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Abstract •
In some applications of the di stributed lag model, theory ruires that
all lag coefficients have a positive sign. A distributed lag estimator
which provides estimated coefficients with positive sign is developed
here wi-ich is analogous to an earlier distributed lag estimator derived
from "othness prior s" which did not assure that all estimated coef-
ficients be positive. The earlier estimator with unconstrained signs
was a posterior mode of the coefficients based on a spherically normal
"smoothness prior" in the d+l order differences of the coefficients.
The newer estimator with constrained sign is a posterior mode of the
logs of the coefficients based on spherically normal "smoothness prior"
on the d+l order differences of the logs of the coefficients. The
meaning of both categories of prior is discussed in this paper and
they are compared to prior parameterizations of the lag curve. Both
varieties of "smoothness prior", in contrast to the parameterizations,
allow the coefficients to assume any "smooth" shape subject to the
sign constraint. The sign-constrained estintor has the additional
advantage that it easily forms asnptotes. Moreover, the sign con-
strained estimator is easily implemented. The estimate can be obtained
by an iterative procedure involving regressions with dumiiy observations
similar to thnse used to find the unconstrained sign estimator. An
illustrative example of the application of both estimators is given
at the end of the paper.
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I. Introduction

Linear distributed lags are widely used in econometrics to model

relationships between economic variables when the relationships

are not well described in terms of a simple correlation between

contemporaneous values of the variables but are rather distributed

over time. Typically the response of an economic variable y to

variations in another economic variable x may be sluggish and delayed.

For instance, a response in terms of personal consumption expenditure

(y) to government policy which influences disposable personal income

Cx) may be felt for a period of years following the policy action.

In the absence of a theoretical structure for the relationship, it is

often valuable to assume that it has a simple linear form.

A tine series y at time t is said to follow a 'tlinear distributed

lag" on another tine series x if:

y .E . x . + c (1)t 1o 1 t-i t
where the . are constant coefficients (which will have to be estimated)

1

A is the "lag length" and is a stationary stochastic process with

zero mean and independent of x. In this paper we will be concerned with

the question: how can we represent our prior knowledge concerning the

vector of distributed lag coefficients iO X-l? Since the distributed
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lag model has many parameters, the representation of this prior knowledge

is an essential element of our modeling. A number of parametrizations

or prior distributions has been suggested for economic applications

arid we will discuss their meaning. In particular, we will discuss a prior

distribution on which we call "normal smoothness priors" (Shiller [1973])

and will develop a variant of it which we call "log normal smoothness

priors". These priors can be used to derive estimators of the coefficients

which have desirable properties. The new prior yields an estimator which

has the property that all the ., iO, A-i, are specified to be greater

than zero. The earlier prior yields an estimator with unconstrained

sign.

We will also present here an illustrative example of an estimation

problem using the constrained sign estimator as well as the unconstrained

sign estimator.
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II. The Estimation Problem arid Traditional (Parametric) Approaches to it

The literature on the estimation of distributed la is very extensive

since it is a fundamental problem for econometric modelling. We cannot

do justice to the litrature here. The reader is referred to two articles

which survey the literature: &i1iches [1965] and Sims [1974]. However,

we do wish to make sane comparison between the traditional parameterizations

and a Bayesian approach with regard to their assumed prior knowledge.

The term "distributed lag" in economics we first coined by

Irving Fisher in the 1920's who used this model to represent the response

of interest rates to inflation rates. The distributed lag model may also be

called a "linear transfer function" model or "linear filter" model. Such

linear model have been used extensively in many branches of science and

engineering. What distinguishes our econometric problem from these other

applications is just the nature of the vague prior knowledge concerning

the coefficients coupled with the shortage of data available in most

economic applications.

When the relation (1) is structural (i.e. will continue to hold even

after policy makers interfere with x) then we generally expect the lag

coefficients to trace out (if plotted against i) a ttsimplett or "smooth"

curve. Given that (1) is a structural relation, then we can assess

our prior beliefs regarding the by asking what would we expect about

the result of an experiment in which x0 is given a unit shock by policy

makers without changing x in other time periods. The increment in y
caused by the shock will be . If the structural relation from x to y

is a sluggish one, we would expect the curve will he a smooth one which



tails off for high t. We may not, however, wish to rule out the

possibility that the curve may be bijrodal or have negative values over

some interval, etc. The minimal kind of prior Imowledge that we

generally will wish to assume is that the curve is probably fairly

simple.

