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Abs1act

We define a class of models that are generalizations of regression models

arid moving average-autoregressive tine series models. Then we investigate

the asympotic and canputatiorial properties of the maximum likelihood

estimator, with numerical examples. The main conclusion is that care must

be excercised when using simple approxinations to the covariarice matrix

of the estimates.
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The main purpose of the paper is to examine certain

aspects of Box-Jenkins models: specifically we will examine conputa-

tia1 nthods arid approximations to asymptotic covariance matrices.

We begin, however, by introducing a nore general setup.

I. I} MJ]JEL

We will work with the following model. Let 8 be a kxl vector

of paraJrters, m a twice differentiable function m: Rl<Z÷t, so that

m(B) is an nxl vector. V(o) is an nm synmetrip positive definite

matrix, whose elennts are a function of the pxl vector, 0.

Our nodel is

Y m(8) + c, (1—1)

where c 'bN(O, cy2v(8)),

SO that if
V(o) = cv½e)J [V(e)JT,

V(0) E N (0, a2I). (1—2)

For exarple if V(0) I, we have the usual nc)nlinear model, arid if

m(8) then we have

Y-X8 N(0, a2In)
which is the usual linear regression model.
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For convenience, we put f( B) Y-m( 8), so that f(8) is the nxl vector

of residuals. We let y (), the combined parameter vector. In

our applications we will find that p, the dimension of e, is much

naller than n, so that V(e) is unknown only up to few parameter

values, which we wish to estimate. For example, if Y were a zero

mean time series, we could take f(8) = Y, and perhaps assume

o 0

1 0

v(e)

o o ... 0 e 1 .
This is a one parameter model, in which we are trying to estimate the

correlation between Y and Yi1, assuming that Y1 uncor-

related for t>2. The usual Box-Jenkins models described in Box and

Jenkins (1970) are special cases of (1-1). In fact, they can

be written as

Yi " ai—a Cj1Cj 4'b si—b'
(1—3)

where

Cl "' n N(0, c2) variables.

In our notation

P(p)Y T(4) c, (1Li.)

••' "a ' =
'
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1

P(p)
a—1 a—2 0

a—1
0

o 0

o 0 0 1/
and

o 0

1 0 0

_q1
1 0

T() = (1—6)

a-1 a—2 0

a-1 0

0 0 0

0 0 1



Letjg e
(p1, ••., a' j' '

nd (1-8)

so that the .ns fltdels
th 1fl()

fldeed

V(o)

fld T()

given

Cases (1-1),

defj by the abo

We wjfl

es.

let P(p)

.
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II. 'ESTIMATION

Since we have not asszned that f(6) is linear, and V(o) is not

necessarily linear in 0, we are not in an exponential family, so the

theory of sufficiency is not applicable. We resort to the

principle of mathiium likelihood. We can only observe the nxl vector

Y, so we need the likelihood in terms of Y:

L(f,6,8,a) C det(V(0))
exp[

fT(6)V;l(O)
f(6) ] , (2-1)

where C is a constant (see Pao (1965) section 8a.4).

For all our applications we will have det(V(0)) 1 (see 1-5

and 1-6), so we irrmediately siirlify things by assuming that

det( (0)) =
1 for all values of 0. (2-2)

Hence

log L(f,6,0,ci) - j. fT(6) V(0) f(6) - n log a + C . (2-3)
2a2

To maximize this we differentiate and set the derivatives to 0.

(Recall that f( 6) Y-m( 6), so for each 6, f( 6) is observable.)

D log L

or

1 fT(6) V1 (o) f(6) — = 0

fT(6) V(o) f(6) = n a2

Hence

fT(s) V(e) f(s) , (2-4)
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and we can treat a2 as a constant throughout the rest of the discussion.

Note that we are row trying to mirthnjze

fT(8) V1() f(S).

We write f( 5)
(f1,

f)T V1 (0) (V) for convenience.

Then

BlogL - -1 B f)—

2a2 j jj
3' J

af.
- 1 v1Jf.+f.v'J—l])— (E [ 1

2a2 ij 5i

- —1
(E V'f.)
ii i

—1 af() )T V1(0) f(S)
a2

BlogL = 1 B f.vf)B .. 1
m 2a2 m ij

- _- (E f. f.)
2a2

.. 1 BO 3
13 m

- -1 fT(5) BV(5)
2a2 m

.
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So the k+p nornaJ. equations are

J
vce f(s) = 0

(2—5)

m

Note how the first equation imposes the usual least squares condition:

residuals orthogonal (in the right ntric) to the "data", represented

here by the first derivative matrix.

