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1 Introduction

Since the late 1990s there has been a large number of studies in economics applying and
extending RD methods, including Van der Klaauw (2002), Black (1999), Angrist and
Lavy (1999), Lee (this volume), Chay and Greenstone (2005), DiNardo and Lee (2004),
Chay, McEwan, and Urquiola (2005), McEwan and Shapiro (2007), and Card, Mas and
Rothstein (2006). Key theoretical and conceptual contributions include the interpretation
of estimates for fuzzy regression discontinuity designs allowing for general heterogeneity
of treatment effects (Hahn, Todd and Van der Klaauw, 2001, HTV from hereon), adaptive
estimation methods (Sun, 2005), specific methods for choosing bandwidths (Ludwig and
Miller, 2005), and various tests for discontinuities in means and distributions of non-
affected variables (Lee, this volume; McCrary, this volume).

In this paper, we review some of the practical issues in implementation of RD methods.
There is relatively little novel in this discussion. Our general goal is instead to address
practical issues in implementing RD designs and review some of the new theoretical
developments.

After reviewing some basic concepts in Section 2, the paper focuses on five specific
issues in the implementation of RD designs. In Section 3 we stress graphical analyses
as powerful methods for illustrating the design. In Section 4 we discuss estimation and
suggest using local linear regression methods using only the observations close to the
discontinuity point. In Section 5 we propose choosing the bandwidth using cross valida-
tion. In Section 6 we provide a simple plug-in estimator for the asymptotic variance and
a second estimator that exploits the link with instrumental variables methods derived
by HTV. In Section 7 we discuss a number of specification tests and sensitivity analyses
based on tests for (a) discontinuities in the average values for covariates, (b) discontinu-
ities in the conditional density of the forcing variable, as suggested by McCrary, and (c)

discontinuities in the average outcome at other values of the forcing variable.



2 Sharp and Fuzzy Regression Discontinuity Designs

2.1 Basics

Our discussion will frame the RD design in the context of the modern literature on causal
effects and treatment effects, using the Rubin Causal Model (RCM) set up with potential
outcomes (Rubin, 1974; Holland, 1986; Imbens and Rubin, 2007), rather than the regres-
sion framework that was originally used in this literature. For a general discussion of the
RCM and its use in the economic literature, see the survey by Imbens and Wooldridge
(2007).

In the basic setting for the RCM (and for the RD design), researchers are interested in
the causal effect of a binary intervention or treatment. Units, which may be individuals,
firms, countries, or other entities, are either exposed or not exposed to a treatment.
The effect of the treatment is potentially heterogenous across units. Let Y;(0) and Y;(1)
denote the pair of potential outcomes for unit i: Y;(0) is the outcome without exposure
to the treatment, and Y;(1) is the outcome given exposure to the treatment. Interest is in
some comparison of Y;(0) and Y;(1). Typically, including in this discussion, we focus on
differences Y;(1) — Y;(0). The fundamental problem of causal inference is that we never
observe the pair Y;(0) and Y;(1) together. We therefore typically focus on average effects
of the treatment, that is, averages of Y;(1) — Y;(0) over (sub-)populations, rather than
on unit-level effects. For unit ¢ we observe the outcome corresponding to the treatment
received. Let W; € {0, 1} denote the treatment received, with W; = 0 if unit ¢ was not
exposed to the treatment, and W; = 1 otherwise. The outcome observed can then be
written as

Y;(0) if W, =0,

EZ(l—Wi)'K’(O)ﬂLWi'K’(l):{yl.(1) it W; = 1.

In addition to the assignment W; and the outcome Y;, we may observe a vector of co-
variates or pretreatment variables denoted by (X;, Z;), where X, is a scalar and Z; is an
M-vector. A key characteristic of X; and Z; is that they are known not to have been
affected by the treatment. Both X; and Z; are covariates, with a special role played by
X; in the RD design. For each unit we observe the quadruple (Y;, W;, X;, Z;). We assume
that we observe this quadruple for a random sample from some well-defined population.

