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Abstract

Several econometric models for the analysis of relationships with limited

dependent variables have been prosed including the probit, Tobit, two-

limit probit, ordered discrete, and friction models. Widespread application

of these methods has been hampered by the lack of suitable computer programs.

This paper provides a concise survey of the various models; suggests a

general functional model under which they may be formulated and analyzed;
reviews the analytic problems and the similarities and dissimilarities of
the models; and outlines the appropriate and necessary methods of analysis
including, but not limited to, estition. It is thus intended to serve as
a guide for users of the various models, for the preparation of suitable
computer programs, for the users of those programs; and, more specifically,
for the users of the program package utilizing the functional model as
implemented on the NBER TROLL system.
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Introduction

Economic relationships involving limited dependent variables are

receiving widespread attention in the Econometrics literature. Much

of the discussion has focused on methodoloi with only scattered

application to real problems, the one exception being the qualitative

variable problem frequently treated with logit and probit analysis.

Since potential applications for these rrodels abound, it is likely

that the shortage of corrputer programs and their limited dissemination

is partly responsible for the infrequent emperical studies using them.

In turn, useable computer routines may be scarce because the models

though similar in many respects are dissimilar enough so as to seem

to require a separate algoritim for each model.

The purpose of this note is to suggest a general functional model

which is readily adaptable to computer coding and flexible enough to
1fit a wide variety of limited dependent variable problems. It should

be emphasized that the model presented here is functional as opposed

to theoretical. That is, it is not advocated as the structural model

1. Tom Johnson [1] presents a general discussion of many
of the models but falls of short describing in detail a central
model around which a computer algorithm can be constructed.
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underlying any limited dependent variable relationship. Rather we

suggest that many of the theoretical relationships may be reformulated

to fit this functional model so that a single computer program may be

used to analyze all of them.

The terminolo, "limited dependent variable" is used here to

denote variables endogenous to sone underlying economic relationship

which are not continuously neasureable (or observable) over the entire

real line either directly or even after soire transformation such as

logaritbns. Thus it applies to discrete (ordinal) variables, qual-

itative (non-ordinal) variables and to variables subject to threshold

constraints such as non-negativity. Such discontinuities may result

from theoretical considerations, from physical constraints on the

variable or simply from measurenent difficulties.

The effect of the discontinuities on estimation is that when such

a dependent variable enters the usual sort of regression model the

properties of the implied disturbance term cannot satisfy the assumptions

needed for least squares estimation. The atterriative estimation nethod

generally proposed is maximum likelihood. After a suitable choice for

the distribution of the disturbances is specified the distribution of

the limited dependent variable is derived and the likelihood function

is constructed. This typically involves both probabi ilty density and

distribution functions and yields non-linear normal equations so that

iterative maximization algorithris, generally Newton-Raphson, are

suggested for obtaining estimates. These procedures are of course

straight forward but they may becorre quite expensive and. time consuming

if computer programs to not exist for the particular model being examined.
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Section I of this paper presents a brief review of a nu]ther of

limited dependent variable models. Such a survey will serve to

motivate the types of models to be treated and highlight their sim-

ilarities and dissimilarities. In Section II the functional model is

introduced. It is of course possible to outline a completely general

model but the aim here is for a model which rry be easily impleinted

in a single computer algorithm. With this goal in mind reasonable

restrictions on the model ars imposed and nny of the details needed

for implenntation are discussed. A final section outlines features

which should be included in a general computer algorithm.
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Review of Some Limited Lpendent Variable Models

A. Binomial choice models2

In these models each measuring unit or individual is faced

with the choice of one of two mutually exclusive alternatives and

the choice made is thought to depend on some vector of exogenous

variables. One way to formalize the choice mechanism is to view

the decision maker as having associated with each alternative

sorre preference function, say

I f (X.) + vli .1 i ii
I f (X.) + v2i 2 1 2m,

and choosing that alternative which yields the higher preference.