Sims (1974) has emphasized that if a random economic time series

is projected on current and lagged values of another time series

there is no reason to expect a "smooth" distributed lag even if the time

series themselves are smooth. This should caution those who estimate

distributed lags in cases in which there is no theoretical structure.

However, cases in which (1) is likely to be useful for policy purposes are

likely to be confined to those cases in which (1) in a

relationship with a simple, stable form.

The problem is to estimate . iO, A-l given n observations of y,

;-+2 and given a matrix X whose coluirns are curTent

and lagged values of x, X. .x . . Then we may write:
ij t—n+i-j+1

Y=X+ (2)

where iB is the vector o'l' xa) and c is spherically normally distributed

with precision h (i.e. with variance cY2l/h) and is independent of x. The

likelihood function of is then:

exp(— h(Y-X)'(Y-X)) (3)

The maximum likelihood estimate of is then the ordinary least squares

estimate
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The problem with the maximum likelihood estimate is that it is

not based on any (proper) prior knowledge regarding the coefficients.

Since economic time series are usually short and X exhibits multicollinearity

the problem is significant. If the values are plotted against i,
the shape one typically gets in jagged and erratic, with coefficient

frequently changing sign.

The simplest way to represent the assumption that the coefficents

lie on a smooth curve is to parametrize the , 1g(i,a,b,c,..) and

to reduce the problem to the estimation of a smaller group of parameters

a, b, c,. The most popular such parametrization is that proposed by

A].nion [1965], in which the f3 are assumed to lie on dth degree

polynomial in i. Thus, Ay where A is a matrix with d+l independent

coluims whose 1th element is given by a polynomial in of degree d

or lower. The constrained maximum likelihood estisrte a of is then

The estimates of will if plotted against then

lie on the familiar class of polynomials (a straight line if thi, a

parabola if d2, etc.). While the coefficients are assured a more simple shape,

they are probably constrained too much by this procedure. For instance,

the coefficients cannot then "tail off". A polynomial can approximate an

asymptote in a region only by "oscillating" around it, the number of

slope changes limited to d.

The Almon procedure can easily be improved by substituting a different

matrix A. Any parametrization of which is linear in the parameters

i.e. =Ay can be estimated as easily. For instance, piecewise linear

distributed lags have been thus implemented. An improvement on the A]on
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procedure would clearly be to assume an A matrix which can more easily

produce as>miptotes. We might hypothesize an A matrix whose columns

consist of negative powers of i, for instance.

While such linear parametrizations may be convenient and useful,

they have a united ability to represent prior information. By setting

3=Ay' where A has m independent columns, we constrain the coefficients

to lie on an (mt) order linear manifold. There is no linear manifold

which well represents the kind of prior }iiowledge we have regarding the

coefficients. This kind of constraint always allows the coefficents

to change sign m-l tines or to fit rn-i "outliers". We cannot prevent

erratic shapes without keeping rn very small, in which case the lag has been

constrained to lie on an elementary class of shapes.

Other parametrizations which are nonlinear have been suggested

which are less convenient computationally but are in some cases more

accurate as representations of prior knowledge. These include Koyck's

geometric lag and its generalization the rational lag of Jorgenson which

has a rational generating function,and Solow's negative binomial distributed

lag.

Some of these parametrizations (e.g. the rational lag) may create

problems because they do not prevent certain inprobable lag structures and

make assumptions about the tail of the lag distribution (for which the

data may carry no information) which do not have any intuitive economic

interpretation. When one uses the rational lag parametrization it is often

found that the estinated lag oscillates in sign or explodes rather than

tails off for high i. Before using any parametrization, one must always

ask what the constraints mean in economic terms and whether these constraints

are appropriate for the application.
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III. Bayesian Approaches to Distributed Lag Estimation

An alternative approach to distributed lag estimation is

a Bayesian approach which uses probalilistic prior information rather

than parametrization (see e.g., Learner [1972], Cleveland [1974],

Shiller [1973]): This approach has the advantage that we do not impose

arbitary constraints which we do not believe in. A Baye5ian estimation

procedure generally allows the estimated coefficients to take on any form,

the prior beliefs only influence the estimates rather than constrain

them and allow the data to overwhelm the priors in any direction in

which the data is strong.

