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I. Introcduction

It is by now widely recognized that investment decisions play
a major role in the determination of individual age-earnings pro-
files. Several studies, most notably Mincer [1974], rely on
investment in human capital as a leading single hypothesis from
which many of the observel regularities in earnings data are
derived.

The investment hypothesis, in its simplest form, can be

summarized by the equation:l/

(1) ’ Y = F(K,K) ,

where Y i1s observed earnings, K is potential earunings ("'human
capital"), and i is its rate of change. Competitive equilibrium
in the labor market places restrictions on the signs of the partial
derivatives, Specifically, gso long as human capital contributes
to earnings (i.e., g% > 0), the individual must give up current
earnings in order to enhance future earning opportunities (i.e.,
SE < 0). It is typically assumed that, at each point in his life,
the individual faces a spectrum of earnings-investment combina-
tions ("jobs"), and selects the one which is optimal.

Equation (1) highlights the formal similarity to the invert-
ment problem of the firm in the presence of adjustment costs

(see Eisner and Strotz {1963]). However, the fact that human

1/
This precise representation of the model is due to Rosen [1973],
but similar formulations are implicit in Becker [1964] and Ben-

Porath [1967].
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capital is embodied in the iandividual aﬁd cannot be sold leads
to gseveral important differences. First, since the property
rights to human capital cannot be transferred, the finiteness
of life plays a central role in human investment. By contrast,
even a firm which plans te cash in its assets after a fixed
number of years will behave "ag if'" its horizon were infinite
so long as its agsets are macketable. Second, since eicher the
utilization or formation of human capital requires the sacrifice
of leisure (a specific congumption good), it is not possible in
general to separate the consumption and investment problems as
is done in the theory of the firm.l/ Finally, and perhaps most
importantly, neither human capital nor the investment therein
are normally cobservable. Th-is investment functions, such as
those of Jorgenson [1963] and others, are not applicable to
human capital thecory. If the model fails to generate testable
predictions eabout ohservable variables like wage rates and
earnings, then it is not a very fruitful one.

All of these features make the huwman investment problem
much more difficult theoretically than the firm's problem. Lack
of data on human capital leads to stiil another difficulty: it

1s hard to distinguish empirically among the effects of lavestment

1/

" See for example, Hirshleifer [1958].
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and a myriad of other influences on actual earnings. The most
cbvious of these, of course, is the chcice of work intensity,
which affects both current earnings (labor-leisure choices) and
the rate of human capital accumulation (training-leisure choices)

The purpose of this paper is to present a simple life-cycle
model of investment in human capital in which leisure choices
are explicitly iacorporatei. In so doing, we integrate two pre-
viously disparate branches of life-cycle theory: models of
labor supply with exogenous wages,l/ and models of human cépital
formation with exogenous leisure.gl Of course, to accomplish
this, we must posit utility maximization as the individual's
goal rather than income maximization.

Apart from the direct interest in the interaction of labor
supply and human investment over the life cycle, such a model
is needed to test the robustﬁess of the widely~used wealth-
maximization models of human capital accumulation. For example,

a gtandard implication of these models is that a period of

specialization in investment (interpreted as schooling), if it

l-/Se.c.-, for example, Weiss [1972], Blinder [1974, Ch., 3], Heckman
[1974]. The paper by Weiss allows for endogeneity of wages due
to learning by doing, but not for human irvestment,

g/See, for example, Ben-Porath [1967], Weiszacker [1967],

Sheshinski [1968]., Formally, our approach also embraces life-
cycle consumption theory, but we take paing to separate this
from the other two problems, and have little to say about
consumption. :
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exists, will occur only at the beginning of life.l/ However,
one can imagine that  when schoolling involves foregone leisure
the existence of pure time preference might lead a2 utility-
maximizing individual to postpone his education. Such possi-
bilities-appear explicitlv in our model, Another important
implication of the wealth-maximiza:ion model is that the fraction
of time spent ipvesting falls throughout the post-schooling im-
vestment period. This turns out to be generally true in our model
as well, though some exception:c are noted.

To our knowledge, there have been four previous attempts
(all unpublished at this writing) to integrate human capital and
labor supply as we do here. The treatment by Becker and Ghez
[1972] is the most general aud explores the widest variety of
issues, But it ig also the least ambitious in that they generally
content themselves with stating and interpreting the first-order
conditions. Our model can be viewed as a special case of theirs,
but a case which is pushed much farther., The three other studiesg
at least attempt to analyze the shape of the optimal plan, and
naturally adopt simplifying assumptions in order to do so. Typi-
cally, the rate of investment in human capital and the supply of
labor ére related to some key variable such as the stock qf human

capital or its shadow price (both unobserved). However, since the

lfOn this, see Weiss [1971], Ishikawa [1973], ard also the references
cited in the preceding footnote.

g/Irlec:km.':'n'l f1975], Landsberger and Passy {1973], Stafford and

Stephan [1973].
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models generally do not fully determine the behavior of these
endogenous variables, a disturbing and unneceassary amount of
ambiguity remains, Further, except for Heckman [1975], virtually
no attention is paid to periods of specislization such as schooling
or retirement. This seems & major omission.

The model presented here is more general than previous work
on the subject (with the exception of Becker and éhez), anud vet
generates many more concrete conclusions. Among the restrictions
which our model places on optimal plans are:

(a) Several distinct patteras in investment, work and

leisure may arise, depending on the subjective
rafe of impatience (i.e., the discount rate for
future utilities).

(b} We consider the case where the rate of impatience
is ""small"™ (in 2 sense to be defined later) to
be the leading case. We show that in this case
specialization in schooling can only occur at
the beginning of 1ife, while retirement can only
come at the end.

(c) Schooling is followed by a-period of on~the-
job training, during which the fraction of
potential earnings and time devoted to human

capital formation declires monotonically.
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(d) Investment reaches zero some finite time before
retirement (or death, if there is no retirement).
Thus there is a finite interval of "pure work"
with no investment late in life. This econo~
metric finding of Mincer [1974 ] is explicitly
ruled out by the Ben-Porath [1967] formulation
of the problem (which is followed by Heckman
[1975] and by Stafford and Stephan [1973].

(e) The demand for leisure over the life cycle is
"U-shaped”, with a tendency to decline during
schooling and the early part of OJT, and
thereafter to rise,

(f) YWages rise to a single peak, which occurs
after the peak in hours of work.

Of course, we do not pull these rabbits out of the pfoverbial
hat. Like other investigators, we have to make some simplifying
assunptions of which two seem most crucial. First, (1) is given
the special form:

@ Y = F(KK) = Rg(K/K), g' < 8.
The nature of this important function is the subject of the next
section. Here we only wish to point out that the formulation is
quite similar to that of Rosen [1973] who dealt with the special
cage F(K,é) =K - C(é , C'(&))&l In both specifications, K is

defined as earning capacity, i.e., the amount the individual would




earn in the absence of investment. While Rosen orders jobs by
their absolute rate of increase of earning potential (X), and

deducts costs additively, we order jobs by their proportionate

rate of growth in potential earnings (K/K), and deduct costs

multiplicatively. In principle, either representation is as

good as the other, but the multiplicative version leads more
naturally to the logarithmic wage functions encountered so fre-
quently in empirical work (Weiss [19747]).

Our second important assumption is that, for a given input

of time, the quantity of humaa capital created is proportional

to the stock of human capital. In the terminology popularized
by Ben-Porath [1967], the "human capital production function"
is homogeneous of degree one in K. This specification which is
suggested by Mincer's work [1974], slmplifies the mathematics
congiderably. Thus it is both "realistic" and coavenieat, a

. . ; . 1
combination encountered all too rarely in mathematical economics.=

l/I-Je do not wish to oversell this assumption. Hzckman's [1975]
empirical work certainly does not support it.
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2. The Earnings-Investment Froatier

Basic to any model of humap capital is the market constraint
delimiting the combinations of current earnings and human capital
formation which are obtainable from a given stock of human capital.
This function, which we call the “earninés-investment frontier",
is defined implicitly by (1). It is clearly downward sloping.
Several frontiers, corresponding to different levels of X, are
depicted in Figure 1. (If there is depreciation, X can be negative.)
Our special form (2) enables us to divide both axes of Figure 1 by
X, 8o that a gingle froatier, applicable to any K, can be drawn.
Thus it plays for us the role that constant returns to scale plays
in growth theory. The frout}er 1s sketched in Figure 2, where the
new symbol, x, has replaced % + 8. As in&icated in the introducticn,
we, index jobs by their proportionate cate of growth. x is this in-
dex, and it runs from zero to unity. x = l indicates the job which
vields the maximum feasible rate of growth. It makes sense to call
this "going to school", and to specify that g(l) = 0, i.e., that
all‘earnings_are sacrificed during schooling. Couversely, x =20
is the job where potential earnings are fully realized, so g(0) = 1.