The second equation is also an orthogonality condition, albeit

somewhat less obvious: as we shall see later, for certain special

cases this condition becanes nre explicit.

To solve these equations we propose to use some variant of Newton's

nethod, so we compute the second derivatives. Omitting the details we get

_ci2 2 log L V(e) + V(e) f(s)

—a2
D2 log L = fT() 3v1(e)

f(s) (2—6)
i8m

-2a2 L
fT(s) 2V(e)

and Newton's method is

(i+l) - (j) —l (i) (1)
y - y — H (y ) G(y ) , (2—7)



The primes denoting the appropriate derivatives. (Note that the factor
is cmitted from the lower right hand corner of H, because it is omitted
in the lower half of C). The Fisher information matrix 1(y) is

[f]T Vf' + T vi fna2
[. —— [f?]T [V1]'f

Holland (1973) described a method for carrying out the expectation in

2—9.
2

Since a is considered fixed, we treat it as a constant.Then

E [ft]T Vf' + [ft]T
V_if]

1
Th tft]T f' + [fIt]T V_i [Ef] 2 [f,]T Vf',a

since f'() m' () was assumed fixed;

.

E [2 [f]T
[V_1]?f]

[f?]T [v1]' [Ef] 0,

since f(s) Y— m() N (0,a2V(O)) , by 1—1

E [2 fT [\fll]fl fj

1= — 2 E trace
2a

-l trace [E [ fT [V]"f] ]—

2
2a

[fT{v_i],tfl =
2

E trace
2a

—8—

where

H
/ff,]T
I

[f,]T

V'f + f" Vf

[lJ, f

[f,]T[V_l]tf\

fT[V_l]flf )
and

fT

(2—8)

1

1 T —1"—f [V ] f
2 a2

(2—9)

.
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1
2 trace CEIrr1]" ff]] 2 trace [(V*I" E[ffT]]

2a 2a

2 trace V trace [vCv]"]
2a

So we have

L [fI]T v1 f' 0

ICy)
(2—10

—1
0 1I2trace(V0 )

thder suitable regularity conditions, it can be shown that

(y-y)
Nk+P(O

f1(1)). (2-11:

We will assi.mte that (2-U) holds.

We now specialize to a subset of (1-1) for which the expressions

(2-7) are easy to canpute.
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III. THE NERALJD BOX-JENKENS SETUP

We restrict ourselves to the subset of (1-1) for which

V(@) P(p)T() [pJ(p) T()]T (3-1)

so that = T($) p(p) (3—2)

where T, P are given by (1-5) and (1-6).

Note that det (T( )) det (P( )) 1, so that det (V( 0))

as required by (2-2).

We will use the following lenurias:

Lemria 1 Let A a), B( a) be any non-singular matrices whose elements

are a function of a scalar a. Then

i) }— A(a) = -A(ct) }-A(a) A(a)

ii) A(a) B(a) A(ct) B(a) + A(c*) B(a)

Proof:

1) I A(a) A(a)

So
3 E kj

O--- kaik(a)a

3 kj 3 kj
k

a(a) a (cx) + — a (a) a(a))

Hence

o -- A(a) A(a) + A(a) f- A(a)

.
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and

hA(cL) —A(c) f-A(c) A1(ct)

ii) follows similarly

Definition A matrix A is said to be Column Thiarigular if A

can be written as

a1 0 0 0

a a 0 0

a3 a2 a1
0

A

a a a an n-i n-2

Lenifra 2 If A and B are arbitrary columi triangular matrices, then

1) AB is column triangular

ii) A is column triangular (if it exists)

iii) AB = BA

'l'iv) Trace (AB) ia . bn—i n—iil
v) If furthermore the entries of A are a function of the

scalar CL,then - is column triangular.
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Proof: Let a1, ..., a1 and b1, ..., b detenine A and B respectively.

i) (AB) Z A Bkj ai_k+l bk...j+l

where I {k : 1 < i-k+l <n and 1<k-j+i <n}.

The rerige in the surnni.tion can be rewritten as

-i <-k <n-i-i

<k<n+j-1

fi>k> 1+1-n
or I

),j<k<n+j-i
=

kj a±_k÷l bk_j+l

Hence (AB).. 0 whenever j > i S
and (AB)1,+ kj+Z aik+i bk_j+l

j<k—9<i—2
a±_k+l bk_j_÷i

1—.Q

Za. b-. i—m—2+i m—j+l
m-j

=(AB)

which establishes coiiniui triangularity.