We are interested here in Bayesian priors which represent only

the belief that the trace out a "smooth" curve, and which carry no

information about the size of any one coefficient considered separately.

One class of such priors which was suggested in an earlier paper

(Shiller, [1973]) we call, "Smoothness priors". The priors are designed

to effectively break the near multicollinearity among the lagged variables that

often produces erratic coefficient estimates even when the standard error of

the regression in small, yet otherse carry no information, These priors

put a zero mean spherically normal distribution on the d+l order difference

u of the coefficients:

u R

where R is a (X-d-lxX) matrix which forms d+l order differences of the

coefficients and which has rank A-d-1EP. The ij th element of R is zero

if j-i>d+l or if i>j and is otherwise equal to (_i)J1() . Given

this prior on u, we take an uninformative prior f() constant on any

d+1 of the , and get with a change of variables a prior which is

uninformative on any of the ft, taken separately:
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f(s) exp — 'R'R
22

If the prior variance is small, then the priors assert that the

coefficients will in some sense "hang together". In the limit, as

goes to zero, our priors approach the Aixion prior that the coefficients

lie on a d degree polynomial2. It is irnporrtant to emphasize, however,

that the priors are not well described is asserting that the coefficients

lie near a d degree polynomial. One could have alternatively assumed, as did

Maddala (19Th), that a0+a1i+.. .adi E1 where c. is spherically normally

distributed and the coefficients a ,a a are independent of c: and
d

have a flat marginal distribution. The Maddala prior would assert that the

coefficients can not deviate far from some polynomial and is indifferent as

to how irregular are the deviations of the coefficients from the

polynomial. The smoothness prior, on the other hand asserts, if is

relatively small, that the can deviate dramatically from any polynomial

if it does so gradually, i.e., in a "smooth" manner. If do then the priors

will readily allow the lag curve to assume any shape which does not require

the adjacent coefficients to be much different. If dl the priors allow

any shape in which the slopes do not change quickly, i, .e. it does not like

"jagged" shapes. These may be understood as "flexible curve" priors.

A flexible curve is a rubber ruler used by draftsmen to interpolate points.

In a sense, the first degree smoothness prior allows any distributed lag

shape which could easily be drawn using a flexible curve, that is,

which does not require that the curve be bent too hard.
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This prior, when applied to the likelihood function (3) yields a

posterior by Bayes Lw1, assuming for the mcnent h is given, which is

multivariate rionrial:

n
2 2f(IX,Y,h) _- exp (—hC(Y—X)'(Y—X)+1< B'R'R] (5)

where K= . One may take the mean (or mode) as an estihate of .

This will be our estimator with unconstrained sign. The estimate

can be obtained by regressing Y and X matrices augnented with dummy

observation. Defining:

xjXl (6)
1o

then the posterior mean can be found by regressing the auT1ented matrix

Y on the augnented matrix X:

(x'x+K2R'RY- x'Y (7)

The great advantage of this procedure over parametrizat ions is

most evident in cases in which the standard error of the regression is

small and the X matrix exhibits near-multicollinearity. In this case,

ordinary least squares will either fail altogether to produce a unique

estimate or will produce a jagged erratic estimate. A parametrization

will of course always produce a lag curve which lies in the class of elementary

shapes that the parametrization allows, even if this produces a much higher

standard errcr. The smoothness priors estimate, on the other hand,

effectively deals with the multicollinearity by smoothing the curve,



— 10 -

but at the same time allowing the curve to take on any simple shape.

If the true lag curve is a simple curve which does not lie near the class

of curves specified by the parametrization estimates, than the smoothness

estimate will have a much better fit. Moreover, the estimate

could not have been seen at all in the ordinary least squares estimate.

One cannot visually "smooth" the ordinary least square estimate to

produce a rough smoothness prior estimate, since in so doing one would

not be taking into account the nature of the multicoilinearity in the X

matrix. These properties of the estimators as compared with the AJinon

estimator are illustrated in a case with a Iciown lag curve in Shiller,

[1973] and in Wilson [1975].

