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Abstract

In this paper, we have developed an operational method

for estimating error components regression models when the

variance-covariance matrix of the disturbance terms is un-

known. Monte Carlo studies were conducted to compare the

relative efficiency of the pooled estimator obtained by this

procedure to (a) an ordinary least squares estimator based

on data aggregated over time, (b) the covariance estimator,

(c) the ordinary least squares estimator, and (d) a gener-

alized least squares estimator based on a known variance-

covariance matrix. For T small, and large p, this estimator

definitely performs better than the other estimators which

are also based on an estimated value of the variance—covariance

matrix of the disturbances. For p small and large T it com-

pares equally well with the other estimators.
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ERROR COMPONENTS REGRESSION MODELS

AND THEIR APPLICATIONS

Section 1

Introduction

In several recent studies, attempts have been made to

analyze the problems involved in pooling cross section and

time series data by error components (or variance components)

regression models. These !nodels can be formulated as

(1.1) + E6kZk. + uit

(i1,2,...,n; tl,2,...,T),

where is an observation on the dependent variable for

individual in period t. Zkjt is an observation on the kth

independent variable, cD is an intercept term, 3k (k1,2,.. ,K-l)

are the fixed but unknown slope coefficients, and u± is an error

term. This disturbance term is supposed to represent the net

effect of numerous individually unimportant, but collectively

significant, variables whidh have been omitted from the analysis.

Some of these are specific to the individual and remain invariant

over time (say p1); some are specific to the time period but are
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invariant over all individuals (say Xi); and some are specific

to both individual and time (say In this case we can

write as

(1.2) + X. +

Mundlak (10) and Hoch (5) analyzed this model, treating p and

n T
as unknown parameters and assu4ning E i. 0 and E A = 0.

L i=l t:l L

Maddala (9) points out a principal weakness in this approach:

it eliminates a major portion of the variation among both the

explained and the explanatory variables when the between indi-

viduals and between time periods variation is large. This ap-

proach can also cause a substantial loss in degrees of freedom.

An alternative approach is to treat all components as random.

This case was analyzed by Wallace and Hussain (1L), Maddala (9),

Nerlove (12), and Swamy and the present author (13).1

Under the assumptions of weakly non—stochastic X's and

normally distributed disturbance terms, both approaches yield

asymptotically equivalent estimates with asymptotically equi-

valent variance—covariance matrices. In fact, it can be shown

that there are an infinite number of estimators which have the

same asymptotic variance-coVarianCe matrices.2

1. Whether or not the individual effects may be treated as
parameters or random components for the purpose of statis-

tical analysis depends upon the underlying data generating
mechanism assumed. For an illuminating discussion of such
data generating Tnechanisms, see Nerlove (11) p. 3614.

2. See Swamy and Arora (13) p. 267.
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Asymptotic properties, however, are cold comfort to the

econometrician for whom the choice of a practical estimator

(and its related small sample properties) is a problem of

crucial importance. Unfortunately, because of mathematical

intractibility, small sample properties are often hard to

obtain theoretically. We therefore employ Monte Carlo experi-

ments to evaluate relative efficiency of the various estimators.

The plan of this paper is as follows: In section 2, a

means of estimating error components regression models is

developed for a case when the variance-covariance matrix of

the disturbance term is unknown. We also show the equivalence

of this estimator with an ordinary least squares estimator

when inter-individual and inter-temporal variations are zero.

In section 3, the asymptotic properties of this estimator are

derived. Section 4 describes the design of the Monte Carlo

experiments and compares the relative efficiency of this esti-

mator with the ordinary least squares estimator, a covariance

estimator, an ordinary least squares estimator based on data

aggregated over time and ,a generalized least squares estimator

based on a known variance—covariance matrix of the disturbance

terms. Concluding remarks are presented in section 5. An

efficient way of generating random numbers and independently

distributed normal variates is described in an appendix to

this paper.

S
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Section 2

Estimation of Error Components Regression Models

Let us assume that u1 + and the components

and are random such that

F411
0

ía2 ifij
Ep.p. 4

'
i 10

Ev1tO

ía2 ifijandt=t
Ev. V.
itjt I . 3

0 otherwise.

