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Abstract

The estimator holding the cen-tral place in the theory of the multivariate

"errors-in--the--variables" (EV) model results frcm performing orthogonal

re'ess ion on variables rescaled according to the covariance matrix of

the errors [7]. Our first principal finding, via Monte Carlo on the

univariate model, essentially relegates this estimator to use only in large

samples on very well-behaved data, i.e., with no trace of outlier contamina-

tion. A modification, requiring a robust preliminary slope, is proposed

that essentially sets out the generalization to EV of the w-estimator

in regression. It is d-nonstrated that the modification is robust to outlier

contamination even in small samples, given a sufficiently good preliminary

estimator. A candidate for a preliminary slope estimator based on the data

is proposed arid its performance under simulation examined. Least-absolute

residuals estimation in EV is cited as an alternative candidate.
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1. Motivation from the Robust Regression

Huber [3] addressed the question of generelizing robust etima.tes 5f

a location parameter to the problen of estimating robustly the coefficients

{ • }" in a multivaria-te regression model
J

jl jij + i (1)

with contaminated errors v. He asserts that "[in] the classical least

squares theory... the matrix X = (X.) is thought to derive from a fixed

and rigorous mathematical model. In statistics, it is more customary to

treat the coefficients as independent variables, possibly also subject
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to errors. Next to nothing is known about how to robustize regression

procedures with respect to errors in the (underlines ours). The

underlined statement is the problem we consider.

2. The Simplest EV Model
2.1 Classical assumptions for the univariate model

We set p=l in (1) and, to quantify the phrase "errors in the

we introduce an error u into X, so that we no longer observe X directly

but rather x., where
1

x. X.+u., (2)
1 1 1

To fill out the EV model specification, we assume

y. Y.+v. (3)
1 1 :i

with the "true" values exactly linearly related:

Y. = x. . ('iV)1 1

(For the moment we assume a constant term a equal to 0 for simplicity.)

Further,

E(v.) = 0 (5a)

E(u1) = 0 . (5b)

cov(u1,v1)
0 . (6)

We suppose

X1 - N(0,a)

(a "structural relation") and .
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cov(X1,v1) 0 (7a)

cov(X,u) 0 (7b)

(Note: Our discussion applies equally well to the "functional relation",

where the X.'s arise in same detenministic fashion rather than as realizations

of a randan variable X.)

Our given data consist of the n observations

, (8)1 il
with successive observations taken independently.

Notice that xEX(uEO) is the case of regression with a line through the

origin.

22 Contaminated error distributions

We define a contaminated EV model with u and v samples from the

contaminated noriial distribution. This means that

u is drawn fran N(0 ,a) with probability (l_y) (9a)

and fran N( 0 ,h) with probability

where h >> and similarly for v.

2.3 Identifiability problem in classical EV

Lindley [5] and others have pointed out that, in the classical case

of gaussian errors,



y .00 h 0 (lOa)
U U

= .00 0 (lOb)

the ML estniators of the parameters , a, c cannot all be consistent.

Kendall and Stuart [] observe that "we must make an assumption about the

error variances.... [Assuming]

known

is the classical means of resolving the unidentifiability problem."

Throughout, we assume

X (11)

is known.

3. Form of ML Esthnator for Classical EV

It is convenfLent to derive the ML estimator of , BML say, for the

functional relation; its form remains unchanged for the structural relation.

The likelihood function is

ex{_ 2a

-

2(
(x—X±)2 } , which (12)

allows us to characterize the ML estimator of as

-

[(Yç-X)
+ (x.-X.)2

} } , (13)
;x1...,Xn1ilL v'X

1 1
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where the symbol to the left of the braced quantity means "that value

of for which the braced function of ( )< is a minimum, for- < < - < X < , i1,. . ,n." We see that transforming

y to y/v' and to /v'X makes the effective A equal to 1, so we assume

A=l (lu)

from now on without loss of generality.