The smoothness prior estimate with unconstrained sign has proven

very useful, but suffers from a couple of problems at least in certain

applications: 1. it is of-ten difficult to specify the parameter K is not

unit free and 2. the prior allows coefficients to change sign, whereas in

many applications we believe the coefficients should all be positveor

all be negative.

The first problem, that of choosing K, has led some authors to a

ridge regression approach to the problem: Hill and Johnson [1975],

Learner [19714] and Maddala [19714]. It is true that the kind of prior

information we have in applications of distributed lags may indeed be

of the same vague nature as that which many think justifies the kind

of judgemental approach inherent in the ridge regression procedure.
The difference between our estimator and the original ridge

estimator is then merely that our priors relate to the differences of
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the coefficients rather than their levels,

It is quite possible, on the other hand, that we can in fact easily

specify a proper prior on sane function of the coefficients which is

unit free, such as their ratio. Even though we rray have no prior notion

as to the magnitude of the difference - we may have prior

information that, say, should not differ from by more than n%.

The natural extension of smoothness priors to deal with these

problems is then a prior on the d+l order difference V of the logs

of the coefficients, (as mentioned in Shiller [1973]):

V Rb

where b log(s).

We then give V a spherically normal distribution with zero mean.

If we now choose flat priors on d+l of the blog constant, then we

get, with a change of variables, a prior on the b which is uninfoniative

on any b1 considered separately:

f(b) exp(- —-- b'R'Rb) (9)
2

This expression, with a change of variables, implies a prior

distribution on which is a partially degenerate (uninformative)

multivariate log normal distribution. The marginal prior on any

considered separately is the Jeffreys (1961) uninformative prior

f(.)o l/. If R is a matrix which forms first differences (i.e. d0)

then the priors assert that, in effect, any lag shape is probable for

which the proportional change between adjacent coefficients is not too high.
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If is very small, the priors reduce to the zero degree Almon contraint.

If dcl, then the priors assert that the rate of change between adjacent

coefficient should not change too fast, thus the prior also asserts

that the lag curve should not be too "jagged". If dl then as + 0

the priors approach the Koyck constraint that the coefficients should lie

on a geometric distribution, If d2, the limiting case as + 0 is the

constraint -that the lag curve be proportional to a noniial density

(or its inverse), These limiting constraints are likely to be more

acceptable than the polynomial constraints.

The log smoothness priors have the additional property that the prior

conditional variance of given adjacent coeficients il' l' etc.,

is small when the adjacent coefficients are small and large when the

adjacent coefficients are large. The priors thus "tighten" up in

regions in which the coefficients are small, as in the tail of the lag

distribution; and assert that a single large coefficient in the tail

is very improbable. The priors thus embody essentially what Learner [1972]

has called the "principle of proportionality" in distributed lag priors

In contrast the variance of conditional on il' F3j+l... is independent

of i÷l•• with priors which are multivariate nonrial on the coefficients

themselves rather than their logs.

Combining (9) with (3) and substituting eb for , we get, by Bayes

Law, the posterior of b:

f(bIX,Y) hr/2 exp- [(Y_Xe(Y_Xeb) K2b'R'Rb]) (10)

which is, unfortunately, not an easy distribution to deal with.

.
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A modal estimate of b may, however, be found with an iteretive procedure.

We can write an expression which give the posterion mode i.1icitly.

It will be convenient to write the expression in terms of

which will be our constrained sign estimate. By differentiating (10)

with respect to b, setting to zero and substituting we get an iinplicit

function for the mode b . Substituting b( log

X'X + K diag ($)'R'R log X'Y (11)

where K is a/ and the matrix diag ( ) is defined as a diagonal matrix
whose element is If the ordinary least squares estimate is

positive, then as K + 0 the estimate approaches the ordinary least

squares estimate. This property of the estimator of is the result of

having chosen as an estimate the mode of the posterior distribution of b

rather than of the posterior distribution of . In general, the limit

of c as K goes to zero is the constrained maximum likelihood estimator in
which all elements are forced to be positive.