.
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ii) Note that a cohmn triangular natrix is lower triangular,

so its inverse can be computed column by column by simple forward

substitution. Letting

fi if i=j6.. =
1J

We have i-i 1•
6.. - A. A'' k—

:ik- for ij, ..., nA A..
11

0 for i1, ..., j—i

where A1 is the j elerient of A1.

But A a.k+l

i—i
k

1j .a. A
so A' = kj i—k+l , ...,

a1

1—1

A1,j = 6±,j+i k=j+i
a±_k+l Ak,]

, i=j+l, ...,

1
tsi_+1,j+l ai+l_k+l

A
i+l,j+i kj+l . -.

hence A , 1—], ...,
a1



ES.. — a A1,i
A'1 kj

i+1—k

E b.÷1 = (BA)..

by setting & i+j-k, so that k i+j-2

v) obvious.

i!l k=1
ak+l bjk+l

n I nn-k
= E E akb- a]b]
1:1 k1 k1 i0

n n

(n-k+1) abk ia11 b.1
k=i i-i

QED

- 13 —

.
and

a1

Since this formula aflows us to successively compute the

for i=j, ..., n-i and we Jow that A1+i1 0 for 1=1,

comparison with the formula for A1 we see that A1'1
1j, ..., n-i, which establishes column triangularity.

a11 bkj+l

I=j, ..., n—i

i+l,j+1elements A

...,j—l,by
A1 for

iv)
T

1

CAB)..' k1

Thace (ABT) =

A B = k=i a1 k+1 bjk÷l .
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Note that P(p) and T( ) are both column triangular, so from the

above lemna, we never need to actually carry around P and T, but only

their first columns. This allows us to sinlify things considerebly.

Specifically (omitting the arguments)

v1 = CTP] T1P

so /[TP ff]T TP f (3-3)
G

[(TP)' f]T (TP) f

since C(T_1P)t]T T1P + [T_1P]T (TP)'

and fT (V)' f is a scalar.

Also H:

(TPf']T T1Pf' + [T1Pf' T TPf [(TP)f' ]T (T1P) 'f + [(TP)?f? ]T (TP)f
(3_14)

[(Tp)f,JT (TP)'f + r(TP)tf,]T (TTP)f [(TP),fJT (TP)'f + [(TP)?,f]T (T)f

since (V)" [(TP)?t]T T1P + [(TP)tJT (TP)'

Further sinplification is çossible noting that

.L... (TP) T + T1 L. T1 T1
a p1 ap1 1

(3—5)

.L(T'P) P = -T LI T1P 1 T2P



2(T1p)

ai4j
(- TT1P) =

- 3 T T1'
34.

3.

T T1 T1
J

3T3f'T-lp 3T

P = 2 -h h T3 P

A similar simplification occurs for the information matrix.

Holland (1973) suggests a method for showing that:

tmce (vc = trace
[TP)9O') ((T_1P)

To simplify this canputation we will write V=QQT, V :Q_TQ_l, where

T •P

QT is co1.min triangular (leiin-ia 2 will be used in succeeding computations).

It is easy to show that

32 V_i

Hence trace ( :),
= trace

[(QT

1 r3- trace
L c

- 15 -

—l 32P =0
3pipj3p1

3 2(f1-p)

pip

32(flp)

- 3 T
3p.1

- ____ - = -T1
pj

3T -13P_ 3T !I!L T2T
34

(3—6)

1•

.

(3-7) S

ri)

.

= 2V1 3V V1
302,

av V

3ocfl

—l - V1 32V
30 0:

(av v1
trace

302,

Q_TQ_l
302, /

V-i

m v) - ra( t:om

QT + Q
QTQ11

+
3em /

J

DOm

DQ QT + Q• QT QTQ1
DO 80m m
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- trace r -1 3QT Q_T -1 T -T
90 30

!Q +QJ+-
2. i\rn 0m /

trace ( 92Q QT + Q + + Q 92QT

)
QTQl—

30 0 30 30 90 30 0
L m 2, 2. m 2.-rn

Now Q is lower triangular, with 1 on it 's main diagonal. So

is lower triangular with U on it mein diagonal. It follows
that any product of lower triangular matrices involving will

have U trace. Similarly for and for products of upper triangular
m

matrices involving — and 3QT • Using this fact we obtain
30

rn

(3Q Ql 3QT Q-T +trace( = ce
2. 90rn Itm

+ trace Ql Q_T
( 30

302, )
+

trace ( Ql •Q Q_T) - trace (Q °m Q_T)90
\ rn

But trace (AT) trace (A) , for any matrix A, so we finally get

trace (
2v1 '\— V
30 0 ) trace[( 3QQ) ( Q) T]t.rn

trace
1rQ_1

,) (p_a.
9Q \ Ti
w)iIL 302, m j

(because Q is coluirn triangu1r).
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.
Now having estb1ished 3-7 we note that

