAF OISPLAYS $\triangle R F ~ D F S C R I B E D ~ I N ~(2) . ~$

：：：：：：
Q
 OA INPUT： x CONTAINS THF FIEMFNTS DF THE RATCH TO RE DISPLAYFO IN A
STFM－AND－GEAF DTSPIAY．DNIY THOSF DATA VAIHES IYING QETWEEN THF UPPFR ANG LOWFR FFNCES OF THE BATCH WIU BE
MSEO IN THF DTSPLAY．VALUES DUTSIDE THF FENCES ARE PRINTED SEPARATELY ON EITHER THE＇HI＇OR＇LO＇DISPIAY ITNES．
＇I INBII MIIST RE SET TO THE PAGE WIDTH OF THE PRINTED RITPHIT．
 ？
SLARO4 30

SIARO4hO
S！ARO47：
SI ARO4R SI AKO4R
 SI ARC5no

 ひわらいをण75 SI．\triangle ROF5 50 SI $\triangle R O 5 G O$
Si $\triangle R O 570$ U8GuHVIS
$0 \angle G U 4 \nabla$ IS ungutivis
u8sung is Slarrgon SIAROKIO SLAHCR SI O SI．\triangle SOG 30 UカソUHV Is USYIHV Is
 SI．AR M 70 उ8ystiv75 voy048 is jul．zeriv is
UTLUAD is uくLOHVIS Uとくいがis ひちLU甘VIS 09LUYロIS ULLU甘VIS SLAQO78R
SLABO79O
 S＇ABOR10
SLABCR

BN IllTPIT：
ILFCNT IS AN ARQAY OF LFNGTH M．IT MIIST RF DIMFNSIONEN
5 I．FAF DIGITS TOQ NFAR MACHINF RGIMIO－GFF GFVFL．
TFMDIRARY CTORARF：

 TSTFMS IS AN ARRAY IHF IFMGTH WV．IT MIIST HF DIMFNSIONFD － STARTINF PARTS TIR STFAS FIR THF OISP！AY． IERR CONTAIMS AN JNTFGFR KFTWFFN O ANA 5 AAT TS IISFO FOE

 RY SI＿ISPY． DFTERMTNFS THF SCALY FACTOR ANO IINIT FOIR THF DISHLAY．
 SI＿PRNT HANIIFS DISPIAY PRINTING． $18 J 5$

IINENSI

$$
\begin{aligned}
& \text { TN THF CAI'ING DROGQAV. IFAV:S IS THE ARQAY OF } \\
& \text { IFAVFS FMQ THF DISPIAY. }
\end{aligned}
$$

\bullet
PRINTS TH二SE
－saniva THF IISPLAY．
 INSTAL－ATIMA ANO NAY RE IFSS THAN Q9I．
gnityum

RSITY
WRITTEN RY STANIEY WASSFRMAN AND DAYIO HOAGL IN（NBFR COMPIITFR
RESFARCH CEMTER） 10 DFF，EMRFR 1974.
＊＊＊＊＊RFFFRFNCES：
（1）HMAGIIN，H．C．ABN WASSERMAN，S．S．，DAUTHMATING
$\stackrel{y}{x}$
IES．

0LटIGVIS
SIAB1280 SI $A B 1>90$ SLAR1300
SLARI310 $0<\varepsilon l \forall \nabla$ is
ulelyロis
 SL $\triangle A B 1340$
SL $\triangle R 1350$ 0ッと18ロプ SLAR1370 SLAB1380
 OUカIとロプ

 $0.5 \operatorname{cig}$ IS
ussigutis $0 \angle 518875$ 08 glgois $0091 G V 7 S$
005 IGVTS 0 uylyvis
00914875 $0 \varepsilon g t g \theta^{\text {is }}$
$0<y t g \sigma^{\prime}$
 0 Sylyvis 0yyldots

SLART110

[^1]
12

$\because \frac{\Perp}{\square}$
-

SI－ 400010
 い
 SLADOOGO
SLAAOIOO OZlUOV7S
OTIOURIS $0 \rightarrow 100 \nabla 75$
UEIUOV7S OGTOOV7S
 0とてひは「is
 SLADO2
SLADOP90
SLADO300 ul eunatis
$00 \varepsilon u 0 \nabla$ is
 SLAOO330
SLADO340 SLAOO350 UYとOMV is ubeugiais
08 eucio is
$0<$ eugais