Setting { } 0 where " }" is the braced quantity from the

xi

min condition yields

A x.+(BML)y.1 1
(15)1

l+(BNL)2

Setting } 0 fran the min condition implies that

nA
E X.y.

(16)flA
E X.
il 1

where of (16) is itself a function of BIlL. Thus BIlL is of precisely the

same form as BMLR, the ML estiirator in regression, except that in place

of the known in regression are estimates X. (Note: Because the various

approaches to the identifiability problem in EV are distinguished essentially

by how they obtain the X, it is in our view unfortunate that the in EV

bear the name incidental parameters.)

"Unwrapping" the iiilicit characterization (16) yields



—6—

2
12

(17)
S12

where

in 2 in in 2
s11

E
s12 E xy1 s22 E E y.il i=1 i=1

22
-

S11

BML is formed by mininiizirig the sum of squared-"residuals" taken perpendicular

to the estimated line. I .e., BML is the orthogonal regression estintor

on rescaled variables; see e.g., Malinvaud [7] chaps. 1, 10.

___________ .
L.• BIVIL as the "Best" ML/LS Estimator

The classical ML estima-tors that apply throughout the range of nde1

parameters are those which assume ]<riowledge of

' say);

or

' say);

or

a2x4 BIlL

u

or both or a and
CJç ,' say). See Madansky [6].

.
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Kendall and Stuart sunirnarize a result of Birch that justifies calling

BNL the "best" of , ' BML. Birch demonstrated that

u,v

except under condit±ons (the violation of certain inequalities relating

sample product-moments to model parameters) which Kendall arid Stuart state

"seem unlikely [to hold] in practice". While we regard this last claim as

perhaps a bit optimistic (because the violation occurred about 5-10%

of the time in our sinuilations), this fact nevertheless allows us to understand

why BML is at least as good an estimate of , uniformly over the range of model

parameters, as the better of the other two ML estimates which each require

knowledge of exactly one of or Our s:iinulations confirmed this

property when both u and v are normally distributed.

Madansky gives a remarkable survey of the history of this estimator,

asserting that the form of BML "has appeared iridependen-tly innumerable times

with the earliest appearance in 1879.. .".

It is also of interest to recall Malinvaud's laudatory remarks about BML.

He derives an approximation to L' s asymptotic variance which, he says,

"allows us to verify that, in the case [of one X-variate --- M.L.B.] and

probably generally, the weighted re'ession has good asymptotic efficiency

at least when the dispersion of the errors is small relative to that of the

true variables, and when the errors are normally distributed". Comparing

this variance with the minimum variance lower bound, he concludes that
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"the asymptotic efficiency is very near 1 jf [11C 01'S] small".
Later: "[these] results.., apply only to the asymptotic distribution of the

[estimator BML]. Unfortunately there seems to exist no study of the properties

of this [estimator] for finite samples."

5. Monte Carlo Results for BML

5,]. Speciflcatjon

We consider first the performance of the ML/LS estimator BML under

contamination; for comparison we include

n

x1y
BMLR = i-i

(18)r 2
E x.11=1

BMLR is the usual ML/LS estimator that would be appropriate if x were err-
free (i.e. u 0, x X).

We choose model parameters which, except for the contamination in y

only, are smetric in x and y:

n = 20;l00

8 = 1.

= 1.

2 = 0.502 .00 11. =.0U u u
0.50

cS .05 h varying

Note that this implies A = 1.

We are thus considering both the small-sample and the large-sample performance

of BML. When n 20, e.g., an average of (.05) (20) 1 out of 20 observations is

drawn from N (0 ,h) and the rest from N (0, .502). Notice that h 0.50 corresponds

to classical EV.

.
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Table 1. y, O.05;81.

100 replications

n MSE(BNLR) MSE(BML)

2O 0.50 .01.99 .0391
20 1.00 .0501 .0I1.7L1.

20 1.25 .0506 .0559
20 1.50 .0513 .06914
20 20 .0533 1261
20 3.0 .0602 2.1.1.50

20 10.0 .2120 21.1.6..