An understanding of the behavior of the estimator is facilitated

by considering the isoensity contours of the prior distribution of

and b. The siuplest case, in which has only two elements

and when d0 is shown in Figure 1. In Figure la, the isodensi-ty

for normal smoothness priors appear as a series of parallel lines. The

center line, representing the prior mode, is a 1.f5° line which passes

through the origin. In Figure lb we see the isodensity curves of the

log normal smoothness priors, i.e., the prior on blog( ), but expressed
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in terms of rather than b. These are a series of straight lines in the

positive quadrant only which converge at the origin. Learner [1975] has

discussed both classes of isodensity contours; the first he calls

"cylindrically uniform priors" and the second "conically uniform priors".

A discussion of these contours is of course more general than a discussion

of the prior distribution since more than one prior density can have

the same set of contours.

In each case, the mode of the posterior distribution will lie on the

locus of tangencies of the isodensity contours with isolikelihood contours.

This locus has been called the "information contract curve" [Learner, (1975)]

or "curve decolletage". Just where along the curve the mode occurs depends

on K.

The likelihood contours are concentric ellipses centered on the

maximum likelihood estimate. In Figure 1, these are drawn for a

(somewhat pathological) case in which the maximum likelihood estimate would

make negative and 2 positive. For Figure la the curve of tangencies

is a straight line connecting the maximum likelihood estimate with the

tangency of an isolikelihood ellipse with the center line of the isodensity

contours. Modes can occur only on the segment (shaded darker) connecting

the maximum likelihood estimate to the 5° line. The higher the value of K,

the closer the Bayesian estimate will be to the 145° line, for low K, the

estimate of is still negative, but for K sufficiently tight both

coefficients must lie in the positive quadrant.
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For log normal smoothness priors, on the other hand, the locus of

tangencies lies on an ellipse which passes through the maximum likelihood

estimate and the origin, arid which has the same eccentricity as the

likelihood ellipses (for proof, see Learner [1975]). Not all points on

this ellipse are eligible modes however; only that part (which is shaded

dark) which likes in the positive quadrant between the maximum likelihood

estimate and the Ll.5° line qualifies. As K approaches zero the estimate

approaches the cons-trained maxiiaun likelihood estimate (i.e., the tangency

of a likelihood ellipse with the vertical axis).

As K approaches infinity, the estimate approaches the 5° line.

For this case, when dO, both estimators have the same limit as K -'-

but this result does not hold with higher d.

Had we specified the same prior on the ratios of the coefficients but

instead required the individual coefficients to be negative rather than

positive, we would find a mode which lies instead on the section of the

tangency ellipse which lies in the negative quadrant between the 5°

live and the maximum likelihood estimate, (also shaded darker in

Figure ib). Here, as K 00 -the estimate would approach zero. Had

the maximum likelihood estimate appeared elsewhere, negative modes

might not exist.

It should be noted, that the above two dimensional example is somewhat

misleading, It should be remembered that the three dimensional generalizations

of the priors are not symmetrical cylinders or cones but "flattened"

cylinders and cones. That is, -the isolikehood cylinder in the three

dimensional case with dO has an intersection with the plane
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+ + constant which is an ellipse, not a circle. In three

dimensions the curve of tangencies for normal smoothness priors with d 0

will not, in genex.l, be a straight line.
One problem which might arise in estimation is that even in the

positive quadrant the modal estimate may not be unique. If the X matrix is
of the right form, we might find a dependency among the equations

defining (expression (11)) so that a unique maximum cannot be found.

This situation would be analogous to that in which the Alnon procedure

fails when A'X'XA cannot be inverted. In addition, it is also possible

under some circumstances that the posterior distribution may have more

than one local maximum. It might be a good idea to search for all local
maxima in order to find the global maxijiuim. However, even in cases where

multiple modes may arise, we are likely to be satisfied with the mode

which lies closest to the prior mean.
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IV. An Iterative Procedure

A Gauss-Newton type iterative procedure to find the constrained estimate

was chosen which is easily implemented once we have a computer program

which implements the unconstrained estimate . Though our estimate will

be the mode of b, it was thought convenient to deal directly with .