Assuming f(X1) jl,2, is of the fore f.(X1) alternative

2 is chosen if

I .>I a'X.—ct'X. + v .—v .>O2i li 2i 11 2i li
— ,xi+ui>o

where FcL -a and u. v .-v .. The model can be rewritten in the2 1 i 2i li
alternative fonyi:

Y. z $T. + u.1 1 1

W. = 0 if Y.<01 1

=1 ifY.>0

where Y. is sorre latent (i.e •, unobserved) variable and W. is the1 1

observed dependent variable which indicates the choice made. Maxi-

2. These models appear to have been first examined in the context of
economics by Tobin [8] who outlined the method of estimation which
he termed "probit regression analysis." Theil [7], among others,
treated the same problem with "logit" analysis. The distinction
between the two lies in the assumptions made regarding the distribution
of the underlying disturbance.
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mum likelihood estimation requires sorre assumption about the

distribution of . If that distribution is nol, i.e., uIN(O,a2),

the likelihood function is given by

L(,aW,X) II P(<i n P(i
w.O\ a w1l a

where P(x) represents the standard normal cumulative density

function, P(x): lexp(-u2/2)du.
- )/TiT

founatly S'X1/ais observationafly equivalent to (k )/(ka)
where 1K is any positive constant so that a is not estimable and

is estimable only up to a scale factor. Thus we estimate

, say, which is equivalent to normalizing a at unity.

An interesting related ndel is

Y. 'X. + u.1 1 1

W. 1 if Y. < Z.1 1- 1
0 if Y. > Z.

1 1

where Z1 is sorre observed variable. A concrete example might be

the estimation of a wage expectation function for say new labor

force entrants. Expectations (Y1) are not observable but we might

argue that when faced with a job offer (that is an offered wage

of Z1) the entrant will accept the job (W1l) only if that offer

meets or exceeds his expectation. The appropriate likelihood

function, under the assumption of normality, is given by

z.—'x.
L(,al W ,X ,Z )

1

a ')
.111-P

(Z±_ X)

In this case a is estimable because observations on Z1 provide

information on the scale of Y..
1
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In another variation on the same model Z1 is replaced by sorr

constant threshold. If includes an intercept term then a is

again not estimable since (c-0-6'X)/a is observationally equivalent

to (c-c0--ct'X')/(ka) where a0k60+(l-k)c and ck . If that con-

stant is also unknown and to be estimated the identification

problem is further compounded and estimation will require some

normalization on either or the threshold paramster.

B. Multinomial choice models3

An obvious generalization of the binomial choice model is to

allow for more than two alternatives in the set of possible choices.

Such models fit a large and important set of problems encountered

in economics and are mentioned here for that reason. Regretably

the functional model to be presented here cannot be used to analyze

these models. This is the one class of limited dependent variable

models, however, for which there seems to be wide dissemination

of suitable corrputer programs. The approach used in these programs

is logit analysis, a choice dictated in part by the fact that a

specification of the underlying disturbance distributions such that

the selection probabilities are of the logistic form leads to tract-

able likelihood functions, while almost every other choice of

distributions leads to nearly insurmountable computational diff-

iculties.

3. Refer to McFadden [31 for a description of the most general
muitinomial model, an extensive bibliography of practical
applications and a discussion of the estimation problems.
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C. Ordinaly discrete dependent variables

Another extension of the binary choice model is to all for

more than two alternatives but to require that those alternatives

be ranked in sorre well defined order. Such models might arise

when the nagnitude of the observed dependent variable reflects the

magnitude but not the scale of sorre underlying but unobserved

dependent variable. As an example years of schooling might be a

proxy rreasure for accumulated human capital but it may not be

reasonable to assurre that twice as much education implies twice

as much capital. Alternatively the observed dependent variable

may have the scale relevant to a particular relationship being

examined but it may be rreasurable only in coarse discrete units.

In the case with unkncwn scale the model appears as:

Y. 'X.+
1 1 1

W.l if Y.<p1 11
2 if

S—l if p
s—2— i s—i

S if p <Y.
s—i— i

If the u. 's are independently and normally distributed with mean

zero the likelihood function is

(1_'Xj (p2_Xf (1_'xA
L(,pIX,W)fl P\ a 111 I -p\ ,,/...

1 1

(51-'X (s-2 X\ (5_1—' Xj
.11 P\ a /_P\ a ) •fl l_P\ a J
W.=s—i

1 1

L• See NcKelvie t1 for a detailed discussion of the models.
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As in the binomial choice model, a is not identifiable and the

set of thresholds and the intercept cannot all be estimated.

After suitable normalization, for example al and we can

estimate up to a multiplicative scale factor and the difference

between the thresholds up to the same scale. Estimates of the

i.'s would represent the relative scale among the values taken on

by the observed dependent variable.

When the scale of the variable W is known the model is the

same except for replacing the uni<riown i.'s with appropriate known

constants and in this case a is estimable.
5

D. Truncated dependent variables

In many economic relationships the dependent variable is

necessarily non negative. Thus we might write the model as

W. 'X. + u. if PHS>O1 1 1

0 otherwise

Alternatively we might concieve of an unconstrained latent variable

Y. and reformulate the model as
1

y. z 'X. + u.
1 1 1

W. Y. if Y. >L.
1 1 1— 1
L. if Y.<L.

1 1

where the threshold of 0 has been replaced by a more general variable

threshold and only X, W. and L are observed. For independent

normal u1 ' s the likelihood function is given by

(L._tX\ (w_'x
L(',aJW,X,L) II p\' a a

W.>L.W.L. 1 111 .
5. These models were investigated by Tobin 191 and have coma to be

called "Tobitt' models.
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where Z (x) is the standard normal density function exp (-x2/2).

Exanples of problems to which this model might be applied

include consumer expenditure on some class of goods, which is

constrained to be non negative, and interest rates paid by cornnercial

banks on savings deposits, which are constrained by regulation Q

not to exceed a certain rate fixed by the Federal Reserve. Note

that for purposes of estimation alone the pardcular value assigned

toW1 for limit observations is not used while the threshold value

is. On the other hand for non limit observations the threshold

value need not be known. Thus the model may under certain cir-

curnstances be utilized to estimate seperately the two equations

of the following disequilibrium market model:

D = + u
S = + u

Q Min(S,D)

u1 and U2 independent

The observed variables are Q ,X1 and X2 and we assume that X1 and

X2 are independent of U1 and u2. For estition of the demand

equation D is the latent variable and S the threshold with the roles

reversed for estimation of the supply equation. We must, for the

truncated model to apply, know which observations in a given sample

correspond to demand (ie excess supply) and which correspond to

supply. Furtherrrüre information on this sample separation must be
6

eXOgenOUS.

Suppose that in the sirrple truncated dependent variable model

6. See Maddala and Nelson [2] for a detailed discussion of disequilibrium
market model estimation under these and other assumptions.
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the threshold is an unithown constant to be estimated with limit

observations on W somehow distinguishable, though not equal to

the threshold,. Then direct maximization of the likelihood function

with respect to , a and p (the threshold) would lead to an estimate

for p of infinity. But this would be inconsistent with model which

specifies that the constant threshold must necessarily be less than

or equal to the minimum observed value of W. over the set of non-

limit observations. Thus the maximum likelihood estimate of p

would be this minimum value of W. and the other estimates would be1

obtained by maximizing the likelihood with respect to the other

paraireters holding p fixed.

E. Iub1y truncated dependent variables.

Some dependent variables of interest may be truncated both
7

at high and at low values. The model becomes

+

W. = L . if Y.<L1 li 1 ii

=Y. ifL.<Y.L.
1 li—i 2i

=L. ifL.<Y.2 2 1

and the likelihood function is given by

1

L(,aW,X,L) II P1 11 a Z
W.=L

a a
1 11 1 1

W1=L (L;t Xi)

In some probleus the intermediate or non-limit observations may also

7. See Rosett and Nelson [6] for a detailed treatment of this class
of models.
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be unobserved. Provided the sarrle may still be separated into

the three subsets of observations and the thresholds are J<nown

constants or observable variables, all parameters of the irodel are

still estimable. The middle term in the likelihood function is
L .-'X. L .-'X.

replaced in this case by [P( ' —P( 1)], and the model

is seen to be a specific case of the ordered discrete variable

model with J<nown scale.

An example of a problem to which this model has been applied

is the demand for health insurance by people on madicare. A certain

minimum coverage (the lower threshold) is provided to all participants.

They may purchase supplemantal insurance only up to some maximum

which falls short of full coverage.

F. Models of Friction

Rosett [5] considered a model in which the dependent variable

responds only to numarically large values of the exogenous variables.

His model may be written as:

Yi
= 'Xi + li

W. =Y. - ifY. <a
1 1 1 1 1

if a < Y. < a1 1 2

=y.—a if a <Y.i2 2 1

Denote the sample separation into the three subsets by three sets

of integers l '2 and . The likelihood function is given by



- 12 —

i (w1+a1'x 2 f2_TxA -'x.
L(1,a2,,aIW ,X) II Z\ a ) 11 P a ) - P1 1

3 _______

The model provides for a different intercept in the two sets of

continous observations. One might assume no difference in the

intercepts by setting 1Y1 in both extreme cases and deleting

aid °2 from the corresponding teniis in the likelihood.

Going the other direction even the slope coefficients might be

permitted to change between the two sets by appropriate modification

of the model and the likelihood function.

Exai1es of problems to which this model might apply are

changes in the holdings of some asset in response to changes in

its price or rate of return and changes in wage offers by a firm

in response to changes in market conditions.

.
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II. A General Functional Model

Most of the limited dependent variable models may be specified,

perhaps after reformulation, as

(i) a single regression equation relating a latent, i.e., not

directly observable, endogenous variable to a stochastic

function of some vector of exogenous variables, say

f
and

(ii) a discontinuous mapping from the latent variable Y to an

observable dependent variable W, say

g (Y,Z.)

The role played by the vector of exogenous variables Z will

be discussed below. Observed variables include X. Z. and W. and para-1'] 1

meters to be estimated include the vector and perhaps parameters of

the distribution of U1 and of the function g.

The functional form of both g and f must be }<nown and constant

over all observations. If the rmdel is to conform to the various limited

dependent variable models and be operationally feasible we will require

certain restrictions on the form of these two functions. Consider

first the function f. Since the estimation method to be used is maximum

likelihood the distribution of the stochastic component must be specified.

We will assume that the disturbance term u appears, perhaps after a

suitable transformation, additively and follows an independent normal

distribution with zero mean and constant variance.8 Restrictions on

8. The choice of distributions may of course be changed but is an
integral part of the analysis and thus must be held fixed for
implementation of the model. Note that the normal distribution
leads to probit analysis for the binomial choice model and is
the distribution suggested most often for eKtensions of the limited
dependent variable models. A choice of the logistic (sech2) dist-
ribution would lead to logit analysis for the binomial choice model.



- 1 -

the degree of non-linearity of f may also be desireable. The

iterative niaxinuization algorithims used for obtaining estimates

generally require at least first and perhaps second derivatives. Thus

if nonlinear specifications for f are to be alled implementation

will require a computer system with analytic differentiation capability,

nuirical derivatives or user supplied derivativatives. Restricting f

to be linear would avoid this problem but we will not impose that

constraint here. The regression equation to be used in the nodel is

thus of the form

2
(1) Y f(X.,) + u , uIN(O,a ).

In the limited dependent variable models the mapping W1g(Y) is

necessarily discontinuous with the discontinuities appearing at well

defined points, to be called thresholds, in the range of Y.

that there are S-l threshold points and partition the range of into

the S disjoint intervals. Then g(Y1 ,Z may be written as

(2) g(Y,Z1) = if tj1
< tj j=l,...

where t. . ,j1,... ,S-l are the threshold points and t. and t. are
1J 10 iS

defined to be - and + respectively. The constraint - tj
jzl,... ,S must hold across all observations i but the threshold points

need not be constant across observations. Any conüination of the following

specifications for the t 's should be permissable:

(i) known nureric constants

(ii) observable variables (ie. one of the variables in the vector

Z.)
1

(iii) constant but unknown paramsters to be estimated.
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The individual jl,... ,s are of two basic types, to be

called continuous and mass point as determined by the distribution of

the random variable W. within the relevant interval on Y. . A mass point1 1

specifies that within the jth interval of the range of Y
WI

is

a constant function of Y(i . e., independent of thelevel of Y1). 7pica1

specifications for mass point g.'s are

(i) t< (where tik is one of the threshold points of

the type (i) or (ii) as given above)

(ii) g (Y1) Zik (where Zik is soma observable exogenous variable)

(iii) (Y) c (soma known constant)

Continuous
g (Y1)

's specify continuous and strictly increasing functions

of within the corresponding interval on The most corrmon specifi-

cation will be

=

We will in fact require that all continuous g 5 be of this form, delaying

for the moment a discussion of the advantages and disadvantages of such

a restriction.

Derivation of the likelihood function for the functional model is

straight forward. We need first to derive the distribution of W1. For

mass point intervals we have

Pr(W.g.(Y.)) Pr(t.. <Y.<t..)1 : 1 ij—l—i ij
=(t.. -f(X.,) < u. < t. .-f(X.,))1 — 1 1J 1

which under the Normality assunption on u. becorrs
t. .-f(X.,) 1

Pr(W.=g.(Y.)) p ( 1J 1 - p ( 1J 1

1] 1 0

9. The term mass point and continuous will be loosely applied to the sub-
functions g., to the corresponding interval on Y. and to the values taken
on by W.. What is implied in all cases is that,'within some intervals of
the rane of Y. ,W1 is defined by g. to be a constant so that its associated
measure of proabi1ity is probabi1ty mass. In other intervals W1 is a
continuous function of Y. within that interval so that the appropriate
measure of probability i its probability density.
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where P() is the standard normal cumulative density function. A general

derivation of the density function for over continuous intervals

requires strong assunptions about the specification of continuous g (Y) 's.

If these functions are strictly increasing (decreasing) over the relevant

interval on Y. then the inverse function
1

Y. g (W.)1 J 1

exists and is differentiable so that the p. d. f. of continuous W, say

h(W.), is given by

h(w) J z (wi_fXi))
where J is the Jacobian of the transformation, J. I, and Z is the

standard normal density function. Construction of the likelihood requires

knowledge of the sanple separation. That is for each observation on

we must be, able to determine the interval in which the corresponding

unobserved value for lies.10 For notational convenience define the

subsets of integers 1,... ,n, where n is the sanle size, as

if t_1 < t.. , i 1,... ,n , :F:l,... ,s

The likelihood function is given by

(3) L(eJW,X,Z) = ii A. Ti A. •. .. ii A.ii i2
1 2 s

where 0 is a vector of all paraireters to be estimated and the A. . 's are
1J

defined as t. .—f(X. ,) t. . —f(X. ,)
A.. = P( 1

— i1 1

1]

if j corresponds to a mass point interval on Y1 and

Z ((Wi) - f(X6)
10. Determination of the sample separation is made by comparing, for each observa-
tion, W1 with each g. (Y.). For mass point g. 's a matching of Wj and g. (Y) for
some j determines that *he observation correponds to a value of Yj inthe th
interval. This leaves only the continuous observations to be classified but, as
will be pointed out later, so long as we restrict continuous gj 'S to be of the

form gj (Y) Y1 the knowledge that an observation on Wj is a continuous one is
all that is required; we need not know to which continuous interval it belongs.
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if j corresponds to a continuous interval on Y..

It should nc be clear why the restrictive specification

g (Y) Y for continuous intervals was imposed. Such a restriction

makes it easy to distinguish mass point from continuous intervals

and permits all continuous observations be to be grouped into a single sub-

set, for purposes of estimation, since they all enter the likelihood in

exactly the sane form (Jl and g (W1) =
W1

for every continuous

interval j.) Thus we can avoid a good deal of pethaps nessy corrputer

coding and additional user supplied infornition. Note too that this

restriction creates difficulty with only one of the limited dependent

variable models reviewed in section I, the friction model. But even this

problem is easily surmounted by judicious use of dunmy variables.

The friction model, with intercepts which differ in the two

continuous intervals, is repeated here.

Y. = 'X. + U.1 1 1

w. =
1 Y. -a ifY. <a1 1 1 1

zQ ifa1<Y1<a2
Y. —a ifa <Y.1 2 2 1

Reformulate the regression equation as

Y. a D. + a D. + 'X. + U.1 1 ii 2i2 1 1

where D. -l when Y. lies in the lcwer continuous intervalil 1

0 otherwise

-l when Y lies in the upper continuous interval

0 otherwise.
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The rest of the model is then written as

W. Y. if Y. <ct
1 1 1 1

0 if c<Y.<c1—i 2

=Y. if cL<Y.1 2i
Note that the two continuous intervals on are not properly defined

in this formulation but recall that for continuous intervals the

threshold points do not appear in the corresponding terms in the likeli-

hood function. Thus with regard to estimation the inconsistency is only

transparent. The inconsistency could in fact be removed by redefining

the two intervals as Y.<0 and 0<Y.. But this would make the model more1 —1

difficult to irxplemant since then, without specifically accounting for

the specification of f(X1,), the intervals on Y1 would appear to either

overlap or fail to exhaust the entire range of Y1. Several other points

are worth noting. In this model should not include an intercept

term or indentification problems among o'l and 02 will arise. The

friction model is unique in that threshold parameters and parameters of

the function f overlap. Finally, similar use of dunj variables can

provide for slope coefficients which differ in the two continuous intervals

while if all intercept and slope coefficients are the same the restriction

on the specification of the continuous g 's is satisfied without a

reformulation using duimj variables.
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III. Features of a Computational Algorithm

In this section we will discuss the specific details involved in

a suitable conputer program for the functional model. First the

model is restated.

The functional model is defined as

(1) Y. f(X.,) + u.1 1 1

(2) Wi = g.(Y) if t1 < Y1 < t.., j1,... ,S
2

IN(O,o )1

is a latent variable and W, the vector X and perhaps some vector

Z. are the observed variables. Parameters to be estimated include1

and perhaps and/or some of the t's. The threshold points t0 and

t1 are defined as - and + respectively for all i=l,. . . ,n where n

is the sanple size. The remaining threshold points t11,... ,t51 may

be any of the following:

(1) known numeric constants

(ii) observable exogenous variables (one of the Zts)

(iii) constant but unknown parameters to be estimated

The g (Y1) 's define W1 to be either a mass point observation or a

continuous observation when the unobserved falls in the conesponding

th interval. Continuous g (Y1) 's must be of the form

g(Y1)
while mass point g(Y1)'s may be either

(1) known constants,i.e.,g.(Y.) CJi
or

(ii) observable exogenous variab1es,i.e.,g(Y) ZJ<
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Furthermore the mass point g (Y) 's must be such that a comparison of

W for each observation with each mass point g will determine uniquely

a sample separation defined by the following subsets of the integers

1,...
ic' 1ff W. g (Y.) for mass point interval j

ik1'o iff WI g (Y1) for any mass point interval j.

Note that 1'. will be empty for any continuous interval j.

The components of the likelihood function were presented in Section

II. Estimation involves maximization of the logarithm of the likelihood

function. The normal equations obtained by setting the derivatives of

log L with respect to each estimable paraiiter equal to zero will be non-

linear so that soma iterative maximization algorithm is required.

Experience has shown that the Newton-Raphson algorithm11 works quite

well on these models with fairly rapid convergence when starting from

reasonable initial estimates. This algorithm does require both first

and second derivatives which, though messy, are fairly easy to derive.

Table 1 presents the components of the likelihood function corresponding

to each type of interval on Y1 and the associated terms in the first and

second derivatives of the log likelihood function. Several points should

be noted. First the parameters to be estimated are denoted by the by

the vector e with elements 0. Secondly, the derivatives presented there

make the following use of the chain rule: The terms in the log likelihood

function involve the functions P(A) and Z(B), where A and B are represent-

ative argunts, and have the following derivatives:

11. As was noted earlier the constraint t. .1<t.. must hold for jl,... ,s and
all i1,... ,n. If these thresholds includparaters to be estimated the
constant should be taken into account in the maximization algorithm. This
is awkward to do however, in the general model since not all problems will

require estimation of threshold parameters. There is no danger that straight
forward application of Newton's mathod will produce estimates which violate
the constraint since this would require taking logarithms of negative numbers.
We therefore suggest using Newton's method with the provision of allowing some
user control in the iterative process for handling those occasional problemsin which the constraint causes difficulty.
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P(A) - Z(A) A and Z(B) —Z(B) B .
o. — P(A) o.1 1 1 1

We have carried the differention only this far, since the arguments A

and B involve the unspecified function f(X1 ), and assume that the

derivatives of these arguments can be readily obtained thru some corrination

of user supplied derivatives, restrictions on the functional form of f

and internal differentiation capability 12 Finally, note that lower and

upper mass point intervals have been distinguished in tht table from

interior mass point intervals since recognition of their sirrpler

structure generally will achive significant economies in computer time.

As was suggested by the discussion in Section I, not all parameters

in the functional rrodel are necessarily estimable. In parLicular can

be estimated only if the observed variable W contains some information

regarding the scale of the latent variable In general any one of

the following conditions on the model will be sufficient to permit

estimation of a.

(i) At least one continuous interval

(ii) At least one threshold is an observable, varying threshold

(iii) At least two threshold points are known constants

If none of these conditions are met then estimation may proceed only after

normalization of a, e.g., ail. If the model includes both threshold parameters

to be estimated and an intercept term in the regression equation there

will generally be an identification problem airng this set of parameters

12. The TROLL system on which the authors have implemented the functional
model does have the internal capability of obtaining analytic derivatives.
This feature is exLremely useful for such simple functions as the argumentslike A and B in that it renders unnecessary further restrictions of f or
alternatively, heavy user input. On the other hand it cannot be used to
avoid the progranirning of derivitive calculation to the level presented in
table I without resulting in prohibative computer time.
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- only the difference between each pair of parameters

in the set can be estimated. Again a normalization is required on

one parameter in this set.

The iterative maximization algoritii will require starting values

for the parameters to be estimated. We have not been successful in

obtaining a straightforward routine for selecting good starting values

for all parameters in the functional model. Tobin [9], in the context

of the Tobit model, suggested approximating the non-linear terms in the

normal equations by some simple functions to allow analytic solution of

those equations but this approach becomes quite difficult to implement

in the more general functional model, especially if the regression

equation is itself non-linear. Similarly some expansion of the normal

equations with a low order truncation is also difficult to implement.
In lieu of a general solution we offer the following suggestions for

implementation on a case by case basis.

(a) If the model includes continuous intervals, least squares

regression of W1 on X1 over just the subset of continuous

observations will often provide satisfactory, thoui biased,

starting values for the regression coefficients and for a.

(b) For threshold parameters choose starting values such that the

spacing between adjacent threshold points is proportional to

the percentage of observations falling in each interval.

(c) In models with no continuous intervals and values for W1 which

correspond ordinafly to Y try a straightforward least squares

regression of W1 on X1 for starting values for the regression

coefficients.
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Cd) for many data sets and if the iterative maximization

algorithm is fairly stable, zero starting values for many of

the paranEters will generally suffice.

Generally paraneter estimation is only part of the analysis to

be performed on a given model. The remainder of this section discusses

vamious other analyses which may often be desired and which are reason-

ably easy to isplerrent in the functional model.

It is often quite informative to examine simple descriptive statistics,

such as mean, variance and range, of various variables in the model both

over all observations and over the subsets of observations corresponding

to each interval on Y. Furthermore while such information may be of

use by itself it can as well serve to detect or explain failures in the

estimation process. To see this consider a simple binomial choice model

with a single regressor variable. The likelihood function is given by

L(a,W,X) II P(—a—X.) . 11 [l—P(—a—X.)]1 1
1 1

Suppose that in a given set of data the observations are as pictured in

the figure to the right. W

It is easy in this case to

find values for a and X

such that whenever W.O
1

(_a_X) is positive and when Wl (_a_X) is negative. All observations

can thus be perfectly classified on the basis of the sean value (ct+X)

for such a and . In fact the likelihood is maximized as a and tend

to negative and positive infinity respectively. This failure in the

estimation process could easily be predicted, in this simple model, by

xx xx x
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coirparing the range of X within the two sets of observations. The

sane problem arises in this model with more than one exogenous variable

and all the other models as well, suggesting that as a prelude to

estimation one should always critically examine simple statistics,

expecially the range, of the exogenous variables within each subset

of observations. In addition, even if the individual exogenous

variables do overlap, there may be sorre combination which provides

perfect classification of the observations. Such a situation is often

difficult to detect until after the estimation process has failed.

Performing the sane analysis on = f(x,) where is the vector of

regression coefficient estimates when the iterative maximization

procedure began to diverge may often reveal the source of the problem.

Estimated classification probabilities(i .e .Pr(W. g. (Y. ) IX. ,Z.)1-J 1 1 1
or alternatively Pr(t.1< Y < t..!X.,ZJ) are often as important to

the analysis as estimates of the parameters themselves. The expressions

for obtaining them are given by the components of the likelihood function

for mass point intervals and similar expressions for continuous intervals.

In addition to their independent use they serve an important role in

an examination of the estimation results analogous to residual analysis

in least squares regression. They provide, for example, one rreasure of

classification error. Let j be the interval in which an observation

falls and j be the interval with largest associated classification
13

probability. An obervation may be viewed as being misclassified if j j.
13. Whether this is an appropriate measure of misclassification will depend
on the model being examined. For example it may be a useful measure for the
binomial choice model while in the ordinally discrete model, since the
frequency of misclassification under this measure is easily altered by
arbitrarily collapsing adjacent intervals, it may not be at all appropriate.
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A variety of maasures of "residuals" may be readily obtained. Using

estimated coefficients to conpute Y = f(X,6) we can obtain directly

u. W. -Y. for continuous observations. For mass point observations1 ii
the estimated residual may be "bracketed" by t. .-Y. and Y.-t..13 1 1 ij—1
Another indicator of misclassification is given by a conparison of j

and j where j the interval in which Y falls and, as before, j* is the
observed interval.

An important part of the analysis for a given problem might be the

calculation of mean values for the observed dependent variables. These

might be needed, for example, for prediction purposes or for the calculation
LLfof elasticities. The expected value of for given X (and Z) is

y-f(X.,6)
E(W. IX. ,Z.) =1 — Z (

1
g(y) dy

s ij 1 y—f(X. ,6) s
= I Z( ) g.(y) dy A.

j=l t1 jl
For mass point intervals g (y) is a constant so that the coresonding

term in the expected value of is
t. .-f(X. 6) t.. -f(X.,6)

A. = g.(Y.) . [P( ' ' ) - p ( ijl 1
3 31

l. If the prediction or elasticity is for a single individual or.
observation then the appropriate value for W to be used should by Wg(Y1).

On the other hand if we need the mean predicted value or aggregate
elasticity the appropriate value is E(WIX±ZI) as is given here.
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For continuous intea1s, iteation over the 1evant range yields15

A f(X1,8) [p(t1-f(X1) ) - p (tij_l_f(xis)) ]
t. .—f(X.,) t. . —f(X.,)-a[Z(11 1 )-Z(' )]

t. 1 y-f(X,) L215. We have A f y a Z( ) dy I [f(X,) ÷ ax] Z() dx
j—1 1

L L

f(X1) 2 Z()d + a

L1

where Lj1[t. 1—f(X,)]/a and L2[It.—f(X,)]/a.

Since Z() —dZ()/d, !XZ(X)d — Z()
and we obtain

f(X,)•[P(L2) - P(L1)]
-

a[Z(L2)
- Z

(L1)]
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