100 1.50 .0395 .0119
100 3.0 .01401 .105
100 10.0 .0580 26.9

5.2 Corrvnents on Table 1

It is in our view difficult to overstate the gravity - and ne irony! -
of the results of Table 1, which tables the quantity

100

MSE(.) iJ.. (. l.)2

At n2O we see that when just one observation i,s drawn from N(0,1.252) instead

of from N( 0, . 502), BML is a poorer estimate than BMLR, which i-res the error

in x! Contamination this light would almost always be indistinguishable f±anpure

gaussian sampling, By the tine h becomes "very noticeably" large, BML's distribution

has acquired outrageously heavy tails, while BMLR has kept relatively stable.
(See the hlO entries.) The transition at n100 occurs between h1 .5and 3., which

is still more than small enough to go unnoticed in a real sampling situation.

BML' s performance is thus so shockingly poor as to make the MIlLS estiiator

appropriate for the regression model, BNLR -- whose non-robustness properties
are by now notorious -- look almost well-behaved by comparison! For this reason,
we come to the ironic conclusion that those investigators who have "looked the

other way" when the possibility arose of error in the independent variable in
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their "regression" irdels, arid used BMLR "by default", instead of BML which

requires knowledge of X, probably made the better choice. But this is a

choice between Scylla and Charybdis; the ne'ct section proposes a way out

of this strait.

6. "Robustizing" BML w-Estation

6.1 Introduction to w-Estirnation in Regression (R)

V

The w-estarnator in R, BWR, with preLuxanary slope , robust scale-

mease s of residuals, and "psi-function" ip, is defined as

BWR = mm1 . . (y.—X.)2] , (19)
i=l yi 1 i

where

y1 — X. (20)

is the residual fran the preliinary slope ', and

yi iP(1/Y) (21)

r .15yi y

is a weight superposed onto the i' residual serving to "damp the influence of"

the th point on BWR -to the ectent that it is diagnosed as an outlier. Notice

that when i, (r)r, BWRBMLR. See Beaton and Thkey [ 2 ] and Andrews et. al. [ii.

S
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6. 2 Prposed w-Estiinator in EV

We propose the following natural generalization BW of BWR to EV.

BW involves two weights ., . each intended to "weight-down an

outlying coordinate" of the th point, superposed onto the ML/LS esthiiator
EVin EN, $ : for p, , and s with the meanings as in R, we set

BW min •il
(22)

V
+ w . (x.—X.Y]Xl 1 1

where

VI
(23a)1 1

(23b)Xl 1 1

are the two EV residuals associated with v arid u respectively and
1, V

(24yl Iryi 7

) (r ./sV X Xl X- (2tb)r ./sXl X



— 11 -

are the two weights. Notice that we now require a preliminary estimate

X. for each X. as well aa $ for 8.1 1

Th.irther on we discuss the some data-based possibilities for choosing
I, V
$andX1.

Taking the (n+1) derivatives of the weighted min condition (22)

yields, after simplifying, this 6th degree equation for BW:

[2 2 v2 2E Ck.w x + (w .w .y. - w .x.).BW
i=l 1 yi xi ii Xl yi 1 Xl 1

— i . .x.y.(BW)2)} 0 (25)Xl yi 1 1

.
where

A

(26)V
k

Ew +

.
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6.3 A Simplification

Choosing X1 to have the ML/LS fonn (15) as a function of

8 we may verify easily that

r —$r . (27)

I, V
Thus {r . } and {r . }, for this choice of X, yield the same measures of

x -, yi
scale s, whence (assuming we have

(28)Xl yl

Substituting this coninon weight ( say) into the min condition (22)

shows that BW has the form (17) of BML except that

1t E w.x.y. (29)
12 n i::1

replaces s12 and corresponding weighted moments t11, t22 replace S22.