That is, our estimate will maximize the expression:

(Y—X)'(Y—X) + K2 1og()'R'R 1og() (12)

with respect to . To do this, we will approximate the second term in

the expression by a quadratic function of in the vicinity of a guess

If we chose this approximation to be a positive definite quadratic

form in (s-c) where c is a constant, then the miniiaim of the

approximation to the expression (12) can be found by an ordinary least

squares regression involving matrices auented by dummy observations.

Along Gauss-Newton lines, we substitute the first degree Taylor approximation

log(s) ]og(') + diag()_1(_) (13)

into (12):

(Y—X)'

(lL.)

The maximum i1) of (1L1) is then given by:

S
[X'X]X'Y (15)
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where:

[icdiagy'] [_iuog(U
(16)

If one already has a program which implements simple smoothness

priors, it is a very easy matter to have the program build these

matrices as well. The procedure, then, will be to form an initial

guess (O) for the posterior mode, and then form X and Y based on

this guess, and regress Y on X to get a revised guess

is then used to form new matrices X and Y to yield a new

estimate The process is repeated until up to

some tolerance. When this occurs, expression (11) is satisfied

by and j+l is the posterior mode

In each iteration we can say that we are approximating the

prior distribution of by a normal distribution, that is, the

Taylor representation of Rlog: R(log)+diag(-'))

rather than Rlog itself is assumed spherically normally distrib-

uted with zero mean and with variance .

In terms of the isodensity contours displayed in figure 1,

we see that the approximation substitutes a system of parallel

lines for the system of intersecting lines in lb in such a way

that the isodensity contour of the approximation which passes

through the guess coincides with the actual isodensity

contour in lb which passes through this point.

If the regression program prints standard errors of the

coefficients, then these too will have an interpretation in
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terms of the aDtroximating normal Eriors. Under the assumlDtion

that the estimated standard error, of the regression is the

true standard error, then the standard error of the coefficients

printed by the program will be the posterior standard errors

based on the approximating normal prior. If the standard error

of the regression a is not known but is given a prior distri-

bution f(a) 1/a then, under the assumption that the ratio

K a/ is known, the marginal posterior of each coefficient

will have a student distribution with scale parameter equal to

the standard error printed and degrees of freedom as printed

by the program (see Zellner [1971]).

The iterative procedure may be compared with the Newtor-Rapheson

Method. The complete Newton step for maximizing (12) would be:

(i+l) XtX + K2diagR'Rdiag()
_K2diag_2diag(RcRlog) ]_l

x [XY - 2K2diagR'Rlog'] (17)

which cannot in general be implemented by a regression technique

involving dummy observations, so that the procedure is less

convenient from our point of view. However, we note that if we

choose our initial guess 0) so that Rlog0 0 (i.e. so that

the guess is itself a truncated Koyck, normal density etc.) then

the two procedures will be identical for the first iteration.

If in subsequent iterations Rlog$ remains small, subsequent

iterations will also be similar, and our iterative procedure will

show approximately quadratic convergence.
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V. An Illustrative Exanp1e

To illustrate the application of the estimator based on

log smoothness priors, we have chosen an example in which simple

smoothness priors do not perform as well as we'd like. This

is a case in which we expect the coefficients to be positive

and yet the final estimated coefficients (estimated without

endpoint constraints) do not "tail off at the end but instead

become negative. The equation estimated is a term structure

equation developed originally by Modigliani and Sutch which

relates long term interest rates to a distributed lag7on

past short term rates of interest. Modigliani and Sutch

hypothesized that long term interest rates are determined by

expectations of future short rates of interest which in turn

are related to a long distributed lag on past short rates of

interest. The distributed lag, they asserted, should be

smooth except that the first coefficient in the distributed lag

(i.e. that corresponding to the contemporaneous short rate

of interest) might differ substantially from the others due

to an impact effect of the current short rate. They estimated

the relation with the Almon polynomial constraint that did not

constrain the first coefficient of the lag. The relation was

improved and reestimated using the estimator based on first

degree smoothness priors in Modigliani and Shiller £1973] , and

was also discussed in Shiller [1973]. It was discovered at

this time that if the distributed lag is extended to 2

quarters, that the 'tail" of the distributed lag becomes
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Figure 2. Estimates based on smoothness priors of .. A. (upper plot) unconstrained
sign estimate, thi, k20, sum of coefficients is l.±O,. R2.978. B, (center plot)