The basic idea behind the RD design is that assignment to the treatment is deter-
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mined, either completely or partly, by the value of a predictor (the covariate X;) being
on either side of a fixed threshold. This predictor may itself be associated with the po-
tential outcomes, but this association is assumed to be smooth, and so any discontinuity
of the conditional distribution (or of a feature of this conditional distribution such as the
conditional expectation) of the outcome as a function of this covariate at the cutoff value
is interpreted as evidence of a causal effect of the treatment.

The design often arises from administrative decisions, where the incentives for units to
participate in a program are partly limited for reasons of resource constraints, and clear
transparent rules rather than discretion by administrators are used for the allocation of
these incentives. Examples of such settings abound. For example, Hahn, Todd and Van
der Klaauw (1999) study the effect of an anti-discrimination law that only applies to
firms with at least 15 employees. In another example, Matsudaira (this volume) studies
the effect of a remedial summer school program that is mandatory for students who score
less than some cutoff level on a test (see also Jacob and Lefgren, 2004). Access to public
goods such as libraries or museums is often eased by lower prices for individuals depending
on an age cutoff value (senior citizen discounts, and discounts for children under some
age limit). Similarly, eligibility for medical services through medicare is restricted by age

(Card, Dobkin and Maestas, 2006).

2.2 The Sharp Regression Discontinuity Design

It is useful to distinguish between two general settings, the Sharp and the Fuzzy Re-
gression Discontinuity (SRD and FRD from hereon) designs (e.g., Trochim, 1984, 2001;
HTV). In the SRD design the assignment W; is a deterministic function of one of the

covariates, the forcing (or treatment-determining) variable X:!

All units with a covariate value of at least ¢ are assigned to the treatment group (and

participation is mandatory for these individuals), and all units with a covariate value

IHere we take X; to be a scalar. More generally, the assignment can be a function of a vector of
covariates. Formally, we can write this as the treatment indicator being an indicator for the vector X;
being an element of a subset of the covariate space, or

W, = 1{X1 c Xl},

where X; C X, and X is the covariate space.



less than ¢ are assigned to the control group (members of this group are not eligible
for the treatment). In the SRD design we look at the discontinuity in the conditional
expectation of the outcome given the covariate to uncover an average causal effect of the

treatment:
li?lE[YﬂXi = x| — h?l E[Y;|X; = ],

which is interpreted as the average causal effect of the treatment at the discontinuity

point:
Tsrp = B[Y;(1) — Y;(0)|X; = ¢]. (2.1)

Figures 1 and 2 illustrate the identification strategy in the SRD set up. Based on
artificial population values, we present in Figure 1 the conditional probability of receiving
the treatment, Pr(W = 1|X = x) against the covariate . At x = 6 the probability jumps
from zero to one. In Figure 2, three conditional expectations are plotted. The two dashed
lines in the figure are the conditional expectations of the two potential outcomes given the
covariate, p,,(r) = E[Y (w)|X = z], for w = 0,1. These two conditional expectations are
continuous functions of the covariate. Note that we can only estimate p,(z) for x < ¢,
and p4(x) for > ¢. In addition we plot the conditional expectation of the observed

outcome,
ElY|X =z =

EY|W =0,X =z]-Pr(W =0|X =2)+E[Y|W =1, X = z|-Pr(W = 1|X =x)

in Figure 2, indicated by a solid line. Although the two conditional expectations of the
potential outcomes p,,(x) are continuous, the conditional expectation of the observed
outcome jumps at z = ¢ = 6.

Now let us discuss the interpretation of lim, . E[Y;|X; = | —lim,;. E[Y;|X; = 7] as an
average causal effect in more detail. In the SRD design, the widely used unconfoundedness
assumption (e.g., Rosenbaum and Rubin, 1983, Imbens, 2004) underlying most matching-
type estimators still holds:

Y;(0),Y;(1) L W; | X



This assumption holds in a trivial manner, because conditional on the covariates there
is no variation in the treatment. However, this assumption cannot be exploited directly.
The problem is that the second assumption that is typically used for matching-type
approaches, the overlap assumption which requires that for all values of the covariates

there are both treated and control units, or
0< PI'(WZ = HXZ = QJ) < 1,

is fundamentally violated. In fact, for all values of x the probability of assignment is
either zero or one, rather than always between zero and one as required by the overlap
assumption. As a result, there are no values of x with overlap.

This implies there is a unavoidable need for extrapolation. However, in large samples
the amount of extrapolation required to make inferences is arbitrarily small, as we only
need to infer the conditional expectation of Y (w) given the covariates ¢ away from where
it can be estimated. To avoid non-trivial extrapolation we focus on the average treatment

effect at X = ¢,
Tskp = B[Y (1) =Y (0)|X =] =E[Y(1)|X =¢ —E[Y(0)|X =(]. (2.2)

By design, there are no units with X; = ¢ for whom we observe Y;(0). We therefore will
exploit the fact that we observe units with covariate values arbitrarily close to c.? In order
to justify this averaging we make a smoothness assumption. Typically this assumption

is formulated in terms of conditional expectations:

Assumption 2.1 (CONTINUITY OF CONDITIONAL REGRESSION FUNCTIONS)
E[Y(0)|X = z] and E[Y(1)|X = z],

are continuous in x.

More generally, one might want to assume that the conditional distribution function is
smooth in the covariate. Let Fy () x(y|z) = Pr(Y (w) < y|X = x) denote the conditional

distribution function of Y (w) given X. Then the general version of the assumption is:

2 Although in principle the first term in the difference in (2.2) would be straightforward to estimate if
we actually observed individuals with X; = z, with continuous covariates we also need to estimate this
term by averaging over units with covariate values close to c.
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Assumption 2.2 (CONTINUITY OF CONDITIONAL DISTRIBUTION FUNCTIONS)

Fy o) x (y[x) and  Fyqx(ylz),
are continuous in x for all y.

Both these assumptions are stronger than required, as we will only use continuity
at x = ¢, but it is rare that it is reasonable to assume continuity for one value of the
covariate, but not at other values of the covariate. We therefore make the stronger
assumption.

Under either assumption,

E[Y (0)X = = ImE[Y(0)|X = o] = im B[Y ()] W' = 0,X =] = imE[Y|X =],

zTe

and similarly
EY(1)|X =¢] = lggE[Y|X = z].

Thus, the average treatment effect at ¢, Tsrp, satisfies
TSRD = li?(}E[Y|X =z — 1{%&1E[Y|X = z].

The estimand is the difference of two regression functions at a point. Hence, if we try to
estimate this object without parametric assumptions on the two regression functions, we
do not obtain root—/N consistent estimators. Instead we get consistent estimators that
converge to their limits at a slower, nonparametric rates.

As an example of a SRD design, consider the study of the effect of party affiliation
of a congressman on congressional voting outcomes by Lee (this volume). See also Lee,
Moretti and Butler (2004). The key idea is that electoral districts where the share of the
vote for a Democrat in a particular election was just under 50% are on average similar in
many relevant respects to districts where the share of the Democratic vote was just over
50%, but the small difference in votes leads to an immediate and big difference in the
party affiliation of the elected representative. In this case, the party affiliation always
jumps at 50%, making this is a SRD design. Lee looks at the incumbency effect. He is
interested in the probability of Democrats winning the subsequent election, comparing
districts where the Democrats won the previous election with just over 50% of the popular
vote with districts where the Democrats lost the previous election with just under 50%

of the vote.
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2.3 The Fuzzy Regression Discontinuity Design

In the Fuzzy Regression Discontinuity (FRD) design, the probability of receiving the

treatment needs not change from zero to one at the threshold. Instead, the design allows

for a smaller jump in the probability of assignment to the treatment at the threshold:
lggrcl Pr(W; = 1|X; =) # lggrcl Pr(W; = 11X, = x),

without requiring the jump to equal 1. Such a situation can arise if incentives to partici-

pate in a program change discontinuously at a threshold, without these incentives being

powerful enough to move all units from nonparticipation to participation. In this design

we interpret the ratio of the jump in the regression of the outcome on the covariate to the

jump in the regression of the treatment indicator on the covariate as an average causal

effect of the treatment. Formally, the estimand is

lim, . B[Y|X = 2] — lim, B[Y|X = «]

lim, | B[W|X = 2] — lim, E[W|X = 2]

TFRD —

Let us first consider the interpretation of this ratio. HTV, in arguably the most
important theoretical paper in the recent RD literature, exploit the instrumental variables
connection to interpret the fuzzy regression discontinuity design when the effect of the
treatment varies by unit, as in Imbens and Angrist (1994).> Let W;(z) be potential
treatment status given cutoff point z, for = in some small neighborhood around c. W;(x)
is equal to one if unit ¢ would take or receive the treatment if the cutoff point was equal
to x. This requires that the cutoff point is at least in principle manipulable. For example,
if X is age, one could imagine changing the age that makes an individual eligible for the

treatment from ¢ to ¢ + e. Then it is useful to assume monotonicity (see HTV):
Assumption 2.3 W;(x) is non-increasing in x at x = c.

Next, define compliance status. This concept is similar to the one used in instrumental

variables settings (e.g., Angrist, Imbens and Rubin, 1996). A complier is a unit such that

lim W;(z) =0, and liTm} Wi(z) = 1.

x| X; zTX,

3The close connection between FRD and instrumental variables models led researchers in a number of
cases to interpret RD designs as instrumental variables settings. See, for example, Angrist and Krueger
(1991) and Imbens and Van der Klaauw (1995). The main advantage of thinking of these designs as RD
designs is that it suggests the specification analyses from Section 7.
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Compliers are units that would get the treatment if the cutoff were at X; or below,
but that would not get the treatment if the cutoff were higher than X;. To be specific,
consider an example where individuals with a test score less than ¢ are encouraged for
a remedial teaching program (Matsudaira, this issue). Interest is in the effect of the
program on subsequent test scores. Compliers are individuals who would participate
if encouraged (if the test score is below the cutoff for encouragement), but not if not
encouraged (if test score is above the cutoff for encouragement). Nevertakers are units
with
illI)I(l Wi(x) =0, and ilTI)Icl Wi(x) =0,

and alwaystakers are units with

lim Wi(z) =1, and lim W;(z) = 1.
Then
lim,  E[Y|X = z] — lim,. B[Y|X = «]
TFRD =

lim, . B[W|X = ] — lim, . B[W|X = z]
= E[Y;(1) — Y;(0)|unit ¢ is a complier and X; = ¢|.

The estimand is an average effect of the treatment, but only averaged for units with
X; = ¢ (by regression discontinuity), and only for compliers (people who are affected by
the threshold).

In Figure 3 we plot the conditional probability of receiving the treatment for an FRD
design. As in the SRD design, this probability still jumps at x = 6, but now by an
amount less than one. Figure 4 presents the expectation of the potential outcomes given
the covariate and the treatment, E[Y (w)|W = w, X = z], represented by the dashed
lines, as well as the conditional expectation of the observed outcome given the covariate

(solid line):
E[Y|X = «]
=E[Y(0)|W =0,X =z]-Pr(W =0|X = 2)+E[Y(1)|W =1, X = z]-Pr(W = 1| X = 2).

Note that it is no longer necessarily the case here that E[Y (w)|W = w, X = z] =
E[Y (w)|X = z]. Under some assumptions (unconfoundedness) this will be true, but this

is not necessary for inference regarding causal effects in the FRD setting.