Let us further assume that p1 and are independent of each

other. Furthermore T > K and n > K and the variances a2 and

3. In (13) Swamy and I have analytically shown that the
estimator based onthe assumption of both pj and A-
being random is more efficient than either Ehe co-
variance estimator or the ordinary least squares esti-
mator only if (a) n and T are sufficiently larger than
10, and (b) if the sum of squares due to variation over
time exceeds the sum of squares due to remaining varia-
tion. If these conditions are not satisfied, random
error components model with both components random may
give results inferior to other estimators. For a case
where either n or T is less than 10, we conjecture that
the error components models with a random component (the
other component being a parameter or zero) perform better
than the model which assumes both Pj and At as random.
Here we consider a model with AtA for all t, but we can
easily treat all At's as different.

Li.. A model in this form was also used by Kuh (7), except that
he did not assume Pj and Vit are uncorrelated. Hussain (6)
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.
2 are unknown. For all the nT observations combined we can

write (1.1)

(2.1) y X + u,

where y (y11, ' . is an nTxl

vector of observations on the dependent variable, X = 'nT' Z]

is an nTxK matrix of explanatory variables, tnT is a vector of

l's of order nTxl, and Z is an nTK matrix of independent

variables given by

z1 Z211 ... ZK_l,ll

Z = Z1 Z;lT ZK_i,1T

Zini Z21 ...

Z1flT Z2flT
* ZK_l,flT

is a (K'xl) vector of slope coefficients, (, 5')',
K' K — 1, and u (u11, ..., U1, ... u1, ..., uflT) is an

nTxl vector of disturbance terms. Under the above assumptions,

it is readily verified that

(2.2) Euu' 2(10 'T
Since the variance—covariance matrix of u is not scalar, ap-

() treats a model with nj's a parameters, and At and jt
as random. His estimator is identical with the covariance
estimator and does not utilize full data information.
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plication of the ordinary least squares procedure might lead

to an inefficient estima.tor of 3.

Let us consider an orthogonal matrix, °T' of order T

such that its first row is equal to i/1T. Let =

[tT//T, C] where C1 is a (T-1)xT matrix such that CuT = 0,

ll 'T-l' and C1C1
—

1•TtT/T.
Define the transformations Q1 (ItT/vW) and Q2 (IC1).

By applying the transformation Q1 to all nT observations, we get

(2.3) y1 X + u1,

where y1 Q1y is an nXl vector of transformed dependent var-

iables, and u1 is an nxl vector of transformed observations.

The variance-covariance matrix of u1 is

(2.4) Eu1u1 Q1EuuQ1

Substituting for Euu' from (2.2) and simplifying we get

2
(2.5) Eu1u1 = a1

2 2 2
wherea1 =Ta +cy

Thus the variance-covariance matrix reduces to scalar form,

a best linear unbiased estimator of is an OLS estimator

(2.6) (1) (X1X1YX1y1.

The subvector of (1) corresponding to the slope coefficient

only is given by

(2.7) 6(1) = (ZNZ1)ZNy1 ,
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where Z1 Q1Z is an nxK matrix, and N I - it/n; a

subscript 1 is attached to and to differentiate these

estimators from the other estimators of and tS to be described

later.

The va'jano-covariance matrix of (l) is

(2.8) V[(l)] = a12(ZNZ1).

Applying the transformation Q2 (IC1) to all nT observations

we have

(2.9) y2 Z26 + u2

where y2 Q2y is an nTxl vector of tr.nsformed observations

on the dependent variable, Z2 is an nT#xK matrix of transformed

observations on K independent variables, u2 = Q2u is an nTxl

vector of transformed disturbances, and use is also made of the

result Q2inT = 0. The variance-covariance matrix of u2 is

(2.10) Eu2u; EQ2uuQ2 Q2EuuQ2 ;

= (IflCl)[Q2(IfltTtT) + vIT IC1)

which can easily be reduced to . Thus the variance-
V nT

covariace matrix of U2 is of scalar form. A best linear un-

biased estimator of 6 is the OLS estjm.tor given by

S
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-' —1 5(2.11) (2) (Z2Z2) Z2y2

The variance-covariance matrix of (2) is a2(ZZ2)1. Notice

that Q1Q2 0. The rank of Q1 is equal to the rank of

/v'T multiplied by the rank of I because if A and B are any

arbitrary matrices, the rank of (AB) is equal to the rank of

A multiplied by the rank of B. Therefore the rank of Q1 + Q2
n + nT - n = nT, which is thetotal number of observations.