The locus is a "frontier" in the usual sense: points {like
p} in the interior are feasible, but never would be optimal; points
(like q) beyond the frontier would be preferred by the worker, but
are not attainable. We know, of course, that g'(x)<0, but can we
say anything about its convexity? The answer is that we can rule

out convexity (to the origin), but either linear or concave frontiers
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Figure 1
General esarnings-investment frontiers

Figure 2
The specific earnings-investment frontier
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Proof that g(x) canmot be convex
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seem possible. The argument is simple. If g{x) were in fact con-
vex, as in Figurg 3, and arbitrage was permitted, no worker would
accept a job with 0 < x < 1. This is because he could always
spend a fraction A of his work day at x = 0 and a fraction 1-} in
school (x = 1), thereby creating for himself an opportunity set
portrayed by the straight line g(x) .= l-x (shown in Figure 3 as
a dotted 1ine).l/ Since this line dominates his market oppor-
tunities he would never deal with the market. Employers offering
jobs with 0 < x < 1 would have to raise wages until every job was
at least as attractive as arbitraga.

Can a similar argument be used to rule out comcive g(x) func-
tions? We think aot. Workers clearly prefer jobs above the
g(x) = l-x line to arbitrage. Thus, to rule them out, one would
have to show that firms offering such jobs would suffer losses in
a competitive market. As this involves analysis of the production
functions of the firms for both goods and human capital, such an
argument would rest on specific assumptions about these functions.
A full analysis of the behavior of firme in the human capital
market is beyond the scope of this essay. We refer the interested
reader to Rosen [1972], who argues that,due to diminishing returns,
the provision of training by firms requires increasing mazrginal

sacrifice of other outputs so that g(x) must be concave.

l/The argument clearly assumes no frictions in moving between the
job and the school,
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While we consider both cases to be open possibilities, the bulk

of our analysis assumes g"(x) < 0. As we indicate later, a model

almost identical to the pregsent one can be constructed using a

linear frontier, g(x) = l-x. There is only one important difference.

A concave frontier means that combining work with education on th:=

job is strictly batter than blendinz attendance at school with a nro-

training job, while the linear frontier means they are equally
good. 1If there is some positive interactionm between earning and
learning, the worker can capture some "pure profit" by on-the-job
training. Therefore, the "full wage" (including the value of
training), which is equated to the harginal rate of substituiion
(MRS) beiween consumption and leisure for optimality, exceeds his
potential wage by the amount of pure profit. OCnly if g(x) = l-x
will there be no pure profits, so thrt the MRS is equated to the
potential wage, a conclusion which Becker and Chez reach in their
model (and claim to be very important).

‘The differences between g'"'(x) < 0 and g"(x) = 0 are at least
partly observable. Imn the latter case, workers should be found
"buying" training in schools just about as frequently as on the
job., In the former case, training should be bought in schools
only during the period of specialization; part-time education should

take place predominantly on the job.
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3. Statement of the Problem

The individual is assumed to derive utility from three sources:
the stream of lifetime real consumption, c(t); the time profile of
leisure, f(t); and the bequest, or terminal value of real (nonhuman)
assets, A(T).l/ Here t denotes the individual's age, and runs from
zero to T, the length of life which is assumed known and exogenous.
Specifically, 1ifetime utility is assumed to be additively separable
with a constant rate of time discounting:

(3) Ioute,0)e® e, BA),
where U(c,2) and B(A(T)) are acsuwed to be twice-differentiable
strictly concave functions ¢f their arguments, and ¢ is what we call
the rate of impatience.z/ In order to rule out optimal paths with
segments of zero consumption or zero leisure, we further assume:

lim U (c¢c,8) = = for all &

0 ©

1im Uz(c,l) = = for all c.

20
Finally, to allow retirement as an endogenous decision, we exclude
from our analysis functions which preclude 100% leisure. Letting

2(t) denote the fraction of available time devoted to leisure, this

amounts to assuming that Ui(c,ﬂ) > 0 for any c.

1/

="It will be assumed that a person's human wealth dies with him,
i.e., cannot be bequeathed.

2/

~'A variable rate of impatience could be accomodated without too
much difficulty. But it would make the notation more cumbersome,
and qualitative results would depend on the time profile of p(t).




~12w

What are the constraints on this maximization problem? To
begin with, there are two constraints on the time budget. Letting
h(t) denote the fraction of time devoted to market activity (in-
cluding work and education), we have:

(4) h(t) + 2(t) =1

(5) h(t) > 0 .

As noted above, the occupational index is bounded between zero
and unity:

(6) 0<x(t) <1.

And, fipally, the differential equations governing the change in
the stocks of hﬁman and nonhuman capital are respectively:

7" K = ¢ (x,h,K)

(8") : A = rA + Y{x,h,K)-¢c
where r is the resl rate of interest,ll the functicn ¢ («} is the
production function for human capital, and Y(') gives earningé asg
a fuoction of the job, the number of hours worked, and the level
of human capital. This is actually considerably more general than
the problem we solve. We begin this way in order to show explicitly
how our simplifying assumptions reduce the problem to manageable

proportions. There are two initial conditionms, corresponding to

l/Let:t:ing r denote the real rate of interest implicitly incorporates
changes in the price of consumer goods. To see this, note that if
P were the price of goods and i were the nominal rate of interest,
the change in nominal financial assets would be given by:

-g—t-(AP) = 1(AP) + PY ~ ¢P,

d L] *
But EE(AP).= AP + Pg, so dividing both sides of the equation by P
leads to: A= ({4 - §JA + Y - ¢, which is (8').
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1/

the individual's eundowments of financial and human wealth,—
Ay =4, >0
RO =X, >0 ,
and both terminal stoeks are to be chosen optimally,
To set up this problem in a form suitable for the application
of Pontryagin's maximum principle, we substitute (4) into (3),
define shadow princes p(t)e-pt for human capital and u(t)e-pt for

financial wealth, and write the Hamiltonian functioa:

H(h,%,c,K,A,psu) = e PT[U(e,1-h) + pg(x,h,K) + u(rh + Y(x,h,K) - o).
First order necessary conditions for a maximum are:gj
(i) at each instant, x(t), h(t) apnd c{t) are

chosen to maximize H, given K, A, p and

p, and subject to the constraints (5) and

(6);

(ii) 2% = = -;—t(e-ptp) for all t:
3H .

() - L)) for a1l ¢

(iv) K(T)p(T) = O
- 1
(v} u(@ = B (AT) .
Since optimal consumption is always positive, the conditioa
for optimal c(t) is easily stated:

(9) Uc(c’ﬂ) = Q.

-1-/11'1 interpreting these, it should be noted that KO includes becth

the initial endowment of education and "ability", or whatever else
it 1s that determines productivity,

EIWE have been wunable to provide a proof of sufficlency.
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Aud, from (iii)
(10) be (- D,
so the marginal utility of consumption grows or declines at a steady
exponential rate. The consumption-bequest plan has been analyzed
extensively elsewhere; and we shall pay little attention to it
hereafter.l/
Consider next the first-order conditions for optimal x and h,
assuming that an interior solution obtains for each (we shall worry
about corners presently), They zre:
(11" Uy {e,2) = pgy (x,h,K) + pY, (x,h,K)
(12') PA (x,h,K) + uY_(x,h,K) =0 .
We now introduce the following assumption, mentioned in the intro-
ducticn:
Al: The functions ¢(x,h,K) and Y{x,h,X) are
both homogenous of degree one in .
Specifically,
¢ (x,h,K) = #(x,h)K and ¥Y(x,h,K) = y(x,h)K.
This reduces (I1'") and (12"™) to:
(11') Uy (c,2) = pRe, (x,h) .+ 1Ky, (x,h)
1z% PK®, (x,h) + UKy (x,h) = O,

So Al transforms a problem with three state variables (p, y and K)
to one with only two state variables: pK, which is the shadow value
{in utils) of the stock of human capital; and K, which is the poten-

tial wage rate converted into utils.

l/Sos.'e Atkinson [1971] or Blinder [1974, Ch. 2]. Tor a treatment

which ignores bequests, see Yaari [1964] or Weiss [1972].
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The next simplification comes from defining the occupational

index, x, in the way suggested in Section 2. [amely, x indexes

jobs in terms of equivalent schooling time, so that working h hours
at job x is equivalent (in the production of human capital) to
spending xh hours in school. Nﬁte that this is not a restrictive
assumption, but a convenient measurement convention which enables
us to write:

(13) $(x,h) = ¢ (xh).

While the analysis coula be carried out more generally, it
will keep things clear if we assume:

A2: The hourly wage rate does not depend on

hours of work. 1In symbols: y(x,h)K =

g(x)hK.
This prevents the issues we wish to focus on -- especially the
interplay between human investment and work effort -- ffom becoming
clouded with other issues such as overtime pay or penalties for
part-time work.Using equation (13) and A2, (11') and (12') raduce
to:

(1) UE(C,RJ = f'(xh)plx + HKg(x)

(12) h[f'(xh)pK + uKg'(x)] =0 .

