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1 Introduction

Last four decades have witnessed rapid expansion of the study of heavy-tailedness phenomena

in economics and finance. Following the pioneering work by Mandelbrot (1960, 1963) (see

also Fama, 1965, and the papers in Mandelbrot, 1997), numerous studies have documented

that time series encountered in many fields in economics and finance are typically thick-tailed

and can be well approximated using distributions with tails exhibiting the power law decline

P
(
Z > s

)
∼ Cs−ζ , C, s > 0. (1.1)

with a tail index ζ > 0 (see the discussion in Gabaix, Gopikrishnan, Plerou and Stanley,

2003; Č́ıžek, Härdle and Weron, 2005; Rachev, Menn and Fabozzi, 2005, and references

therein). Here f(s) ∼ g(s) means that f(s) = g(s)(1 + o(1)) as s → ∞. Throughout the

paper, C denotes an absolute constant, not necessarily the same from one place to another.

Let

Z(1) ≥ ... ≥ Z(n) (1.2)

be decreasingly ordered observations from a population satisfying power law (1.1). Despite

the availability of more sophisticated methods (see, among others, the reviews in Embrechts,

Klüppelberg and Mikosch, 1997, and Beirlant, Goegebeur, Teugels and Segers, 2004), a

popular way to estimate the Pareto exponent ζ is still to run the following OLS log-log

rank-size regression with γ = 0:

log (t− γ) = a− b log Z(t), (1.3)

or, in other words, calling t the rank of an observation, and Z(t) its size:

log (Rank− γ) = a− b log (Size)

(here and throughout the paper, log(·) stands for the natural logarithm).With N denoting

the total number of observations, regression (1.3) with γ = 0 is motivated by the approxi-

mate linear relationships log
(

t
N

) ≈ log(C)−ζ log
(
Z(t)

)
, t = 1, ..., n, implied by the empirical
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analogues of relations (1.1). The reason for popularity of the OLS approach to tail index

estimation is arguably the simplicity and robustness of this method. In various frameworks,

the log-log rank-size regressions of form (1.3) in the case γ = 0 and closely related proce-

dures were employed, among other works, in Rosen and Resnick (1980), Alperovich (1989),

Krugman (1996), Eaton and Eckstein (1997), Brakman, Garretsen, van den Berg and van

Marrewijk (1999), Dobkins and Ioannides (2000), Davis and Weinstein (2002), Levy (2003),

Levy and Levy (2003), Helpman, Melitz and Yeaple (2004), Soo (2005) and Klass, Biham,

Levy, Malcai and Solomon (2006). Further examples and the discussion of the OLS approach

to the tail index estimation are provided in Persky (1992), Gabaix et al. (2003), Eeckhout

(2004), Gabaix and Ioannides (2004) and Rossi-Hansberg and Wright (2007).

Let b̂n denote the usual OLS estimator of the tail index ζ using regression (1.3) with

γ = 0 and let b̂γ
n denote the OLS estimator of ζ in general regression (1.3).

It is known that the OLS estimator b̂n in the usual regression (1.3) with γ = 0 is consistent

for ζ. However, the standard OLS procedure has an important bias. This paper shows that

the bias is reduced (up to leading order terms) with γ = 1/2. Hence, we propose that always,

if one uses a log-log regression, one should use log(Rank− 1/2) rather than log(Rank).

We further show that the standard error of the OLS estimator b̂γ
n of the tail index ζ

in general regression (1.3) is asymptotically (2/n)1/2ζ. The OLS standard errors in log-log

rank-size regressions (1.3) considerably underestimate the true standard deviations of the

OLS tail index estimators. Consequently, taking the OLS estimates of the standard errors

at the face value will lead one to reject the true numerical value of the tail index too often.

The 1/2 shift actually comes from a more systematic result, in Theorem 1, which shows

that it is optimal and further demonstrates that the following asymptotic expansion holds
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for the general OLS estimator b̂γ
n:

b̂γ
n/ζ = 1 +

√
2

n
N (0, 1) +

(log n)2 (2γ − 1)

4n
+ oP

( log2 n

n

)

(here and throughout the paper, N (0, 1) stands for a standard normal random variable

(r.v.)). We conclude that, for estimation of the tail index ζ with an OLS regression, one

should always use the regression log (Rank− 1/2) = a− b log (Size) , with the standard error

of the OLS estimator b̂n of the slope given by
√

2
n
b̂n.

We further provide similar asymptotic expansions for the tail index estimator d̂γ
n in the

dual to (1.3) regression

log(Z(t)) = c− d log(t− γ) (1.4)

(that is, log (Size) = c − d log (Rank− γ)), with logarithms of ordered sizes regressed on

logarithms of shifted ranks. As follows from Theorem 1, the approaches to the tail index

inference using regressions (1.3) and (1.4) are equivalent in terms of the small sample biases

and standard errors of the estimators. The paper also discusses asymptotic expansions in

the analogues of regressions (1.3) and (1.4) with the logarithms of shifted ranks log(t − γ)

replaced by harmonic numbers (Section 3).

Numerical results indicate that the proposed tail index estimation procedures perform

well for heavy-tailed dependent processes exhibiting deviations from power law distributions

(1.1) (see Section 4). They further demonstrate the advantage of the new approaches over

the standard OLS log-log rank-size regressions (1.3) and (1.4) with γ = 0.

The tail index estimation methods proposed in the paper are illustrated using an empirical

analysis of Zipf’s power law for the U.S. city size distribution (Section 5).

In recent years, several studies have focused on the analysis of normality of the OLS

tail index estimators in regressions (1.4) with γ = 0 and logarithms of ordered observations

log(Z(t)) regressed on logarithms of ranks (see, among other works, the review in Ch. 4 in
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Beirlant et al., 2004). Such approach to estimation of the tail shape parameters was intro-

duced by Kratz and Resnick (1996) who refer to it as QQ-estimator. Nishiyama, Osada and

Sato (2007) discuss asymptotic normality of the OLS tail index estimator in the regression

of log(Z(t)) on log t. Schultze and Steinebach (1999) consider closely related problems of

least-squares approaches to estimation for data with exponential tails (see also Aban and

Meerschaert, 2004, who discuss efficient OLS estimation of parameters in shifted and scaled

exponential models). Kratz and Resnick (1996) establish consistency and asymptotic nor-

mality of the QQ-estimator in the case of populations with regularly varying tails. Their

results demonstrate that in the case of populations in the domain of attraction of power law

(1.1), the standard error of the QQ-estimator of the inverse 1/ζ of the tail index based on n

largest observations is asymptotically
√

2/(ζ
√

n). Csörgő and Viharos (1997) prove asymp-

totic normality of the OLS estimators of the tail index in the case γ = 0 (see also Viharos,

1999; Csörgő and Viharos, 2006). Beirlant, Dierckx, Goegebeur and Matthys (1999) and

Aban and Meerschaert (2004) indicate the possibility of modification of the QQ-estimator

in which logarithms of ordered observations log(Z(t)) regressed on log(t − 1/2). Aban and

Meerschaert (2004) mention in a remark without providing a proof that regressing logarithms

of observations from a heavy-tailed population on logarithms of their ranks shifted by 1/2

reduces the bias of the QQ-estimator. Their remark seems to be motivated by simulations,

not by the systematic understanding that Theorem 1 provides; in particular, they do not

indicate that a shift of 1/2 is the best shift.

To our knowledge, general regressions (1.3) and (1.4) with γ 6= 0 and asymptotic expan-

sions for them are considered, for the first time, in the present work. The modifications of

the OLS log-log rank-size regressions with the optimal shift γ = 1/2 and the correct stan-

dard errors provided in this paper were subsequently used in the works by Hinloopen and

van Marrewijk (2006) and Bosker, Brakman, Garretsen, de Jong and Schramm (2007).
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2 Formal statement of the results

Throughout the paper, for variables a1, ..., an, an stands for the sample mean an =
1

n

n∑
t=1

at.

Let Z(1) ≥ Z(2) ≥ ... ≥ Z(n) be the order statistics for a sample from the population with

the distribution satisfying the power law

P (Z > s) =
1

sζ
, s ≥ 1, ζ > 0. (2.5)

Denote yt = log(t − γ) and xt = log(Z(t)). Let us consider the OLS estimator b̂γ
n of the

slope parameter b in log-log rank-size regression (1.3) with γ < 1 and logarithms of ordered

observations regressed on logarithms of shifted ranks:

b̂γ
n = −

∑n
t=1(xt − xn)(yt − yn)∑n

t=1(xt − xn)2
= −Aγ

n

Bn

. (2.6)

We will also consider the OLS estimator d̂γ
n of slope in dual to (1.3) regression (1.4) with

logarithms of ordered sizes regressed on logarithms of shifted ranks:

d̂γ
n = −

∑n
t=1(xt − xn)(yt − yn)∑n

t=1(yt − yn)2
= −Aγ

n

Dn

. (2.7)

The following theorem provides the main result of the paper.

Theorem 1 For any γ < 1, the following expansions hold:

b̂γ
n/ζ = 1 +

√
2

n
N (0, 1) +

(log n)2 (2γ − 1)

4n
+ oP

( log2 n

n

)
, (2.8)

ζd̂γ
n = 1 +

√
2

n
N (0, 1) +

(log n)2 (1− 2γ)

4n
+ oP

( log2 n

n

)
. (2.9)

The arguments for Theorem 1 are presented in the appendix.