cons-trained sign estimate, tight priors, d1, k2O, suml.12, C, (lower
plot) constrained si-i estimate, loose priors, dl, k3, suml.l2, R2.977.
Coefficient sums include C) (not plotted). R2 is computed from original data

only, excluding duniny observations.
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negative. Prior information that coefficients should not be

negative was then incorporated in an ad hoc manner by merely

truncating the lag after 16 quarters. It would be interesting

to see, then, what kind of lag curve our log smoothness prior

estimate will produce when the lag is extended over the entire

24 quarter period and estimated without endpoint priors.4

The unconstrained sign estimate of the distributed

lag with K 20 and d 1 appears (except for the first

coefficient) in figure 2a.5 The shape is roughly as expected

except for the negative coefficients in the tail. If the curve

is reestimated using endpoint priors, then the lag curve is

still negative in the tail but heads up at the end.

An Almon procedure using a third degree polynomial constraint

produces an estimate which is similar to that in figure 2a in

that the final coefficients are negative. An Almon estimate

using a third degree polynomial constraint with the far end

point tied to zero also produced negative coefficients in the

tail. Among these procedures, the best way to impose non-

negativity in the tail appears to be to truncate the lag

distribution, i.e. choose a shorter lag length A.

Ordinary least squares produced the typical jagged erratic

estimate of the lag coefficients. The coefficients frequently

alternated in sign, and ranged from -.15 to .24. No semblance

of the above estimates could be seen in the ordinary least square

estimate.
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Using the absolute value of the estimate in figure 2a as

an initial guess, the iterative procedure described above was

used to find the constrained sign estimate with d = 1 and

with K = 20. In each iteration the absolute value of the

coefficient estimated in the previous iteration was used as

the guess . The first two iterations still produced

negative values in the tail, but all negative values disappeared

by the third iteration. The coefficients had all converged to

two decimal place accuracy. by the sixth iteration. The

estimated lag curve, which appears in figure 2b, looks like a

truncated geometric (Koyck) lag. This is not surprising,

since a value of K = 20 represents a tight prior. Based on the

standard error estimated at .28 in the first simple smoothness

prior estimates, this prior variance on the second differences

of the logs of the coefficients is only .014. That is,

the priors assert that the ratio of a pair of adjacent

coefficients should probably not differ from the ratio of the

next pair of coefficients by more than 1 or 2%. In our estimate,

V Rlog has its largest (in absolute value) element just after

the hump, where it reaches -.008. All elements of V are negative,

so the estimated curve does deviate systematically from a

geometric lag. althrough not to a great degree.

In order to view the effects of a weaker log smoothness

prior, K was changed from 20 to 3 and the iteration continued,

using as a starting guess the estimate that had been reached
0
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with K 20, and again substituting in each iteration the

absolute value of the estimate from the previous iteration

as the guess Negative values of the coefficients in the

tail of the lag distribution immediately reappeared in the

first iteration. Since by the second iteration the negative

coefficients did not seem to be getting smaller, the tail

coefficients were changed to small positive numbers in the

guess that was used for the third iteration. There were then

no negative coefficients estimated in the third iteration,

and convergence to two place accuracy was again achieved by

the sixth iteration. The estimate appears in figure 2c.

The estimate no longer appears as a geometric lag, but rather

has a humped shape which resembles (except for the tail) the

shape which appears in 2a. The priors which produced 2c are

much weaker than those which produced 2b: if .28 then

= is about .1; i.e. our priors assert that the ratio of

a pair of adjacent coefficients should probably not differ

from the ratio of the next pair of adjacent coefficient by

much more than 10%. In the estimate the largest (in absolute

value) element of V = Rlog is -.041. Apparently the likeli-

hood function does not carry much information on V Rlogt3,

so that the estimates of V will come out close to the prior

mean. This means that even with very loose priors, the

estimated distributed lag will appear relatively smooth. The

smallest (in absolute value) elements of V were those which
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correspond to the tail of the distribution, apparently because

the likelihood function carries very little information about

the ratios of such small coefficients.