_ (PT) = T + P1
-—- T

k PT +

So

(TP) —p--- (PT) -T PT = - -- P1

(3—8)

(f1P) (PT) T1 LI. = LI T1

.
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Expressions (3—5), (3—6), (3—7) and (3—8), together with lemma 2,

perndt efficient computation of the expressions (2-8) required for

the computation of ewt's step (2—7). First we notice that A,

and .— merely shift the coluims of A down by j places, arid append
j

j zezos to the top of A. Furthermüre, since Af is a vector if A

is a matrix, and P and T are ]x)th coliru-i triangular, we see that

we will never need to actually compute any riai matrices (since we

need only compute expressions of the form Av, where v is a vector,

and A is cohuiu-i triangular, so this computation can be done trivially

witi-out expanding A into an nxn matrix). Specifically, we carl break

the computatioi down as follows:

Let A T1P

1) Compute and store Af (requires n cells)

2) Compute and store Af' arid A' f (requires n x (k+p) cells)

2.1) The gradient G is now given by computing

EAf,]T [ and [Atf]T [hf]

2.2) Compute and store the ttxTxt, matrix, ttiat is

]T , [Af' [A'

[Af]T [t] [AtfJT [A'f]

:(requires (p+k) x (p+k) cells)

3) Compute arid add to the matrix computed in 2.2 the

nonlinear corction terms due to the second

derivatives, that is
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[Atft]T [Af]

[A,,f]T

(requires only n x 1 cells of temporary storage).

This gives us the Hessian H.

Of course, the computation of' and At! must be further broken

down into special cases, depending on whether A = T1P or just T1
or P. This is done using specializations of (3-5) and (3-6). Note

that in both steps 2 and 3 we have only had to compute products of

the form Qv, where Q is column triangular, and v is a vector. As

pointed out previously, this can easily be done given only the first

colunri of Q. Steps 2.1, 2.2, and 3 also require the computation of

inner products; again, this can be done easily with no need for

additional storage. In fact, the entire algorithm given above does

not use sifficant1y irore storage than that required for an ordinary

regression, and, thanks to the special forms of the matrices involved,

the required derivatives are computed fairly efficiently. A similar

algorithm works for the infonmation matrix 1(y); the upper left k x k

corner is given by [Aft]T [aft] so we need only worry about the

lower right p x p corner. Using (3-7) and part 4 of lenma 2, we see

that it suffices to compute the p matrices given in formula (3-8), and

then to compute the trace of all cross produots. Again, note that

colunin triangularity allows us to compute only the first columns of

matrices, so we need only n cells for each matrix, rather than n2.

In addition to the above, several interesting special results

can be gleaned easily from the simplified forms (3-5), (3-6), (3-7),

and (3-8). They are discussed in the next section.
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IV. SPECIAL RESUL

We specialize to m() 0, so we have a pure Box-Jenkins iiüdel,

f(8) = Y.

1) If T() I, so that we have a pure autoregressive

ndel, then defining Y 0 for i< 0 we have

[y]T py

n p
— k • (4—1)

kj+l i1 1 —1

n p n
E 'kk Z p. E Y .Y

kj+l —J i1 1 k=j+l k—j k—i

Hence we want

kj+l k-j k- ••• kj+l k-j k-p k=j+l k-j k1
(L._2)

for j1, ..., p

Equation (4-1) is i1minating: it shows that (at least for
this case) the second half of equations (2-5) reduce to an orthogonality

condition: residuals orthogonal to the "data", where now the data

is Y, rather than X as usual. This is reasonable because in this

type of nx,del, Y acts like X in the usual setup. In fact, recalling

(1-1) and (3-1) our rxodel is now

' " N (0, a2 p_l{p_lJT)
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That is

PY " N (0, a2 I),

or, expanding the product PY,

P1Y1 + C

= lk-1 + pk-p +

Y pY +...+pY +n in-i pn-p n

where C " N (0, a2 I)
.