Remark 1 As follows from asymptotic expansions (2.8) and (2.9), the small sample biases

of the OLS estimators b̂γ
n and d̂γ

n in regressions (1.3) and (1.4) involving logarithms of shifted

ranks are both minimized under the choice γ = 1/2.
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Remark 2 The proof of Theorem 1 implies that the order of the error terms in asymptotic

expansions (2.8) and (2.9) is, in fact, OP

(
(log n)3/2

n

)
.

The proof of Theorem 1 is based on the following results and methods. First, it exploits

the Rényi representation theorem to relate the order statistics for observations following

power law 1.1 to the partial sums of scaled i.i.d. exponential r.v.’s (see the beginning of Step

3 in the proof). Then, we use martingale approximations to the bilinear that appear in the

numerators of the statistics b̂γ
n/ζ− 1 = −(Aγ

n + ζBn)/(ζBn) and ζd̂γ
n− 1 = −(ζAγ

n +Dn)/Dn

(relation (7.42) in Step 3 of the proof and relation (7.53) in Step 5 of the proof). Third,

the arguments use strong approximations to partial sums of independent r.v.’s provided by

relation (7.47) in Step 3 of the proof.

3 A related approach based on harmonic numbers

For t ≥ 1, denote by H(t) the t−th harmonic number: H(t) =
t∑

i=1

1

i
. Further, let H(0) = 0.

Consider the analogues of regressions (1.3) and (1.4) that involve logarithms of ordered sizes

yt = log(Z(t)) and the functions x̃t = H(t− 1) of ranks of observations:

H(t− 1) = a′ − b′ log(Z(t)). (3.10)

log(Z(t)) = c′ − d′H(t− 1); (3.11)

Similar to the proof of Theorem 1, one can show that the following asymptotic expansions

hold for the tail index estimators b̂′n and d̂′n using regressions (3.10) and (3.11):

b̂′n/ζ = 1 +

√
2

n
N (0, 1) + OP

( log n

n

)
; (3.12)

ζd̂′n = 1 +

√
2

n
N (0, 1) + OP

( log n

n

)
. (3.13)

6



Comparison of expansions (3.12) and (3.13) with (2.8) and (2.9) shows that, ceteris paribus,

tail index estimation using regressions involving harmonic numbers is to be preferred, in

terms of the small sample bias, to that based on the logarithms of shifted ranks log(t − γ)

for any γ. On the other hand, regressions (1.3) and (1.4) are simpler to implement and

more visual than estimation procedures based on (3.12) and (3.13). In particular, we are not

aware of works that employed estimation approaches based on harmonic numbers similar

to (3.12) and (3.13), while regressions (1.3) and (1.4) with γ = 0 are commonly used, as

discussed in the introduction. Comparison of the asymptotic expansions for the tail index

estimators using regressions (3.10) and (3.11) with the OLS tail parameter estimators in

log-log rank-size regressions (1.3) and (1.4) also sheds light on the main driving force behind

the small bias improvements using logarithms of shifted ranks log(Rank−1/2). This driving

force is, essentially, the fact that log(n−1/2) provides better approximation to the harmonic

numbers H(n − 1) than does log(n) and, more generally, than log(n − γ), γ < 1. This is

because (see Havil, 2003, pp. 73-79) H(n− 1) = C + ln(n− γ) + (γ − 1/2)n−1 + O(n−2) as

n → ∞, where C = limn→∞(H(n) − ln n) is Euler’s constant, so the optimal choice of the

shift γ in the sense of the best asymptotical approximation is 1/2.

4 Simulation results

In this section, we present simulation results on the performance of the traditional regression

(1.3) with γ = 0 and the modified regression (1.3) with the optimal shift γ = 1/2 and the

correct standard errors given by Theorem 1. We present the numerical results for the OLS

Pareto exponent estimation procedures under dependence and under deviations from power

laws (1.1). The results are provided for dependent heavy-tailed data that follow AR(1)

processes Zt = ρZt−1 + ut, t ≥ 1, Z0 = 0, or MA(1) processes Zt = ut + θut−1, t ≥ 1, with

i.i.d. u′ts. The departures from power laws are modeled using the innovations ut that have
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Student t distributions with the number of degree of freedom m = 2, 3, 4 (Tables 2 and 4)

or distributions exhibiting 2nd order deviations from Pareto tails in the Hall (1982) form

P (u > s) = s−ζ
(
1 + c(s−αζ − 1)

)
, c ∈ [0, 1), s ≥ 1, (4.14)

(Tables 1 and 3). The choice of the number of degrees of freedom for Student t distributions

is motivated by the recent empirical works on heavy-tailedness that indicate that, for many

economic and financial time series, the tail index ζ lies in the interval (2, 4) (see Loretan and

Phillips, 1994 and Gabaix et al., 2003). The benchmark case c = 0 in (4.14) corresponds to

the exact Pareto distributions (2.5), and the values ρ = 0 and θ = 0 model i.i.d. observations

Zt. Similar to deviations of γ from 1/2 in (2.8) and (2.9), the term c
(
s−αζ − 1

)
modeling

the departures from the power laws in (4.14) creates a bias in the estimators b̂γ
n and d̂γ

n in

regressions (1.3) and (1.4).

Tables 5-8 in the technical appendix available on our websites present simulation results

for GARCH processes and for tail index estimators using harmonic numbers discussed in

Section 3.

Tables 1 and 2 present the simulation results for the traditional OLS estimator b̂n of the

tail index using regression (1.3) with γ = 0. These tables also provide the comparisons of

the OLS standard errors of the estimator with its true standard deviation. Tables 3 and 4

present the numerical results on the performance of the OLS estimator b̂γ
n using modified

regression (1.3) with γ = 1/2. In Tables 3 and 4, we also present the standard errors of b̂γ
n

with γ = 1/2 provided by expansion (2.8) and compare them to the true standard deviation

of the estimator. The asterics in the tables indicate rejection of the true null hypothesis

on the tail index H0 : ζ = ζ0 in favor of the alternative hypothesis Ha : ζ 6= ζ0 at the 5%

significance level using the reported standard errors.

For instance, consider the class of exact Pareto i.i.d. observations, which is the first row

in Table 1 and Table 3, with n = 50 extreme observations included in estimation. Table 1
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Table 1. Behavior of the usual OLS estimator b̂n in the regression
log (Rank) = a− b log (Size) for innovations deviating from power laws

n 50 100 200 500
AR(1)

c ρ

Mean b̂n

(OLS s.e) (SD b̂n)

0 0
0.924∗

(0.024) (0.185)
0.944∗

(0.014) (0.134)
0.961∗

(0.008) (0.098)
0.978∗

(0.004) (0.063)

0 0.5
1.082∗

(0.021) (0.296)
1.069∗

(0.012) (0.244)
1.073∗

(0.007) (0.195)
1.102∗

(0.004) (0.145)

0 0.8
1.373∗

(0.034) (0.520)
1.271∗

(0.019) (0.417)
1.235∗

(0.011) (0.343)
1.235∗

(0.006) (0.268)

0.5 0
0.925∗

(0.024) (0.181)
0.942∗

(0.014) (0.132)
0.960∗

(0.008) (0.098)
0.978∗

(0.004) (0.063)

0.5 0.5
1.082∗

(0.020) (0.301)
1.067∗

(0.012) (0.244)
1.074∗

(0.007) (0.194)
1.104∗

(0.004) (0.146)

0.5 0.8
1.379∗

(0.034) (0.512)
1.276∗

(0.019) (0.412)
1.226∗

(0.011) (0.343)
1.238∗

(0.006) (0.266)

0.8 0
0.925∗

(0.024) (0.186)
0.945∗

(0.014) (0.134)
0.960∗

(0.008) (0.097)
0.978∗

(0.004) (0.063)

0.8 0.5
1.084∗

(0.020) (0.297)
1.067∗

(0.012) (0.239)
1.069∗

(0.007) (0.195)
1.101∗

(0.004) (0.145)

0.8 0.8
1.378∗

(0.034) (0.520)
1.270∗

(0.019) (0.413)
1.227∗

(0.011) (0.342)
1.238∗

(0.006) (0.265)
MA(1)

c θ

Mean b̂n

(OLS s.e) (SD b̂n)

0 0.5
0.988

(0.024) (0.261)
0.993

(0.014) (0.193)
1.003

(0.009) (0.142)
1.032∗

(0.004) (0.094)

0 0.8
0.989

(0.030) (0.275)
0.994

(0.017) (0.198)
1.011

(0.010) (0.146)
1.034∗

(0.005) (0.098)

0.5 0
0.926∗

(0.024) (0.182)
0.942∗

(0.014) (0.133)
0.961∗

(0.008) (0.099)
0.977∗

(0.004) (0.063)

0.5 0.5
0.988

(0.024) (0.259)
0.992

(0.014) (0.193)
1.007

(0.009) (0.142)
1.032∗

(0.004) (0.095)

0.5 0.8
0.988

(0.030) (0.274)
0.992

(0.017) (0.196)
1.005

(0.010) (0.145)
1.034∗

(0.005) (0.098)

0.8 0
0.925∗

(0.024) (0.184)
0.944∗

(0.014) (0.134)
0.960∗

(0.008) (0.095)
0.978∗

(0.004) (0.062)

0.8 0.5
0.991

(0.024) (0.258)
0.993

(0.014) (0.192)
1.005

(0.009) (0.140)
1.030∗

(0.004) (0.095)

0.8 0.8
0.990

(0.030) (0.276)
0.991

(0.017) (0.198)
1.006

(0.010) (0.145)
1.033∗

(0.005) (0.098)
Notes: The entries are the estimates of the tail index and their standard errors using regression
(1.3) with γ = 0 for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1, Z0 = 0, and
Zt = ut + θut−1, where i.i.d. ut follow the distribution P (u > s) = s−ζ