Figure 2c illustrates well some of the best properties of

the estimator with constrained sign. It should be remembered

that no constraints were placed on the lag of any kind and the

priors were uninformative on each coefficient considered

separately. The prior did not contain information that the

final coefficients were small. The asymptote which appears here

is the result of the interaction of the likelihood function

with the prior information that coefficients must not be

negative plus the information that no single coefficient should

be large in the neighborhood of other small coefficients. It

should not be concluded that an asymptote occurs only when the

unconstrained estimate is negative in the tail. Experience

with the estimator shows that asymptotes will also arise when

the final coefficients are positive. The estimator with con-

strained sign naturally forms asymptotes (especially when d

or higher) in cases where the final coefficients are small, and

thus makes the estimates much less sensitive to the error of

setting A, the lag length, too high.
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VI. Conclusion

Both estimators: with unconstrained sign and with

constrained sign, should be useful in different applications.

The unconstrained sign estimator may be used in cases in

which there is no theoretical presumption that all distributed

lag coefficients should be positive. Since the unconstrained

sign estimator has more straightforward properties and does not

require an iterative procedure, it may also be the choice in

cases in which there is a presumption that all lag coefficients

be positive. It can also form asymptotes, although it depends

on the data more to make this happen. Information that all

coefficients should be positive can also be used in an informal

"Bayesian't approach by estimating the coefficients for several

different lag lengths and choosing a truncation point that

leaves all coefficients positive.

In cases in which we know all coefficients are positive we

may also wish to consider whether the log normal smoothness

prior might not represent our prior information sufficiently

better to warrant the greater computational burden of the

constrained sign estimator. It is easier to specify the

parameters of the log smoothness prior since they are expressed

in percentage terms and are hence unit free. The estimator

is less sensitive to an overstatement of the lag length since

it easily forms asymptotes. Since the estimator essentially
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embodies Learner's principle of proportionality, isolated large

coefficient estimates in the tail of the lag distribution are

effectively prevented. So little damage is caused by over-

estimating the lag length A that one might use for A one's

upper bound to the possible true lag length in the estimator.

Finally, the limiting behavior of the constrained sign estimator

as the tightness of the prior goes to zero is probably more

acceptable than is the case with the unconstrained sign estimator.

The limiting constraints with the log Smoothness prior are,

for d 1 the truncated geometric (Koyck) constraint, for d 2

a truncated normal density constraint, rather than polynomial

constraints as is the case with smoothness priors.
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Footnotes

For the fundarnetitals of Bayesian econometrics, see Zeliner
t1971].

2 The priors approach the constraint the the coefficients
lie on a d degree polynomial. Almon also constrained the
polynomial to pass through zero at the head and
tail To make the analogy to the Almon procedure

complete, we can take the spherically normal prior on

u R where R is a (X-d-l+h+t xA) matrix whose
element is zero if j-i>d+l-h or if i>j+h and otherwise

equals (-l)' (!.) where h 1 if the head is

constrained and is zero otherwise, t = 1 if the tail is
constrained and is zero otherwise. These priors then
include the zero "coefficients" beyond the lag and
approach the Almon constraint as Henceforth in this
paper we refer to the Alrrion polynomial constraint without
head and tail constraints,

3 Learner formulated his "Principle of Proportionality' for
fully informative multivaria-te normal priors on the ..
His principle actually states that the prior standard'
deviation of the . should be inversely proportional to
the prior mean of the

4 It should be noted that the result of using endpoint priors
in the log smoothness priors case which are analogous to
the endpoint priors in the smoothness priors case (footnote
2 above) amounts to assuming prior information that the
final coefficients lie near 1 rather than zero.

5 Estimation was done with a program written by Stanley
Wasserman, which took the form of a MACRO file on the
TROLL system. The MACRO, which is entitled &SHILLER, is
available to users of the TROLL system, but cannot be
used separately from the system. The dependent variable
is a version of the Federal Reserve Board new issue yield
series, formed by splicing an older unpublished series to
their published series which starts in 1960. The independent
variable is the 4 to 6 month prime commercial paper note.
The sample period is 1955 second quarter to 1974 fourth
quarter.
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