Most of our broad resulﬁs, including the general characteriza-
tion of the life cycle plan, can be obtained from these two equations
(and the corresponding inequalities for cormer solutions). However,
to get certain more severe (and empirically testable) restrictions

on the optimal path, we need to make one of the following linearity
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assumptions;

A3: The function f(xh) is linear, i.e. £'(xh) =
a, for all x, h.

or

A3': The function g(x) is linezr, i.e. g'(x) =
-1 for all x.

The meaning of A3' is discussed in Section 2. What is the economic
interpretation of A3? Mincer [1974] has argued, both theoretically
and empirically, that the functional relation between potential
earnings and accumulated years of schooling (denoted by the symbol

S) takes the following specific form:

where & 1is the rate of depreciation of earning capacity (possibly
zero). Differentiating this logarithmicelly yields:

%-= a é - 8.

But, by the way we defined x, it is definitionally true that S =

xh,l[ 50 we have:

(73

=8.Xh-6.

.

As the reader will recognize, this is just our general human capital
production function (7'), modified as per Al, A3, and (13). To
wit, A3 is essentially equivalent to assuming that the Mincer wage

function holds.

l/The reader familiar with Weiszacker [1967] or Sheshinski [1968]
will recognize this as an extension of their formulation to allow
for variable labor supply.
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e present here the results of the model using A3, rather than
A3'. However, we have also worked out the model with A3',l/ and
can report that the two models give identical results, with only
one exception. The exception was noted in our discussion of the
earnings-investment frontier: when the frontier is linear, there
is no distinction between the potential wage and the "full wage"
(to be defined below). Since neither is observable, this dif-
ference is probably subtle enough to be ignored. Mathematically,
nonlinearity in g(x) turns out to be almost a perfect substitute
for nonlinearity in f£(xh), and equation (12) shows why this is so.
Clearly, either f" < 0, or g" < 0, but not both, is required for
a regular interior maximum for x. Making both functions concave
is a kind of "overkill" which complicates the mathematics con-
siderably (and, we would argue, needlessly). While we conjecture
that all of our results go through to this more general case, we
have becn unable to prove it.

To summarize, then, our model is the maximization of (3),
subject to the conatraints (4)-(6), and the differential equa-
tions (7) and:

(8) A =rA + he(x) - ¢ .

The first order conditions for optimal h and x, including now

l/If f(xh) takes the special constant-elasticity form, this model

is very close to Heckman's [1975].
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the Kihn- Tucker corner couditions, are:
(14) Uz(c,l-h) > apKx + uRg(x)

with > > h =0

h{apK + pl'g' (0)] < 0 + x=0

(15) . h{apK + uKg'(1)] > 0 + x=1

!
o

otherwise, h[apk + pKg'(x)] =
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4. Interprctation of the Optimality Conditions

In the next section, we develop a2 phase diagram to assist us
in understanding when the individual elects one of the three pos-
sible corner solutions (x =0, x =1, or h = 0) rather than the
interior solution. To facilitate this, we will need one further
assumption:

A4: Instantaneous utility is separable in
consumption and leisurs, i.e., U(c,L) =
ulc) + v{L).
However, before doing this, greater understanding of the problem
can be achieved by recésting and interpreting the first-order
conditions.
Recall that p(t) and p(t) are, respectively, the shadow prices

1/

(in current utils) of human and nonhuman capital,= so the ratio,
p(t)/u(t) = g(t), denotes the money price of human capital. Thus
we can define V(t) = g(t)K(t) as the money value of the human
capital stock, and trace of behavior of V(t) over time. To do
this, use condition (?i) to write:

P

(16) o (p+8) - axh - EEE%EE .

Then by (7) and (10):

(17) V = rV - hg(x)X.

Finally, since human capital cannot be cashed in at the c¢nd of life

(X(T) > 0), the transversality condition (iv) implies that V(T) = 0.

l/Consuml:at:icm goods are the numeraire, hence there is no distinetion
between a dollar of money and a unit of consumer goods.
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This terminal condition allows us to solve differential equation

(17) explicitly viz:
18 v =1 e T Oh g xR ar.

That is, V(t) is the present vzluz, in time t dollars, of future
earnings -- a very natural interpretation of the value of the
human capital stock. Equation (17) expresses the fact that the
optimal paths of the shadow prices, p(t) and u(ﬁ), will render the
individual incapable of making his human wealth grow faster than
the rate of interest, and he can achieve this limiting growth rate
only by staying in school (x = 1), Looking at human wealth in
terms of time t = 0 dollars, (17) says that human wealth stays
constant during schooling, and thereafter declines pezi passu
with earnings. Earnings, hg(x)K, are like withdrawals from a
"human bank account" where interest is coﬁpounded continuously at
rate r,

Using the variable V(t), we can rewrite the optimality condi-

tion (15) in a form which is readily interpretable:

-g'"(x)K = aVv if 0 <x<1
(15") -g'(0)K = av if x = 0
-g'"(WK < av if x = 1

Here =g'(x)X is the marginal cost in terms of foregone earnings per

hour of raising X, and it can be shown that aV mesasures the marginal
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1./

benefits in higher future earnings.=

Condition (15') can also be given the usual rate-of-return
interpretation: Let w be the rate of interest that equates the
discounted benefits to the costs; that is, 7 is implicitly
defined by:

e—v(T-t)

' (OK = a [ h(1)g(x)K(t)dt

l-/M;:n'e precisely, let x{t), h(t) be the optimal policy, and consider

a deviation from this policy as follows:

x{t) = x(t) for t 3_£1 +tort :_tl

= x(t) + ¢ for tyet<t T
while h(t) is unchanged. Assuming separability of U(c,%) (which is
not required, but which simplifies the proof) a necessary condition
for the optimum is that such a shift leaves lifetime income unchanged.
Since nothing earlier than tl can be aftected, we might as well

measure income from ty forward. The change in income is therefore:

a1 = T T g o R k(0 1ae + 1T T D n (e)k(0) [ (rre) g ) Tt
1 1
+ 7 1+1' “T(E-t) Dy ) [R(e)—K(t) ] [ (k) ~g (x) 1dE,
t1

where ﬁ(t) is the capital stock associated with the alternative pro-
gram., Specifically,
A t.+T
log K(t) = log K(t) + .rtl ah(t)edt, t > ty + 1.
1
If we take lim AJ , the first term (which clearly measures the benefit:c)
0 g7
e+0
goes to ah(t )V(t ), the second term (which clearly measures costs)

goes to -h(t )K(t )g (x(t )), and the third term vanishes. The equality

in (15 ) results from setting lim AT
e ™0 €T
e+0

= 0.
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as the marginal internal rate of return. Then an equivalent state-

ment of (15') is:

T= T if 0<x<1
TS r if x=0
| z o if x=1 .

Thus during the schooling period (x = 1), the internal rate of return

on human investment is strictly greater than the interest rate,

despite the fact that hours-of-study are variable.l/ During the
post-school investment period, the marginal rate of return is always
equal to the rate of interest. It is worth noting that these re-
sults hold for any arbitrary leisure profile, and are thma indepen-
dent of tastes. Therefcre, one can verify ex post whether individuals
have behaved optimally by computing the aporopriate rates of return.
0f course, when labor supply is a choice variable, the rate of re-
turn is 1ll-defined as an ex ante concept;

Let us know turn to the condition for optimal work effort,
(14). When there is no investment (x = 0), wages are exogenous to
the individual,gl and, in view of (9), (14) simply states that the
marginal rate of substitution is equal to the (potential and actual)

wage, Analysis of the age-hours profile is exactly as in our previcus

1/

~ Equality holds at the instant of leaving school. For analogous
conditions in an income-maximization model, see Weiss [1971b].

g/Of course, part of the problem is to determine when the individual
will opt for leaving his wags exogenous.
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models of dynamic labor supply with exogenous wages.l/ Becker and
Ghez [1972] have claimed that this marginal condition also holds
when wages are endogenous, and that therefore for the analysis of
time-versus-goods substitution in consumption we need not WOorry
about why wages change. Two remarks can be made about this finding.
First, when there is investment, the observed wage and the potential
wage are very different. Nor is their behavior over time identical;
we show later that during OJT the ratio of observed wage/potential
wage is monotonically rising. Second, as indicated earlier, the
MRS is equated to the potential wage only in the special case of

2 linear earnings~investment frontier. To see, divide tae left-
hand side of (14) by Uc(c,z).and the righthand side by y (they are

equal by (9)) to get:

U

2 P
—-— = - + K .
Te = 21 Kx g (x)

Then substitute for p/W from (15) (assuming an iaterior solution)

to get:

T

(19) MBS = == = R[g(x) - x5’ (0)].