(
1 + c(s−αζ − 1)

)
, s ≥ 1,

with ζ = α = 1 and c ∈ [0, 1). For a general case ζ > 0, one multiplies all the numbers in the
table by ζ. “Mean b̂n” is the sample mean of the estimates b̂n obtained in simulations, and “SD
b̂n” is their sample standard deviation. “OLS s.e.” is the OLS standard error in regression (1.3)
with γ = 0. The asteric indicates rejection of the true null hypothesis H0 : ζ = 1 in favor of the
alternative hypothesis Ha : ζ 6= 1 at the 5% significance level using the reported OLS standard
errors. The total number of observations N = 2000. Based on 10000 replications.
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Table 2. Behavior of the usual OLS estimator b̂n in the regression
log (Rank) = a− b log (Size) for Student t innovations

n 50 100 200 500
AR(1)

m ρ

Mean b̂n

(OLS s.e) (SD b̂n)

2 0
1.810∗

(0.045) (0.349)
1.809∗

(0.026) (0.245)
1.768∗

(0.014) (0.160)
1.524∗

(0.010) (0.073)

2 0.5
1.993

(0.042) (0.454)
1.986

(0.024) (0.351)
1.932∗

(0.014) (0.247)
1.647∗

(0.011) (0.115)

2 0.8
2.433∗

(0.053) (0.787)
2.334∗

(0.031) (0.608)
2.199∗

(0.019) (0.429)
1.796∗

(0.015) (0.197)

3 0
2.560∗

(0.063) (0.473)
2.503∗

(0.036) (0.312)
2.342∗

(0.021) (0.192)
1.838∗

(0.016) (0.079)

3 0.5
2.852∗

(0.065) (0.589)
2.777∗

(0.037) (0.414)
2.597∗

(0.022) (0.262)
1.992∗

(0.019) (0.107)

3 0.8
3.632∗

(0.084) (1.021)
3.400∗

(0.049) (0.722)
3.044

(0.032) (0.448)
2.179∗

(0.024) (0.186)

4 0
3.151∗

(0.078) (0.546)
3.002∗

(0.043) (0.350)
2.729∗

(0.027) (0.205)
2.017∗

(0.021) (0.083)

4 0.5
3.523∗

(0.083) (0.661)
3.358∗

(0.047) (0.443)
3.024∗

(0.030) (0.259)
2.162∗

(0.024) (0.110)

4 0.8
4.546∗

(0.112) (1.101)
4.096

(0.065) (0.700)
3.516∗

(0.043) (0.417)
2.334∗

(0.030) (0.185)
MA(1)

m θ

Mean b̂n

(OLS s.e) (SD b̂n)

2 0.5
1.927

(0.044) (0.446)
1.927∗

(0.025) (0.325)
1.869∗

(0.015) (0.220)
1.602∗

(0.011) (0.097)

2 0.8
1.978

(0.054) (0.524)
1.951

(0.031) (0.368)
1.894∗

(0.018) (0.242)
1.617∗

(0.012) (0.104)

3 0.5
2.774∗

(0.064) (0.569)
2.697∗

(0.036) (0.400)
2.519∗

(0.022) (0.245)
1.944∗

(0.018) (0.099)

3 0.8
2.916

(0.075) (0.707)
2.792∗

(0.042) (0.464)
2.587∗

(0.025) (0.283)
1.974∗

(0.019) (0.106)

4 0.5
3.430∗

(0.082) (0.649)
3.253∗

(0.045) (0.428)
2.944∗

(0.029) (0.244)
2.122∗

(0.023) (0.099)

4 0.8
3.649∗

(0.092) (0.790)
3.419∗

(0.052) (0.510)
3.035∗

(0.033) (0.287)
2.159∗

(0.025) (0.106)
Notes: The entries are estimates of the tail index and their standard errors using regression (1.3)
with γ = 0 for the AR(1) and MA(1) processes Zt = ρZt−1+ut, t ≥ 1, Z0 = 0, and Zt = ut+θut−1,

where i.i.d. ut have the Student t distribution with m degrees of freedom. “Mean b̂n” is the sample
mean of the estimates b̂n obtained in simulations, and “SD b̂n” is their sample standard deviation.
“OLS s.e.” is the OLS standard error in regression (1.3) with γ = 0. The asteric indicates rejection
of the true null hypothesis on the tail index ζ of Zt H0 : ζ = m in favor of the alternative hypothesis
Ha : ζ 6= m at the 5% significance level using the reported OLS standard errors. The total number
of observations N = 2000. Based on 10000 replications.
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Table 3. Behavior of the OLS estimator b̂γ
n with γ = 1/2 in the regression

log (Rank− 1/2) = a− b log (Size) for innovations deviating from power laws
n 50 100 200 500

AR(1)
c ρ

Mean b̂
γ=1/2
n

(
√

2/n×Mean b̂
γ=1/2
n ) (SD b̂

γ=1/2
n )

0 0
1.011

(0.202) (0.199)
1.001

(0.142) (0.139)
0.998

(0.100) (0.100)
0.998

(0.063) (0.063)

0 0.5
1.179

(0.236) (0.320)
1.131

(0.160) (0.257)
1.112

(0.111) (0.201)
1.124

(0.071) (0.147)

0 0.8
1.487

(0.297) (0.564)
1.340

(0.189) (0.439)
1.277∗

(0.128) (0.354)
1.258∗

(0.080) (0.272)

0.5 0
1.013

(0.203) (0.194)
0.999

(0.141) (0.137)
0.997

(0.100) (0.101)
0.998

(0.063) (0.064)

0.5 0.5
1.179

(0.236) (0.326)
1.129

(0.160) (0.257)
1.113

(0.111) (0.200)
1.127

(0.071) (0.147)

0.5 0.8
1.494

(0.299) (0.555)
1.344

(0.190) (0.434)
1.268∗

(0.127) (0.354)
1.262∗

(0.080) (0.270)

0.8 0
1.013

(0.203) (0.200)
1.003

(0.142) (0.139)
0.997

(0.100) (0.099)
0.998

(0.063) (0.063)

0.8 0.5
1.181

(0.236) (0.322)
1.129

(0.160) (0.251)
1.109

(0.111) (0.201)
1.123

(0.071) (0.147)

0.8 0.8
1.493

(0.299) (0.565)
1.338

(0.189) (0.435)
1.269∗

(0.127) (0.353)
1.262∗

(0.080) (0.269)
MA(1)

c θ

Mean b̂
γ=1/2
n

(
√

2/n×Mean b̂
γ=1/2
n ) (SD b̂

γ=1/2
n )

0 0.5
1.078

(0.216) (0.281)
1.052

(0.149) (0.202)
1.041

(0.104) (0.146)
1.053

(0.067) (0.095)

0 0.8
1.078

(0.216) (0.296)
1.052

(0.149) (0.207)
1.049

(0.105) (0.149)
1.054

(0.067) (0.099)

0.5 0
1.014

(0.203) (0.195)
1.000

(0.141) (0.138)
0.999

(0.100) (0.101)
0.998

(0.063) (0.064)

0.5 0.5
1.078

(0.216) (0.279)
1.051

(0.149) (0.202)
1.046

(0.105) (0.146)
1.053

(0.067) (0.096)

0.5 0.8
1.076

(0.215) (0.295)
1.050

(0.148) (0.205)
1.043

(0.104) (0.149)
1.055

(0.067) (0.099)

0.8 0
1.013

(0.203) (0.198)
1.002

(0.142) (0.140)
0.998

(0.100) (0.098)
0.998

(0.063) (0.063)

0.8 0.5
1.081

(0.216) (0.277)
1.052

(0.149) (0.201)
1.043

(0.104) (0.144)
1.051

(0.066) (0.096)

0.8 0.8
1.079

(0.216) (0.297)
1.049

(0.148) (0.207)
1.044

(0.104) (0.149)
1.054

(0.067) (0.099)
Notes: The entries are estimates of the tail index and their standard errors using regression (1.3)
with γ = 1/2 for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1, Z0 = 0, and Zt =
ut + θut−1, where i.i.d. ut follow the distribution P (Z > s) = s−ζ

(
1 + c(s−αζ − 1)

)
, s ≥ 1, with

ζ = α = 1 and c ∈ [0, 1). For a general case ζ > 0, one multiplies all the numbers in the table by ζ.
“Mean b̂

γ=1/2
n ” is the sample mean of the estimates b̂γ

n with γ = 1/2 obtained in simulations, and
“SD b̂

γ=1/2
n ” is their sample standard deviation. The values

√
2/n×Mean b̂

γ=1/2
n are the standard

errors of b̂γ
n with γ = 1/2 provided by Theorem 1. The asteric indicates rejection of the true null

hypothesis H0 : ζ = 1 in favor of the alternative hypothesis Ha : ζ 6= 1 at the 5% significance level
using the reported standard errors. The total number of observations N = 2000. Based on 10000
replications.
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Table 4. Behavior of the OLS estimator b̂γ
n with γ = 1/2

in the regression log (Rank− 1/2) = a− b log (Size) for Student t innovations
n 50 100 200 500

AR(1)
m ρ

Mean b̂
γ=1/2
n

(
√

2/n×Mean b̂
γ=1/2
n ) (True s.e.)