 ＊＊＊＊＊PIIRPOSF：
 STFM IN A STEM－AND－I＿FAF DISPI＿AY．

＊＊＊＊：PARAMFTER OFSCRIPTIGN： TERR IS IISED RY THF SIJBROUTINE SIGSPY FIR FRROR CHECKING． ON
 NSTEMS CONTAINS THF EXACT NHWRER IIE I－INFS．

SI．ADO4 30 SILADO440 SI ADO 450
SI $A \cap O 460$ SL－ADO470 08 かutiv 75 comuera is 005000^{15} us su00 is 0 og guatis
0 egouvis St．AnO540 $05 s u 0075$ SLADO560 SLADO5 70 08Gu00 is 00y000 is SI $\triangle D O G O O$
SI $\triangle D O G I O$ SLADORzo uعyuor 75
 uguouris
usyucer is 029008 is
$09900 \theta^{\text {is }}$ 08900875
02900875 SLADNG90 SLADO700 UCLUGV7S
UILUODIS uelugi is OnLu时is usluar is $0 \angle L U G O$ is
u9LUGO I
 oblucir is 0080018 is
utgucivis uquveris

SISCAI．IS CALIED FROM THE SIRRDUTIME SLISSPY．THE CAICOII．ATIMAS

 XHI SHOIIID RE DISTINCT FROM XIO，AS THE SHBROUITINE COMPUTES THE RASE in IMGARITHM OF THFIR OIFFFRFNCF． IS JH1 J Jivilidw THF

THF Al GORITHM USFN IN FINDING THF SCAIE FAC，TOR IS FGUMO IN（1）．

＊＊＊＊＊APPI ITATION AND USAGF RFSTRICTIGNS：
＊＊＊＊＊AI GIRTTHM NOTFS：

 SHIUNO RF CHANGEO FRGM IF＇TO ID＇FIRR DMIRIE－PRFCISION C，OMVERSION．

 IIT ALIDWS RAUGHI．Y THF IAST FGIJR RITS IF THE FIGATING POINT FRACTION TA BF $\triangle F F E C T F O$ BY IRFPRFSENTATION FRRMRI．） ；
> （STALF $/$ MAX（ $A R S$（XHI），ARS（XIO））SHOUL －Sdy＊Ul Miv1
：：

MOIRIG PQFF，TSTIN MY，FPS，FIVF，IJNF，RLOGT，RYGGS， ＊\quad CCAIF，T，TEN．TWH，IJNIT，XHI，XIN，Y，JFRO

 ＊＊＊＊＊RFFFRFICFS：
（I）DIXDN，怘怘

COP	DOURIE PRECISION ABS, \triangle LOGIO, AMAXI, FI.OAT
¢	
CDP	$\triangle R S(D Y)=$ OARS (DY)
r.fp	$\triangle I O G 1 O(D Y)=$ DIOGID (DY)
r,	$\triangle M A X 1(\cap Y)=$ DMAX) (חY)
C,OP	INT (DY) = J1)TNT (DY)
CпP	FIGAT (I) = DFLOAT (I)
r,	
r	:: :: :: : CONSTANT INITIALIZATION :: :: :: : : TEN = 10.0FO
	FIVF $=5.0 \mathrm{FO}$
	$\mathrm{TmO}=2.0 \mathrm{EO}$
	ONF $=1.0 \mathrm{O}$
	ZFRI $=0.0 \mathrm{~F} \cap$
r.	: : : : : : SET FPS, MACHINE-OEPENOFNT 「OLFRANCF : : : : : : : :
	FPS $=1.0 \mathrm{~F}-6$
r,	
	RI_ORT $=$ ALOGIO (TWO)
C.	
r	
C,	
r	
	$T=A I M G I O(X H I-X I O) /$ FIGAT (MSTFWS) $)$
r	
	$K=$ JFI_IOR (T)
	$Y=T-F I \cap \Delta T(K)$
r	
\bigcirc	: : : : : : : :
r C. ${ }^{\text {c }}$,	
r	NEXT CAI.CIHATF SCAI.F, IHNIT, ANS IS, THE CORRFCT
r	MU.TIPIF IF UNIT TO OETFRMINF THF VALUF OF EACH LINE
$\stackrel{C}{C}$	
Γ	: : : : : : :
	IF (Y - 'F. R1@G5, Gח Tn 10
	$I S=10$
	GO TO 2 n
	$I S=5$
	IF (Y , IGE RIGG?) $T S=$?
	IF (Y .GT. $7 . E R O, ~ G O T O 20$