This indicates that in estimating (2.3) and (2.9) we have used

up all the orthogonal linear combinations of the available

observations. S(l) and S(2) are two uncorrelated estimators

of the same parametric vector and we can pool them in the

following manner.

A rzNz ZZ 11ZNy Zy
(2.12) 6(0) 1

21 +
2

2j I

1
21 +

2 2

L aJ La a
1

where 0 = [a2 a2] The estimator S(0) is a generalized

2 2least squares estimator of 6. For given values of a1 and a ,
it is a best linear unbiased estimator. Any other estimator of

6 which is also linear in the vector y and is unbiased, has a

variance-covariance matrix which exceeds that of S(0) by a

positive semidefinite matrix.

5. It can be easily recognized that the estimator 8(1) in (2.6)
is an OLS estimator obtained by applying OLS to data agre-
gated over time and multiplied by lIvW; the estimator 6(2)
in (2.11) i obtained by applying OLS to nT observations,
each observation expressed as a deviation from its time
series mean and the overall mean. Please note that there
are only n(T-1) independent observations.
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(2.13) y1M1y1/(n-K)

where I - X1(XX1)X Also an unbiased estimator

of is

(2.1k) 2 y;M2Y2/(nT'- K')

where I - z2(z;z2)-1z;, T' = T - 1, and K' K - 1.

An Aiticen es1imtor of the slope coefficients based on the

estimated values of and a2 is given by

(2.l) = [zz +

z2z2]
[Z1NY1 +

Z2Y2]

where Q [2

We can readily show that the estimator 2) as obtained in (2.11)

is equivalent to a covariance estimator (iS) obtained by assuming

as fixed parameters. We can also show equivalence of iS(O)

with an ordinary least squares, estimator (iS) when 0 as

follows:

An ordinary least squares estimator of the slope coeffi-

cients in (1.1) is

6. A similar pooled estimator of (O) can be obtained if A
and Vjt are assumed to beH random. The variance-covarjance
matrix of u is giver by aX2(LninIT) + GV2InT . To reduce
this to scalar form we consider an orthogonal matrix
O [t/v'i, C1]' of order n, and apply transformations
Qi (1.n/1/'®IT) and Q2 (C1øITto all the nT observations.



—10—

(2.16) 6 (ZQZ)ZQy ,

1nT'nTwhere 'nT — nT

The Aitken estimator 6(0) in (2.15) when a 2
o is

U

(2.17) () ZNZ1 + Z2Z2][Z1Ny1 +

= [z(QNQ1 +
Q;Q2)Z]—1cZ-(QNQ1

+ Q;Q2)y]
a ft

1T'T nT'nT ____a
— 'T1T)Since Q1NQ1 (I ) — ______ ____and =

T

nT nTwe can easily show that QNQ1 + 'nT -
nT Q , thus

proving equality of and () when a 2
o.

U
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Section 3

Properties of the Estimators

The estimator (O) of can be written in the generalized

least squares form as follows:

-l

[Z1N NZ1 uz;N
1 Ny1

(3.1) a1 I a1

0 Z2

a a A A. 2 A. 2 —

If W [Z1N, Z2] ,
V diag[a1

mT...] and y [y1N, y2]

the equation (3.1) can be written as

A A A_i —1
(3.2) tS(O) (WV W) W V y

Substituting y W + e, where e [uN, u;] in (3.2), we get

A A A —1 —1 A....]
(3.3) 5(O) 5 + (W'V W) W V e

A generalized least squares estimator for a given V, as obtained

in (2.12), can also be expressed as follows:

A ---1 —l-1
(3.') 6(0) = 6 + (W V W) W V

If we assume that U's are normally distributed, and since

M1Z1N MX1 [In - X1(XX1)1X]X1 0, we an show that the

linear form Z1N1 is distributed independently of the quadratic

form a2 yM1y1/(n-K) . Similarly, we can show that the

linear form Z2u2 is independently distributed of the quadratic
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form yM2y2/(nT-K). With these results, we can show

that

(3.5) E[()IO] = 6

Since the expectation of 6 over the distribution of is 6,

i.e., E6 6, this proves that 6(0) is an unbiased estimator

of 6.