2 0
1.981

(0.396) (0.374)
1.918

(0.271) (0.255)
1.834

(0.183) (0.164)
1.552∗

(0.098) (0.074)

2 0.5
2.178

(0.436) (0.489)
2.104

(0.297) (0.367)
2.004

(0.200) (0.253)
1.678∗

(0.106) (0.116)

2 0.8
2.647

(0.529) (0.854)
2.465

(0.349) (0.639)
2.277

(0.228) (0.442)
1.827

(0.116) (0.200)

3 0
2.798

(0.560) (0.507)
2.651

(0.375) (0.325)
2.427∗

(0.243) (0.196)
1.870∗

(0.118) (0.080)

3 0.5
3.118

(0.624) (0.633)
2.941

(0.416) (0.431)
2.691

(0.269) (0.268)
2.026∗

(0.128) (0.108)

3 0.8
3.956

(0.791) (1.104)
3.592

(0.508) (0.756)
3.149

(0.315) (0.459)
2.215∗

(0.140) (0.189)

4 0
3.442

(0.688) (0.585)
3.177

(0.449) (0.364)
2.825∗

(0.282) (0.210)
2.051∗

(0.130) (0.084)

4 0.5
3.848

(0.770) (0.710)
3.553

(0.502) (0.461)
3.130∗

(0.313) (0.265)
2.198∗

(0.139) (0.112)

4 0.8
4.950

(0.990) (1.188)
4.323

(0.611) (0.732)
3.634

(0.363) (0.427)
2.370∗

(0.150) (0.188)
MA(1)

m θ

Mean b̂
γ=1/2
n

(
√

2/n×Mean b̂
γ=1/2
n ) (True s.e.)

2 0.5
2.106

(0.421) (0.480)
2.042

(0.289) (0.339)
1.939

(0.194) (0.225)
1.632∗

(0.103) (0.098)

2 0.8
2.157

(0.431) (0.564)
2.065

(0.292) (0.384)
1.963

(0.196) (0.248)
1.647∗

(0.104) (0.105)

3 0.5
3.032

(0.606) (0.612)
2.856

(0.404) (0.417)
2.610

(0.261) (0.251)
1.978∗

(0.125) (0.100)

3 0.8
3.180

(0.636) (0.761)
2.953

(0.418) (0.483)
2.679

(0.268) (0.289)
2.008∗

(0.127) (0.107)

4 0.5
3.747

(0.749) (0.697)
3.441

(0.487) (0.446)
3.048∗

(0.305) (0.249)
2.157∗

(0.136) (0.100)

4 0.8
3.977

(0.795) (0.849)
3.613

(0.511) (0.531)
3.140∗

(0.314) (0.293)
2.194∗

(0.139) (0.108)
Notes: The entries are estimates of the tail index and their standard errors using regression (1.3)
with γ = 1/2 for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1, Z0 = 0, and Zt =
ut + θut−1, where i.i.d. ut have the Student t distribution with m degrees of freedom. For a
general case ζ > 0, one multiplies all the numbers in the table by ζ. “Mean b̂

γ=1/2
n ” is the sample

mean of the estimates b̂γ
n with γ = 1/2 obtained in simulations, and “SD b̂

γ=1/2
n ” is their sample

standard deviation. The values
√

2/n×Mean b̂
γ=1/2
n are the standard errors of b̂γ

n with γ = 1/2
provided by Theorem 1. The asteric indicates rejection of the true null hypothesis on the tail index
ζ of Zt H0 : ζ = m in favor of the alternative hypothesis Ha : ζ 6= m at the 5% significance level
using the reported standard errors. The total number of observations N = 2000. Based on 10000
replications.
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(column n = 50, the first row) shows that the traditional OLS estimator using regression

(1.3) with γ = 0 yields an average of 0.924 (whereas the true tail index is 1), and the

OLS standard error is 0.024, very far from the true standard deviation, 0.185. By contrast,

the OLS estimator using regression (1.3) with γ = 1/2 proposed in this paper (Table 3,

column n = 50, the first row) and expansion (2.8) yield an average estimate of 1.011, and

the standard error of 0.202, very close to the true standard deviation, 0.199.

More generally, the OLS estimates b̂n of Pareto exponents ζ using traditional regression

(1.3) with γ = 0 reported in Tables 1 and 2 are significantly different from the true tail

indices, which means that b̂n is biased in small samples. According to the same tables, the

OLS standard errors in regression (1.3) with γ = 0 are consistently smaller than the true

standard deviations. In most of the numerical results presented in the tables, the true null

hypothesis on the tail index H0 : ζ = ζ0 is rejected in favor of the alternative hypothesis Ha :

ζ 6= ζ0 at the 5% significance level using the OLS standard errors.

In most of the entries in Tables 3 and 4, including dependence and deviations from power

tail distributions, the standard errors in the regression with shifts γ = 1/2 are much closer to

the true standard deviations than in the case of the OLS standard errors reported in Tables

1 and 2. Comparing to the traditional regression in Tables 1 and 2, the approach illustrated

by Tables 3 and 4 rejects the true null hypothesis on the tail index H0 : ζ = ζ0 significantly

less often.

The numerical results reported in Tables 5 and 6 in the technical appendix indicate that

the modified OLS approach to the tail index estimation using regression (1.3) with γ = 1/2

also performs well in the case of GARCH(1, 1) processes, including IGARCH(1, 1) time

series that have the GARCH coefficient (the coefficient at the lagged conditional variance)

not too close to 1. For such processes, it also dominates, similar to the simulations discussed

in this section, the traditional procedure based on regressions (1.3) with γ = 0. The OLS
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tail index estimation approach may be combined with GARCH filters (see, among others,

Subsection 3.3 in Prigent 2003) to make inference on Pareto exponents under dependence

and heavy-tailedness beyond those implied by conditional heteroskedasticity.

The comparison of Tables 3 and 4 with Tables 7 and 8 in the technical appendix shows

that the performance of and the numerical results for the tail index estimator using harmonic

numbers and regression (3.10) are very similar to those for the OLS estimator in regression

(1.3) with the optimal shift γ = 1/2. All in all, the shifted OLS regression may be preferable,

because it is arguably a more transparent and easier to use.

5 An empirical application: Zipf’s law for cities

As an example, we study the distribution of city populations. This example is, historically,

the first economic example of Zipf’s law (Zipf, 1949). Helped by the relatively good avail-

ability of city size data, it has spawned a vast empirical and theoretical literature, surveyed

by Gabaix and Ioannides (2004). As a U.S. example, we take, like Krugman (1996) and

Gabaix (1999), all 135 American metropolitan areas listed in the Statistical Abstract of the

United States in the year 1991, which includes all agglomerations with size above 250,000

inhabitants. The advantage is that “metropolitan area” represents the agglomeration of the

cities (e.g., the metropolitan area of Boston includes Cambrige), which is commonly viewed

as the correct economic definition.

We rank cities from largest (rank 1) to smallest (rank n = 135), and denote their sizes

S(1) ≥ ... ≥ S(n).

Regression (1.3) with γ = 1/2 estimated for the data is

log (t− 0.5) = 10.846− 1.050 log S(t).

(0.128)

14



The number in the bracket is the standard error for the tail index (the slope coefficient b̂γ
n)

given by
√

2
n
b̂n by Theorem 1.

Regression (1.4) with γ = 1/2 estimated for the data is

log S(t) = 10.244− 0.930 log (t− 0.5),

producing the estimate of the tail index equal to 1/d̂γ
n ≈ 1.075 with the standard error

given by
√

2
n

1

d̂n
≈ 0.131 by Theorem 1. The estimates of the tail index are not statistically

different from 1 at the 10% significance level, so that Zipf’s law for cities is confirmed in this

dataset.

6 Conclusion and suggestions for future research

The OLS log-log rank-size regression log (Rank) = a − b log (Size) and related procedures

are some of the most popular approaches to Pareto exponent estimation, with b taken as

an estimate of the tail index. Unfortunately, these procedures are strongly biased in small

samples. We provide a simple approach to bias reduction based on the modified log-log

rank-size regression log (Rank− 1/2) = a − b log (Size). The shift of 1/2 is optimal and

reduces the bias to a leading order. We further show that the standard error on the Pareto

exponent ζ in the above procedure is asymptotically (2/n)1/2ζ, and obtain similar results for

the regression log (Size) = c − d log (Rank− 1/2). The proposed estimation procedures are

illustrated using an empirical analysis of the U.S. city size distribution. Simulation results

indicate that the proposed tail index estimation procedures perform well under dependence

and deviations from power law distributions. They further demonstrate the advantage of

the new methods over the standard OLS log-log rank-size regressions.

An important open problem concerns asymptotic expansions for the OLS tail index es-

timators for dependent processes, including the autocorrelated time series considered in

simulations. Combining the modified OLS estimation approach with block-bootstrap may
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be useful in developing Pareto exponent estimation procedures under dependence. In addi-

tion, unreported preliminary results suggest that the OLS approaches to Pareto exponent

estimation are more robust than Hill’s estimator of a tail index under deviations from power

laws. Other important problems include the analysis of the optimal choice of the number n

of extreme observations used in estimation and the study of the asymptotic bias of the OLS

estimators when n is determined by minimizing the asymptotic mean square error. Analysis

of these issues and comparisons of the OLS tail index estimators with other procedures are

left for further research.

7 Appendix. Proof of Theorem 1

Let Zt follow distribution (2.5), and let Z ′
t = Zζ

t . As in (1.2), denote by Z ′
(1) ≥ ... ≥ Z ′

(n)

decreasingly ordered variables Z ′
t. We have P (Z ′

t > s) = P (Zt > s1/ζ) = 1/s, s ≥ 1.