It is easy to verify that the function in square brackets is iden-
tically unity only in the case g(x) = 1 - x. Otherwise, it is

always ptrictly greater than unity (as long as 0 < x < 1). We

call the righthand side of (19) the "full wage''. Clearly the
first component, g(x)K, measures the current benefits per hour of

"work. That the second component, -xg'(x)X, measures the future

l/See Weiss [1972], Blinder [1974, Ch. 3].
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benefits per hour of today's work follows from the preceding cal-
culation. That is, the second component of the '"full wage" prices x
at its marginal (not average) value in computing the future bene-
fits. The full wage exceeds the potential wage by what we called

the "pure profits" from OJT in Section 2.
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5. The Temporal Succession of Life-Cycle Phases

Due to the possibility of correr solutions, four qualitatively
distinct phases might occur in an individual's 1ife cycle, Whether
each phase occurs, how long each phase lasts, and the temporal
order of the phases form the subject of this section. We give the
four phases descriptive names, and numbers whichrseem to indicate
a sensible ordering, as follows:l/

Phase I, Schooling: x =1, h> 0
Phase II, OJT: O { x<1l, h>0
Phase ITI, Work: x =0, h >0
Phase IV, Retirement: h =10

Note that when h = 0 the value of x is arbitrary as is clear from

(15). Economically, this says that a reti~ed person can be considered

as holding any job at all (and working zero hours).

To facilitate the exposition, we define two new state variables:

A{t) = ap(t)K(t) = the value (in utils) of humzn
) capital, multiplied by a
Pp{t) = u(t)K(t) = the potential wage, converted to utils

and adopt assumption A4 (separable utility). Then the four phases
are characterized by the following equations:

Phase I (Schooling)

(20.1) v'(1l-h) = A

(21.1) %> -g' (1)

l'!01‘.’ course, we have to prove that Phase I comes bafore Phase II,
Phase II comes before Phase III, and so on.
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Phase II (OJT)

(20.2) v (1-h) = Ax + yg(x)
Y
(21.2) v -g' (x)

Phase TIT (Work)

(20.3) v' (1-h) = ¢

X
(21.3) , v < -g' (0)
Phase IV (Retirement)

(20,4)  ¥'(1) > xx + Yg(x) for all xe[0,1].
It is clear from (21.1) and (21.3) that the precise shape of g(x)

strongly colors the likelihood and length of‘each phase. For
example, suppose =-g'(1) =:w; as in Figure 4a. Then (21.1) makes
it clear that the individual will never specialize in schooling.
The reason is that there are jobs (x's very near unity) which are
nearly as effective as schooling in imparting skills, but which
pay 2 positive wage. So finiteness of -g'(l) is a minimal re-
quirement for schooling_ to be possible.- We assume this is true.
As another extreme, suppose g'(0) = 0, as in Figure 4b. Then
(21.3) shows that Phase III (work without training) is impossible.
This is because there would be a job with a wage arbitrarily close
to the no-training job, but which gave a finite amount of training.
To portray our model in (A,¥) space we must locate the bound-
aries of each region. Assume first that h > 0, so we need only
worry-about the pre-retirement phases. Since g(x) 1s continuous
from the left at x = 1, (21.1) defines the boundary of the
schooling region as the ray, » = -g'(1}y, in Figure 5. Similarly,

since g(x) is continuous from the right at x = 0, (21.3) defines
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Alternative g(x) functions which preclude Thase I (Figure 42) or

Phase II (Figure 4b)
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/-g'(l)
Phase I
Fhase II
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g l—-
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Fiogure.5
The four phases in (A,{)-space
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+ the boundary of the x = 0 region as the ray, A= -g'(0)y, in
Figure 5, Finally, the béundary of the h = 0 ("retirement') region

is given by the solution of:
E=v'(l) = max {Ax + pg(x)}
O<x<1
This last boundary defines a convex~' sget such that for any pair
(Asyp ) in the interior, the individual will allocate all of his
time to leisure,
In this space, the optimal trajectory can, in principle,
begin anywhere. But, since the transversality condition is p(T) = c,
it must terminate on the horizontal axis. This trivial observation
already establishes that anyone who ever works will indeed have

a Phase III, i.e. a finite period of work without OJT. In other

words,-so long as we do not rule Phase III out of court by

1/ .
Define the function

G(A,¥) = max {Ax + Yg(x)}.
0<x<1

It is obvious that, regardless of the shape of g(x):

¥[ max {llx + wlg(x)}] + (1-v)[ max {lzx + wzg(x)}],i

O<x<l O<x<1
max {y[A.x + $.g(x)] + (L=-y)[A,x + ¢, g(x}]}
ocx<l L 1 2 2

for any 0 < v < 1., This says G(A,¥) is a convex function, and the
equation G(A,y) = £ is our desired boundary. WNote that when the
maximum is found at x = 1, G(A,¥)} = A; and when x = 0 is the maxinum,
G(Asy) = Y. Thus above the -gf(l) ray, the boundary is A=f; and below
the -g'(0) ray, the boundary is y=E.
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assuming -g'(0) = 0, Phase III must be last phase before retirement

(or death) in any optimal plan. We believe this makes sense, and

is an argument against using the Ben-Porath [1967] specification.
One other iateresting observation can be made already. If

¥, the poteatial wage, is less than g » the marginal utility of

complete leisure, then the work activity is unattractive. Similarly,

if A< g, the schooling activity is unattractive. However, Figure

5 shows that there is a region where beth of thése inequalities

hold, and yet the individual chooses not to retire. This means

that, for some values of y and g, the option of combining work

and schooling by OJT keeps the individual on the job when he would

otherwise retire. It can be shown that this is a direct implica-

tion of the concavity of the earning~investment frontier.l/

To determine the nature of optimal trajectories in Figure 5,

it is necessary to know how A and ¢ change over time. Using the

definitions of A and ¢, and equations (7}, (10), and (16), it

follows that:

o]

(22) = pA ~ apg(x)h

< .

(23) = (ahx-v)¥ ,

where Y £ r =p +&. The sign of y turns out to be quite important.
During Phase I, since g(l) = 0, ) rises at the exponential

rate P, but the sign of ¥ depends on the level of h if y > 0.

1/

='In the case g(x) =1 - x, the retirement regions expands to fill
the entire square.
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Specifically, the & = 0 locus for Phase I (drawn in Figure 6) is
simply h = v/a, where h is a function of A by (20.1). If y<O0, y
is rising throughout Phase I (see Figure 7).

In Phase III, Y falls or rises at the rate Y, but the behavior
of A is not so simple. When x = 0, equation (22) becomes:

(22") A= X - agh ,
where h is implicitly a function of ¥ by (20.3). It can be shown

that the A= 0 locus (depicted in Figures 6 and 7) begins at the

point A= 0, ¢= £, glopes upwards, and intersects the -g'(0) ray

p 1/

at a value of h correspending to h =--g'(0);?

A
Phase IV is the simplest. Here 3 rises at the expornzntial
rate p, while @ falls or rises at the exponential rate ¥. (See
Figures 6 and 7).
Behavior of the trajectory in Phase II is governed by the
pair of differential equations (22)-(23), with x and h implicitly
defined as functions of X and ¥ by (20.2) and (21.2). These cen

be used to locate and analyze the two stationary loci: A =0 and

¥ = 0. The task is rather arducus and uninteresting, and hence

l/Fmof: The locus is defined by j = % ¥ h., By (20,3), as ¢ > £

from above, h + 0. Therefore A -+ 0. Next suppose A = -g' (0)y for
Some point.on the locus, Them é¢leariy h = -g'(O)R. This establishes
the two end points. The positive slope follows immediately once it

. dh 1
is noticed that (20.3) implies dy = V(D > 0, Q.E.D.
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Figure 6
Phase diagram when >0
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Figure 7
Phase diagram when y < O
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is relegated to the appendix, but a few simple properties can be
seen immediately:

(2) Wheny €0, ¥ is always rising in Phase II, as
indicated in Figure 7.

(b) When ¥ > 0, there is a ¥ = 0 locus which intersescts
the -g'(l) ray at the point B in Figure 6 (When
X = 1, h = y/a on the locus, which defines point
B.), and which never touches the -g'(0Q) ray.
(Because ahx = Y cannot be satisfied when x = 0.)
(¢) The A = 0 locus is the same regardless of the sign

of ¥; It intersects the -g'(0) ray at point A
(If A = 0 while A = -g"(0)¢, then h = hA')’ and

does not touch the x = 1 ray. .(When x = 1, g(x) =
0, so no positive A satisfies A = 0.)

Wle have drawn both loci with positive slopes. In fact, while they
both must start this way (a; points A and B), either slope or both
might turn negative. This is not important. What is important,
and what can be proven (see appendix) is that they always have a
unique intersection which is in Phase II, and that the i = 0 locus
cuts the ¢ = 0 locus from below.

It is clear from Figures 6 and 7 that the temporal succession
of life-cycle phases will be quite different in the two cases. We
be;ieve the ¥ > 0 case is more "realistic”, and hence will concen-
trate on it. Our reason is that people with r > p (and, a forti&ri,
Y > 0 as long as § > 0) have an optimal consumption path which is
everywhere nondecreasing, while perscns with p > r have 2 declining

optimal consumption path.ll Unfortunately, this case is the more

1/

—~ This simple identification of rising or falling consumption paths
with r~p is true only under separable utility. For the more general
case, see Weiss [1972]. Our point is that this specific mcdel be-
haves most like the real world when r > p.
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difficult, The reason is a phenomemon we call "cycling", that is,
the recurrence of a specific phase more than once in an optimal
life cycle. Yor example, inspection of Figure 6 raises the pos-
sibility that it might be optimal to attend school, then take
0JT, and then return to school again, The reader will doubtless
note many other posgibilities for cycling when ¥ > 0, but there
is little room for cycling when y < 0O,

Let ug, therefore, deal first with people with "high im-

/ The following propositions, which

1
patience", i.e. p> r + §.—
rather sharply delimit the kinds of life cycles that could ever
be optimal for such a person, follow by inspection of Figure 7.
(2) The oaly possibility of cycling is that an optimal
path might include two disjoint periods of work,
separated by a period of OJT.
(b) If there is a period of scﬁocling, it comes either
at the beginning of life or immediately after re-
tirement. A period of OJT follows schooling.

(c) 1f there is a period of retirement, it comes at
the beginning of life.2

(d) If there is a2 period of OJT (ard there will be
one unless the optimal path iccludes no training
whatever), it is followed by a period of work.

(e) The last years of life are a period of work.

Thus the 'mormal" 1life cycle for persons with high impatience

(depicted by the dotted path in Figure 7), assuming most people find

it optimal to take some schooling and some retirement, is roughly zs

1/

="Note that if the rate of growth of wages in the azbsence of inveat-
ment, -§, is positive (due to economy-wide productivity changes) ani
exceeds the real rate of ianterest, then all persons are in this class.

2 . . .
—/The szme phenomencn cccurs in a dyremic labow supply modal wiih
exozenous wuges. See Welss [1972], Biinder [1974, Ch. 3].
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follows: an initial periocd of retirement is followed by schooling,
then by OJT, aud then by pure work until death.

Of course, life-cycles with early retirement are rarely ob-
served in practice. But thig is not because such programs are
irrational. Individuals with very high impatience (or very high
positive exogenous wage growth) will want to bunch their leisure
early in 1life, To do do, since consumption depends on lifetime
disenunted earnings, they ﬁill have to work very hard when they
are old. We may surmise that it is the absence of perfect capital
markets that precludes all but inheritors of large fortunes from
pursuing such a program.

When impatience is lower, so that Y=1r + & = p > 0, cycles

seem to be possible. Section 7 is devoted to this issue. For

the moment, we simply assume that there are nc cycles.
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. Labor Supply and Human Investment in a Normal Life Cycle

It can be seen from Figura & that; if the life plan includes
schooling and has no cycles, the only possibility is: schooling
comes first, followed by OJT, work, and then retirement.il We
therefore call this the 'normal” life cycle, and this section is
devoted to examining its properties.

6.1 Phase 1: Schooling
Since A is rising through time during Phase I, and

(20.1) v'(l-h) = 1 ,
it is clear that ﬁ(t) > 0, That is, the amount of time devoted
to schooling rises steadily as education pfogresses -- a prediction
to which all former graduate students will doubtless attest. The
intuition behind éhié i3 gimply that-the value (in utils) of the
human capital stock A(t ) rises.(even if K itself fﬁlls), making
1eisﬁre more expensive.g

We may also make some rough judgments oa the concavity of
the hours profile, h(t). Differentiating (20.1) logarithmically

gives:

-V"(E. i _
v (E) % P

llThis is actually not quite so obvious, since the diagram makes
it look as tbough retirement might come first. However, we show
in Section 7 that the same conditions that preclude cycling also
preclude early retiremeut.

E/Marginal calculations during this phase involve only leisure
and schooling. The work activity is dominated.
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Denote the expression in brackets by R(h) > 0, and take the time
derivative again to get:

(24) R'(h) (h)2 + R(h)h = O .
It i3 clear from (24) that h and R'(h) have opposite signs. What
is the likely aign of R'(h)? Noting that the time budget makes

dh/d% = -1 everywhere, we can write R'(h) as:

' - i_ v'(2)
R'(h) = 37 T7()

In the case of utility functions for choices involvipg risk,
the ratio v"(2)/v'(£) is called the degree of "absolute risk
aversion'" (Pratt [1964]), and is gemerally thought to be an in-
creasing function of 2 (i.e., to fall in absolute value as }
rises). While the present model does not discuss risk, it scems
reasonable to suppose that our v(2) function also has this pro-
perty. In that case, (24) implies phat H(t) <0, 1.e. that h is

1/

a concave function of time during schooling.—' We take this to

be the leading case, And since in Phase I I—é—: ah - §, the rate
of growth of potential wages would also be an increasing and
concave function of time.

Note that all this is independent of Y, and hence applies

equally well to individuals with high impatience.

o
l/If, instead é%- §+§%}) <0, h‘will be a convex function of

time.
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6.2 Phase ITII: Werk

Since there are some formal cimilarities between Phase I
and Phase III, it is convenient to take up next the case of
work with no trzining.

Here labor supply is governed by the usual condition:
that the marginal rate of substitution between leisure and

ccnsumption goods be equated to the real wage:

u'(e)K.

1

(20.3) v (1-h) =y
Since, by (23), ¢/¥ = -y in Phase III, logarithmic differentia-
tion of (20.3) yields:

(25) .E;%%%-ﬂ = -y = p-r-8,

so people with high impatience offer incfeésing amounts of labor
to the market, despite wages which are falling if 6 > 0. Con-
trariwise, persons with more "normal"” time discount rates have
diminishing labor supply in Phase III, It cannot be stressed
too much that these contrasting behavior patterns have absolutely
nothing to do with competing "income" and "substitution' effects,
although cross-sectional studies of labor supply might possibly
confound the two phenomena.

From (25) it is clear that the concavity issue is precisaly
as it was in Phase I, The sign of [ erends only on the be-
havior of "absolute risk aversion" as g rises, and the more

attractive utility functions imply h <0 (regardless of the

sign of v).
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The behavior of wzge rates (actual ard potential coincide)
and earnings in Phase III is also of interest., Letting W be the

observed wage, we have:
K = -8, a constant.

3o logarithmic age-wage profiles should be straight lines in Thase
ITI, which are falling, flat, or rising according as & is greater
than, equal to, or less than zero.

Finally, consider earningsg,Y(t) = h(t)W(t). We have:

Y_h+W_h_g
Y™h W™h :

If 6§ > 0, i.e., if depreciation outweighs economy-wide wage growth,
earnings will surely decline., However, if & is sufficiently nega-
tive, they may not. But regardless of the slcpe of the logarithmic

earnings profile, it will certainly be concave if h(t) is:
L) - .- L) 2
d Y, _d h _bh- m*

6.3 Phase II: On-The-Job-Training

To analyze the behavior of hours of work and investment in
Phase II, it is convenient to transform the differential equations
go that x and h, rather than , and y, are the variables, 1Im (x,h)-
space, Phase IT is the open unit square, Phase I is the vertical
line x = 1, Phase III 1is the vertical line x = 0, and Phase IV is
the horizontal axis. (See Figure 8.) 1In a life-cycle without

cycling, we enter from Phase I and exit to Phase III.
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-0 Phase 1V

Figure 8
Alternative phase diagram in (x, h)-space
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The first-order conditiona for an interior maximum are

(14") A+ g'(x)p=0

(15") vt(1l-h) = Ax + g{x)y .
Since the Hamiltonian is strictly concave in (x,h) for given (i,u)

we know that (14°')=(15') define x and h as unique functions of A and

¢.l/ Given these, the two differential equations in A and ¥ can be

transformed into a The

2/

results are:—

pair of differential equations in h and x.