6. Details of the Implementation

We have used

(l_(.)2)2 if() c

ff() >c (30)

with c 5.0.
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This p-function, due to Tukey, is known as the "bisquare". Our robust

scale is due to Harnpel:

s({r1})
median {(r. - median {r.})} (31)

j
J

In order to separate the issues of preliminary and final robust estimators,

we set

(32)

for the present w-simulations. Thus BW in our simulations takes "one

step away from the true s", and these results indicate the character of

performances to be expected with a good data-based preliminary estiimtot'

V
. See later remarks.

We also exhibit the performances of the regression w-estimator BWR,

which is (19) with x in place of X.

Table 2. Same 100 samples as for Table 1

n NSE(BWR) MSE(BW)

20 0.50 .02714 .0211
20 1.0 .0277 .02140

20 1.25 .0277 .0257
20 1.50 .0277 .0263
20 2.0 .0273 .0250
20 3.0 .0271 .02'#8

20 10.0 .0317 .0225

100 1.50 .0211 .003142

100 2.0 .0213 .00363
100 3.0 .0215 .00361
100 10.0 .0223, .00322
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6.5 Coimierits on Table 2

Table 2 exhibits the MSE 's for 8W arid for BWR corresponding to the

situations of Table 1. Besides the artifactitious "superefficiency"

induced by assuming 8 (so that MSE ( BWR) <MSE ( BML) when li is near 0.50),
we see that MSE (BW) remains below MSE(BWR) in all cases. In other words,

superposing the w-weighting allows the error-in-x correction using A to

operate on an effectively uncontaminated sample.

6.6 Influence of sample size n

The ratio

MSE (BW)
MSE(BWR)

decreases as n increases for fixed y, h. This accords with our expectation,

for as n increases both variances decrease like 1/n but bias-squared approaches
a non-zero limit in the case of BWRand zero in the case of 8W because of BW' s

bias-correction using A.

7. Data-based Preliminary Estimators
7.1 A preliminary slope

V
One straightforward method of obtaining a 8 for EV might be to combine

good preliminary regression estimators, and in the mariner that

BNL combines BMLF.. and

2
E

ii .. (34)n
x.y.Li1

We have simulated

BL t +(sgn(BYX)) • + A (35a)

where

[BRXY — ] (35b)
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with BYX the "robust line" ("medians-of-thirds grouping" estimator) of

Thkey C 8 ], and BRXY the reciprocal of the same estimator corresponding

to regression of x on y.

Table 3.

r (Y,h) MSE(BYX) MSE(BRXY) MSE(BL)

20 (.0,c) (.G,0) .061499 .3777 .1359
50 (.0,0) (.0,0) .05143 .1327 .0260

20 (.0,0) (.05,3) .06514 .5822 .1921
50 (.0,0) (.05,10) .0599 .6985 .1637

20 (.05,10) (.0,0) .1037 .1421414 .16014
50 (.05,10) (.0,0) .1026 .1123 .01417

7.2 Coinents on Table 3

Either a small sample or contamination in y renders' BRXY suffiOiently

unstable as to make MSE (BL) >MSE (BYX). But for moderately large n arid

contamination in x only, the estimator EL with A-correction improves on

BYX, the "regression" slope. Notice that contamination in x alleviates

some of BRXY's overestimating bias at

7,3 LAR estimation in EV

One of the best-}c-iown proposals for a preliminary estimator inregress±on

is the LAR (least-absolute--residuals) slope

-1 -$min .Z y.—BX.i:l 1 1

fv V.

The EV generalization requires B, X1,..., Xn jointly to minimize

Z y. — )<• I + I x. — X.}il 1 1 1 1 .
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The solution (C. MUows, 1973 personal carrnunication) is 8 to minimize the
smaller of

iii I c8 x , I
-

I

In classical EV, we may remark that this essentially c'nputes the LAR estimator

of y on x or of x on y according as which of x or y respectively has the smaller

"noise-to-signal ratio". We conj ecture that this estimator would be very

satisfactory in, arid only in, "large" samples in contaminated EV.
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