Consequently, Z ′
t follow distribution (2.5) with ζ = 1. Evidently, for the logarithms of ordered

observations xt = log(Z(t)) and x′t = log(Z ′
(t)) one has xt = x′t/ζ. Therefore, we get that the

OLS estimators b̂γ
n and d̂γ

n in (2.6) and (2.7) satisfy

b̂γ
n/ζ = −

∑n
t=1(x

′
t − x′n)(yt − yn)∑n

t=1(x
′
t − x′n)2

, ζd̂γ
n = −

∑n
t=1(x

′
t − x′n)(yt − yn)∑n

t=1(yt − yn)2
.

This implies that it suffices to prove Theorem 1 for the case ζ = 1. This will be assumed

throughout the proof.

Step 1. We will need several asymptotic relations involving sums of logarithms. Using

Euler-Maclaurin summation formula with the remainder terms that are O(1) for the sums

considered below (see, e.g., Havil, 2003, p. 86), we have

t∑
i=1

log (i− γ) =

∫ t

1

log (x− γ)dx +
log (t− γ)

2
+ O(1) =

t log (t− γ)− t +
(1

2
− γ

)
log (t− γ) + O(1), (7.15)
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n∑
t=1

log2 (t− γ) = (n− γ) log2 (n− γ)− 2(n− γ) log (n− γ) +

2n +
log2 (n− γ)

2
+ O(1). (7.16)

Denote Lt =
1

t

t∑
i=1

log (i− γ)− log(t− γ) + 1−
(1

2
− γ

) log (t− γ)

t
. From (7.15) it follows

that

Mn =
n−1∑
t=1

[1

t

t∑
i=1

log (i− γ)− 1

n

n∑
i=1

log (i− γ)− log(t− γ) + log(n− γ)
]2

(7.17)

satisfies

Mn =
n−1∑
t=1

[
Lt − Ln +

(1

2
− γ

) log (t− γ)

t
−

(1

2
− γ

) log (n− γ)

n

]2

≤

C

n−1∑
t=1

L2
t + CnL2

n + C

n−1∑
t=1

[ log (t− γ)

t

]2

+ C
[ log2 (n− γ)

n

]
≤

C

n−1∑
t=1

1

t2
+

C

n
+ C

n−1∑
t=1

[ log (t− γ)

t

]2

+ C
[ log2 (n− γ)

n

]
≤ C. (7.18)

Applying integral approximations to partial sums, it is easy to see that, for all γ < 1,

n∑
t=1

log (t− γ)

t
=

(log n)2

2
+ o((log n)2). (7.19)

From (7.15) and (7.19) we get that

Gn =
1√
n

[
n +

n∑
t=1

1

t

( t∑
i=1

log (i− γ)
)
−

( n∑
t=1

log (t− γ)
)]

(7.20)

satisfies

Gn =
1√
n

[
n +

n∑
t=1

log (t− γ)− n +
(1

2
− γ

) n∑
t=1

log (t− γ)

t
−

n log (n− γ) + n−
(1

2
− γ

)
log (n− γ) + O(log n)

]
=

1√
n

[
n log (n− γ)− n +

(1

2
− γ

)
log (n− γ) +

(1

2
− γ

) n∑
t=1

log (t− γ)

t
−

n log (n− γ) + n−
(1

2
− γ

)
log (n− γ) + O(log n)

]
=

1√
n

(1

2
− γ

) n∑
t=1

log (t− γ)

t
+ O

( log n√
n

)
=

(1− 2γ)

4

(log n)2

√
n

+ o
((log n)2

√
n

)
. (7.21)
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Using (7.15), (7.16) and (7.19), it is not difficult to get that

1√
n

[ n∑
t=1

log2 (t− γ)− 1

n

( n∑
t=1

log (t− γ)
)2

+

n∑
t=1

1

t

t∑
i=1

log (i− γ)−
n∑

t=1

log (t− γ)
]

=
1

2

(
γ − 1

2

) log2 n√
n

+ o
( log2 n√

n

)
, (7.22)

and

Dn

n
=

1

n

n∑
t=1

y2
t − ny2

n =
1

n

n∑
t=1

log2 (t− γ)− n
( n∑

t=1

log (i− γ)
)2

= 1 + O
( log2 n

n

)
. (7.23)

Step 2. Relation (2.8) for ζ = 1 is a consequence of (2.6) and the following asymptotic

expansions for the statistics Aγ
n and Bn under ζ = 1 that we establish in turn:

1√
n

(Aγ
n + Bn) = N (0, 2) +

(log n)2 (1− 2γ)

4
√

n
+ oP

( log2 n√
n

)
, (7.24)

Bn

n
= 1 + OP

( log n√
n

)
. (7.25)

Similarly, asymptotic expansion (2.9) for ζ = 1 is a consequence of (2.7), (7.23) and the

relation

1√
n

(Aγ
n + Dn) = N (0, 2) +

(log n)2 (2γ − 1)

4
√

n
+ oP

( log2 n√
n

)
. (7.26)

that we prove below.

Step 3. We first focus on proving relation (7.24). By the Rényi representation theorem

(see Beirlant et al., 2004, Sections 4.2.1 (iii) and 4.4), one has that, for the logarithms

xt = log Z(t) of ordered observations from a population with the distribution satisfying

power law (2.5), the transformations

τt = t
(
xt − xt+1

)
, t = 1, ..., n− 1,

are i.i.d. exponential r.v.’s with parameter 1: P (τt > s) = exp(−s), s ≥ 0. That is, one can

represent the regressors in (1.3) as weighted sums of exponential r.v.’s in the following way:

xt = xn + zt, t = 1, ..., n,
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where zn = 0 and zt =
n−1∑
i=t

τi

i
, t = 1, ..., n− 1. We, therefore, get

Bn =
n∑

t=1

(xt − xn)2 =
n∑

t=1

(xn + zt − xn − zn)2 =
n∑

t=1

(zt − zn)2 =
n−1∑
t=1

z2
t − nz2

n, (7.27)

and, similarly,

Aγ
n =

n∑
t=1

(xt − xn)(yt − yn) =
n∑

t=1

(zt − zn)(yt − yn) =
n−1∑
t=1

ztyt − nznyn. (7.28)

We further have

n−1∑
t=1

z2
t =

n−1∑
t=1

( n−1∑
i=t

τi

i

)2

=
n−1∑
t=1

n−1∑
i=t

τ 2
i

i2
+ 2

n−1∑
t=1

n−2∑
i=t

τi

i

n−1∑
j=i+1

τj

j
=

n−1∑
i=1

τ 2
i

i
+ 2

n−1∑
j=2

τj

j

j−1∑
i=1

τi. (7.29)

In addition,

nz2
n =

1

n

( n−1∑
t=1

n−1∑
i=t

τi

i

)2

=
1

n

( n−1∑
i=1

τi

)2

=
1

n

n−1∑
i=1

τ 2
i +

2

n

n−1∑
i=2

τi

i−1∑
j=1

τj. (7.30)

By (7.27), (7.29) and (7.30) we get

Bn =
n∑

t=1

(xt − xn)2 =
( n−1∑

t=1

z2
t − nz2

n

)
=

n−1∑
i=1

τ 2
i

i
+ 2

n−1∑
j=2

τj

j

j−1∑
i=1

τi − 1

n

n−1∑
i=1

τ 2
i −

2

n

n−1∑
i=2

τi

i−1∑
j=1

τj. (7.31)

Similar to the above derivations, we have

n−1∑
t=1

ztyt =
n−1∑
t=1

log (t− γ)
( n−1∑

i=t

τi

i

)
=

n−1∑
t=1

τt

t

( t∑
i=1

log (i− γ)
)
, (7.32)

nznyn =
( n−1∑

t=1

n−1∑
i=t

τi

i

)( 1

n

n∑
t=1

log (t− γ)
)

=
( n−1∑

t=1

τt

)( 1

n

n∑
t=1

log (t− γ)
)
. (7.33)

Relations (7.28), (7.32) and (7.33) imply

Aγ
n =

n−1∑
t=1

τt

t

( t∑
i=1

log (i− γ)
)
−

( n−1∑
t=1

τt

)( 1

n

n∑
t=1

log (t− γ)
)
. (7.34)
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From (7.31) and (7.34) we get

1√
n

(Aγ
n + Bn) =

1√
n

[ n−1∑
t=1

τt

t

( t∑
i=1

log (i− γ)
)
−

( n−1∑
t=1

τt

)( 1

n

n∑
t=1

log (t− γ)
)

+

n−1∑
i=1

τ 2
i

i
+ 2

n−1∑
j=2

τj

j

j−1∑
i=1

τi − 1

n

n−1∑
i=1

τ 2
i −

2

n

n−1∑
i=2

τi

i−1∑
j=1

τj

]
. (7.35)

Consider

2√
n

∑
1≤i<j≤n−1

τiτj

j
− 2

n3/2

∑
1≤i<j≤n−1

τiτj =

2√
n

∑
1≤i<j≤n−1

(τi − 1)(τj − 1)

j
+

2√
n

∑
1≤i<j≤n−1

τj − 1

j
+

2√
n

∑
1≤i<j≤n−1

τi − 1

j
+

2√
n

∑
1≤i<j≤n−1

1

j
− 2

n3/2

∑
1≤i<j≤n−1

(τi − 1)(τj − 1)− 2

n3/2

∑
1≤i<j≤n−1

(τj − 1)−

2

n3/2

∑
1≤i<j≤n−1

(τi − 1)− (n− 1)(n− 2)

n3/2
. (7.36)

We have that

2√
n

∑
1≤i<j≤n−1

1

j
− (n− 1)(n− 2)

n3/2
=
√

n + O
( log n√

n

)

and

2√
n

∑
1≤i<j≤n−1

τj − 1

j
− 2

n3/2

∑
1≤i<j≤n−1

(τi − 1)− 2

n3/2

∑
1≤i<j≤n−1

(τj − 1) =

2√
n

n−1∑
j=1

(τj − 1)− 2

n3/2

n−1∑
j=1

(τj − 1)(n− j)− 2

n3/2

n−1∑
j=1

(τj − 1)j + OP

( 1√
n

)
= OP

( 1√
n

)
.