To establish the asymptotic properties of 6(0), we assume that

—l -
X's are weakly non-stochastic and, for a fixed n, urn (nT) Z1NZ1,

T+oo

urn (nT)-'z;z2 are all finite positive definite matrices.7

For a fixed n, under the above assumptions, we can show that

—2—2 - —2—2— -
lim n T (Z1Nu1u1NZ1) liin n T Z,,uu,Z 0, thus insuring
T+co T.+co

L L.

that plim (nT)ZNu1 0 plim (nT)-iz;u2. Also, plim a12
T÷ T÷oo T÷°°

2 . "2 2
, plim c1 = . Under these conditions, we can easily
T-

show that

(3.6) plirn /if[() — 6] 0 ,

T-,co

i.e., 6(e) is a consistent estimator of 6.

7. The assumption of non-stochastic implies that the time
pattern of the variable is bounded by some finite limits,
even though it is not necessary for the pattern of the
variable to repeat itself. The meaning of non-stochastic
X's is simply that the realization of the X's is in ac-
cordance with some fixed (albeit unknown) process. Since
economic data are stochastic, whichever assumption we
adopt about the nature of the fixity of X's, we are sin—
plifying and possibly mis-specifying the model. See also
Wallace and Hussain (P4) pp. 55—72.
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Under the above assumptions, we can readily show that V is a

ccnsistent estimator for V, and that 6(0), as obtained in

(2.15), is asymptotically equivalent to 6(0), in the sense

that /i[6(0) 6(0)] converges in probability to zero as

T+oo, both coefficient estimators being asymptotically normally

distributed with mean vector 6 and covariance matrix (WVW).
Since plim = 2, we can further show that () is also

T+oo Ii

asymptotically equivalent to the covariance estimator 6, i.e.,

(3.7) plim /iTI6(G) — 61 0

T+°

In fact we can show that there is an infinitely large number

of estimators which yield asymptotically equivalent estimates

with asymptotically equivalent variance-covariance matrices.

Thus asymptotic theory casts relatively little light on the

comparative small sample properties of the estimators. In the

next section, we evaluate relative efficiency of the various

estimation procedures by using a Monte Carlo study.

.
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Section

Design of the Experiment and the

Comparative Properties of the Various Estimators

The design of the Monte Carlo experiments given here is

similar to that of Nerlove, except that our model contains an

inLercept and we generate random numbers by a slightly differ-

ent, but more efficient, method.8 Since Nerlove has already

done extensive Monte Carlo studies, we examine intensively

only those cases with large inter-individual heterogeneity and

varying T. The model is given by

(L.l) = + + 'i + 'it
The explanatory variable, X1, held fixed throughout the

experiment, is generated as follows:

(.2) X1 = o.i(t-l) + l.05X1±t_i + w,
where w is uniformly distributed in the range from 0 to 2.

Initial values of X10 are chosen at random from the uniformly

distributed numbers in the range 0 to 100. To generate nT

values of independent normal variables with zero mean and

init variance, n p.'s are first selected with N(0,

nT are then selected with N(0, cY2), and these are

summed to give the Defining p, the intra-class correla-

8. This method and a method to convert uniformly distributed
random variables to normal, variate is described in Appendix
A—2. See also Nerlove (11), pp. 366—371.
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tion coefficient, as p = a 21a2, where a2 2 + a2 we can

write N(0, pa2) and v N(0, (l—p)a2)

Twelve sets of y's were generated for, various combina-

tions of the parameter values 0 and 5; 0.5 and 0.8;

p 0, 0.4 and 0.8; and a2 10. Initially n is set at 25 and

T at 6 . For each set of parameters, five estimating proce-

dures were examined:

(a) OLS estimator based on data aggregated over time,

.

(b)

(c)

(d)

covariance estimator, (2),

ordinary least squares, (s),

pooled estimator based on the estimated variance—

covariance matrix, ô(O),

(e) generalized least squares based on known variance-

covariance matrix, (8).

9. These parameter's were selected from the initial set of

parameters c' 0.0, 0.5, 1.0, 5.0 and 10.0; 0.1,

0.5, 08; p= 0.0, 0.2, 0.4, 0.6and0.8; a2 = lOand2O.
For these 150 sets of parameters 2 repetitions were per-
formed. On the basis of mean square error of the estima-
tors in the various estimating procedures only 12 para-
meter sets were selected for intensive study. The choice
of these parameter values may itself cause bias in our
results, but the very consistency of the trend strengthens
our belief that this is a representative set.