50 IF（ $(S C A I F / \triangle M A X 1(A B S(X H I), A B S(X L O)))$－LT．TEN＊EPS ）
\quad IFRR $=5$
RETIJRN
$:::::::$ I $: \triangle S T$ LINF OF SISC.AL $:::::::$
FN!
$0\left[00=\nabla^{-1} S\right.$
 Oعluコロ IS：
Oくluョロ iS
 $0 L C U-1 \nabla$ IS
UUCO SLAFO220
SI $\triangle F O 230$ $A F \cap>40$

 SI－$\triangle F \cap>80$
 c
c
c
c
\vdots
\vdots
\vdots
\vdots
 SI \triangle SO 330 UGという
しゅといこも $A F \cap 360$ ©とというV
$0 \angle \varepsilon \cup う V$
 SI $\triangle F \cap 400$

[^2]
IIN OUTPIIT:

[^3] I_FCNT IS $\triangle N$ ARRAY ITF IENGTH NSTEMS. IT CONTAINS THF NIARFR OF I.EAVFS ON FACH LIMF GF THE NISPIVO HOW THF IFAVFS

SI＿AFI 270

 $\left.\begin{array}{l}c c \in c \in c c c c c c \\ c \in \sim \\ s \\ s\end{array}\right)$ $01-1-9 \nabla T S$
$009 T-15$

usylavis $U L Y i \neq V$ is
$u 9+I \neq V$ is

\bigcirc
 FNTRIFS IN THF ARRAYS JSTEMS AMIS I ARFLS，BY TNCRFMFNTTNO FHRIRS STFN AMI ：ARFL．

> : : : : : : : :

 PI ACFS THFW OA THF CORRFCT LINF IIF THF OISPI＿AY RY AO．JUSTING IIFONT．
：：：：：：：：
$0]=1010$
$1+10=10$
IION＋
$:::::::$
$-\infty$
-
\sim

SLAHOOIO SLAHOO20
 usuutivis SLAHONGO SLAHOOTO
SLAHOOBO
SI．$A H O R G O$ SLAHOIOn
SLAHOIIn UZIUHV IS
ulluHVIS SURROUTINE SIPRAT（IIFCNT，ILOW，IOMNIT，ISTFNS，IABFIS，IFAVFS，
＊I INHIO，N，MN．NSTFMS，IJNIT）
＊
：： SLAHOL40
SLAHO150
 SLAHO1 0
SLAHO180
SLAHOJ90
SLAHO200
SLAHO210
SLAHO220
SLAHOR30
SLAHOP40 OqCuntis 0
0
n
$\frac{1}{1}$
\vdots
\vdots
\vdots
 OUとUHV IS
UOCUHDIS SL $\triangle H O 310$
SL AHOZ

 CqとuHz is oleuntis
 SLAHO4OO OCみUHV is
ソlワロサロ is

 SL $A H O 440$
SI AHO450
SI AHO 460 SL AHO 0460 SIAHO470
SLAHO480 06ャロHロ75 c
c
s
$\frac{1}{1}$
$\frac{1}{\Delta}$
$\stackrel{1}{v}$

 utsurg is ossumbis ugsurb is
 08GUHV IS u090HO is SLAHOGIO
SL AHOG 0 Q90HB Is
0290 HV is
 asquHz7s 0990 HD 75 SL $\triangle H 0670$
SL $\triangle H O 680$ 00 090 HO IS
 SL $\triangle H 0740$ SI $A H O 750$
SI $\Delta H O 760$
 U8 LUHO IS

 oz80hatis uع8UHVIS

UG8UHVIS O98UHD 15
 SLAH 1070 SLAHIORO SLAHIOQ
SLAHIIOO SLAH11On
SLAH 1110
 UGIIHVIS
UमIIH甘 IS
UEITH甘 IS
 081 IHD 15
 vúlHD is