From (7.36) it thus follows that

2√
n

∑
1≤i<j≤n−1

τiτj

j
− 2

n3/2

∑
1≤i<j≤n−1

τiτj =
2√
n

∑
1≤i<j≤n−1

(τi − 1)(τj − 1)

j
−

2

n3/2

∑
1≤i<j≤n−1

(τi − 1)(τj − 1) +
2√
n

∑
1≤i<j≤n−1

τi − 1

j
+
√

n + OP

( log n√
n

)
.

Using the previous relation, from (7.35) we now obtain

1√
n

(Aγ
n + Bn) =

1√
n

n−1∑
t=1

(τt − 1)
[1

t

( t∑
i=1

log (i− γ)
)
−

( 1

n

n∑
i=1

log (i− γ)
)

+

2
1

t

t−1∑
i=1

(τi − 1)− 2

n

t−1∑
i=1

(τi − 1) + 2
n−1∑

j=t+1

1

j

]
+ Gn +

[ 1√
n

n−1∑
i=1

τ 2
i

i
− 1

n3/2

n−1∑
i=1

τ 2
i

]
+ OP

( log n√
n

)
, (7.37)
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where Gn is defined in (7.20). We have E
[ ∑n−1

i=1
τ2
i

i

]
= O(log n) and E

[ ∑n−1
i=1 τ 2

i

]
= O(n).

These relations imply

1√
n

n−1∑
i=1

τ 2
i

i
= OP

( log n√
n

)
, (7.38)

1

n3/2

n−1∑
i=1

τ 2
i = OP

( 1√
n

)
. (7.39)

In addition, it is not difficult to see that V ar
[ ∑n−1

t=1
τt−1

t

∑t−1
i=1(τi − 1)

]
= O

( ∑n
t=1

1
t

)
=

O(log n). This implies that

1√
n

n−1∑
t=1

τt − 1

t

t−1∑
i=1

(τi − 1) = OP

((log n)1/2

√
n

)
. (7.40)

Similarly, since V ar
[∑n−1

t=1 (τt − 1)
∑t−1

i=1(τi − 1)
]

= O(n2), we get

1

n3/2

n−1∑
t=1

(τt − 1)
t−1∑
i=1

(τi − 1) = OP

( 1√
n

)
. (7.41)

Using relations (7.21) and (7.37)-(7.41), one obtains

1√
n

(Aγ
n + Bn) =

1√
n

n−1∑
t=1

(τt − 1)
[1

t

( t∑
i=1

log (i− γ)
)
−

( 1

n

n∑
i=1

log (i− γ)
)

+ 2
n−1∑

j=t+1

1

j

]
+

2√
n

n−1∑
t=1

τt − 1

t

t−1∑
i=1

(τi − 1)−

2

n3/2

n−1∑
t=1

(τt − 1)
t−1∑
i=1

(τi − 1) + Gn =
1√
n

n−1∑
t=1

(τt − 1)
[1

t

( t∑
i=1

log (i− γ)
)
−

( 1

n

n∑
i=1

log (i− γ)
)

+ 2
n−1∑

j=t+1

1

j

]
+ Gn + OP

((log n)1/2

√
n

)
=

1√
n

n−1∑
t=1

(τt − 1)
[1

t

( t∑
i=1

log (i− γ)
)
−

( 1

n

n∑
i=1

log (i− γ)
)

+ 2
n−1∑

j=t+1

1

j

]

+
(1− 2γ)

4

(log n)2

√
n

+ oP (
(log n)2

√
n

) =

− 1√
n

n−1∑
t=1

(τt − 1) log (t/n) +
1√
n

n−1∑
t=1

(τt − 1)
[1

t

( t∑
i=1

log (i− γ)
)
−

( 1

n

n∑
i=1

log (i− γ)
)

+ 2
n−1∑

j=t+1

1

j
+ log (t/n)

]
+

(1− 2γ)

4

(log n)2

√
n

+ oP

((log n)2

√
n

)
. (7.42)
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Let us show that

Un =
1√
n

n−1∑
t=1

(τt − 1)
[1

t

( t∑
i=1

log (i− γ)
)
−

( 1

n

n∑
i=1

log (i− γ)
)

+ 2
n−1∑

j=t+1

1

j
+ log (t/n)

]
= OP

( 1√
n

)
. (7.43)

We have

V ar(
√

nUn) =
n−1∑
t=1

[1

t

( t∑
i=1

log (i− γ)
)
−

( 1

n

n∑
i=1

log (i− γ)
)
− log(t− γ) +

log(n− γ) + 2
n−1∑

j=t+1

1

j
+ 2 log (t/n) + log

(
1− γ/t

)− log
(
1− γ/n

)]2

≤

C
(
Mn +

n−1∑
t=1

[
log

(
1− γ/t

)− log
(
1− γ/n

)]2

+
n−1∑
t=1

[ n−1∑
j=t+1

1

j
+ log (t/n)

]2)
=

C(Mn + Qn + Rn),

where Mn is defined in (7.17), Rn =
n−1∑
t=1

[ n−1∑
j=t+1

1

j
+ log (t/n)

]2

, and

Qn =
n−1∑
t=1

[
log

(
1− γ/t

)− log
(
1− γ/n

)]2

. (7.44)

Using the inequalities x− x2/2 ≤ log (1− x) ≤ x, x > 0, one easily obtains that

Qn = O(1). (7.45)

In addition, since, for all t and n,
∣∣∣

n−1∑
j=t+1

1

j
+ log (t/n)

∣∣∣ ≤ C

t
, we get that Rn = O(1). Using

(7.18) and the above relations, we conclude that V ar(
√

nUn) = O(1). Thus, (7.43) indeed

holds. We now provide the argument for the relation

− 1√
n

n−1∑
t=1

(τt − 1) log (t/n) =
√

2N (0, 1) + OP

((log n)3/2

√
n

)
(7.46)

using strong approximations to partial sums of r.v.’s by Brownian motion.

Using partial summation similar to the proof of Lemma 2.3 in Phillips (2001), we get

(below, St =
∑t

i=1 ui and ui = τi − 1)

− 1√
n

n∑
t=1

ut log (t/n) = − 1√
n

n∑
t=1

ut log t + log n
1√
n

n∑
t=1

ut =
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[
− log n

Sn√
n

+
n∑

t=2

(
log t− log (t− 1)

)St−1√
n

]
+ log n

Sn√
n

=

n∑
t=2

(
log t− log (t− 1)

)St−1√
n

.

By the strong approximation to partial sums of independent r.v.’s that holds under

the assumption of existence of moment generating function in a neighborhood of zero (see,

e.g., Komlós, Major and Tusnády, 1975, 1976; Csörgő and Révész, 1981, Theorem 2.6.1),

one can expand the probability space as necessary to set up a partial sum process that is

distributionally equivalent to St and the standard Brownian motion W (·) on the same space

such that

sup
1≤t≤n

∣∣∣St−1√
n
−W

(t− 1

n

)∣∣∣ = O
( log n

n

)
(a.s.). (7.47)

As conventional, throughout the rest of the proof we suppose that that the probability

space on which the random sequences considered are defined has been appropriately enlarged

so that relation (7.47) holds. From (7.47) we get

n∑
t=2

(
log t− log (t− 1)

)St−1√
n

=
n∑

t=2

(
log t− log (t− 1)

)
W

(t− 1

n

)
+

O
( log n

n

) n∑
t=2

(
log t−log (t−1)

)
=

n∑
t=2

(
log t−log (t−1)

)
W

(t− 1

n

)
+O

( log2 n

n

)
. (a.s.)

Let us consider the difference between

n∑
t=2

(
log t− log (t− 1)

)
W

(t− 1

n

)
=

n∑
t=2

[
log

(
n

t

n

)
− log

(
n

t− 1

n

)]
W

(t− 1

n

)

and
∫ 1

0
W (r)d log (nr). We have

∣∣∣
n∑

t=2

(
log t− log (t− 1)

)
W

(t− 1

n

)
−

∫ 1

0

W (r)d log (nr)
∣∣∣ =

∣∣∣
n∑

t=2

[(
log t− log (t− 1)

)
W

(t− 1

n

)
−

∫ t/n

(t−1)/n

W (r)d log (nr)
]∣∣∣ ≤

n∑
t=2

∫ t/n

(t−1)/n

∣∣∣W (r)−W
(t− 1

n

)∣∣∣d log(nr) ≤
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sup
t1,t2:|t2−t1|≤1/n

∣∣W (t2)−W (t1)|
n∑

t=2

∫ t/n

(t−1)/n

d log(nr) =

sup
t1,t2:|t2−t1|≤1/n

∣∣W (t2)−W (t1)|
n∑

t=2

(
log t− log (t−1)

)
= log n sup

t1,t2:|t2−t1|≤1/n

∣∣W (t2)−W (t1)|.