Clearly this is foniialiy identical to the usual linea± regression model

Y X8+C, where here

0 0

Yl 0

Y
n-i n-2

So indeed LY-X ]Tx = 0 is equivalent to ('i-i).
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The usual method for estimating pure autoregressive models is to

solve the Yule-Walker equations (see Box and Jenkins (1970) 3.2.2).

In our notation these equations are:

n n
E y .-7) ('i' -7) (Y . (Y-7

kj+1 k—j k
- kj___________ - p +...

n 1

( 72
k=1 ki k

n
z (y . -?)(Y-7)

-i i-J
+ p " , j = 1, ..., p (4....3)

p n
E (Y—Yyk1

2
Eliminating the common term , and recalling that in (4-2)

k= 1

Y=0 for 1<0, we see that (4-3) differs from (4-2) only in that 0 is

substituted for Y. This nJces sense, because the assumption m(13)E0

implies EY=0.

So we see that our method of estimation reduces to the usual one

in this simple case. If we assume m() (a scalar), so that EY,

then the two estimation methods are similar, but not identical, since

we estimate simultaneously with p, rather than merely setting Y.

(In practice, usually is close to 7).
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ii) IfT()IandpO,then

n—i 0 0 . . . 0

o n—2 0 . . . 0

o 0 n—3 . . . 0

1(e)

0. 0 n-p

This is a perfectly sensible answer, since we see from the above

equations that the estirrte for is essentially based on n-j

observations. In per'ticular, for p1

n
E Y. Y.i2 1 i—i

n
E Y.

1i 2

iii) P\jrthernore, from fonTlulas (3-7) and (3-8) we see that

if either P( p) El or T( p) El, so that we have only 's or only p 'S

to estimate, the value of 1(y) will depend only on the value of the

+ or p vector, and not on whether or not it i a c vector or a p

vector. That is, I (+ ) I(p) whenever + p and, respectively, P( p ) 1

or T(+)I.

This result is rather surprising: it says that the asymptotic

variance for the p's is the same as that for the 4 's if only p ?s or

s are present, even though they represent quite different itodels:
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One is
— ••• -pY1 'v N(O, a2)

The other is

—
f)Cj)

where

c1,
C i.i.d. N(O, a2)

iv) If p, then I() is singular, since it has the fonTi

(_2 ) . This means that the paremeters are not estimable, and

this is reasonable since our nodel is n

Y ".. N(O, a2 I)

and many choices of p arid will give us this nodel.
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V. APPROXIMAflONS TO THE COVARIANCE MAThIX •
We have assumed that I(y) 1(y), and in fact Rao (1965) shows

that if F is the distribution function of y arid
Gn is the distri-

bution function of a randan variable distributed MC 0, I ( y)), then

1m IFn_Gl

By the strong law of large numbers, and consistency we also have

H(y) - 1(y) 0, since EH(y) E ICy) -

(Note that it is not true that H(y) -- 1(y), in fact H(y) need not
converge to 1(y), as we will see later.)

On the basis of this result, it has been suggested that we use
A a

H(y) rather than 1(y) as an estimate of 1(y). We point out some

disadvantages to this approach.

1) Suppose that f( ) Y, and that p 4, so that 1(y)

is singular. 11(y) is not necessarily singular; in fact, let p = 0,

and p2. Then

n ,, n nY_ y
• 1 • i . i—2ii=2 i=2 i=3

H(y) =

n , fl n ,, fl
E Y. - E Y. Y. ' + E Y. Y.

• 1 • i—2i . • i—2ii=2 i=2
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ii) Let f(8) Y—8, K 1, T(4) I, p 1, 1.

Then

Y -Y

H(O)

(n

in

1)

n
Y-Yin .i 2

Whereas I

I(O)
o n—i

)

The form for H( 0) is nest easily derived by observing that here

n
2log L(f, 8, p) (Y1-8)2

+ Z
[(Y1-8)

-i2

So
nlog L — [(y ) — (y ..)] (y )

i—i i—i

alogL
8

— (Y1—8) + 2 [(y.—B) —

P(Y1_f8)] [—l+p]
2

1

nlogL E (Y. _8)2
2 2 i—i

22logL 1 + [—l+] [—l+p] = N — 2(N—i) p + (N—i) p

8 2

n n2 log L -
[-l+p] (Y1_18) + [(Y1-8)

- p(Y118)] (-1)
8 2

n n n n
z (Y11—8)

— p Z (Y11—8) —
(Y±—8)

+ p (Y±i_8)
2

= (Y—8) — (Y—8) =Y—Y1 n in
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Clearly H(O) does not converge in probability to 1(0); however, under

the assumption p0

N(O, 2) , and

2
: Y. X

i-l n—i
1=2

so we see that

Y-Y1 n
0 ()n pn

and

-n+l) o ()
1=2

:i-l

.
In this case, however, 1(0) is the correct answer, so we see that

H(0) is not as good.