-v'"(2) ¢ r+§
(26) vi2) BT TG
g"(x) » _ 1+n{x)
(27) g.xx—r+6-—a.hx n{x)
where
. -2 €.
n(x) = g(x)

is the (sign~corrected) elasticity of the g(x) function. This
important function has the following properties (as the reader

may verify by direct computation):

n(0) =n'() =0
(28) () =n'{l) = 4 »
nix) >0, n'(x) >0, for x>0,

Using (26) and
-four regions by the

and there it has the

(27) it is easy to partititon Figure & into
%= 0 and h = 0 foct. .An h=0 locus only exists Zor >0

simple form:

(29) n(x) =v/o ,

l/Uniqv.u.atzless of A and y for given x and h is obvious since (14")
and (15') are linear in A and ¢.

g'/'J."?:u'asc: equaticns are derived in the appendi:z:.
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which, by (28), defincs a unique value of x. Call this %. Using

(27), the end poiunts of the x = 0 locus,

(30) T+ 6§ = ahx(m)..) ’
n(x)
can easily be determined. When x =1, h £ (r+8)/a, and vhen x = O,
h = «g'(0) EEQ <-£§£. It can also be shown that the locus 1s up-

1/

ward sloping.=
It is clear from Figure 8 then, that h can be no less than
(r48)/a at the start of Phase II.EI But does the path procead
smoothly from x = 1 to x = 0 with x < 0 everywhere, as in Figure
9a, or can "mini cycles' arise, 2s in Figure 9b7 We can prove that
trajectories like Figure 9b can never be part of an optimal path
because (26) and (27) define x and h as functions of x and h cnly,
i.e., because x and h do not depend directly on either the state
variables or the costate variables. It therefore follows that
(i,ﬂ) must be the same whenever (x,h) are. But a path liks that
in Figure 9b would have to cross itself -- include two distinct
poiuts in time with the same (x,h) and different (;,E) -= which is

impossible. This is an important result, since it shows that

lggggg: Using the definition of n(x), and differentiating (30)

yields X}t
_ 1+n{x) dn -z(x) +g{X}g"(x} .
0= ax nlx —dx+ah g'(xj‘

Since the term in square brackets is negative, we have

Bix=0 > 0.

a}We must assume a > r + § if there is to be any training at all.
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within Phase II, x(t) is monotonically declining -- a property

which holds in the simple Ben-Pofath [1967] model, and which is
vital if human capital theory is to account for the gross facts.

It also implies that, within Phase II, labor supply rises to a

single peak and then declines -- a pattern which Stafford and
Stephan [1973] took great pains to establish the possibility of.
In our model, it is the only pattern which could ever be optimal
(so long as Y > 0).

We can also use equation (26} to determine the concavity of
h(t)., Letting R(h) = -¥v"(R)/v'(%) as before, its time derivative

is:

(31) R(h)h = (}'Ifi“xg’f 5 - (5)°R"(0).

Since the first term on the righthand side is negati?e, ; <0 fer
utility functions with R'(h) é O.l/

The behavior of potential wages, K(t), can be displaysd con-
veniently on the (x,h) diagram. Since k/K = ahx - §, the é.: 0
locus (which exists only if § > 0) is the rectangular hyberbola,
hx = §/a, shown in Figure 10. By showing that the intersecticn
of the x = 0 and h = 0 loci (labelled point A in Figure 10) lic=z
above this hyperbola, we will establish that the peak in labor

supply precedes the peak in human capital. Point A i3 defined

by x and the B which satisfies:

~n + -:;
r+ §= ahx(l—n(}%(—l)

l/I~J‘nen R'(h) <0, (31) is ambiguous 2 priori. However, we alreacy

know hat there is a unique maximum (where 1} = 0}, aud It is clear
that h < 0 in the neighberhood ef this waximum.
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But h(x) = v/p, so:
r—p 8

ﬁ:2=1=———+—>§-whenr>p.
a a a a
So r > p is sufficient, though certainly not necessary, for the
peak in labor supply to precede the peak in human capital.

What about the peak in observed wages, W(t) = K(t)g(x(t))?
Since:

u(e) = Kg' (x)x + g(x)I:C s
and since g'(x) and X are negative while g(x) is positive, the peak
in observed wages (if any) muet follow the pezk in potential wages
(if any). Of course, if § =0, both actual and potential wages
reach their peak at the Phase II~Phase III switch point, and are
level thefeafter. Figure 11 below deplicts the time profiles of
labor supply, human capital, and observed wage rates in Phase II
for § > 0. The peak in observed earnmings, h(t)W(t), must come
between the peak'in h and the peak in W, though its relation to
the peak in K is unclear. If the 6 = O case is a good benchmarlk,
earnings peak earlier than human capital.

Figure 11 shows wages and hoﬁrs of work rising tozether at
first (when wages are low), then moving in opposite directions
(when wages are higher), and finally falling together (when wages
are again low). Once again we stress that this has nothing what -

soever to do with income and substitution effects -- although

cross-sectional studies over diverse age cohorts might migtakenly

identify this phenomenon as a backward bending labor supply functiocu.




-38-

One final observztion. The rate of grcwth of human capital,

AR

= ah(t)x{t) - § ,

might rise at first in Phase II, but must fall for most of Phase
II. It will start out rising if the slcpe of the trajectory, E/i,
exceeds the slope of the rectangular hyberbola hx = hl’ where h1
is the labor supply at the start of Phase Il.l/

6.4 The Complete Life Cycle

Now that we have analyzed each individual phase of the optimal
life cycle, we are in a position to put the results together and
describe the complete age profile cof investment, work effort,
earning capacity, wage rates and earnings.

6.4,1 Investment in_Human'Capital -

We have seen that x(t) is constant 2t vnity during Phase I,
declines monotonically during Phase II, and is constant at zero
during Phase III. (It is not a meaningful concept in Phase Iv.)
To show that x(t) looks as portrayed in Figure 12, we need orly
establish that it is continuous., Continuity within Phase II
follows immediately from the fact that both A (t) and ¢ (t) are
continuous functions of time and that § (t) is strictly positive,

since:

as" —g(x) = -j;— ,

1/

='The precise mathematical -condition is a compliex one involving.the
first and second derivatives of both the v(g2) and g(x) functions,
and does not seem worth writing down. WNote that the product xh

is what other writers have called "investment time'., Investment
time thus defined may rise at first in Phsse II, but uust fall
thereafter.
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and -g'(x) 1is monstonically increasing. Continuity across the I-77

and II-IIT switch points followa from:

lim x(t) =1, lim x(t) = 0,
%+ ~g' (1) %+ ~2'(0)

which are immediate implications of the continuity and monotonicity
of g'(x). Examples of g(x) functions wnich give discontinuous x(t)
either within Phgse IT or at a switch point are provided in Figures
13.3/ Nothing can be sald in general about the concavity of x(t)
within Phase II.

6.4.2 TLabor Supply

So far we have ghown that h(t) 1s rising in Thase I, con-
tinues rising to a peak and then declines in Phase II, and declincs
throughout Fhase III. It remains to show that h(t)_and ﬁ(t) are
both continuous functions of time, |

Continuity within each phase is trivial to establish. 1In
Phage I, v (1-h) = a(t), A and v' are continuous, and v'" < 0,

In Phase II, v'(l-h) = y(t), and the exact same argument works.
Finally, in Phase II, we have:

v'(1-h) = xx + yg(x) ,
and given our assumptions about g(x), both x and g(x)are continuousz

2/

functions of time.—

l‘/I-I:'.nce'r:'s empirical work, which finds a discontinuity in x(£) at
the end cf schooling, suggests that Figure 13¢ ig clesesat to tha
truth.

gﬁThis argument makes it appear that continuity of h(t) requires
centinuity of x(t). This ig not so., x and g(x) wil! display
discontinuous behavior at the same points in time., We only re-
quire that xx + ¢g(x) be comtinuous. For exospic, oprimal xft)
1s a diccontinuwous function cf tima when g(x)=l-x, hut in this
czae x + ,;,g(::) = w.q.x(,\-ip), which 18 continucus,
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To establish continuity at the switch points, we must prove:

(1) 1im Ax + Pgx) = A (I-IT switch)
x+1 .

(ii) lim Ax + yg(x} = ¢ (II-III switch)
X0

(iii) lim h{t) = 0, where R is the ege of retiremen%
t+R (III-IV) switch)

Conditions (i) and (ii) follow by inspection given only that x and
g(x) are continuous with g(0) = 1 and g(1l) = 0. 1/ To-prove (ii1),
we use the condition:

YR = v'(1 - h(R))

to rewrite it:

1im y(R) = &. (Sinece h(R) = 1).
. t+R

Referring back to the phase diagram in Figure 6, it is apparent that
this must be true since y(t) is continuous.

What about the continuity of ﬁ(t)? Since v'(2), v'"(2) and
n{x) are well-behaved functiomns, and since we have just seen that
x(t) is continuous, (26) immediately implies that E(t) is continuzua
within Phase II. Proceeding analogously, to prove continuity acrosc

switch points, we must show that:

(v) lim r+s 2/ ) .

1 T4n(x) (I-II switch)
) lim __rtd o o 3/ g .

30 { m} s {(II-III switch)

Conditions (iv) and (v) follow immediately by noting that
lim n(x)= += and lim n(x) = 0. However, h(t} is discontinuous across
x-l x+0
the ITI-IV switch since lim h(t) = "5—— < 0.

/ Again, we do not beliewve that continuity of x is needed. It iz just
/ that a different proof would be required.
—'This condition comes from comparing (26) which holds in Phase II,
with (~v''/v')h = p, which holds in Phase T.
-
“'This condition comes from comparing (26) with (255, which bholds in
Phace ITI.
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Collecting all these resulis, Figure 14 depicts the life-cycle
labor supply profile in the leading case: vy = r-p+& >0, R'(h) > 5.
In a word, the profile is smooth (except at retirement), single-
peaked, and has no inflection points.

6.4.3 Human Capital

During Phase I, K(t) rises at the increasing rate igg; =

ah(t) - 6. It may continue to rise at an increasing rate at the

start of Phase II where:

E—E{—}: ah(t)x(t) - & ,

but soon will rise at a decreasing rate, and eventually will de-
clice if and only if 6§ > 0. Finally, K(t) fsllas at the steady
rate § in Phase III -~ the only phase where it is cbservable.
(See Figure 15.)

6.4.4 Actual Wage Rates

Observed wages, of course, are zero until the completion of
schooling and correspond to K(t) in Phase III. During Phase II
we have

log W(t) = log K(t) + log g(x)
s0 that the slope of the logarithmic wage profile is:

W(t) _ K(t) x
we) = ko) - "%

This will always exceed K/K. Further, since as x + O both x and
ﬂéfl approach finite limits, the time path of log W(t)} will ex-
hibit a kink at the Phase II-Phase III switch point. (Sce Figure

o
16.) Since nothing is known about x, nothing is known about its

concavity.
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Then h(t) peaks

K(t) also peaks

“42-

6.4.5 Earnings

earnings is given by:

log Y(t) = log h(t) + log h(%).

K X
+ X n(x)x.

a1
= =l

of course, Y(t) = 0. At the start of Phace II,
are positive, so Y(t) is cerfainly groving.
and begins to declime. If (and ounly if) § > 0,

in Phase II. But = n(x)§'> 0 throughout Phase

II, so there is no particular reason to think that Y(t) ever

declines in Fhase II (though it might). Of course, in Phase

IIT, h < 0 and %’=“6:SO Y falls unless § 1s gubstantially nega-

tive. Figure 17 depicts several possible legarithmic earniags

profiles.
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YII. The Question of Cycling

We now address ourselves to two important questions which have
thus far been avoided:

(a) When cycling arises, what broad characterization of
the cptimal path can be made?

(b) What meaningful conditions can be derived which ex-
clude the possibility of cycling?

In Section 6, we proved that the optimal trajectory can never
Cross itself.l/ This result enables us to answer the first question,
gince it implies that cycles must be "expanding" as in Figure 18,
vather than "contracting”. Thus a cycling path can be broken down

into several '"quasi-life-cycles", each beginning with a period of

schooling (with the possible exception of the first).  Since thé contours cf
constant work effort look like blow-ups of the border of the ra-
tirement region (which is the special case h = 0), with higher
contours connoting higher h, we see that the individual works
harder during his second ''quasi cycle? than in his first. Also,
he spends more time in Phase II. So, in a program with cycling,
tina time profiles of x(t) and h(t) might look something like
Figures 19 and 20 respectively.

We can develop strong conditions which rule out cycles by
considering the minimum length of time required to écmplete a
"quasi cycle". 1If this time exceeds the available life, T,

then cycles are impossible. In particular, we focus on the last

l/Actually, we ounly proved that it cculd never creoss itself in
Phase II. It is trivial to prove this for the other phases as
wall.
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quasi cycle, and let:
ta = agé'of starting last schooling period
t, = age of starting last OJT period
t, = age of starting last work pericd
t, = age of ending last work period (possibly t3 = ).
These four points on the optimal trajectory are indicated in Figure
18.

Consider first the length of the schooling perioed, tl-to.

1/

Since we are considering a cycling path, we know that:=

(32) h(t,) < v/e = %‘i’. )

{See Figure 18.) Furthermore, we know from Figure & that:

(33) h(t) > (r+6)/a .
Finally, we know that optimal behavior implies that +'(l-h) grows
at the exponential rate p in Phase I (see equation (20.I)). Thus
we can derive a minimal time required to pass through Phase I
which will depend on the rate of impatience, the elasticity of
the marginal utility fﬁnction, and the parametérs a, r and §.

Specifically, since

Meg) < v (1 -5 vy (32),
and
Me)) 2 v (L - EEQ by (33),
we have:
v,'(a-r—é')
. P(ty=tg) _ __ 8 ° .
(347) e’ (70 = (B,

1/

= Note that mno such statement c¢an be made about tha schouling
period in a2 trajectory without cycling. Thus the bound to be
derived will not apply to ''mormal" life cycles.
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¥
Equation (34%) places a lower bound on the interval t,-t, ¥hich in-

creases as p falls,lj gspecifically:

g% = Lagg V()
p y cato-r-g, -
v (2R

It is also intuitively clear thst there must be some minimal period
of work during which the tenefits from schooling are realized. This
is the idea of our lower bounds on the lengths of Phases II and ITT.
which depend basically on the tradeoffs embodied in the earnings-
investment frontier. To derive these bounds, recall ocur earlier

notation (p. ): 8(t) = p(t)/ult).

l-/This last statement holds under the assumption, introduced in Section

"
6, that gi-:,ggg > 0. To prove it, let S* be the root of (34'), viz:
.
P51 - I8 LBy ooy rtd,,
a a a

. ) GC%
Since the righthand side of this expression is independent of p, g“ < 0
follows if we can show: ?

3 pS* r+§  p
ap S*constant{e vi(1l - a | a)} >0
Now, adopting the shorthand notation 8 = 1 ~ (r+8)/a, this partial is:
x PS* oy . 1 _pS* 2]
§¥ ™ vr(g + T) + S e v'(B + S} >0
or 1 ""V"(B + —p-)
> 2 o
1 Lo
: vi(g + )
But by (34) this says:
1 " £
1og —-(E) ~ > _‘5 vi(e+ T}
¥ —
v (B+§) V'(B"‘ %)

To prove this, define the function: f£(2) = log ¥ (%). Then fe) =
Al
%T%%% < 0 and £"(2) > 0 by our assumption. Thus £(2) is greater than

its first-order Taylor approximation around 2=% viz.:

£(2) > £(2) + £1(2)(2-2).

Letting 2 = B +-%, =g as a special case proves the desired inequality.
Q.E.D.
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In this notation, t t, and t, are defined by (see Figure 18):

1* %2 3
(35) as(tl) = —g'(1)
(36) ae(te) = - g'(0)
(37) 6(1:3) =0 ,

It is easy to show that:
(38) 8
(39) 8

(r+6)6 - n[g(x) - xg'{x}] in Phase II

{r+6)s = h in Phase III.

First congider Phase II, where the solution to (38) is:

-{r+8){t-t —(r+6)('r-t )

8(t)e l) = e(tl) - t 1'h[g{x)~xg'{x)]dz.

1
Setting t =t, and using (35) and (36), we have:

~(r+8)(6,-t ) O D Le) xe () Tar

~g'{0)e = —g'(1) - a f:Ee"(
3
Now, replacing h(t) in the integral by 1.0 and replacing g(x)-xg' (%)

by -g'(l) makes the integral strictly larger, so we have the in-

equality:

-g'(1)a f:Ee-(r+5)(T_tl) > —g'{1) + g'(O)e_(r+6)(t2_t1),

1

or

1oe— (T8} (£ =t ) )1 - BN _~(¥6) (t,-

t.).
= ; g (D) © ‘1

Our lower bound on the length of Phase II, call it J*, therefore

'(Q)
g% = 2o log ® (15 (r+s)

r
a-r =&

. o 1
satisfieg:—

The bound depends on the parameters a, r and §, and also on the

. . 2
degree of concavity of the earnings-investment frontier.—/ Tastes

l/It should be clear that the bound applies equally well to the 0OJT
period of a normal life cycle, since the only things assumed were
that Phase II is preceded by Phase I and precades Thase III.

nghat is, on how much smaller -g'(0) is than -g'(1).
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are not involved since we obtained the bound by assuming the in-
dividual works as hard as ka can.
Almost the same reasoning can be used to place a lowsr bound,
W*, on the length of the last Phase I1I. Solving (39} explicitly
givesg:
a(pye () _ice) - f: " (Tt h(ryar,

Letting t = t3 and using (36) and (37), we obtain:

t .
-g'(0) = ar 33‘(r+5)(7't2)h('r)d'r < aJ‘tBe-(ﬁ-a) (T-tz)’
e, )
since h(t) < 1. Thus:

-g'(0) < 2 1-e” (T (55780 ],

or

W = - 10 a .
=T+ %8 T ¥ g (0) (c+a)

Again the bound depends on a, r, g, and the g(x) function;

Putting these results together, we find that there are bounds
on the minimum lengths of Phases II and III which are the same for
every individual, and there is a bound for the minimal schooling
period which depends onp. Let p* be the value of p satisfying:

S*(p*) =T - J* - Wx,
Then cycling is certainly impossible for persons with p <p*. .  Since
we know that cycling is only a problem when p < r + §, a sufficient
(but far from necessary) condition to rule out cycling is: r + 3 <p*,
The reader should note that the condition p < p* rules out early
retirement in the y > 0 case as well, since the bounds S*(p*), J%,

and W* apply here as well. 1In a word, we will never get cycles if
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either o is "large" (i.e. p>r + § ) or p is “emall" (i.e., p < o¥),
If p* < r ; 6, there will be an intermediate range in which cycling
is possible.