According to the results on the modulus of continuity for Brownian sample paths (Karatzas

and Shreve, 1991, pp. 114-116),

sup
t1,t2:|t2−t1|≤1/n

∣∣W (t2)−W (t1)| = O
(√log n√

n

)
(a.s.).

This, together with integration by parts, implies that

− 1√
n

n∑
t=1

log (t/n)ut =

∫ 1

0

W (r)d log (nr) + OP

((log n)3/2

√
n

)
=

−
∫ 1

0

log s dW (s) + OP

((log n)3/2

√
n

)
.

Since
∫ 1

0
log sdW (s) =d W

( ∫ 1

0
log2 sds

)
= W (2), we get that (7.46) indeed holds. Rela-

tions (7.42), (7.43) and (7.46) imply (7.24).

Step 4. We now turn to proving (7.25). By (7.27), (7.29) and (7.30),

Bn

n
=

1

n

n−1∑
t=1

z2
t − z2

n =
1

n

n−1∑
i=1

τ 2
i

i
+

2

n

n−1∑
j=2

τj

j

j−1∑
i=1

τi − 1

n2

( n−1∑
i=1

τi

)2

. (7.48)

Since, by the central limit theorem,
1

n

n−1∑
i=1

τi = 1 + OP (
1√
n

), we have

1

n2

( n−1∑
i=1

τi

)2

= 1 + OP

( 1√
n

)
. (7.49)

In addition,

2

n

n−1∑
j=2

τj

j

j−1∑
i=1

τi =
2

n

n−1∑
t=2

τt − 1

t

t−1∑
i=1

τi +
2

n

n−1∑
t=2

1

t

t−1∑
i=1

(τi − 1) +
2

n

n−1∑
t=2

1

t

t−1∑
i=1

1 =

2

n

n−1∑
t=1

τt − 1

t

t−1∑
i=1

τi +
2

n

n−1∑
t=1

1

t

t−1∑
i=1

(τi − 1) + 2 + OP

( log n

n

)
=

F (1)
n + F (2)

n + 2 + OP

( log n

n

)
. (7.50)

It is easy to see that V ar(F
(1)
n ) = O

(
1
n2

∑n
t=1

1
t2

E
( ∑t−1

i=1 τi

)2)
= O

(
1
n

)
and, thus,

F (1)
n = OP

( 1√
n

)
. (7.51)
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Besides, as it is not difficult to observe, V ar(F
(2)
n ) = O

(
1
n2

∑n
t=1

( ∑n
i=t

1
i

)2)
= O

(
log2 n

n

)

and, consequently,

F (2)
n = OP

( log n√
n

)
. (7.52)

From (7.38) and (7.48)-(7.52) it clearly follows that (7.25) indeed holds.

Step 5. It remains to prove relation (7.26). Using (7.34), we get, as in (7.42),

1√
n

(Aγ
n + Dn) =

1√
n

[ n−1∑
t=1

τt

t

( t∑
i=1

log(i− γ)
)
−

( n−1∑
t=1

τt

)( 1

n

n∑
t=1

log(t− γ)
)

+

n∑
t=1

log2(t− γ)− 1

n

( n∑
t=1

log(t− γ)
)2]

=
1√
n

n−1∑
t=1

(τt − 1) log(t/n) +

1√
n

n−1∑
t=1

(τt − 1)
[1

t

( t∑
i=1

log (i− γ)
)
−

( 1

n

n∑
t=1

log (t− γ)
)
− log(t/n)

]
+

1√
n

[ n∑
t=1

log2 (t− γ)− 1

n

( n∑
t=1

log (t− γ)
)2

+

n∑
t=1

1

t

t∑
i=1

log (i− γ)−
n∑

t=1

log (t− γ)
]
. (7.53)

Let us show that

Vn =
1√
n

n−1∑
t=1

(τt − 1)
[1

t

( t∑
i=1

log (i− γ)
)
−

( 1

n

n∑
t=1

log (t− γ)
)
− log(t/n)

]
=

OP

( 1√
n

)
. (7.54)

Similar to the arguments for (7.43), we get that the variance of Vn satisfies

V ar(
√

nVn) =
n−1∑
t=1

[1

t

( t∑
i=1

log (i− γ)
)
−

( 1

n

n∑
i=1

log (i− γ)
)
− log (t/n)

]2

≤

C(Mn + Qn),

where Mn is defined in (7.17) and Qn is defined in (7.44). Using (7.18) and (7.45), we thus

get that V ar(
√

nVn) = O(1). Consequently, (7.54) indeed holds. Relations (7.22), (7.46),

(7.53) and (7.54) imply (7.26).

Step 6. We conclude that relations (7.24)-(7.26) indeed hold. As indicated in Step 2,

these relations, together with (7.23) imply (2.8) and (2.9). ¥
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Technical appendix: Simulation results for GARCH processes

and the approach using harmonic numbers

This technical appendix provides simulation results for GARCH processes and estimators

of the tail index using harmonic numbers discussed in Section 3. Tables 5 and 6 present the

numerical results on the performance of OLS estimators in regressions (1.3) with γ = 0 and

γ = 1/2 for GARCH(1, 1) processes Zt = σtεt, where σ2
t = β +λZ2

t−1 +δσ2
t−1, and εt are i.i.d.

standard normal errors. The choice of the parameter values for β, λ and δ follows that in

the simulation results presented by Kokoszka and Wolf (2004) who focused on subsampling

approaches to estimating the mean of heavy-tailed observations. The corresponding values

of the tail index ζ0 of GARCH processes considered are provided in the same paper. The

GARCH processes were simulated using the UCSD GARCH toolbox for Matlab by Kevin

Sheppard. The IGARCH processes were simulated using the code by Mico Loretan.

Tables 7 and 8 provide simulation results for the Pareto exponent estimators in regres-

sion (3.10) for AR(1) and MA(1) processes driven by heavy-tailed innovations exhibiting

deviations from power laws in form (4.14) and Student t distributions.

References

Kokoszka, P. and Wolf, M. (2004), ‘Subsampling the mean of heavy-tailed dependent obser-

vations’, Journal of Time Series Analysis 25, 217–234.

1



Table 5. Behavior of the usual OLS estimator b̂n in the regression
log (Rank) = a− b log (Size) for GARCH(1, 1) innovations

n 50 100 200 500
Mean b̂n

(OLS s.e) (SD b̂n)
β = 1, λ = 1.3,

δ = 0.05, ζ0 ≈ 1.19
1.375∗

(0.035) (0.417)
1.294∗

(0.019) (0.328)
1.234∗

(0.011) (0.252)
1.139

(0.006) (0.159)

β = 1, λ = 1.1,

δ = 0.1, ζ0 ≈ 1.43
1.587∗

(0.040) (0.465)
1.511∗

(0.022) (0.366)
1.411

(0.013) (0.276)
1.297∗

(0.007) (0.164)

β = 1, λ = 0.9,

δ = 0.15, ζ0 ≈ 1.83
1.926∗

(0.047) (0.534)
1.839∗

(0.026) (0.411)
1.761

(0.015) (0.305)
1.534

(0.010) (0.162)

β = 1, λ = 0.9,

δ = 0.1, ζ0 = 2
2.057

(0.050) (0.530)
1.979

(0.028) (0.407)
1.881∗

(0.016) (0.296)
1.628∗

(0.011) (0.151)

β = 1, λ = 0.5,

δ = 0.5, ζ0 = 2
2.315∗

(0.059) (0.665)
2.136∗

(0.033) (0.528)
1.983

(0.019) (0.391)
1.630∗

(0.013) (0.202)

β = 1, λ = 0.1,

δ = 0.9, ζ0 = 2
3.799∗

(0.104) (0.880)
3.235∗

(0.060) (0.701)
2.677∗

(0.038) (0.546)
1.855∗

(0.022) (0.303)
Notes: The entries are the estimates of the tail index and their standard errors using regression
(1.3) with γ = 0 for GARCH(1, 1) processes Zt = σtεt, where σ2

t = β + λZ2
t−1 + δσ2

t−1, and εt

are i.i.d. standard normal errors. “Mean b̂n” is the sample mean of the estimates b̂n obtained
in simulations, and “SD b̂n” is their sample standard deviation. “OLS s.e.” is the OLS standard
error in regression (1.3) with γ = 0. The value ζ0 is the true tail index of Zt. The asteric indicates
rejection of the true null hypothesis H0 : ζ = ζ0 in favor of the alternative hypothesis Ha : ζ 6= ζ0 at
the 5% significance level using the reported OLS standard errors. The total number of observations
N = 2000. Based on 10000 replications.
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Table 6. Behavior of the usual OLS estimator b̂n in the regression
log (Rank− 1/2) = a− b log (Size) for GARCH(1, 1) innovations
n 50 100 200 500

Mean b̂
γ=1/2
n

(
√

2/n×Mean b̂
γ=1/2
n ) (SD b̂

γ=1/2
n )

β = 1, λ = 1.3,

δ = 0.05, ζ0 ≈ 1.19
1.495

(0.299) (0.453)
1.366

(0.193) (0.346)
1.277

(0.128) (0.260)
1.159

(0.073) (0.162)

β = 1, λ = 1.1,

δ = 0.1, ζ0 ≈ 1.43
1.727

(0.345) (0.505)
1.596

(0.226) (0.386)
1.492

(0.149) (0.285)
1.321

(0.084) (0.166)

β = 1, λ = 0.9,

δ = 0.15, ζ0 ≈ 1.83
2.097

(0.419) (0.580)
1.943

(0.275) (0.432)
1.823

(0.182) (0.314)
1.562

(0.099) (0.164)

β = 1, λ = 0.9,

δ = 0.1, ζ0 = 2
2.243

(0.449) (0.585)
2.091

(0.296) (0.424)
1.951

(0.195) (0.308)
1.658∗

(0.105) (0.150)

β = 1, λ = 0.5,

δ = 0.5, ζ0 = 2
2.512

(0.502) (0.721)
2.271

(0.321) (0.555)
2.051

(0.205) (0.398)
1.658∗

(0.105) (0.203)

β = 1, λ = 0.1,

δ = 0.9, ζ0 = 2
4.116∗

(0.823) (0.948)
3.405∗

(0.482) (0.740)
2.745∗

(0.274) (0.566)
1.884

(0.119) (0.307)
Notes: The entries are the estimates of the tail index and their standard errors using regression
(1.3) with γ = 1/2 for GARCH(1, 1) processes Zt = σtεt, where σ2

t = β + λZ2
t−1 + δσ2

t−1, and
εt are i.i.d. standard normal errors. “Mean b̂

γ=1/2
n ” is the sample mean of the estimates b̂γ

n with
γ = 1/2 obtained in simulations, and “SD b̂

γ=1/2
n ” is their sample standard deviation. The values√

2/n×Mean b̂
γ=1/2
n are the standard errors of b̂γ

n with γ = 1/2 provided by Theorem 1. The value
ζ0 is the true tail index of Zt. The asteric indicates rejection of the true null hypothesis H0 : ζ = ζ0

in favor of the alternative hypothesis Ha : ζ 6= ζ0 at the 5% significance level using the reported
standard errors. The total number of observations N = 2000. Based on 10000 replications.
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Table 7. Behavior of the OLS estimator b̂′n in the regression
log(H(t− 1)) = a′ − b′ log (Sizet) for innovations deviating from power laws

n 50 100 200 500
AR(1)

c ρ

Mean b̂′n
(
√

2/n×Mean b̂′n) (SD b̂′n)

0 0
1.002

(0.200) (0.195)
0.998

(0.141) (0.140)
0.995

(0.100) (0.100)
0.996

(0.063) (0.062)

0 0.5
1.167

(0.233) (0.318)
1.122

(0.159) (0.253)
1.105

(0.110) (0.201)
1.123

(0.071) (0.147)

0 0.8
1.462

(0.292) (0.555)
1.337

(0.189) (0.435)
1.266∗

(0.127) (0.346)
1.252∗

(0.079) (0.269)

0.5 0
0.997

(0.199) (0.194)
0.966

(0.141) (0.139)
0.995

(0.100) (0.099)
0.995

(0.063) (0.064)

0.5 0.5
1.161

(0.232) (0.324)
1.120

(0.158) (0.249)
1.105

(0.110) (0.200)
1.122

(0.071) (0.149)

0.5 0.8
1.471

(0.294) (0.557)
1.336

(0.189) (0.444)
1.268∗

(0.127) (0.345)
1.257∗

(0.080) (0.268)

0.8 0
1.004

(0.201) (0.198)
0.995

(0.141) (0.138)
0.996

(0.100) (0.099)
0.995

(0.063) (0.063)

0.8 0.5
1.162

(0.232) (0.324)
1.121

(0.159) (0.252)
1.106

(0.111) (0.199)
1.121

(0.071) (0.147)

0.8 0.8
1.475

(0.295) (0.556)
1.340

(0.189) (0.436)
1.266∗

(0.127) (0.351)
1.253∗

(0.079) (0.268)
MA(1)

c θ

Mean b̂′n
(
√

2/n×Mean b̂′n) (SD b̂′n)

0 0.5
1.066

(0.213) (0.279)
1.047

(0.148) (0.201)
1.039

(0.104) (0.145)
1.052

(0.067) (0.095)

0 0.8
1.067

(0.213) (0.294)
1.043

(0.147) (0.206)
1.041

(0.104) (0.149)
1.052

(0.067) (0.097)

0.5 0
0.999

(0.200) (0.194)
0.996

(0.141) (0.140)
0.995

(0.100) (0.100)
0.995

(0.063) (0.063)

0.5 0.5
1.068

(0.214) (0.277)
1.042

(0.147) (0.200)
1.039

(0.104) (0.143)
1.049

(0.066) (0.096)

0.5 0.8
1.075

(0.215) (0.296)
1.049

(0.148) (0.211)
1.043

(0.104) (0.150)
1.051

(0.066) (0.098)

0.8 0
1.001

(0.200) (0.196)
0.996

(0.141) (0.138)
0.995

(0.100) (0.099)
0.995

(0.063) (0.063)

0.8 0.5
1.068

(0.214) (0.279)
1.045

(0.148) (0.197)
1.042

(0.104) (0.144)
1.049

(0.066) (0.095)

0.8 0.8
1.071

(0.214) (0.291)
1.046

(0.148) (0.209)
1.040

(0.104) (0.148)
1.051

(0.066) (0.098)
Notes: The entries are estimates of the tail index and their standard errors using regression (3.10)
for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1, Z0 = 0, and Zt = ut + θut−1, where
i.i.d. ut follow the distribution P (Z > s) = s−ζ

(
1 + c(s−αζ − 1)

)
, s ≥ 1, with ζ = α = 1 and

c ∈ [0, 1). For a general case ζ > 0, one multiplies all the numbers in the table by ζ. “Mean b̂′n” is
the sample mean of the estimates b̂′n obtained in simulations, and “SD b̂′n” is their sample standard
deviation. The values

√
2/n×Mean b̂′n are the standard errors of b̂′n provided by expansion (3.12).

The asteric indicates rejection of the true null hypothesis H0 : ζ = 1 in favor of the alternative
hypothesis Ha : ζ 6= 1 at the 5% significance level using the reported standard errors. The total
number of observations N = 2000. Based on 10000 replications.
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Table 8. Behavior of the OLS estimator b̂n in the regression
log(H(t− 1)) = a′ − b′ log (Sizet) for Student t innovations

n 50 100 200 500
AR(1)

m ρ

Mean b̂′n
(
√

2/n×Mean b̂′n) (SD b̂′n)

2 0
1.959

(0.392) (0.370)
1.911

(0.270) (0.252)
1.827

(0.183) (0.165)
1.550∗

(0.098) (0.074)

2 0.5
2.153

(0.431) (0.488)
2.082

(0.295) (0.362)
1.995

(0.200) (0.253)
1.675∗

(0.106) (0.115)

2 0.8
2.634

(0.527) (0.843)
2.437

(0.345) (0.636)
2.253

(0.225) (0.443)
1.822

(0.115) (0.202)

3 0
2.763

(0.553) (0.501)
2.631

(0.372) (0.323)
2.417∗

(0.242) (0.194)
1.869∗

(0.118) (0.080)

3 0.5
3.077

(0.615) (0.629)
2.922

(0.413) (0.433)
2.683

(0.268) (0.270)
2.022∗

(0.128) (0.109)

3 0.8
3.921

(0.784) (1.103)
3.569

(0.505) (0.757)
3.141

(0.314) (0.463)
2.214∗

(0.140) (0.188)

4 0
3.409

(0.682) (0.588)
3.160

(0.447) (0.365)
2.820∗

(0.282) (0.204)
2.048∗

(0.130) (0.083)

4 0.5
3.813

(0.763) (0.706)
3.530

(0.499) (0.463)
3.116∗

(0.312) (0.266)
2.196∗

(0.139) (0.111)

4 0.8
4.897

(0.979) (1.168)
4.317

(0.610) (0.748)
3.617

(0.362) (0.428)
2.369∗

(0.150) (0.189)
MA(1)

m θ

Mean b̂n

(
√

2/n×Mean b̂′n) (SD b̂′n)

2 0.5
2.097

(0.419) (0.480)
2.025

(0.286) (0.336)
1.935

(0.193) (0.224)
1.631∗

(0.103) (0.099)

2 0.8
2.141

(0.428) (0.565)
2.064

(0.292) (0.379)
1.962

(0.196) (0.249)
1.645∗

(0.104) (0.107)

3 0.5
3.002

(0.600) (0.620)
2.850

(0.403) (0.441)
2.605

(0.261) (0.253)
1.976∗

(0.125) (0.098)

3 0.8
3.156

(0.631) (0.752)
2.956

(0.418) (0.491)
2.677

(0.268) (0.290)
2.006∗

(0.127) (0.107)

4 0.5
3.715

(0.743) (0.691)
3.431

(0.485) (0.442)
3.038∗

(0.304) (0.255)
2.156∗

(0.136) (0.100)

4 0.8
3.943

(0.789) (0.847)
3.590

(0.508) (0.527)
3.128∗

(0.313) (0.296)
2.191∗

(0.139) (0.108)
Notes: The entries are estimates of the tail index and their standard errors using regression (3.10)
for the AR(1) and MA(1) processes Zt = ρZt−1 + ut, t ≥ 1, Z0 = 0, and Zt = ut + θut−1, where
i.i.d. ut have the Student t distribution with m degrees of freedom. “Mean b̂′n” is the sample mean
of the estimates b̂′n obtained in simulations, and “SD b̂′n” is their sample standard deviation. The
values

√
2/n×Mean b̂′n are the standard errors of b̂′n provided by expansion (3.12). The asteric

indicates rejection of the true null hypothesis H0 : ζ = m in favor of the alternative hypothesis
Ha : ζ 6= m at the 5% significance level using the reported standard errors. The total number of
observations N = 2000. Based on 10000 replications.
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