In each experiment, 20 repetitions are performed, from

which the mean and the mean square error of the estimated

coefficients are calculated. The entire set of experiments is

ibepeated with T set at 15, giving 480 runs and 24 tables of

.
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mean and mean square error of the coefficients for different

etimating procedures. Table 1 presents the mean and the mean

square error for one such experiment. Results of various other

runs are presented in an appendix to this paper)°

Table 1

Mean and Mean Square Error of the Coefficients

for Various Estimating Methods for

10, N 25, T 6, and p = .8

From Table 1, we find that the mean values of and

for all estimating methods are finitely close to the true

values, thus demonstrating that all estimators under considera-

tion are unbiased, but that the mean square error for the dif-

ferent estimators varies considerably. The mean square error

of OLS--Agg. is about three times as large as that of the

generalized least squares estimator, while those of the covari-

nce estimator and of the ordinary least squares estimator are

10. Mean square error of an estimator of 0 is given by
A 2

m.s.e. E (0. — 0)
i=l

True Value

OLS--Agg.

Covariance

OLS

Pooled

GLS

5

'I. 99184

Li. 99208

5. 00708

99329

0

0. 703589

0.594746

0.400888

0.386660

0.5

0.499717

0.499688

0.499714

0.499682

0.499695

0

7. 725E—05

5. 221E—05

5. 5LiOE—05

2. 791E—05

2. 788E—05
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only about twice as large. The mean square error of the

pooled estimator is nearly the same as that of the generalized

least squares.

This is true for all values of p except pO. In this

case, all estimators have mean square error equal to that of

the generalized least squares estimator.11 As p increases,

sà does the ratio of the mean square error of the OLS estimator

tc that of the GLS estimator, but for all values of p the mean

square error of the pooled estimator nearly equals the mean

square error of the GLS. Further, for large values of p,

the OLS method gives a serious underestimate of a2, giving low

standard errors of the estimates. In contrast, the standard

errors for the pooled estimator and the GLS are nearly equal.

As T increases, the mean square error of the covariance esti-

mator declines, becoming almost equal to that of the pooled

estimator and the GLS estimator.

Hence we see, on the basis of the criterion of minimum

mean square error, that the pooled estimator compares favor-

ably, for all T's and all p's, with all other estimators which

do not require a prior knowledge of the variance-covariance

matrix. Furthermore, this estimator shows definite superiority

to other estimators for small T's and large p. On the basis of

the criterion of unbiasedness, this compares equally well with

all other estimators.

11. See tables 1 and 2 in the appendix to this paper.
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Section 5

Conclusion

In this paper, we have developed an operational method

for estimating error components regression models when the

variance-covarjance matrix of the disturbance terms is un-

known. Monte Carlo studies were conducted to compare the

relative efficiency of the pooled estimator obtained by this

procedure to (a) an ordinary least squares estimator based

on data aggregated over time, (b) the covariance estimator,

(c) the ordinary least squares estimator, and Cd) a gener-

alized least squares estimator based on a known variance-

covariance matrix. For T small and large p, this estimator

definitely performs better than the other estimators which

are also based on an estimated value of the variance-covarjance

matrix of the disturbances. For p small and large T it com-

pares equally well with the other estimators. In this instance,

therefore, we are able to give a definite unconditional answer

to the question posed to Nerlove's Dodo, "But who has won?"--

the pooled estimator, of course!
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Appendix A-i

Table 1

Mean and Mean Square Error of the Coefficients

for Various Estimating Procedures

T 6, N 25, and a2 = 10

for

.

Method Mean in.s.e. Mean m.s.e.

p=0.O: True Value

OLS——Agg.

Covariance

oLS

Pooled

GLS

5

5.20645

5. 14152

5.12310

5. 114149

0

0.286728

0.216076

0.200142

0.216061

0. 80

0.798293

0.806431

0.799298

0.799582

0. 799 297

0

6. 5614E—05

3. 370E014

5. 342E—05

5. 227E—05

5. 3'42E—05

p0.4 True Value
OLS--Agg.
Covariance
OLS

Pooled

GLS

5

5.34402

5.28975

5.18582

5.16231

0

0.839164

0.6732143

0.544211
0.538673

0.80

0.794023

0. 800825

0. 794863

0.796471

0.796834

0

1. 970E—04

2. 19 OE—0 '4

1. 900E—04
9. 10 8E—05

8. 246E—05

p0.8 True Value

OLS—-Agg.