It may be interesting to work out a numerical example of these
bounds. Suppose a, which would be the rate of return on human
capital in the case of an infinite lifetime, is 8%, while r + & ig
6%. A simple form for the earnings-investment frontier is the quad-
ratic: g(x) =1 -~ %x - ;ixz. Given these choices, (40) and (41)
can be used to compute: J* = 18.3, W* = 7.8. From (34) it is
clear that a facile choice of utility function is:

vi(L) = =%,
For a rate of impatience of p = .02, (34) gives §* = 12.5 as the
minimal schooliug period. Adding these, we find that a new
1/

cycle cannot start unless there are more than 38.6 years remaining.=

l/The reader is reminded that these are all weak lower bounds. The
actual amount of time taken by the last quaaicycle is thus strictly
greater (and probably considerably greater) than 38.6 years.
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VIII. 1In Conclusion

We have presented a life-cycle model of the behavior of 2
utility-maximizing individual free to allocate hig daily time
budget among leisure, work and education. The main substantive
conclusicns are listed in Section 1, and depicted in Figures 12-
17. They need not be rehashed here.

Several generalizations of the analysis immediately come to
mind. More general forms of the human capital production function
could be tried, as could a non-separable utility function. Indeed,
the list of arguments of the utility function could be expended
to include human capital, or, indeed, nonhuman capital. More im-
portant than all these, we imagine, would be allowance for the
capital-market imperfections that severely constrain the choices
of those poorly endowed with financial wealth.

Still, so long as we interpret the results as a benchmark
around which there will surely be deviations (some systematic,
some random), there are a number of interesting uses for the model.

First, it may be possible to do the usual kinds of cemparative-
dynamic exercises. How would an increase in initial finsncial
wealth alter the optimal plan? What about an increase in initial
human wealth? How sensitive is the optimal plan to the rate of
impatience -- a taste parameter that presumably differs zcross

people.l/ The reader can no doubt think of many similar questions.

l/Thi& question'is addressed, in the context of a far simpler model,
by Beach, Maital and Maital [1973].
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While we suspect that most of these can only be answered under
specific functional forms feor v(L) and g(x), some weak results
may hold in greater generality.

Second, the model can provide the micro-foundation for a
simulation model of the income distribution, along the lines of
Blinder [1974]. The chief conclusion of that work is that the
distribution of wage rates, taken there to be exogenous, is the
principal contributor to income inequality. The present model
can generate that distribution endogenously, given assumed dis-
tributions of tastes and endowments, and thus can £i11 what is
perhaps the major gap in the positive theory of income distribution.

Third, the long-run incidence of various taxes in a world
with human-capital accumulation is virtually unexplored territorvy.
It seems feasible to incorporate some simple taxes -- such as a
linear income or wage tax =-- into the model and examine, either
analytically or through simulation, the effects of theze programs
of the acquisition of human capital. It could be that human=-
investment respounds to taxation more substantially than do hours
of work.

In a word, there are a host of interesting and important
questions which simply cannot be addressed by a life-cycle model
which considers either labor-leisure choices or labor-education

/

choices, but not both.l By demonstrating the feasibility of

l/For example, if income maximization is the pocited goal, a pro-
portional tax (subsidy) on wages cannot possibly alter behavior.
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handling both decisions together, we hope to have hastened the

day when the powerful tools of life-cycle economic theory will

be brought to bear on these issues.
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Mathematical Appendix

The purpose of this appendix is to establish the properties
of the ¢ = 0 and A = 0 lines in the region ia which
both X and h attain an interior solution. We wish to show that:

1. there exists a2 unique intersection
point.

2. At the intersection the i:o line cuts

the @ = 0 line from below.
Uniqueness
Notice first that the necessary conditions (14)-(15) define
a unique (A,¢) pair for any (x,h) pair. (The converse is also
true.) It is therefore sufficient to show that the equations
(see eqs. {22) (23) in the text),
(A.1) pr - apg(x)h = 0O
(4.2) (ahx-y)y = O
provide a unique solution for h and x. Usieg the first order condition

(15), (A.1) can be written:

(8.3) »p +eﬂ1§$%%7-= 0.

And, of course, since ¢ > 0, (A.2) implies,

(A.4) ahx - y = O.

Since, under our assumptions, gé%%y is monotonically increasing in
x, a solution to (A.3)-(A.4) exists and it must be unique..
It remains to verify that it is an admissable solu~

tion,i.e. that O<x®<l, 0<h®<l. That x°,h° > 0 is obvious. Also

P
D ..g' (l) . Fs) 0 -5_'_"'\ }
< = = = e morm

X 1 since ETIT_ =, Tt remains to show that h . a .

ax glx")
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|
Let us define F(x) = xg{iX). Clearly F'(x) » 0. We wish to show

that x° > gu Since F(x) is monotonically increasing, this is

equivalent to the regquirement: 7(x°) > F(%J. But F(xo) = g-by defini-

tion. It iz therefore necessary to show that:
h
Y,y &'(3) Yy 5 P o1k
ke _7£2- or g(l) >-=g" (D).
()

Note, however, that‘% = Eié-— £-< 1l - ﬁ-. It is therefore sufficient

o

to show that
AN IR AYFETA
gD > (1 - D-g D).
But this last inequality follows Zirectly from the assumed concuvity
of g(x). (It states that g(l) = 0 is grester than the first-order
Tzylor expansion around x = y/a.}

Shape of the Stationary Locl

Due to the concavity of the Hamiltonian in the controls, the
two necessary conditions {14)}-(15) define & unique pair (h,x) for

eny (A,¢). Let us denote these solutions by:

X(A,9)

X

h = H(x,¥)

1

= X _—
S ) R U O B

I {69 __eg'x)
a0 N e <O

Thus, considered as & pair of equations in A and ¥, {A.3)-(4.4)

where H

become:

(=]
n

OLw) 2 pA = apg{XO,e) JU(A, )

aH(As‘IJ)X(lﬂP) - Y-

F(%,0)

U1

o
"
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We wish to show the Jacobian of this system evaluated at 22,0
is positive. This implies that the A = 0 line cuts the i =
line from helow. (It also guarantees the unigueness of the soluticu,

if it exists.

i p-av(ng' (x)X,+g(x)H,)  -aha(x)-a (hg' (x)X +e(x)H)
N Fx,; Y Y v
= 2 g2
A P a(xH, +hX, a(lemeqj)
= 2 ﬂ2 -— ! -_—
ap(xH¢+hX¢) +a hg(x)(xHA+hXA) + o"hyfg(x)—=xg (X)][wal Hlx¢].
Owing to the signs of Xl’ X¢, HA’ H¢, the only negative term
in this sum is: aphxw. However, since p = ah Ei%ly in Phase II
we have:
ahg(x) -g'(x) _ (ah) g(X)
hX, = ah ; ; < 0.
Wty T TR v ) vg' (x)
But this cancels out with the term:
2.2 _ {ah) g(x)
a™h g(X)X 'pg"(x) > 0 [

so J » 0, Q.E.D.

We now prove two further properties of the loci:

(a) the =0 and A=0 loci have positive
slopes at x=1 and x=0 respectivaly;

(b) along the ¢ 0 logus, d(A/¥)/dyp < O
while along the A=0 locus, d(A/¢)|dr> O.

We have

ag(x)h+ahg'(x)X¢+awg(x)Hw
p—ahg'(x)XA—albg(x)HA

d¢ A=0 ~

m;*es

At the border between regions II and III x = 0, which implies HA“ 0

Given the signs of X¢’ H¢, and Xl' it follows that at this point
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dA

‘tﬁl=0>o'

Also 2
ay, __F_ d ey
dy'ly=0 2 T xH, +nX
‘ Fy A A

At the border between regions I and II x=1, which implies H¢ = 0.
Again, given the signs of X¢’H¢ and HA’ it follows that
%%1¢=0 > 0 at this point, In order to determine the concavity

properties of the $=0 and A=0 lines, it is convenient to write

the solution of the first order coﬁditions (14)-(15) as functinn

of the level of A and the ratio-%. Thus:

x = i(A,%) where Ei =0 31 > 0
- - =¥

h = E(A,)) R >0 H <O
v v

Consider now the condition i =0 orp+ qié%%jh = 0., Since

an increase in %-raises x, which decreases the quantity g%%i%

in absolute value, an increase in A (which will increase h). is

necessary to restore equality. Thus along the A = 0 line

b
d{=) o
Y5 0. A similar argument , basad cn writing h as hanwf%f, ) BT
.dA by e
dfﬁ)

that 'along_the ¢y= 0 line we must have-—ga- < 0. -

-
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