There is another approximation which is clearly superior to H(y):

[f?]T Vf' 0

H2(y) (5—1)

0 fT[V_l],If

This is obtained by eliminating those corionents in (2-8) whose

expectation is obviously 0. For the example we have

n

I

0

i_21)
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which is still not as good as 1(0). H2 also still suffers from

disadvantage 1) above; in fact, the lower z'ight corner of H2 is

identical to that of H.

We conclude that the variance of the 0's Bo enkins' parameters)

should not be estimated fran H( y), but from ICy), since the two can

differ significantly: a numerical example follows.

We generated Y by taking 100 points from a normal (0,1) distri-

bution, so that Y ".. N(0,1). Then we fit the rxdel (1-1) with

m(8) 8, where 8 is a scalar and o = (), so that we fit a first

order noving average, first order autoregressive process. (I. e •,

both P and T are present, but each depends only on one parameter.)

We found

.13536

—.36

—.3125

.009328 .000476 .000826

.3'47967 .345833

- 350404

.009319 0 0

I_1(y) 3.1134 3.16488

3. 22633

Since admissibility requires I I . 1, I
I < 1, this last expression

ans that p and 4, are essentially inestimable.

It is to be noted that the large observed variances for p and
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4 are not accidental: if we had found p -.36, = -.36, then

1(y) would have been singular, and the variances would have been

infinite. In fact, if we fix p at -.36 and vary , we get a sirDoth

progression from reasonable variance estimates to absurdly large ones.

Estimated variance of q)

0 .0787

—.2 .33

—.3 2.06

One might conclude from this example that the estiniated variances

given by H(y) are absurd.

In this context Wall (1973) has suggested looking at the estimated

correlation matrix for p and 4), This is

(i
.99

04,)

for H1 () and

1 for I(y)

This indicates at once that the estimates for p and 4) are unreliable,

since they are so highly correlated. We could also look at the condition

number for the covariance matrix of p and 4). For H1 the eigenvalu

are .0033505, .695021, the condition number 207; for I 6.33525

and l,I+lL. The condition numbers for the correlation matrices are 208

for and 1,l7 for I. So we see that in fact the estimated

covariance matrix is nearly singular, for H1 as well as i_l; this

.
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indicates that the parameters are "nearly inestimable". That is, we

can reasonably conjecture that the estimated variances given by

are much too small.

This example points out that blind acceptance of variances

estimated from H1, without examination of correlation coefficients,

eigenvalues or condition numbers, can be quite misleading for this class

of problems.
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VT. NUMERICAL CONSIDERATIONS

Assiining that m( ) is not very nonlinear, one would expect that

if T() I, Newton's method would work well, since then the model

is almost linear: if m( ) is linear the nonlinearity is caused by

the presence of products p 3• This is in fact the case. However,
when T(q) is present the model is strongly nonlinear, and, as one

would expect, straight Newton's method does not work very well.

Various schemes to insure convergence have been found to help:

these are all based on the principle that the objective function

fTV_lf should not be allowed to increase from one iteration to the
next. If the step based on Newton's method would cause an increase,

it is not taken, but a step based on some sort of gradient meti-od

is taken instead. The specific algorithm that was found to be most

effective is a derivative based modification of Powell's (1970)

dog-leg, which was suggested by John Dennis.

Even with this method, Iwever, we have encountered models where

G was not zero, yet H1@ was. This means the algorithm got stuck in

a valley or "rut", even though a minimum had not been found. The

only way out would be to start again with a different initial guess.

A further problem for which we have no solution is that not all

values of U are allowable. The admissibility condition given by Box

and Jenkins (1970, pp. 5+ and 67) is rather messy to compute, so we

do not attempt to verify athiissibility of the estimated U. As a

consequence we may occasionally return ridiculous estimates. In

general, as pointed out by Box and Jenkins, great care should be

exercised when fitting this sort of model.
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Finally a few words on initial guesses. The following seemed

to work reasonably well.

1) Fit f( ) by ordinary nonlinear least squares. Let r f( ).

2) Fit the Box-Jenkins model for P(p) only to r. Let these

new residuals be r2.

3) Fit the Box-Jenkins model for T() only to r2.

14) Use the estimated , p, as initial values for the full

model.
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