Coy ar iance

o L1S

Pooled
GLS

5

4. 99184

4.99208

5. 00708

4.99329

0

0.70300

0. 594746

0.400888

0.386660

0. 50

0.499717

0.499688

0.499714

0.499682

0. 499695

0

7. 725E—05

5. 221E—05

5. 540E—05

2. 7 3 1E —05

2. 788E—05

S
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Table 2

Mean and Mean Square Error of the Coefficients

for Various Estimating Procedures for

T 15, N 25, and 2 = 10

Method Mean m.s.e. () Mean () m.s.e.

p=0.8: True Value

OLS--Agg.

Covariance

OLS

Pooled

GLS

5.0

5.573014

5.15513

4.85477

4.85116

0

2.61798

0.639253

0. 3414144

0.344148

0.80

0.793599

0. 799 879

0.797190

0.799771

0.799802

0

2.O1OE—04

1. 413E—06

3.645E—05

1. 381E—06

1.368E—06

p0.0: True Value 5.0 0 0.80 0

OLS——Agg. 5.04207 0.214164 0.800005 l.527E—05

Covariance 0.800616 1.241E-05

OLS 5.00136 0.0741410 0.800355 '4.829E—06

Pooled 5.00143 0.074891 0.800353 14.72lE06

GLS 5.00150 0.0714409 0.800352 4.827E—06

p=0.4: True Value 5.0 0 0.80 0

OLS——Agg. 14.88203 1.03832 0.800393 6.816E—05

Covariance -- —- 0.799514 6.300E-06

OLS 4.94057 0.346083 0.799890 l.593E—05

Pooled 4.97141 0.217877 0.799625 6.210E—06

GLS 4.97792 0.222983 0.799570 6.l35E—06
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.
Appendix A-2

Random Number Generating Procedures

A desired sequence of random numbers X is obtained by

setting

X (aX + c) mod m m > 0n+1 n —

where a is the multiplier, c is the increment and m is the

modulus, a>0, c>O, m>c, m>a, and m>X0, where X0 is the starting

value. This method is called linear congruential sequence.

When c0, the random generation process is slightly faster,

but the maximum period length (length after which sequence

starts repeating itself) can not be achieved. Nerlove (11)

in order to avoid this problem, suggests mixing two random

sequences into a third, so that the third one is extremely

random. We use a method suggested by Maclaren and Marsaglia

as described below.1

A quite random sequence Given methods for generating

two sequences Xn and Y, this method produces a "considerably

more random" sequence. We use an auxiliary table V(0), V(l),

., V(k-l), where k is some number chosen for convenience,

usually in the neighborhood of 100. Initially, the V-table

is filled with the first k values of the X-sequence.

1. See also Knuth (8) pp. 25-31
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Step 1: [Generate X, Y] Set X, Y equal to the next

number of the sequence (X Y) respectively.

Step 2: [Extract j] Set 5 [kY/rn], where m is the

modulus used in the sequence Y; i.e., 5 is a random

value, 0 < 5 < k determined by Y.

Step 3: [Exchange] Output V(j) and then set V(j) ÷ X.

This method gives an incredibly long period if the periods

of (X) and (Y) are relatively prime; and even if the period

is of no consequence, there is very little relation between

the nearby terms of the sequence. To generate independently

normal variates we follow the Polar Method, which consists of

generating two independent random variables (u1 and u2) uni-

formly distributed between zero and one.2 A set of independent

normal variates with mean zero and variance one is obtained by

the transformation

1/2
w1 = (—2 log u1) cos (2iru2)

1/2 3
w2 = (—2 log u2) cos (2iru1)

2. To generate variable uniformly distributed between zero
and one, we first generate some random number X between
zero and in as described above, and then the fraction
u1 = X/m will lie between zero and one.

3. For a comprehensive discussion of this method see
Knuth (8) pp. 103-105; also see Nerlove (11), p. 368
footnote 11.
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