 $\stackrel{\circ}{\circ}$

		－
		\cdots
－－－		－
－rmmm		＂
ワツゅ『ワ		\cdots
二心こ心		\because
ここうこう		\cdots
$\rightarrow-\infty-m$		－
		－
		z
		\checkmark
		0
C 0		\cdots
1 T 1		\sim
		4
$\cdots \cdots$		－
$x \times \times \times$	－	$\underline{4}$
	－	Z
$--r$	E	\leftharpoondown
	c	－＇
is is 5°	－	\vdash
ートツぃ		\sim
	$\stackrel{*}{*}$	¢
－．\cdot ．	x	－＇
$\times \times \times \times \times$	\pm	
$-\Gamma-r$	\bigcirc	
－－－	－	\because
$-\vdash \vdash \vdash \vdash$	－	－．
	$<$	－
	$\underline{3}$	\cdots
$\underset{\sim}{\underline{Y} \cong \cong \underset{\sim}{\square}}$	区	\because
い $14 山$	1	－

SIIRROUTINF S！SORT（VI，N）
＊＊＊＊＊PARAMETFKS： ＊＊＊＊＊PARAMETFKS：
INTEGER M

REAI V1（N）
＊＊＊＊＊！ICAI VARTARIFS：
INTFGER I，J，K，I．，M
RFAI．X
＊＊＊＊＊FUNCTI INS：
NOMF
 outuratis SLAJO110
SIA．JO120
SIAJO1 30 SLAJO140 SLAJO140
SLAJO150
SLAJO160 u9turvis SLAJOI7O
SILAJOLBO G6T0rロ is SLAJO2OO
SLAJO210 ozcurv7s otzorbis
oとcorvis
oz Curvis og Zurvis
useurais us Curbis
ulcurb is 06eun告 uocurais
ubeurais uleura is SLAJ0320 SLIAJO330
SIAJO340 SIAJO340
SI＿AJO350 ogeorois uleuro is ט8をurロ7s
 uthurvis いぐったロ75 ：：： ＊＊＊＊＊PURPOSF： THF SIIRROUTINE PFRFORMS A SHFIG SIIRT．THIS AIGORITHM IS TAKEN FROM（1）．

$$
\approx * * * * P A R A M F T E R \text { IIFSCRTPTTON: }
$$

ON INPUT:

.

SI－AJOOIO
uluu゙ロis ocu
 SLAL On50
SLALOOGO
41.0060 ALOOBn
AI．nח90 000_{0} IV

0600 iv ， | c |
| :---: |
| c |
| c |
| c |
| -1 |

 OLIGTV7S 00107875
$08 t 07875$ 00207875
00107875 Ul 2010 IS ソくくいーラーラ c
n
$\stackrel{c}{n}$
i
 09てい7ロ7 LAI n 270 0820787 $A L .029 n$
$A I-0300$ $41-0300$ $c c$
-1
c
ci
in uとといーロ ひヵと．0Tロ75 0รとU iจ TS UYとU1ロ15 $S L A L O 360$
$S I-A L O 370$
 SI．AL－n39n
 c
0
\vdots
\vdots
$\frac{1}{a}$
\vdots
\vdots

[^4]
c.
c:

[^0]: 号

[^1]: (1RIT T)
 (1IMい

 $$
 \cdot \exists 700 \mathrm{~S}
 $$

[^2]:

[^3]:
 SIIFAF IS CAItFC RY THF SIIRROIITINF SIOSPY. IT IISFS THF RATC.H OF
 SC. $I E E$, AND IINITI TO PRTIDIICF THF STEMS, IARFIS, AND SI MRMT FOR

 米米:*AIGORTTHM NOTFS: COIUMNS WII HFID THF USER IN CONVERTING THF ROUTINF FROM SINGLF TO NOURIF-DRECISIIN. 'RFAI' DFFINITIOY CARDS MIST RE REMUV-I.

 IN ADOITION, AIL CONSTANTS INITIAIIZEO IN THF SUZROUTINF SHCHILD RF C.HANGEN FRGM 'E' TU UU' FUR DOUBLF-PDFCISIOAI CRIVVERSION.

[^4]:

