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I. Introduction

It is by now widely recognized that investment decisions play

a major role in the determination of individual age—earnings pro-

files. Several studies, most notably Mincer [1974], rely on

investment in human capital as a leading single hypothesis from

which many of the observed regularities in earnings data are

derived.

The investment hypothesis, in its simplest form, can be

summarized by the equation:V

(1) Y = F(K,K)

where Y is observed earnings, K is potential earnings ("human

capitalt'), and IC is its rate of change. Competitive equilibrium

in the labor market places restrictions on the signs of the partial

derivatives. Specifically, so long as human capital contributes

to earnings (i.e., > 0), the individual must give up current

earnings in order to enhance future earning opportunities (i.e.,

< 0). It is typically assumed that, at each point in his life,

the individual faces a spectrum of earnings-investment combina-

tions ("jobs"), and selects the one which is optimal.

Equation (1) highlights the formal similarity to the invert-

ment problem of the firm in the presence of adjustment costs

(see Eisner and Strotz [1963]). However, the fact that human

1/—
This precise representation of the model is due to Rosen [1973],

but similar formulations are implicit in Becker [1964] and Ben—

Porath [1967].
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capital is embodied in the individual and cannot be sold leads

to several important differences. First, since the property

rights to human capital cannot be transferred, the finiteness

of life plays a central role in human investment. By contrast,

even a firm which plans tc' cash in its assets after a fixed

number of years will behave "as if" its horizon were infinite

so long as its assets are marketable. Seconds since either the

utilization or formation of human capital requires the sacrifice

of leisure (a specific consumption good), it is not possible in

general to separate the consumption and investment problems as

• 1/is done in the theory of the firm.— Finally, and perhaps most

importantly, neither human capital nor the investment therein

are normally observable. Th-is investment functions, such as

those of Jorgenson [1963] and others, are not applicable to

human capital theory. If the model fails to generate testable

predictions about o!servable variables like wage rates and

earnings, then it is not a very fruitful one.

All of these features make the human investment problem

much more difficult theoretically than the firm's problem. Lack

of data on human capital leads to still another difficulty: it

is hard to distinguish empirically among the effects of investment

1/
See for example, Hirshleifer [1958).
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and a myriad of other influences on actual earnings. The most

obvious of these, of course, is the chcice of work intensity,

which affects both current earnings (labor-leisure choices) and

the rate of human capital accumulation (training-leisure choices).

The purpose of this paper is to present a simple. life-cycle

model of investment in human capital in which leisure choices

are explicitly incorporatel. In so doing, we integrate two pre-

viously disparate branches of life-cycle theory: models of

labor supply with exogenous ziges," and models of human capital

formation with exogenous ieisureA" Of course, to accomplish

this, we must posit utility maximization as the individual's

goal rather than income maximization.

Apart from the direct interest in the interaction of labor

supply and human investment over the life cycle, suèh a model

is needed to test the robustness of the widely-used wealth-

maximization models of human capital accumulation. For example,

a standard implication of these models is that a period of

specialization in investment (interpreted as schooling), if it

for example, Weiss [1972), Blinder [1974, Ch. 3], Heckman
[1974]. The paper by Weiss allows for endogeneity of wages due
to learning by doing, but not for human iPvestment.

1See, for example, Ben-Porath [1967], tqeiszacker [1967),
Sheshinski [1968]. Formally, our approach also embraces life-
cycle consumption theory, but we take pains to separate this
from the other two problems, and have little to say about

consumption.
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exists, will occur only at the beginning of life.' However,

one can imagine that when schooling involves foregone leisure

the existence of pure time preference might lead a utility-

maximizing individual to postpone his education. Such possi-

bilities appear explicitly in our model. Another important

implication of, the wealth-maximization model is that the fraction

of time spent investing falls throughout the post-schooling in-

vestment period. This turns out to be generally true in our model

as well, though some exceptionc are noted.

To our knowledge, there have been four previous attempts

(all unpublished at this writing) to integrate human capital and

labor supply as we do here. The treatment by Becker and Chez

[1972] is the most general and explores the widest variety of

issues. But it is also the least ambitious in that they generally

content themselves with stating and interpreting the first-order

conditions. Our model can be viewed as a special case of theirs,

but a case which is pushed much farther. The three other studies1

at least attempt to analyze the shape of the optimal plan, and

naturally adopt simplifying assumptions in order to do so. Typi-

cally, the rate of investment in human capital and the supply of

labor are related to some key variable such as the stock of human

capital or its shadow price (both unobserved). However, since the

this, see Weiss [1971], Ishikawa [1973], and also the references
cited in the preceding footnote.

21Heckman [1975], Landsbergar and Passy [1973], Stafford and

Stephan [1973].
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models generally do not fully determine the behavior of these

endogenous variables, a disturbing and unnecessary amount of

ambiguity remains. Further, except for Beckman [1975], virtually

no attention is paid to periods of specialization such as schooling

or retirement. This seems a major omission.

The model presented here is more general than previous work

on the subject (with the exception of Becker and Chez), and yet

generates many more concrete conclusions. Among the restrictions

which our model places on opttnal plans are:

(a) Several distinct patterns in investment, work and

leisure may arise, depending on the subjective

rate of impatience (i.e., the discount rate for

future utilities).

(b) We consider the case where the rate of impatience

is "small" (in a sense to be defined later) to

be the leading case. We show that in this case

specialization in schooling can only occur at

the beginning of life, while retirement can only

come at the end.

(c) Schooling is followed by a period of on-the-

job training, during which the fraction of

potential earnings and time devoted to human

capital formation declines monotonically.
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Cd) Investment reaches zero some finite time before

retirement (or death, if there is no retirement).

Thus there is a finite interval of "pure work"

with no investment late in life. This econo-

metric finding of Ilincer [1974] is explicitly

ruled out by the Ben-Porath [1967] formulation

of the problem (which is followed by Reckman

[1975] arid by Stafford and Stephan [1973].

(e) The demand for leisure over the life cycle is

"U-shaped", with a tendency to decline during

schooling and the early part of 031, and

thereafter to rise.

(f) Wages rise to a single peak, which occurs

after the peak in hours of cyork.

Of course, we do not pull these rabbits out of the proverbial

hat. Like other investigators, we have to make some simplifying

assumptions of which two seem most crucial. First, (I) is given

the special form:

(2) 1 = F(K,K) = lCgflC/K), g' 'C Q.
The nature of this important function is the subject of the next

section. Here we only wish to point out that the formulation is

quite similar to that of Rosen [1973] who dealt with the special

case F(K,TC) = K — C(LC), C' (IC)>O. In both specifications, K is

defined as earning capacity, i.e., the amount the individual would
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earn in the absence of investment. While Rosen orders jobs by

their absolute rate of increase of earning potential (K), and

deducts costs additively, we order jobs by their proportionate

rate of growth in potential earnings (K/K), and deduct costs

multiplicatively. In principle, either representation is as

good as the other, but the multiplicative version leads more

naturally to the logarithmic wage functions encountered so fre-

quently in empirical work (Weiss [1974]).

Our second important assumption is that, for a given input

of time, the quantity of humau cnpital created is proportional

to the stock of human capital. In the terminology popularized

by Ben—Porath [19673, the "human capital production function"

is homogeneous of degree one in K. This specification which is

suggested by Mincer's work [1974], simplifies the mathematics

considerably. Thus it is both "realistic" and convenient, a

combination encountered all too rarely in mathematical economics.

147e do not wish to oversell this assumption. Hackman's [1975]
empirical work certainly does not support it.
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2. The Earnings-Invetmen Frontier

Basic to any model of human capital is the market constraint

delimiting the combinations of current earnings and human capital

formation which are obtainable from a given stock of human capital.

This function, which we call the "earnings-investment frontier",

is defined implicitly by (1). It is clearly downward sloping.

Several frontiers, corresponding to different levels of K, are

depicted in Figure 1. (If there is depreciation, K can be negative.)

Our special form (2) enables us to divide both axes of Figure 1 by

K, so that a single frontier, applicable to K, can be drawn.

Thus it plays for us the role that constant returns to scale plays

in growth theory. The frontier is sketched in Figure 2, where the

new symbol, x, has replaced + &. As indicated in the introduction,

we index jobs by their proportionate rate of growth. x is this in-

dex, and it runs from zero to unity. x I indicates the job which

yields the maximum feasible rate of growth. It makes sense to call

this "going to school", and to specify that g(l) = 0, i.e., that

allearnings are sacrificed during schooling. Conversely, x =0

is the job where potential earnings are fully realized, so g(O) I.

The locus is a "frontiet4' in the usual sense: points (like

p) in the interior are feasible, but never would be optimal; points

(like q) beyond the frontier would be preferred by the worker, but

are not attainable. cJe know, of course, that g'(x)cO, but can we

say anything about its convexity? The answer is that' we can rule

out convexity (to the origin), but either linear or concave frontiers
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seem possible. The argument is simple. If g(x) were in fact con-

vex, as in Figure 3, and arbitrage was permitted, no worker would

accept a job with 0 C x < 1. This is because he could always

spend a fraction A of his work day at x 0 and a fraction 1-A

school (x = 1), thereby creating for himself an opportunity set

portrayed by the straight line g(x).= l-x (shown in Figure 3 as

a dotted line).!' Since this line dominates his market oppor-

tunities he would never deal with the market. Employers offering

jobs with 0 C x C 1 would have to raise wages until evelEy job was

at least as attractive as arbitraga.

Can a similar argument be used to rule out concive g(x) func-

tions? We think not. Workers clearly prefer jobs above the

g(x) = l-x line to arbitrage. Thus, to ruLe then out, one would

have to show that firms offering such jobs would suffer losses in

a competitive market. As this involves analysis of the production

functions of the firms for both goods and human capital, such an

argument would rest on specific assumptions about these functions.

A full analysis of the behavior of firmc in the human capital

market is beyond the scope of this essay. We refer the interested

reader to Rosen [1972], who argues that,due to diminishing returns,

the provision of training by firms requires increasing marginal

sacrifice Qf other outputs so that g(x) must be concave.

2JThe argument clearly assumes no frictions in moving between the
job and the school.

in
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While we consider both cases to be open possibilities, the bulk

of our analysis assumes g"(x) < 0. As we indicate Later, a model

almost identical to the present one can be constructed using a

linear frontier, g(x) l-x. There is only one important difference.

A concave frontier means that combining work with education on the

job is stric4y better than blending attendance at school with a no-

training job, while the linear frontier means they are equally

good. If there is some positive interaction between earning arid

learning, the worker can capture some "pure profit" by on-the-job

training. Therefore, the "full wage" (including the value of

training), which is equated to the marginal rate of substitution

(NRS) between consumption and leisure for optiinality, exceeds his

potential wage by the amount of pure proCit. Only if g(x) = l-x

will there be no pure profits, so thrt the MRS is equated to the

potential wage, a conclusion which Becker and Chez reach in their

model (and claim to be very important).

The differences between g"(x) < 0 andg"(x) = 0 are at least

partly observable, in the latter case, workers should be found

"buying" training in schools just about as frequently as on the

job. In the former case1 training should be bought in schools

only during the period of specialization; part-time education should

take place predominantly on the job.
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3. Statement of the Problem

The individual is assumed to derive utility from three sources:

the stream of lifetime real consumption, c(t); the time profile of

leisure, (t); and the bequest, or terminal value of real (nonhuman)

assets, Here t denotes the individual's age, and runs from

zero to T, the length of life which is assumed known and exogenous.

Specifically, lifetime utility is assumed to be additively separable

with a constant rate of time discounting

(3) fU(c,z)etdc ,

where U(c,z) and B(A(T)) are asucaed to be twice-differentiable

strictly concave functions of their arguments, and p is what we call

the rate of impatience.V En order to nile out optimal paths with

segments of zero consumption or zero leisure, we further assume:

Urn U (c,L) for all £
c

Urn 1J2(c,&) = w for all c.
£40

Finally, to allow retirement as an endogerious decision, we exclude

from our analysis functions which preclude loot leisure. Letting

Z(t) denote the fraction of available time devoted to leisure, thIs

amounts to assuming that U1(c,L) > 0 for any c.

will be assumed that a person's human wealth dies with him,
i.e. cannot be bequeathed.

variable rate of impatience could be accomodated without too
much difficulty. But it would make the notation more cumbersome,
and qualitative results would depend on the time profile of p(t).
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What are the constraints on this maximization problem? To

begin with, there are two constraints on the time budget. Letting

h(t) denote the fraction of time devoted to market activity (in-

cluding work and education), we have:

(4) h(t) + &(t) = 1

(5) h(t)>O

As noted above, the occupational index is bounded between zero

and unity:

(6) Occ(t) <1

And, finally, the differential equations governing the change in

the stocks of human and nonhuman capital are respecti":ely:

(7') K = (x,h,K)

(8') A = rA + Y(x,h,K)-c

where r is the real rate of interest,i" the function (.) is the

production function for human capital, and Y() gives earnings as

a function of the job, the number of hours worked, and the level

of human capital. This is actually considerably more general than

the problem we solve. We begin this way in order to show explicitly

how our simplifying assumptions reduce the problem to manageable

proportions. There are two initial conditions, correspondinq to

Letting r denote the real rate of interest implicitly incorporates
changes in the price of consumer goods. To see this, note that if
P were the price of goods and I were the nominal rate of interest,
the change in nominal financial assets would be given by:

t(AP) i(AP) + PY — eP.

But j-(AP)= Al + P4, so dIviding both sides of the equation by P

leads to; A (i — -)A + Y — c, which Is (8').
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the individual's endoc,ments of financial and human wealth,!'

A(0) = A0
0

K(0) =K0>0

and both terminal stocks are to be chosen optimally.

To set up this problem in a form suitable for the application

of Pontryagin's maximum principle, we substitute (4) into (3),

define shadow princes p()t for human capital and l.l(t)et for

financial wealth, and write the Hamiltonian function:

H(h,x,c,K,A,p,u) = ePt[U(c,l_h) + p(x,h,K) + p(rA + Y(x,h,K) — c)1.

First order necessary conditions for a maximum are:'

(1.) at each instant, x(t), h(t) and c(t) are

chosen to maximize H, given K, A, p and

p. and subject to the constraints (5) and

(6);

(ii) = - a&(Ptp) for all t;

d -Pt(ut) —._ — (e ) for all t;

(iv) K(T)p(T) 0

(v) (T) 31(AT)

Since optimal consumption is always positive, the condition

for optimal c(t) is easily stated:

(9) U(c,g,) p.

interpreting these, it should be noted that K0 includes bath

the initial endowment of education and "ability", or whatever else
it is that determines productivity.

have been unable to prov±de a proof of sufficIency.
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And, from (iii)

(10) ii (p —r)ji

so the marginal utility of consumption grows or declines at a steady

exponential rate. The consumption-bequest plan has been analyzed

extensively elsewhere, and we shall pay little attention to it

1/
hereafter.—

Consider next the first—order conditions for optimal x and h,

assuming that an interior solution obtains for each (we shall worry

about corners presently). They cre:

(11") U&(c,&) = + IlYh(X,h,K)

(12") p4(x,h,K) + uY(xh,K) = 0

We now introduce the following assumption, mentioned in the intro-

duction;

Al: The functions (x,h,K) and Y(x,h,TC) are
both homogenous of degree one in IC.

Specifically,

x,h,K) = (x,h)K and Y(x,h,K) = y(x,h)K.
This reduces (ll') and (12") to;

(11') U(c,) = PK'(Xh).+t2Ky(x,h)
(12') PK(x,h) +pxy (x,1i) = 0.

So Al transforms a problem with three state variables (p, p and K)

to one with only two state variables: pK, which is the shadow value

(in utils) of the stock of human capital; and K, which is the poten-

tial wage rate converted into utils.

i"See Atkinson [1971] or Blinder [1974, Ch. 2]. For a treatment
which ignores bequests, see Ynari [1964] or Weiss [1972].
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The next simplification comes from defining the occupational

index, x, in the way suggested in Section 2. Namely, x indexes

jobs in terms of equivalent schooling time, so that working h hours

at job x is equivalent (in the production of human capital) to

spending xh hours in school. Note that this is not a restrictive

assumption, but a convenient measurement convention which enables

us to write:

(13) cp(x,h) = 4'(xh).

While the analysis could be carried out more generally, it

will keep things clear if we assume:

1.2: The hourly wage rate does not depend on
hours of work. In symbols: y(x,h)K =

g(x)hK.

This prevents the issues we wish to focus on —— especially the

interplay between human investment and work effort -- from becoming

clouded with other issues such as overtime pay or penalties for

part-time work.Using equation (13) and A2, (11') and (12') reduce

to:

(11) IJ(cz) = f'(xh)pICx + lJKg(x)

(12) h[f'(xh)pK + pKg'(x)] = 0

Most of our broad results, including the general characteriza-

tion of the life cycle plan, can be obtained from these two equations

(and the corresponding inequalities for corner solutions). However,

to get certain more severe (and empirically testable) restrictions

on the optimal path, we need to make one of the following linearity
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assumptions:

A3: The function f(xh) is linear, i.e. £'(xh) =
a, for all x, h.

or

A3': The function g(x) is linear, i.e. g'(x) =
—1 for all x.

The meaning of A3' is discussed in Section 2. What is the economic

interpretation of A3? Mincer [1974) has argued, both theoretically

and empirically, that the functional relation between potential

earnings and accumulated years of schooling (denoted by the symbol

S) takes the following specific form:

aS —6tKye a
where iS is the rate of depreciation of earning capacity (possibly

zero). Differentiating this logarithmically yields:

K aS—..

But, by the way we defined x, it is definitionally true that S =

so we have:

(7) '=axh—6.

As the reader will recognize, this is just our general human capital

production function (7'), modified as per Al, A3, and (13). To

wit, A3 is essentially equivalent to assuming that the Minder wage

function holds.

.YThe reader familiar with Weiszacker [1967] or Sheshinski [1968)
will recognize this as an extension of their formulation to allow
for variable labor supply.
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We present here the results of the thodel using A3, rather than

A3'. However, we have also worked out the model with A3',1" and

can report that the two models give identical results, with only

one exception. The exception was noted in our discussion of the

earnings-investment frontier: when the frontier is linear, there

is no distinction between the potential wage and the "full wage"

(to be defined below). Since neither is observable, this dif-

ference is probably subtle enough to be ignored. Mathematically,

nonlinearity in g(x) turns out to be almost a perfect substitute

for nonlinearity in f(xh), and equation (12) shows why this is so.

Clearly, either f" < 0, or g" C 0, but not both, is requtred for

a regular interior maximum for x. Making both functions concave

is a kind of "overkill" which complicates the mathematics con-

siderably (and, we would argue, needlessly). While we conjecture

that all of our results go through to this more general case, we

have bean unable to prove it.

To summarize, then, our model is the Daximization of (3),

subject to the constraints (4)—(6), and the differential equa-

tions (7) and:

(8) ArA+hiCg(x) -c

The first order conditions for optimal h and x, including now

1If f(xh) takes the special constant—elasticity form, this model
is very close to Heckinan's [1975].
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the Kuhn- Tucker corner conditions, are:

(14) U(c,1-h) > apKx ÷ pKg(x)

with > ÷ h = 0

h[apk+prg'(O)] c 0x'O

(15) h[apx + pKg'(l)J > 0 + x1
otherwise, h(apK + uKg'(x)J = 0.
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4. Interpretation of the Optimality Conditions

In the next section, we develop a phase diagram to assist us

in understanding when the individual elects one of the, three pos-

sible corner solutions (x = 0, x = 1, or h = 0) rather than the

interior solution. To facilitate this, we will need one further

assumption:

A4: Instantaneous utility is separable in
consumption and leisure, Le., U(c,L) =
u(c) + v(&).

However, before doing this, greater understanding of the problem

can be achieved by recasting and interpreting the first-order

conditions.

Recall that p(t) and 1j(t) are, respectively, the shadow prices

(in current utils) of human and nonhuman rapital,' so the ratio,

p(t)Ip(t) = e(t), denotes the money price of human capital. Thus

we can define V(t) = e(t)K(t) as the money value of the human

capital stock, and trace of behavior of V(t) over time. To do

this, use condition (ii) to write:

(16) (p4-cS) - mcii - g(x)hK
-

Then by (7) and (10):

(17) V = rV — hg(x)K.
Finally, since human capital cannot be cashed in at the and of life

(K(T) >0), the transversality condition (iv)iraplies that"(T) = 0.

VConsumption goods are the numeraire, hence thRre is no distinction
between a dollar of money and a unit of consumer goods.
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This terminal condition allows us to solve differential equation

(17) explicitly viz:

(18) V(t) = f e_r(T_t)h(t)g(x(.r))K(r)dt.

That is, V(r) is the present vzilue, in time t dollars, of future

earnings -— avery natural interpretation of the value of the

human capital stock. Equation (17) expresses the fact that the

optimal paths of the shadow prices, p(t) and p(t), will render the

individual incapable of making his human wealth grow faster than

the rate of interest, and he can achieve this limiting growth rate

only by staying in school (x = 1). Looking at human wealth in

terms of time t = 0 dollars, (17) says that human wealth stays

constant during schooling, and thereafter declines pE.ri passu

with earnings. Earnings, hg(x)K, are like withdrawals from a

"human bank account" where interest is compounded continuously at

rate r.

Using the variable V(t), we can rewrite the optimality cortdi-

tion (15) in a form which is readily interpretable:

-g'(x)K = aV if 0<x<1
(15.') -g'(O)K > aV if x = 0

—g'(l)K < aV if x = I
Here —g' (x)K is the marginal cost in terms of foregone earnings per

hour of raising x, and it can be shown that aV measures the marginal
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1/benefits in higher future earnings.—

Condition (15') can also be given the usual rate—of—return

interpretation: Let ir be the rate of interest that equates the

discounted benefits to the costs; that is, 11 is implicitly

defined by:

—g'x)K = a 4 e_t_t)h(t)g(x)K(r)dt

'More precisely, let x(c), h(t) be the optimal policy, and consider
a deviation from this policy as follows:

= x(t) for t > + r or t C

= x(t) + c for t1 C t C t1 + t

while h(t) is tinchanged. Assuming separability of U(c,i) (which is
not required, but which simplifies the proof) a necessary condition
for the optimum is that such a shift leaves lifetime income unchanged.
Since nothing earlier than t1 can be affected, we might as well

measure income from t1 forward. The change in income is therefore:

AJ 4 e_ttl)h(t)g(x)(K(t)—K(t)]dt + f1e_r(t_tl)h(t)K(t)Eg(x+c)_g(;;)Jdt
1 1

+ [g(x+c)—g(x)]dt,
1

where K(t) is the capital stock associated with the alternative pro-

gram. Specifically,

log lUt) = log IC(t) + Itl+tah(t)edt, t > t1 + r.
tl

If we take lim tJ, the first term (which clearly measures the benefitc)
tO e.r

goes to ah(t1)V(t1), the second term (which clearly measures costs)

goes to —h(t1)K(t1)g'(x(t1)), and the third term vanishes. The eauality

in (15') results from setting lint £1
t4-Oe-t
cO



-20—

as the marginal internal rate of return. Then an equivalent state-

ment of (15') is:

I= r if O<x<l
r if x0
r if x1

Thus during the schooling period (x = I), the internal rate of return

on human investment is strictly greater than the interest rate,

despite the fact that hours-of—study are variable..U During the

post-school investment period, the marginal rate of return is always

equal to the rate of interest. It is worth noting that these re—

suits hold for 2X arbitrary leisure profile, and are thts indepen-

dent of tastes. Therefore, one can verify ex. post whether individuals

have behaved optimally by computing the apropriate rates of return.

Of course, when labor supply is a choice variable, the rate of re-

turn is ill—defined as an ex ante concept.

Let us know turn to the condition for optimal work effort,

(14). When theta is no investment (x = 0), wages are exogenous to

the individual,' and, in view of (9), (14) simply states that the

marginal rate of substitution is equal to the (potential and actual)

wage. Analysis of the age-hours profile is exactly as in our previous

VEquality holds at the instant of leaving school. For analogous
conditions in an income-maximization model, see Weiss [l971b].

course, part of the problem is to determine when the individual

will opt for leaving his waga exogenous.
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models of dynamic labor supply with exogenous wages.' Becker and

Ghez [1972] have claimed that this marginal condition also holds

when wages are endogenous, and that therefore for the analysis of

time-versus-goods substitution in consumption we need not worry

about why wages change. Two remarks can be made about this finding.

First, when there is investment, the observed wage and the potential

wage are very different. Nor is their behavior over tine identical;

we show later that during OJT the ratio of observed wage/potential

wage is monotonically rising. Second, as indicated earlier, the

MRS is equated to the poéentiaj. wage only in the special case of

a linear earnings—investment frontier. To see, divide trie left—

hand side of (14) by U0(c,.z) and the righthand side by l (they are

equal by (9)) to get:
Un p— = a — Kx ÷ Kg(x).Uc

Then substitute for p/li from (15) (assuming an interior solution)

to get:

liz

(19) MRS E = K(g(x) — xg'(x)].

It is easy to verify that the function in square brackets is iden-

tically unity only in the case g(x) = 1 — x. Otherwise, it is

always ctrictly greater than unity (as long as 0 C x C 1). We

call the righthand side of (19) the "full wage". Clearly the

first component, g(x)K, measures the current benefits per hour of

wor1c. That the second component, -xg'(x)K, measures the future

Weiss [1972), Blinder [1974, Ch. 3).
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benefits per hour of today's work follows from the preceding cal-

culation. That is, the second component of the "full wage" prices z

at its marginal (not average) value in computing the future bene-

fits. The full wage exceeds the potential wage by what we called

the "pure profits'1 from Ofl in Section 2.



-23—

5. The Temporal Succession of Life—Cycle Phases

Due to the possibility of corner solutions, four qualitatively

distinct phases might occur in an individual's life cycle. Whether

each phase occurs, how long each phase lasts, and the temporal

order of the phases form the subject of this section. We give the

four phases descriptive names, and numbers which seem to indicate

a sensible ordering, as follows:!"

Phase I, Schooling: x = 1, h > 0

Phase II, 0.fl: 0<x<l, h>O

Phase III, Work: x0, h>O

Phase IV, Retirement: h = 0

Note that when h = 0 the value of x is arbitrary as is clear from

(15). Economically, this says that a retied person can be considered

as holding any job at all (and working zero hours).

To facilitate the exposition, we define two new state variables:

A(t) = ap(t)K(t) = the value (in utils) of humzn
capital, multiplied by a

ip(t) = u(t)K(t) = the potential wage, converted to utils

and adopt assumption A4 (separable utility). Then the four phases

are characterized by the following equations:

Phase I (Schooling)

(20.1) v'(l—h) = A

(21.1) 4> —g'(l)

!'Qf course, we have to prove that Phase I comcs before Phase H,
Phase H comes before Phase III, and so on.
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Phase II (OJT)

(20.2) v'(l—h) = Xz + ipg(x)

(21.2) = —g' (x)

Phase III (Work)

(20.3) v' (1—h) =

(21.3) C -g'(O)
Phase IV (Retirement)

(2O4) v'(l) > Xx + ipg(x) for all xc[0,1].
It is clear from (21.1) and (21.3) that the precise shape of g(x)

strongly colors the likelihood and length of each phase. For

example, suppose ..gt(l) w, as in Figure tea. Then (21.1) makes

it clear that the individual will never specialize in schooling.

The reason is that there are jobs (x's very near unity) which are

nearly as effective as schooling in imparting skills, but which

pay a positive wage. So finiteness of -g' (1) is a minimal re-

quirement for schoolingto be possibla. We assume this is true.

As another extreme, suppose g' (0) = 0, as in Figure 4b. Then

(21.3) shows that Phase III (work without training) is impossible.

This is because there would be a job with a wage arbitrarily close

to the no—training job, but which gave a finite amount of training.

To portray our model in (A,*) space we must locate the bound-

aries of each region. Assume first that h > 0, so we need only

worry about the pre-retirement phases. Since g(x) is continuous

from the left at x = 1, (21.1) defines the boundary of the

schooling region as the ray, A = —g'(1), in Figure 5. Similarly,

since g(x) is continuous from the right at x = 0, (21.3) definec
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the boundary of the x = 0 region as the ray, A= .-g'(o)ip, in
Figure 5. Finally, the boundary of the h = 0 ("retirement") region
is given by the solution of:

C Ev'(l) max {Xx+4'g(x))
O<x<l

This last boundary defines a convex'1 set such that for any pair

(x,, ) in the interior, the individual will allocate all of his

time to leisure.

In this space, the optimal trajectory can, in principle,

begin anywhere. But, since the trausversality condition is p(T) = 0,

it must terminate on the horizontal axis. This trivial obgervation

already establishes that anyone who ever works will indeed have

a Phase III, i.e. a finite period of work without OJT. In other

words, so long as we do not rule Phase III out of court by

1/

Define the function

G(A,4i) max (Xx +
0Cxc1

It Is obvious that, regardless of the shape of g(x):

max (X1x + gi1g(x)}] + (1—y)[ max {X2x + 2g(x)}3 >

Ocx<1 O<x<l

max (y(X1x + 1g(x)1 + (1-y)[A2x +
0<xc1

for any 0 < y < 1. ThIs says G(A,*) is a convex function, and the

equation G(A,ip) is our desired boundary. Note that when the
maximum is found at x = 1, G(A,ip) = A; and when x = 0 is the maximum,
C(X,p) = Ci. Thus above the —g'(l) ray, the boundary is A=; and below
the —g'(O) ray, the boundary is JF.
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assuming -g'(O) = 0, Phase III must be last phase before retirement

(or death) in any optfral plan. We believe this makes sense, and

is an argument against using the Ben-Porath [1967] specification.

One other interesting observation can be made already. If

the potential wage, is less than , the marginal utility of

complete leisure, then the work activity is unattractive. Similarly,

if A < , the schooling activity is unattractive. However, Figure

5 shows that there is a region where both of these inequalities

hold, and yet the individual chooses not to retire. This means

that, for some values of g, and , the option of combining work

and schooling by On keeps the individual on the job when he would

othendse retire. It can be shown that this is a direct implica-

tion of the concavity of the earning-investment frontier.1"

To determine the nature of optimal trajectories in Figure 5,

it is necessary to know how A and 4i change over tine. Using the

definitions of A and p, and equations (7), (10), and (16), it

follows that:

(22) A = pA — a4,g(x)h

(23) (ahx—y)4,

where I E r — p &. The sign of y turns out to be quite important.

During Phase I, since g(1) = 0, x rises at the exponential

rate P, but the sign of 4' depends on the level of h if y > 0.

the case g(x) = 1 - x, the retirement regions expands to fill
the entire square.
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Specifically, the 'P = 0 locus for Phase I (drawn in Figure 6) is

simply h =1/a, where h isa function of A by (20.1). If y<O, 'P

is rising throughout Phase I (see Figure 7).

In Phase III, 'P falls or rises at the rate y, but the behavior

of A is not so simple. When x = 0, equation (22) becomes:

(22') A = pA — a'Ph

where h is implicitly a function of 'P by (20.3). It can be shown

that the A = 0 locus (depicted in Figures 6 and 7) begins at the

point A 0, 4'= , slopes upwards, and intercects the -g'(O) ray

at a value of h corresponding to hA = —g'(0)."
Phase IV is the simplest. Here

x rises at the expornntial

rate p, while iP falls or rises at the exponential rate 1. (See

Figures 6 and 7).

Behavior of the trajectory in Phase II is governed by the

pair of differential equations (22)—(23), with x and h implicitly

defined as functions of A and 'P by (20.2) and (21.2). These can

be used to locate and analyze the two stationary loci: A = 0 and

= 0. The task is rather arduous and uninteresting, and hence

.L'Proof: The Locus is defined by ) = '1' h. By (20.3), as

from above, Ii + 0. Xherefore A + 0. Next suppose A = -g'(O)'P for

some point on the locus. Then álearly h = —g'(O)g. This establishes

the two end points. The positive slope follows immediately once it

is noticed that (20.3) implies =
v"(&)

> 0. Q.E.D.
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is relegated to the appendix, but a few simple properties can be

aeen immediately:

(a) When y C 0, i is always rising in Phase II, as
indicated in Figure 7.

(b) When y > 0, there is a 'P = a locus which intersects
the -g'(l) ray at the point B in Figure 6 (When
x 1, h = y/a on the locus, which defines point
B.), and which never touches the —g'(O) ray.
(Because ahx = y cannot be satisfied when x = 0.)

Cc) The A = 0 locus is the same regardless of the sign
of : t intersects the -g'(O) ray at paint A
(If A = 0 while A = -g'(O)'J', then h = hA.), and

does not touch the x = 1 ray. .(When x 1, g(x) =
0, so no positive A satisfies A = 0.)

We have drawn both loci with positive slopes. In fact, while they

bath must start this way (at points A and B), either slope or both

might turn negative. This is not important. What is important,

and what can be proven (see appendix) is that they always have a

unique intersection which is in Phase II, and that the A = 0 locus

cuts the ip = 0 locus from below.

It is clear from Figures 6 and 7 that the temporal succession

of life—cycle phases will be quite different in the two cases. We

believe the Y > 0 case is more "realistic", and hence will concen-

trate an it. Our reason is that people with r a p (and, a fortiori,

I > 0 as long as 6 > 0) have an optimal consumption path which is

everywhere nondecreasing, while persons with p > r have a declining

optimal consumption path.!' Unfortunately, this cage is the more

'This simple identification of rising or falling consumption paths
with r-P is true only under separable utility. For the more general
case, see Weiss [1972]. Our point is that this specific model be-
haves mast like the real world when r > p.
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difficult. The reason is a phenomemon we call "cycling", that is,

the recurrence of a specific phase more than once in an optimal

life cycle. For example, inspection of Figure 6 raises the pos-

sibility that it might be optimal to attend school, then take

OJT, and then return to school again. The reader will doubtless

note many other possibilities for cycling when y > 0, but there

is little room for cycling when y S 0.

Let us, therefore, deal first with people with "high im-

patience", i.e. p > r + &." Tha following propositions, which

rather sharply delimit the kinds of life cycles that could ever

be optimal for such a person, follow by inspection of Figure 7.

(a) The only possibility of cycling is that an optimal
path might include two disjoint periods of work,
separated by a period of Ofl.

(b) If there is a period of schooling, it comes either
at the beginning of life or immediately after re-
tirement. A period of On follows schooling.

(c) If there is a period of retirement, it comes at
the beginning of life.!'

(d) If there is a period of Oft (and there will be
one unless the optimal path irzñudes no training
whatever), it is followed by a period of work.

(e) The last years of life are a period of work.

Thus the "normal" life cycle for persons with high impatience

(depicted by the dotted path in Figure 7), assuming most people find

it optimal to take some schooling and some retirement, is roughly as

"Note thatif the rate of growth of wages in the absence of invest-
ment, —6, is positive (due to economy-wide prothictivity changes) and
exceeds the real rate of interest, then all persons are in this class.

—'Th2 same phenomenon occurs in a dynamic laha supply moi'l w)Lh
exugenou wages. See WeIss [1972], Blinder [1974, Ch. 37.
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follows: an initial period of retirement is followed by schooling,

then by O.JT, and then by pure work until death.

Of course, life-cycles with early retirement are rarely ob-

served in practice. But this is not because such programs are

irrational. Individuals with very high impatience (or very high

positive exogenous wage growth) will want to bunch their leisure

early in life. To do do, since consumption depends on lifetime

discounted earnings, they will have to work very hard when they

are old. We may surmise that it is the absence of perfect capital

markets that precludes all but inheritors of large fortunes from

pursuing such a program.

When impatience is lower, so that y = r + 6 - p > 0, cycles

seem to be possible. Section 7 is devoted to this issue. For

the moment, we simply assume that there are no cycles.
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Labor Supply and Human Investment in a Normal Life Cycle

It can be seen from Figure 6 that, if the life plan includes

schooling and has no cycles, the only possibility is: schooling

comes first, followed by On, work, and then retirement.!! We

therefore call this the "normal" life cycle, and this section is

devoted to examining its properties.

6.1 Phase I: Schooling

Since A is rising through time during Phase I, and

(20.1) v'(l—h) A

it is clear that h(t) > 0. That is, the amount of time devoted

to schooling rises steadily as education progresses -- a prediction

to which all former graduate students will doubtless attest. The

intuition behind this is simply that the value (in utils) of the

human capital stock A( t ) rises (even if K itself falls), making

leisure more expensive)1

We may also make some rough judgments on the concavity of

the hours profile, h(t). Differentiating (20.1) logarithmically

gives:

____ - -
Lv'(t)J -A—p.

is actually not quite so obvious, since the diagram makes
it look as though retirement might come first. However, we show
in Section 7 that the same conditions that preclude cycling .also

preclude early retirement.

'Marginal calculations during this phase involve only leisure
and schooling. The work activity is dominated.
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Denote the expression in brackets by R(h) > 0, and take the time

derivative again to get:

(24) R'(h)(h)2 + R(h)h = 0

It is clear from (24) that h and R' (h) have opposite signs. What

is the likely sign of R'(h)? Noting that the time budget makes

dh/dL —l everywhere, we can write R'(h) as:

Attlt' — — V—
d& v'(Z)

In the case of utility functions for choices involving risk,

the ratio v"(L)/v'() is called the degree of "absolute risk

aversion't (Pratt [1964]), and is generally thought to be an in-

creasing function of z (i.e., to fall in absolute value as I

rises). While the present model does not discuss risk, it seems

reasonable to suppose that our v(.t) funct.on also has this pro-

perty. In that case, (24) implies that h(t) < 0, i.e. that h is

a concave function of time during schooling.!! We take this to

be the leading case. And since in Phase I ah - &, the rate

of growth of potential wages would also be an increasing arid

concave function of time.

Note that all this is independent of y, and hence applies

equally well to individuals with high impatience.

instead t < 0, h will be a convex function of
time. £ •v (I)
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6,.2 Phase III: Work

Since there are some formal cimilarities between Phase I

and Phase III, it is convenient to take up next the case of

work with no training.

Here labor supply is governed by the usual condition:

that the marginal rate of substitution between leisure and

consumption goods be equated to the real wage:

(20.3) v'(l—h) = u'(c)K.

Since, by (23), !J/$ = -Y in Phase III, logarithmic differentia-

tion of (20.3) yields:

(25) Ii = -y =

so people with high impatience offer increasing amounts of labor

to the market, despite wages which are falling if 6 > 0. Con-

trariwise, persons with more "normal" time discount rates have

diminishing labor supply in Phase III. It cannot be stressed

too much that these contrasting behavior patterns have absolutely

nothing to do with competing "income" and "substitution" effects,

although cross-sectional studies of labor supply might possibly

confound the two phenomena.

From (25) it is clear that the concavity issue is precisely

as it was in Phase I. The sign of Li depends only on the be-

havior of "absolute risk aversion" as £ rises, and the more

attractive utility functions imply i < 0 (regardless of the

sign of y).
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The behavior of wg rates (actual and potential coincide)

and earnings in Phase III is also of interest. Letting 14 be the

observed wage, we have:

U = = -6, a constant.

So lgaritttnic age-wage profiles should be straight lines-in Phase

UI, which are falling, flat, or rising according as 6 is greater

than, equal to, or less than zero.

Finally, consider earning,Y(t) = h(t)W(t). We have:

i—n+.—n-aYh Wh
If 6 > 0, i.e., if depreciation outweighs economy-wide wage growth,

earnings will surely decline. However, if 6 is sufficiently nega-

tive, they may not. But regardless of the slope of the logarithmic

earnings profile, it will certainly be concave if h(t) is:

<0 ifh<0.

6.3 Phase II: an—The-Job-Training

To analyze the behavior of hours of work and investment in

Phase U, it is convenient to transform the differential equations

so that x and h, rather than x and p. are the variables. In (x,h)-

space, Phase II is the open unit square, Phase I is the vertical

line x = 1, Phase III is the vertical line x = 0, and Phase IV is

the horizontal axis. (See Figure 8.) In a life—cycle without

cycling, we enter from Phase I and ezit to Phase III.
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The first-order conditions for an interior maximum are

(14') A + g'(x)p = 0

(15') v'(l—h) = Xx + g(x)$

Since the Hamiltonian is strictly concave in (x,h) for given (A,ip)

we know that (14')—(15') define x and h as unique functions of ? and

Given these, the two differential equations in A and can be

transformed into a pair of differential equations in h and x. The

results are:a'

_____ r+cS
(26)

v'(L)
h = P — ltrt(x)

(27)
R"(x) = r ÷ ô — sin l+n(x)
g (x) ii(x)

where

= -x
n(x) — g(x)

is the (sign-corrected) elasticity of the g(x) function. This

important function has the following properties (as the reader

may verify by direct computation):

n(0) = if (0) = 0

(28) n(l) = n'(l) = +

1(x) >0, n'(x) > 0, for x >0.

Using (26) and (27) it is easy to partititon Figure 8 into

four regions by the = 0 and l = 0 4.oc±. Mh—0. locus only exists for y>O

and tijereit has the simple form:

(29) n(x) = y/p

1'Uniqueness of A and i for given x and h is obvious since (14')

and (15') are linear in A and 4'.

21These equations are derived in the appendi::.
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which, by (28), defines a unique value of x. call this x. Using

(27), the end points of the x = 0 locus,

(30) r + 6 = ahx(1

can easily be determined. When x = I, h (r+6/a, and tthen x = C,

h = _gt(O) <. It can also be shown that the locus is up-

ward sloping.!'

It is clear from Figure 8 then, that h can be no less than

(r4o)/a at the start of Phase II.' But does the path proceed

smoothly from x = 1 to x = 0 with c < 0 everywhere, as in Figure

9a, or can "mini cycles" arise, as in Figure 9b? We can prove tint

trajectories like Figure 9b can never be part of an optical path

because (26) and (27) define c and h as functions of x and h only,

i.e., because c and Ii do not depend directly on either the state

variables or the costate variables. It therefore follows that

must be the same whenever (x,h) are. But a path like that

in Figure 9b would have to cross itself —- include two distinct

points in time with the same (x,h) and different (x,h) -— which is

impossible. This is an important result, since it shows that

1Proof: Using the definition of n (x), and differentiating (30)
yields

1+(x) dli —g(x) +g(Z)g"(x)Oax n(x) +ah
Since the term in square brackets is negative, we have

> 0.

a/We must assume a > r + 6 if there is to be any training at all.
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within Phase II, x(t) is monotonically declining —- a property

which holds in the simple Ben-Pofath [1967] model, and which is

vital if human capital theory is to account for the gross facts.

It also implies that, within Phase II, labor supply rises to a

single peak and then declines -- a pattern which Stafford and

Stephan [1973] took great pains to establish the possibility of.

In our model, it is the only pattern which could ever be optimal

(so long as y > 0).

We can also use equation (26) to determine the concavity of

h(t). Letting R(h) —v"(L)/v'(&) as before, its time derivative

is:

(31) = ''l.; —
Since the first term on the righthand side is negative, h < 0 fcr

utility functions with R' (h)

The behavior of potential wages, K(t), can be displayed con-

veniently on the (x,h) diagram. Since K/K = ahx - 6, the K = 0

locus (which exists only if 6 > 0) is the rectangular hyberbola,

hx = 6/a, shown in Figure 10. By showing that the intersection

of the = 0 and 11 = 0 loci (labelled point A in Figure 10) 1iat

above this hyperbola, we will establish that the peak in lhbor

supply precedes the peak in human capital. Point A is defined

by and the £ which satisfies:
aa + IlL:))(x)

i'When K' (h) C 0, (31) is ambiguous a priori. However, we a1rec'y
know hat there is a unique masinnrn (where ) = 0), aGd it is ciCfl
that h C 0 in the neighborhood of this maximum.



h

Figure 9a
A normal Phase II

Figure
"Mini—cycle'

-a
1.0

Sb
in Phasell

A
h

Figure tO
Behavior of potential wages

hx-(KrO locus)

-36a-

to
h

1.0'

A
x

x

h

x 1.0



—37—

But ft(x) = yip, so:

h = 1 = + - when r > p.

So r > p is sufficient, though certainly not necessary, for the

peak in labor supply to precede the peak in human capital.

What about the peak in observed wages, w(t) =

Since:

W(t) = Kg'(x)x + g(x)K

and since g'(x) and x are negative while g(x) is positive, the peak

in observed wages (if any) must follow the peak in potential wages

(if any). Of course, if 6 = 0, both actual and potential wages

reach their peak at the Phase tI-Phase III swItch point, and are

level thereafter. Figure 11 below depicts the tima profiles of

labor supply, human capital, and observed wage rates in Phase II

for 6> 0. The peak in observed earnings, h(t)W(t), must cone

between the peak-in h and the peak in W, though its relation to

the peak in K is unclear. If the 6 = 0 case is a good benchmark,

earnings peak earlier than human capital.

Figure 11 shows wages and hours of work rising together at

first (when wages are low), then moving in opposite directions

(when wages are higher), and finally falling together (when wages

are again low). Once again we stress that this has nothing what-

soever to do with income and substitution effects —- although

cross-sectional studies over diverse age cohorts might mistakenly

identify this phenomenon as a.backward bending labor supply function.
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One final observation. The rate of growth of human capital,

= ah(t)x(t) — 6

m!ght rise at first in Phase II, but must fall for most of Phase

II. It will start out rIsing if the slope of the trajectory, hI;,

exceeds the slope of the rectangular hyberbola hx = h1, where

is the labor supply at the start of Phase

6.4 The Complete Life Cycle

Now that we have analyzed each individual phase of the optimal

life cycle, we are in a position to put the results together and

describe the complete age profile of investment, work effort,

earning capacity, wage rates and earnings.

6.4.1 Investment inHuman Capital

We have seen that x(t) is constant et unity during Phase I,

declines monotonically during Phase II, and is constant at zero

during Phase III. (It is not a meaningful concept in Phase IV.)

To show that x(t) looks as portrayed in Figure 12, we need only

establish that it is continuous. Continuity within Phase II

follows frmediately from the fact that both A (t) and 4, (t) are

continuous functions of time and that 4, (t) is strictly positivo,

since:

(15') —g(x) =

'1The precise mathematical -candition is a complex one iavolvng.thc
first and second derivatives of both the v(L) and g(x) functions,
and does not seem worth writing down. Note that the product xli
is what other writers have called "investment time". Investment
time thus defined may rise at first in Phase II, but uust fall

thereafter.
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and —g'(x) is monotonically increasing. Continuity across the I-fl

and 11-Ill switch points follows from:

urn = 1, urn x(t) = 0,

which are immediate implications of the continuity and monotonicity

of g'(x). Examples of g(x) functions witich give discontinuous x(t)

either within Phase II or at a switch point are provided in Figures

13.1/ Nothing can be said in general about the concavity of x(t)

within Phase II.

6.4.2 labor Supply

So far we have shown that h(t) is rising in Phase I, con-

tinues rising to a peak and then declines in Phase II, and declinos

throughout Phase III. It remains to show that h(t) and h(t) are

both continuous functions of time.

Continuity within each phase is trivial to establish. In

Phase I, v'(l-h) = x(t), A and v' are continuous, and v" <0.

In Phase II, y'(l-h) = ip(t), and the exact same argument works.

Finally, in Phase II, we have:

v'(l-h) = Ax + 4ig(x)

and given our assumptions about g(x), both x and g(x)are continuous

functions of

1Nincer's empirical work, which finds a discontinuity in x(t) at
the end of schooling, suggests that Figure 13c is closest to tha
truth.

VThI5 argument makes it appear that continuity of h(t) requires
continuity of x(t). This is not so. x and g(x) wil! display
discontinuous behavior at the sm points in time. We only re-

quire that Ax + tpg(x) be continuous. For excpic. optimal x(t)
is a d*ccontinuous function of tima when g(x)1-x, but in thIs
case xx + = vthich is continuous.
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To establish continuity at the switch points, we must prove:

(i) urn Ax + 'pg(x) = A (i—il switch)
x1

(ii) urn Ax + $g(x) = ip (n—ni switch)
x-'O

(iii) Urn h(t) = 0, where H is the age of retirement
(III—Iv) switch)

Conditions (i) and (ii) follow by inspection given only that x and

g(x) are continuous with g(O) = 1 and g(l) To prove (iii),

we use the condition:

iji(R) zv'(l - h(R))

to rewrite it:

Un tp(R) = L (Since h(B) = i).

Referring back to the phase diagram in Figure 6, it is apparent that

this must be true since *(t) is continuous.

What about the continuity of h(t)? Since v'Qi), v"(L) and

n(x) are well-behaved functions, and since we have juot seen that

x(t) is continuous, (26) Immediately implies that h(t) is continu3ua

within Phase II. Proceeding analogously, to prove continuity acrvss

switch points, we must show that:

(iv) Urn r+6 — 2/— — (i—li switch)xJ. i+n(x)
(v)

xO —

1+n(x)1 (II-Lllswjtch)

Conditions (iv) and (v) follow immediately by noting that

11w fl(x)c +o'and lim 1(x) = 0. However, h(t) is discontinuous across
x-O

the 111—IS! switch since lim h(t) = X(1) < 0.
t÷R

Again, we do not believe that continuity of x is needed. It is just

2 that a different proof would be required.

—'This condition comes from comparing (26) which holds in Phase II,
with (-v"/v')h = p, which holds in Phase I.

This condition comes fram comparing (26) with (25), which hoLis in
Phac IT!.
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Collecting all these results, Figure 14 depicts the life-cycle

labor supply profile in the leadizg case: y E r—p+6 > 0, R'(h) >0.

In a word, the profile is smooth (except at retirement), single-

peaked, and has no inflection points.

6.4.3 Human Capital

During Phase I, K(t) rises at the increasing rate =

ah(t) - 6. It x continue to rise at an increasing rate at the

start of Phase II where:

K Ct)
K(t) — ah(t)x(t) — 6

but soon will rise at a decreasing rate, and eventually will de-

clir.e if and only if 6 > 0. Finally, K(t) falls at the steady

rate 6 in Phase III -— the only phase where it is cbservable.

(See Figure 15.)

6.4.4 Actual Wage Rates

Observed wages, of course, are zero until the completion of

schooling and correspond to K(t) in Phase III. During Phase II

we have

log P1(t) = log K(t) + log g(x)

so that the slope of the logarithmic wage profile is:

P1(t) _K(t) -
w(t) K(t)

(x)

This will always exceed K/K. Further, since as x + 0 both x and

approach finite limits, the time path of log W(t) will ex-

hibit a kink at the Phase Il-Phase III switch point. (See. Figure

16.) Since nothing is known about x, nothing is known about its

concavity.
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6.4.5 Earnings

The log of earnings is given by:

log Y(t) = log h(t) + log hçt).

so:

Y h K x

During Phase I, of course, Y(t) = 0. At the start of These II,

all three terms are positive, so 1(t) is certainly growing.

Then h(t) peaks and begins to decline. If (and only if) 6 > 0,

K(t) also peaks in Phase II. But - 71(x)> 0 throughout Phase

II, so there is no particular reason to think that Y(t) ever

declines in Phase II (though it might). Of course, in Phase

III, h < 0 and = —6,so Y falls unless 6 is substantially nega-

tive. Figure 17 depicts several possible logarithmic earnings

profiles.
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'Ill. The Question of Cycling

We now tddress ourselves to two important questions which have

thus far been avoided:

(a) When cycling arises, what broad characterization of
the optimal path can be made?

(b) What meaningful conditions can be derived which ex-
clude the possibility of cycling?

In Section 6, we proved that the optimal trajectory can never

1/
cross itself.— This result enables us to answer the first question,

since it implies that cycles must be "expanding" as in Figure 18,

rather than "contracting". Thus a cycling path can be broken down

into several "quasi-life—cycles", each beginning with a period of

schooling (with the possible exception of the first). Since the contourri of

constant wprk effort look like blow-ups of the border of the re-
tirement region (which is the special case h = 0), with higher

contours connoting higher h, we see that the individual works

harder during his second "quasi cycle" than in his first. Also,

ha spends more time in Phase II. So, in a program with cycling,

the tine profiles of x(t) and h(t) might look something like

Figures 19 and 20 respectively.

Re can develop strong conditions which rule out cycles by

considering the minimum length of time required to complete a

"quasi cycle". If this time exceeds the available life, T,

then cycles are impossible. In particular, we focus on the last

1"Actually, we only proved that it could never cross itself in
Phase II. It is trivial to prove this for the other phases as
well.
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quasi cycle, and let:

to
= age of startirAg lact schooling period

= age of starting last OJT period

= age of starting last work period

= age of ending last work period (possibly t3 = T).

These four points on the optimal trajectory are indicated in Figure

18.

Consider first the length of the schooling period,
t1-t0.

Since we are considering a cycling path, we know that:21

(32) h(t0) c y/a = rl-Ô—p

(See Figure lB.) Furthermore, we know from Figure 8 that:

(33) h(t1) > (r+6)/a

Finally, we know that optimal behavior implies that y'(lh) grows

at the exponential rate p in Phase I (see equation (20.1)). Thus

we can derive a minimal time required to pass through Phase I

which will depend on the rate of impatience, the elasticity of

the marginal utility function, and the parameters a, r and 5.

Specifically, since

A(t0j <v'(i 1) by (32),

and

x(t1) >v'(l — by (33),

we have:

a—r—S

P(ttn) a
(3b') e J " =

a

Note that no such statement can be made about the schooling
period in a trajectory without cycling. Thus the bound to be
derived will not apply to "normal'1 life cycles.



Equation (34) places a lower bound on the interval ti—to which in-

creases as p falls specifically:

a—r—5
a

0 vt(') -

It is also intuitively clear that there must be some minimal period

of work during which the benefits from schooling are realized. This

is the idea of our lower bounds on the lengths of Phases II and III,

which depend basically on the tradeoffs embodied in the earnings—

investment frontier. To derive these bounds, recall our earlier

notation (p. ): e(t) = p(t)/p(t).

i/This last statement holds under the assumption, introduced in Section

6, that > 0. To prove it, let S be the root of (3i), viz:

— !Ii 2) = v'(l —

Since the righthand side of this expression is independent of p, C 0
foflows if we can show: p

— !±÷ .Q)} > 03p 3*j a a

Now, adopting the shorthand notation a 1- (r+6)/a, this partial is:

s* ev'( + a) + e*vht(a + > o
or

—v"(a + 2.)a
-

a

But by (314)• this says:

log
v'(8) — i vl'(+ !)

vt(8+t)
a

v!($+ £)

To prove this, define the function: f(L) 2 log 'i'(i). Then 2'(i) =
C 0 and f"(L) > 0 by our assumption. Thus r(t) is greater than

its first—order Taylor approximation around £fl viz.:

-.
f() > f(L) +

Letting .Q = ÷ , £=S as a special case proves the desired ineuality.
Q.E.D.
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In this notation, t1, t2 and t3 are defined by (see Figure 18):

(35) ao(t1)
= —g'(i)

(36) ae(t2) = — g'(O)

(rr) e(t3) = o
It is easy to show that:

(38) 0 = (r+6)6 —h[g(x) — xg'(x)] in Phase II

(39) 8 = (r+o) - ii in Phase III.

First consider Phase II, where the solution to (38) is:

O(t)e6Xt_tl) =
OR1)

— 4e_(6T_t1)i[g(x)_xgt(x)]d
Setting t = and using (35) and (36), we have:

= —g'(l) — a 42e6t_t1)h[g(x)_xg1(x)]at,

Now, replacing h(t) in the integral by 1.0 and replacing g(x)-xg'(x)

by —g'(l) makes the integral strictly larger, so we have the in-

equality:

—g'(l)a i2 (t-t1) > + gI(O)e_(r+6)(t2_tl),
1

or

i_e6)(t2_ti)
> — g' (0)a r+6 g'(l) e

Our lower bound on the length of Phase II, call it J', therefore

satisfies: —

= j-iog a - (r+tS)

The bound depends on the parameters a, r and 6, and also on the

degree of concavity of the earnings-investment frontier.a" Tastes

should be clear that the bound applies equally well to the OJT
period of a normal life cycle, since the only things assumed were
that Phase II is preceded by Phase I and precedes Fhse III.

a'That is, on how much smaller -g'(O) is than -g'(l).
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are not involved since we obtained the bound by assuming the in-

dividual works as hard as he can.

Almost the same reasoning can be used to place a lower bound,

on the length of the last Phase III. Solving (39) explicitly

gives:

e()-(r÷o) (t-t2) =9(t2) - J (T_t2)h(T)dT
t2

Letting t =
t3 and using (36) and (37), we obtain:

—g'(O) = aJ3e ä)(Tt2)h(t)d,. <

since h('r) < 1. Thus:

—g' (0) c $s[i_e
(r+a)

(t3—t2)],

or
1 a= g log a + g' (0) (v-I-a)

-

Again the bound depends on a, r, , and the g(x) function.

Putting these results together, we find that there are boundc

on the minimum lengths of Phases II and UI which are the same for

every individual, and there is a bound for the minimal schooling

period which depends on p. Let p' be the value of p satisfying:

S*(p*) = T - - W*.

Then cycling is certainly impossible for persons with p <p*. Since

we know that cycling is only a problem when p c r + 8, a sufficient

(but far from necessary) condition to rule out cycling is: r + 5

The reader should note that the condition p p* rules out early

retirement in the y > 0 case as well, since the bounds S*(p*), 3*,

and W* apply here as well. In a word, we will never get cycles if
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either p is "larae" (i.e. p > r + 5 ) or p is "small" (i.e., p c o).

If p* < r + 6, there will be an intermediate range in which cyclin3

is possible.

It may be interesting to work out a numerical example of these

bounds. Suppose a, which would be the rate of return on human

capital in the case of an infinite lifetime, is 87., while r + 6 is

6%. A simple form for the earnings-investment frontier is the quad-

ratic: g(x) = 1 - Given these choices, (40) and (41)

can be used to compute: J* 18.3, W'= 7.8. From (34) it is

clear that a facile choice of utility function 1st

v'(L) = e:t.
For a rate of impatience of p = .02, (34) gives S = 12.5 as the

minimal schooling period. Adding these, we find that a new

cycle cannot start unless there are more than 38.6 years remaining.''

1'The reader is reminded that these are all weak lower bounds. The
actual anount of time taken by the last quasi cycle is thus strictly
greater (and probably considerably greater) than 38.6 years.
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VIII. In Conclusion

We have presented a life-cycle model of the behavior of a

utility-maximizing individual free to allocate his daily time

budget Bmong leisure, work and education. The main substantive

conclusions are listed in Section 1, and depicted in Figures 12-

17. They need not be rehashed here.

Several generalizations of the analysis imediately come to

mind. More general forms of the human capital production function

could be tried, as could a non—separable utility function. Indeed,

the list of arguments of the utility function could be expanded

to include human capital, or, indeed, nonhuman capital. More im-

portant than all these, we imagine, would be allowance for the

capital-market imperfections that severely constrain the choices

of those poorly endowed with financial wealth.

Still, so long as we interpret the results as a benchmark

around which there will surely be deviations (some systcmatic,

some random), there are a number of interesting uses for the model.

First, it may be possible to do the usual kinds of ccmparativc-

dynamic exercises. How would an increase in initial fin2ncial

wealth alter the optimal plan? What about an increase in initial

human wealth? Row sensitive is the optimal plan to the rate of

impatience -- a taste parameter that presumably differs across

people.1! The reader can no doubt think of marty similar questions.

11This question is addressed, in the context of a far simpler model,
by Beach, Maital and Maital [1973].
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While we suspect that most of these can only be answered under

specific functional forms for v(Z) and g(x), some weak results

may hold in greater generality.

Second, tho model can provide the micro-foundation for a

simulation model of the income distribution, along the lines of

Blinder [1974]. The chief conclusion of that work is that the

distribution Of wage rates, talcen there to be exogenous, is the

principal contributor to income inequality. The present model

can generate that distribution endogenously, given assumed dis-

tributions of tastes and endowments, and thus can fill what is

perhaps the major gap in the positive theory of income distribution.

Third, the long—rim incidence of various taxes in a world

with human-capital accumulation is virtually unexplored territory.

It seems feasible to incorporate some simple taxes —— such as a

linear income or wage tax -— into the model and examine, either

analytically or through simulation, the effects of these programs

of the acquisition of human capital. It could be that human-

investment responds to taxation more substantially than do hours

of work.

In a word, there are a host of interesting and important

questions which simply cannot be addressed by a life-cycle model

which considers either labor—leisure choices or labor-education

choices, but not both.V By demonstrating the feasibility of

i/For example, if income maximization is the posited goal, a pro-
portional tax (subsidy) on wages cannot possibly alter behavior.
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handling both decisions together, we hope to have hastened the

day when the powerful tools of life-cycle economic theory will

be brought to bear on these issues.
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Mathematical Appendix

The pwpose of this appendix is to establish the properties

of the * = 0 and A = 0 lines in the region in which

both x and h attain art interior solution. We wish to show that:

1. there exists a unique intersection

point.

2. At the intersection the line cuts

the ii = 0 line from below.

Uniqueness

Notice first that the necessary conditions (l)—(l5) define

a unique (A,*) pair for any (x,h) pair. (The converse is also

true.) It is therefore sufficient to show that the equations

(see eqs. (22) (23) in the text),

(A.l) pA — açt'g(x)h = 0

(A.2) (ahx—y)* = 0

provide a unique solution for Ii and x. Using the first order condition

(15), (A.l) can be written:

(A.3) p +ah17) = 0.

And, of course, since iJ > 0, (A.2) implies,

(A.') alix—y0.

Since, under our assumptions, is monotonicafly increasing in

x, a solution to (A.3)—(A.b) exists and it must be unique..

It remains to verify that it is an admisab1e solu-

tion,i.e. that 0<x°<l, 0<h0<l. That x0,h0 > 0 is obvious.. Also

< i since '(U = • It remains to show that h° = _t. = 2. —xLI
g(l) 0 a (0ax gx
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Let us define F(x) Clearly F'(x) > 0. We wish to show

that > Since F(x) is monotonicafly increasing, this is

equivalent to the requirement F(x°) > But F(x°) = tbr defini-

tion. It is therefore necessary to show that:

g' or g(1) >_ag.(i).

g()

Note, however, that 2. = — 1 < — 1 It is therefore sufficient

to show that

> (1— )(—g'(-)) .

But this last inequality follows directly from the assted conorr;ity

of g(x). (It states that g(l) = 0 is greater than the first—order

Taylor expansion around x = y/a.)

Shape of the Stationary Loci

Due to the concavity of the Hamiltonian in the controls, the

two necessary conditions (114)—(15) define a unique pair (h,x) for

any (X,ip). Let us denote these solutions by:

=

h = H(A,iP)

x 1
where 11x = v"(l—h)

> 0 —
ipg"(x)

> 0

— g(x) x— <0—
v"(l—h)

' — pgt'(x)

Thus, considered as a pair of equations in A and i, (A.3)—(Ai)

become:

o = (x,*) pA - ag[X(A,,)JU(X,)
0 = r2(x,*) aH(A,)X(A,*) —
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We wish to show the Jacobian of this system evaluated at

is positive. This implies that the A = 0 line cuts the ' = 0

line Iron below. (It also guarantees the uniqueness of the soluti:n,

if it exists.)

p—a*(hg' (x)X+g(x)H)

2 2
=

a(xHx+hXx) a(xH+hX,)

+ a2hg(x)(xH+hX) + a2h*(g(x)—xg'(x)][H,XHX$1.

Owing to the signs of X, X, Hx 11* the only negative term

in this st is: aphX,. However, since p = in Phase It,

we have:

aphx = ah ahg(x) = (ah)2g(x)<
4? —g'(x) pg't(x) g"(x)

But this cancels out with the term:

a2h2g(x)X = >

so J > 0. Q.E.D.

We now prove two further properties of the loci:

(a) the ijaO and A=O loci have positive
slopes at xl and x0 respectively;

(b) along the 4=0 locus, d(A/4)/d4? c 0
while along the X=O locus, d(A/4)ldA> 0.

We have

•1

= —
ag(x)h+ahg' (x)X4?+a4?g(x)H4?

di X=O p—ahg (x)X—a(x)H
A

At the border between regions II and III x = 0, which implies !5r 0.

Given the signs of Xi,, 114?? and X, it follows that at this point
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dA

=ü>°'
Also

2
F xH +hXa. s_ *

d4' $=O 2 XHx ÷

At the border between regions I and II x=1, which implies R = 0.

Again, given the signs of and it follows that

> 0 at this point. In order to determine the concavity

properties of the ij'=O and O lines, it is convenient to write

the solution of the first order conditions (l4)—(l5) as function

of the level of A and the ratio . Thus:

x=Xc(A4)
where XO Y(>0

ii = WA,A) Hx > 0 'C 0.
*

'p

Consider now the condition A = 0 or p +
ag(x) h = 0. Since
g (x)

A
an increase in raises x, which decreases the quantity

in absolute value, an increase in A (which will increase h). is

necessary to restore equality. Thus along the A 0 line

d4) —

dA
> 0. A similar argument, based on writing h as lvH(*c)

• . d4)
that nlongthe 0 line cje must have < 0. -
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