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Abstract

We define a class of models that are generalizations of regression models
and moving average-autoregressive time series models. Then we investigate
the asympotic and computational properties of the maximum 1likelihood

estimator, with numerical examples. The main conclusion is that care must

be excercised when using $imple approximations to the covariance matrix

of the estimates.




Contents

I. TheModel . . . . . e e e e e e e e e e e e e e e e e e e e e e e e e 1
IT. Estimation o v v v v v i i i e e e e e e e e e e e e e e e e e e e e e 5
IIT. The Generalized Box-Jenking SELUD « « « « & o « ¢ v o o o o o o o o o o 9
IV. Special ReSULLS . & & v v 4 v v v v v 6 v o o e o e e e e e e e e 20
V. Approximations to the Covariance Matrix . . . « « v v ¢ ¢ v v v o o « . 25
VI. Numerical Considerations . « . « « « o « « « o + o & e e e e e e e 31

References & v v v v v vt e e e e e e e e e e e e e e e e e e e e o« o o 32



The main purpose of the paper is to examine certain
aspects of Box=-Jenkins models: specifically we will examine computa-

tional methods and approximations to asymptotic covariance matrices.

. We begin, however, by introducing a more general setup.

I. THE MOIEL

We will work with the following model. Let B8 be a kxl vector
of parameters, m a twice differentiable function m: Rk->Rn, so that
m(B) is an mdl vector. V(@) is an mxn symmetric positive definite
matrix, whose elements are a function of the pxl vector 6.
Our model is
Y =m(B) + ¢, ' ~ (1-1)
where e ~ N (0, 02v(e)),
80 that if |
V(o) = [V¥e)] [v%e)1%,

V0) e v N_ (0, 021 ). (1-2)
For example if V(@) = In’ we have the usual npnlinear model, and if
m(B) = XB then we have

Y-Xg ~ N(O, ozIn) which is the usual linear regression model.



For convenience, we put f(g) = Y-m(B), so that f(B) is the nxl vector
of residuals. We let y = (g) , the combined parameter vector. In
our applications we will find that p, the dimension of 8, is much
smaller than n, so that V(8) is unknown only up to few parameter
values, which we wish to estimate. For example, if Y were a zero

mean time series, we could take f(g) = Y, and perhaps assume

TN
__~

-4

This is a one parameter model, in which we are trying to estimate the
correlation between Yi and Yi 41 assuming that Yi and Yi ++ &re uncor-
related for t>2. The usual Box-Jenkins models described in Box and
Jenkins (1970) are special cases of (1-1). In fact, they can

be written as

i P1Yg17PpYig” ovr TPaYia T EyTH1Es T ee Tép ey (1°9)
where

€15 ++ey € arE i.i.d. NCO, 02) variables.
In our notation

P(p)Y = T(¢) e, ‘ (1-4)

WhePe o] = (pl, as ey pa)T, ¢ = (¢l’.'.’ q)b)T




P(p) =

T(¢) =

=p

-0y

~Pa-1

=-p

(1-5)

(1-6)



Letting 8 = (pl, ooy P Bys eees ¢b)T (1-7)
and v¥0) = 7o) P(p), (1-8)
we have V) Y A N (0, 02 ),

n n

so that the Box-Jenkins models are indeed special cases of (1-1),
with m(8) = 0 and V(6) given by (1-8). Throughout, we will let P(p)

and T(¢) be defined by the above matrices.




II. “ESTIMATION -

Since we have not assumed that f(B) is linear, and V(8) is not
necessarily linear in 6, we are not in an exponehtial family, so the
theory of sufficiency is not applicable. We resort to the
principle of maximum likelihood. We can only obéerve the nxl vector
Y, so we need the likelihood in terms of Y:

c gt o)) |- £1@vo) £(8) (2-1)

b}
n
o 1 o2

L(f,B,e,o) =

where C is a constant (see Rao (1965) section 8a.u4).
For all our applications we will have det(V(6)) = 1 (see 1-5

and 1-6), so we immediately simplify things by assuming that

det V}E ) =1 for all values of 6. (2-2)

Hence
_ 1 T -1
log L(f,B,0,0) = - Y £7(8) V(8) f(B) -nlogo +C . (2-3)
204

To maximize this we differentiate and set the derivatives to 0.

(Recall that f(B) = Y-m(B), so for each B, f(B) is observable.)

5 %gg L _ 1 Teey vl o) £0p). i g -
ag

or

£Leg) viee) £(8) = n o2 .

Hence
s . £ V6 £(8)
n

: | (2-1)



and we can treat o2 as a constant throughout the rest of the discussion.
Note that we are now trying to minimjize
£1(8) v'i(e) £(a).

We write f(B8) = (f,, ..., fn)T; V—l(e) = (V1) for convenience.

1’
Then
2.%5?11: = -1 3%_ (z £. v £
i 202 5 i3t J
N > £, .. .. of,
= —_ (z [33 Vlj f+fivljﬁl])
202 ij ] ] i
1 of, A
= —_ (2 —— f.)
2 L 3B,
o i %85 ]
= L REB LT ylegy £(p) .
02 98-
3
G EA R
m 202 m  ij
1 a7+
= == (: f. 75 f.)
202 ij 1 m S

-1 T, avi(8)
202 m




So the k+p normal equations are

| < X (2-5)

Note how the .first equation imposes the usual least squares condition:
residuals ortfngonél (in the right metric) to the "data", represented
here by the first derivative matrix.

The second equation is also an orthogonality condition, albeit
somewhat less obvious: as we shall see later, for certain special
cases this condition becomes more explicit.

To solve these equations we propose to use some variant of Newton's

method, so we compute the second derivatives. Omitting the details we get

2 T - 3fL -
o2 Tl o LB ylegy 2B HLB) ylig) £(p)
i%5 i 3 i%]
2 T _l
i'm i m

2 -1
_pg2 - log L fT(B) V(8 gpy ,
96 em Bezem

and Newton's method is

D L@l D)y g D)y (2-7)



where

[£017 vier + mmoyle er1f tviys
H =
(£117 viye £ Tyl g
and (2-8)
(1T vl
G = ,
T vy s

The prlmes denoting the appropriate derivatives. (Note that the factor %
is omitted from the lower right hand corner of H, because it is omitted
in the lower half of G). The Fisher information matrix I(y) is

Lot vl s oo 1Tyl e LT iy
| ' . (2-9)
LT vlye 1 LT pyly"

2 o2

g

Holland (1973) described a method for carrying out the expectation in

2
2-9. Since o 1is considered fixed, we +treat it as a constant.  Then

K [52- b R I R L lf] -
g

- %2 er1f vtoer + ren1T vl (£ = i‘z 117 vier
since £'(B) = m'(B) was assumed fixed;
E [%2 re'1t [V"l]'f] = Lol vl (261 = 0,
since £() = Y- m(B) ~ N (0,0°V(0)) , by 1-1 .

E &, £ vl f] = 1 trace [E[fT [V_l]"f]] -
20 20 ‘

=1, Etrace [£1V7II"1l=2  E trace [V 1IneeT] =
20 20




-~ 8a -

L trace [BIVY1" ££777 = 1, trace [Lv™11" EL£F11] =
20 20 :

L trace (V1" v 1= 1 trace [vv~1n]

20
So we have -
%Iﬂﬂvlf' 0 |
Ity) = | ° | | (210
oyt
0 1/2 trace (V )
a0 06
2°m
Under suitable regularity conditions, it can be shown that
~ _l . .
A G- N, (0, T, (2-11:

We will assume that (2-11) holds.
We now specialize to a subset of (1-1) for which the expressions

(2-7) are easy to compute.



III. THE GENERALIZED BOX-JENKINS SETUP

We pestrict ourselves to the subset of (1-1) for which
v(e) = P L(p) T(4) [P L(p) T($)1T (3-1)
o1
so that  V'X6) = T"1(4) P(p) (3-2)
where T, P are given by (1-5) and (1-6).
Note that det (T(#)) = det (P($)) = 1, so that det (V %(8)) = 1

as required by (2-2).

We will use the following lemmas:

Lemma 1 Let A(a), B(a) be any non-singular matrices whose elements

are a function of a scalar o. Then

i) %1- A1) = -a7He) = Al A )
ii) 3 AC) B(a) = 2— A(a) B(a) + Ala) 2= B(a)
o0 oa oa’
Proof:
1) I = Ala) A L(a)
So )
| 0=2 Ia,( &3 ()
=2 a0 () + g—aakjm) ag (a)) -
Hence
0= 2 At A7) + AGw) 3 A7)
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and
=A@ = AN = A A7)
ii) follows similarly
QED
Definition A matrix A is said to be Colum Triangular if A

can be written as

a2 al 0 0
a3 a2 al 0
A =
\ an an—l an—2 al}

lemma 2 If A and B are arbitrary column triangular matrices, then

1) AB is column triangular
1i) AL is colum triangular (if it exists)
iii) AB = BA
T n
iv) Trace (AB~) = _)E ia s bn—i
1=1
v) If furthermore the entries of A are a function of the

scalar o,then -g% is column triangular.
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Proof : Let Ay ceey @ and by, ..., b, determine A and B respectively. .

b

Ay B . =1 eitl

i) (AB),: = I Ay ki T Fan

z
1) k

where 4 =1k :1<i-k+tl <nand 1 < k-j+1 < n}.

The range in the summation can be rewritten as

-i < =k < n-i-1

j <k <ntj-1

i >k > itl-n

or 2
j <k <ntj-1
i
80 (AB);4 = kfj gt Pr-ge1

Hence (AB).. = 0 whenever‘j > i

1]

i
z
k:j+2,

b

and (AB) K—j- 241

i,5+8 Akl

L
j:k—zf_i—z

5 gkl Dimjortl

i-g

L3 e+l Poejel
m=]

(AB)i-Rz,j

which establishes column triangularity.
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ii) Note that a colum triangular matrix is lower triangular,
so its inverse can be computed column by column by simple forward

substitution. Letting

1 if i=3
Gi. =
J 0 if i#j ,
we have ¢
i-1 .
85— I, Ay N
L] =J fOI‘ i=j, ...,n
AH = ﬂ A..
i1
L 0 fOI' i=l, o0 0y j-l
ij . . . -1
where A™ is the i,j element of A .
But Ak = 3 2
i-1
.= I kj
‘s 1 . as_ A
80 A = k=) ikl , i=3, ...y N
|
i-1 .
i,j+1 = <Si,j+l B k‘§+1 a4 K+l A
AT T = , i=3+1, ..., n
|
i .
k,j+1
s. .y = I a. AT
. . it+l,j+1 s i+1-k+l
hence A1+l,]+l - k=3+1
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i-1

835 = . qsik AHIT
and Ai+l,i+l - k—:] 4’ l=j 9 s ey I'l-l
.l
Since this formula allows us to successively compute the elements At 1,3+l
for i3, ..., n-1 and we know that ALTL3* = 0 fop i-1, ..., 3-1, by
comparison with the formula for A i we see that A}+1 J+L . p13 for
i=j, ..., n-1, which establishes column triangularity.
i
= QIEJ b1—2+l g :|+l (BA) 3
by setting & = it+j-k, so that k = i+j-2 .
T i i
1v) BB g5 = I ApcBie T I @i Piaen
k=1 k=1
T n n i
Trace (AB") = I (AB7).. = I I a. b._
i=1 i1 457 k=1 i-k+l “i-kt+l
n n n-k
= Z a I a
i= l k=1 kbk k-l i=0 kbk
n n
=z (nk+1) ay b, = o8 i b i+
k=1 i=1

v) obvious.

QED
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. Note that P(p) and T(¢) are both column triangular, so from the
above lemma, we never need to actually carry around P and T, but only
their first colums. This allows us to simplify things considerably.

Specifically (omitting the arguments)

1

vizripgT rlp

so rrlp £1)T vlp £ (3-3)

ceripyr £17 (rip) £

since [V = oty af e+ 7RI (Tl
and £ (V-l)' f is a scalar.
Also H =
e ipe1 1T lper + prlpergT vlpe ceripyer1T (ripyre + vty e 1T (Tlp)E
(3-1)
E(T'lP)f'JT e+ (e el o lpe e e oriee + Lty relt (b
since b = ey )T e v peripy 1T (rlpyr
Further simplification is possible noting that
ra 1
1 5 T -13P_,.~19P_03P. -1
S_ (17lp) = p+T18 27 122:-2" 1
api 9 pl api api api
ﬁ (3-5)
-1
5 -1 5 T 13 T 1. _ -3T =2
= (TP) = p=z-Tt2Iglp.Tr2p
361 561 5, TN
\
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32¢771py s Tt 8P -1 32P
5 = 5o %, T T pps 0
pipj' pi pi iP5
| (3-6)
22(7lp) _aT # _ 1 3T 13P_ 3T 3P 2
= 9. p. - 9b. . 9p.- 9. Ops
3¢ p] | 9. 05 3. P3 ¢s P5
-1 ~1 1
2 — —
aaéT¢ = Tl 2¢T TR = - g TP - 2¢T T gg. P =
H i3 j i i1 i |
=23 Lpl3lplglp. 23 3,
3. TR 36, 96-
i J i1
\
A similar simplification occurs for the information matrix.
Holland (1973) suggests a method for showing that:
T
2. -1 _ e
%-tnaée V¥olo] = trace [(T 1py. 3<P lT) (T1P) —533——3- . (37

To simplify this computation we will write V=QQT, V"1=Q—TQ-1, where
Q=?_1T is column triangular (lemma 2 will be used in succeeding computations).

- It is easy to show that

- - _ _ 1.2 _

22 vl o= vl v vl oy vioyvlefv oyl

30,00 ¥, 30,6

1 2 ;l  o -1 1Y L2 1
Hence %‘-traCe 6/& = ‘trace (E_V_V Vv > 1 facs( 8V V") -
» 30,6, / 30, 30 7 36,0
m . 2°m
T, T\ -T.-1 T-1
« 92 392 ‘ 9
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2 2 m
2 T T T T -T
L trace [(E_Q Q" +2Q 3Q" +2aQ 3Q" + Q3% )Q QIJ
2 8626 1) 9 96 _ 36 906, 6
m m L2 2 m 2-

Now Q is lower triangular, with 1 on it's main diagonal. So

9 is lower triangular with 0 on it's main diagonal. It follows

a0
L
that any product of lower triangular matrices involving % will
L

have 0 trace. Similarly for gQ and for products of upper triangular

®n
matrices involving %8— and _B__QE . Using this fact we obtain
L 89m
2.,-1 T -T
1 3"V - BQ Q _Q_ Q
-ftrace<vm—)-tr'ace !862 3 +

6

[+3)
D
[+3)

6
m
-1 T =T
+ trace <£ Q ﬂ_ Q ) +
' T T o ~T
1 QQ 9 Q 1 3Q Q 3Q Q
-5 trace (ﬁ —g— ) -7 trace (%ﬂl % )
But trace (AT) = trace (A) , for any matrix A, so we finally get
2.1 ?-1
trace ( v g eve ) = trace aQ Q ( > T:'
2°m/
71 -1 z
Q= 3 Q ™~ 3Q \T
[ 8)( 1]

(because Q is colum triangular).

N} -
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Now having established 3-7 we note that

2 2
So
- 5 , 1. _ .-13P
(TlP)W(PlT)—-T L
2 2
oy 3 (plpy o 12T .
(TlP)W(PlT)-T ;s

(3-8)
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[¢ )

Expressions (3-5), (3-6), (3-7) and (3-8), together with lemma 2,

permit efficient computation of the expressions (2-8) required for
3 P

the computation of Newton's step (2-7). First we notice that T A,
J
and %I‘_ merely shift the colums of A down by j places, and append
3

J zeros to the top of A. Furthermore, since Af is a vector if A

is a matrix, and P and T are both colum triangular, we see that

we will never need to actually compute any nxn matrices (since we
need only oompute expressions of the fom Av, where v is a vector,

and A is colum triangular, SO this computation can be done trivially
without expanding A into an nxn matrix). Specifically, we can break
the computation down as follows:

-1

Let A=T"7P

1 Compute and store Af (requires n cells)
2) Compute and store Af' and A'f (requires n x (k+p) cells)
2.1) The gradient G is now given by camputing

(A 17 [Af] and [A'£17 (Af]

2.2) Compute and store the nyxLm matrix, that is
(ac' 17 [as'] tar' 17 [a'f]
[ar' 17 [a¥] (are1” [a'f]
Lrequires (pt+k) x (p+k) cells)
3) Compute and add to the matrix computed in 2.2 the

nonlinear correction terms due to the second

derivatives, that is
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[am1T [Af] are 37 [af]
arer 1T [a¥ ave1T [Af]

(requires only n x 1 cells of temporary storage).
This gives us the Hessian H.

Of course, the computation of A' and A" must be further broken
down into special cases, depending on whether A = 771 op just 71
or P. This is done using specializations of (3-5) and (3-6). Note
that in both steps 2 and 3 we have only had to compqte Pproducts of
the form Qv, where Q is column triangular, and v is a vector. As
pointed out previously, this can easily be donergiven only the first
colum of Q. Steps 2.1, 2.2, and 3 also require the computation of
inner products; again, this can be done easily with no need for
additional storage. In fact, the entire algorithm given above does
not use significantly more storage than that required fbf an ordinary
regression, and, thanks to the special forms of the matrices involved,
the required derivatives are computed fairly efficiently. A similar
algorithm works for the information matrix I(y); the upper left k x k
corner is given by [Af! 1T [af'] , So we need only worry about the
lower right p x p corner. Using (3-7) and part 4 of lemma 2, we see
that it suffices to compute the p matrices given in formula (3-8), and
then to compute the trace of all cross products. Again, note that
column triangularity allows us to compute only the first colums of
matrices, so we need only n cells for each m@ﬁ, rather than n2.

In addition to the above, several interesting special results

can be gleaned easily from the simplified forms (3-5), (3-6), (3-7),

and (3-8). They are discussed in the next section.
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IV. SPECIAL RESULTS

We specialize to m(B) = 0, so we have a pure Box-Jenkins model,
£(8) = Y.
| >i) If T(¢) = I, so that we have a pure autoregressive
model, then defining Yi = 0 for i< 0 we have

_ rd P, T
Gj [ap _Y] PY
|
n p
= Y. [y, - z op. ] (4-1)
n o) n
= I Y .Y Eop; I Y oY
kel K0 K gy Lgegen K3 Tk
Hence we want
n n n
) r Y .Y +...+ p r Y .Y = r Y .Y
1 k=9+1 k-j "k-1 b k=j+1 k=] "k-p k=3+1 k=3 "k
(4-2)

for j=1, ..., P .

Equation (4-1) is illuminating: it shows that (at least for
this case) the second half of equations (2-5) reduce to an orthogonality
condition: residuals orthogonal to the "data", where now the data
is Y, rather than X as usual. This is reasonable because in this
type of model, Y acts like X in the usual setup. In fact, recalling
(1-1) and (3-1) our model is now

Y VN (0, o2 Fp7lT)
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That is

PY ~ Nn (0, 02 I,

or, expanding the product FY,

V=g
Yy =Yyt e

= + +
N = ey Pt e e
= +,...+ +
.kYn pth—l ppYn-p “n
where e v N (0, 0% 1)

Clearly this is formally identical to the usual lineaf‘regressidﬁ”model

Y = XB+e, where here

[o 0 \
¥ o
x= |y, vooo. - .
\ “n-1 Th-2 }

So indeed [Y—XB]TX = 0 is equivalent to (4-1).
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The usual method for estimating pure autoregressive models is to
solve the Yule-Walker equations (see Box and Jenkins (1970) 3.2.2).

In our notation these equations are:

n n
T (Y, .=Y)(Y -Y) T (Y, .. =D -Y)
=341 k=3 k ] k= k=9+1 K
= o] +
n =2 1 n
kfl(Yk'Y) 3 (Yk-Y')2
- k=1
n —— —
s Ep—l(Yk_j DD .
+ n s J =1y o0y P,
- 9
T (Y, -V~
k=1 K
n 2
FEliminating the common term I (Yk—Y) , and recalling that in (4-2)
k=1

Yi=0 for i<0, we see that (4-3) differs from (4-2) only in that 0 is
substituted for Y. This makes sense, because the assumption m(g)=0
implies EY=0.

So we 'see that our method of estimation reduces to the usual one
in this simple case. If we assume m(B)=8 (a scalar), so that EY=8,
then the two estimation methods are similar, but not identical, since
we estimate B simultaneously with p, rather than merely setting [;-':Y.

(In practice, 8 usually is close to Y).

(4-3)
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i) IfT(¢) = I and o = 0, then

(;-l 0 0 . . . 0 \

I(e) = .

0 0 0 Co n—-p)

This is a perfectly sensible answer, since we see from the above
equations that the estimate for s is essentially based on n-j

observations. In particular, for p=l

iii) Purthermore, from formulas (3-7) and (3-8) we see that

if either P(p)=I or T(p)=I, so that we have only ¢'s or only p's
to estimate, the value of I(y) will depend only on the value of the
¢ or p vector, and not on whether or not it is a ¢ vector or a o
vector. That is, I($)=I(p) whenever ¢=p and, respectively, P(p)=I
or T(¢)=I. |

This result is rather surprising: it says that the asymptotic
variance for the p's is the same as that for the ¢'s if only p's or

$'s are present, even though they represent quite different models:
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- - 2
Yi plYZ-l ppYi—p ~ N(O, 0%)

The other is

where

€ e, v i.i.d. N(O, o2)

l, se ey

iv) If p=¢, then I(¢) is singular, since it has the form

-A Al
this is reasonable since our model is now

( A=A This means that the parameters are not estimable, and

2
Y & N(O, 02 1))

and many choices of p and ¢ will give us this model.
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V. APPROXTMATIONS TO THE COVARTANCE MATRTX

We have assumed that I +(v) < I(y), and in fact Rao (1965) shows
that if Pn is the distribution function of y and Gn is the distri-
bution function of a random variable distributed N(O, I_l(Y)), then

Hmlﬂ;%J= 0.

nN->co

By the strong law of large numbers, and consistency we also have

LHm) - L1to Do, since EH(Y) = E T(v) .

~ P
(Note that it is not true that H(y) - I(y), in fact H(y) need not

converge to I(y), as we will see later.)
On the basis of this result, it has been suggested that we use
H(y) rather than I(y) as an estimate of I(y). We point out some

disadvantages to this approach.

i) Suppose that f(B) = Y, and that p = &, so that I(y)

A

is singular. H(y) is not necessarily singular; in fact, let p = ¢ = O,

and p=2. Then

/ n o, n o, n \
T Y. IY.S- DY Y.
i=2 i=2 i=3
H(y) =
n 2 n n 2 n
IV - DY Y. IYS 4 DY LY.
\ i=2 i=3 i=2 i=3 /




ii) Let f(B) = Y-, K =1, T(¢) = I, p

Then

H(0)

Whereas

1(0)

The form for H(0) is

So

F:
=
(9]
|
0

@

F

|
1

@
:

|
t

most easily derived by observing that here
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1 ™n
Y. -y .
1l ™n NP T
1=2
n 0
0 n-1

n
2 log L(f, B, p) = (Y1—8)2 v o3

i=

2

1, ¢

n
- £ [(¥-8) - p(Y¥, =BT (¥; ;-B)

2

’ 2
[(Y;-8) = p(¥; 1-8)]

- (Y,-8) + 2 I [(y;-8) - p(Y; ,-B)] [-1+p]

n
= ¥ (Y.

2

2

2
i-17®)

n
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Clearly H(0) does not converge in probability to I€0); however, under

the assumption p=0

Y -Yn ~ N(0, 2) , and

1
n

2 2
R R

so we see that

Y.-Y

1l ™n _ 1
~ = Qp(n)
and
n
Lo ¥2 ) =0d
n .o i-1 D n

In this case, however, I(0) is the correct answer, so we see that
H(0) is not as good.

There is another approximation which is clearly superior to H(;):

1

(e 17 vie 0

H2(§) =
0  flylgee

This is obtained by eliminating those coﬁponents in (2-8) whose

expectation is obviously‘O. For the example we have

HZ(O)'= s

(5-1)
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which is still not as good as I(0). H2 also still suffers from
disadvantage i) above; in fact, the lower right corner of H2 is
identical to that of H.

We conclude that the variance of the 8's (Box-Jenkins' parameters)
shoﬁld not be estimated from H(;), but from I(;), éince the two can
differ significantly{ a numerical example follows.

We generated Y by taking 100 points from a normal (0,1) distri-
bution, so that Y ~ Nn(O,I). Then we fit the model (1-1) with
m(B) = B, where B is a scalar and 6 = (g), so that we fit a first
order moving average, first order autoregressive process. (I.e.,

both P and T are present, but each depends only on one parameter.)

We found
.13536
y = -.36 | ,
-.3125
.009328 .000476 .000826
H(y) = . 347967 .345833 R
. 350404
.009319 0 0
Iy = 3.1134 3.16488
3.22633

Since admissibility requires |p| < 1, |¢| < 1, this last expression
means that p and ¢ are essentially inestimable.

It is to be noted that the large observed variances for ; and
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; are not accidental: if we had found p = -.36, ¢ = -.36, then:
I(;) would have been singular, and the variances would have been
infinite. In fact, if we fix p at -.36 and vary ¢, we get a smooth

progression from reasonable variance estimates to absurdly large ones.

_:1;_ Estimated variancé cij
0 .0787

-.2 : .33

~.3 2.06

One might conclude from this example that the estimated variances
given by H—l(Y)‘: are absurd. '
In this context Wall (1973) has suggested looking at the estimated

correlation matrix for p and $, This is

1 .o9041 | for H1G) and
1
-1,"
1 .99859 for T ~(y) .
1

This indicates at once that the estimates for o and ¢ are unreliable,
since they are so highly correlated. We could also lock at the condition

number for the covariance matrix of p and ¢. For H'l the eigenvalues

1

are .0033505, .695021, the condition number 207;, for I — .00448, 6.33525

and 1,414. The condition numbers for the correlation matrices are 208

for HL and 1,417 for Il sowe see that in fact the estimated

covariance matrix is nearly singular, for H 1 as well as i“l; this
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indicates that the parameters are 'nearly inestimable". That is, we
can reasonably conjecture that the estimated variances given by g1
are much too small.

This example points out that blind acceptance of variances

l, without examination of correlation coefficients,

estimated from H_
eigenvalues or condition numbers, can be quite misleading for this class

of problems.
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VI. NUMERICAL CONSIDERATIONS

Assuming that m(B) is not very nonlinear, one would expect that
if T(¢) = I, Newton's method would work well, since then the model
is almost linear: if m(B) is linear the nonlinearity is caused by
the presence of products Py Bj . This is in fact the case. However,
when T(¢) is present the model is strongly nonlinear, and, as one
would expect, straight Newton's method does not work very well.
Various schemes to insure convergence have been found to help:
these are all based on the principle that the objective function
fTV_lf should not be allowed to increase from one iteration to the
next. If the step based on Newton's method would cause an increase,
it is not taken, but a step based on some sort of gradient method
is taken instead. The specific algorithm that was found to be most
effective is a derivative based modification of Powell's (1970)
dog-leg, which was suggested by John Dennis.

Even with this method, however, we have encbuntered models where

G was not zero, yet gt

G was. This means the algorithm got stuck in
a valley or "rut", even though a minimum had not been found. The
only way out would be to start agai_nr with a different initial guess.
A further problem for which we have no solution is that not all
values of 6 are allowable. The admissibility condition given by Box
and Jenkins (1970, pp. 54 and 67) is rather messy to compute, so we
do not attempt to verify admissibility of the estimated 5. As a
conseguence we may.occasionally return ridiculous estimates. In

general, as pointed out by Box and Jenkins, great care should be

exercised when fitting this sort of model.
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Finally a few words on initial guesses. The following seemed
to work reasonably well.
1) Fit f(B) by ordinary nonlinear least squares. Letr = f(é).
2) Fit the Box-Jenkins model for P(p) only to r. Let these
new residuals be r,.
3) Fit the Box-Jenkins model for T(¢) only to r,.
L) Use the estimated 8, p, ¢ as initial values for the full

model.
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