8]



As an example of a FRD design, consider the study of the effect of financial aid on
college attendance by Van der Klaauw (2002). Van der Klaauw looks at the effect of
financial aid on acceptance on college admissions. Here X is a numerical score assigned
to college applicants based on the objective part of the application information (SAT
scores, grades) used to streamline the process of assigning financial aid offers. During the
initial stages of the admission process, the applicants are divided into L groups based on

discretized values of these scores. Let

1 fo0< X, <¢

2 if61§X1'<02
Gi=4 .

L ifCL_ngi

denote the financial aid group. For simplicity, let us focus on the case with L = 2, and
a single cutoff point ¢. Having a score of just over ¢ will put an applicant in a higher
category and increase the chances of financial aid discontinuously compared to having a
score of just below c. The outcome of interest in the Van der Klaauw study is college
attendance. In this case, the simple association between attendance and the financial aid
offer is ambiguous. On the one hand, an aid offer makes the college more attractive to
the potential student. This is the causal effect of interest. On the other hand, a student
who gets a generous financial aid offer is likely to have better outside opportunities in
the form of financial aid offers from other colleges. College aid is emphatically not a
deterministic function of the financial aid categories, making this a fuzzy RD design.
Other components of the application that are not incorporated in the numerical score
(such as the essay and recommendation letters) undoubtedly play an important role.
Nevertheless, there is a clear discontinuity in the probability of receiving an offer of a

larger financial aid package.

2.4 The FRD Design and Unconfoundedness

In the FRD setting, it is useful to contrast the RD approach with estimation of av-
erage causal effects under unconfoundedness. The unconfoundedness assumption (e.g.,

Rosenbaum and Rubin, 1983; Imbens, 2004) requires that

Y(0),Y(1) L W |X.



If this assumption holds, then we can estimate the average effect of the treatment at

X =cas
EY1)-Y(0)|X =z]=EY|W=1,X=-EY|W=0X =

This approach does not exploit the jump in the probability of assignment at the discon-
tinuity point. Instead it assumes that differences between treated and control units with
X; = c are interpretable as average causal effects.

In contrast, the assumptions underlying a FRD analysis implies that comparing
treated and control units with X; = c is likely to be the wrong approach. Treated units
with X; = ¢ include compliers and alwaystakers, and control units at X; = ¢ consist of
nevertakers. Comparing these different types of units has no causal interpretation under
the FRD assumptions. Although, in principle, one cannot test the unconfoundedness
assumption, one aspect of the problem makes this assumption fairly implausible. Un-
confoundedness is fundamentally based on units being comparable if their covariates are
similar. This is not an attractive assumption in the current setting where the probability
of receiving the treatment is discontinuous in the covariate. Thus, units with similar
values of the forcing variable (but on different sides of the threshold) must be different in
some important way related to the receipt of treatment. Unless there is a substantive ar-
gument that this difference is immaterial for the comparison of the outcomes of interest,

an analysis based on unconfoundedness is not attractive.

2.5 External Validity

One important aspect of both the SRD and FRD designs is that they, at best, provide
estimates of the average effect for a subpopulation, namely the subpopulation with co-
variate value equal to X; = ¢. The FRD design restricts the relevant subpopulation even
further to that of compliers at this value of the covariate. Without strong assumptions
justifying extrapolation to other subpopulations (e.g., homogeneity of the treatment ef-
fect), the designs never allow the researcher to estimate the overall average effect of the
treatment. In that sense the design has fundamentally only a limited degree of external
validity, although the specific average effect that is identified may well be of special inter-
est, for example in cases where the policy question concerns changing the location of the

threshold. The advantage of RD designs compared to other non-experimental analyses
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that may have more external validity, such as those based on unconfoundedness, is that
RD designs may have a relatively high degree of internal validity (in settings where they
are applicable).

3 Graphical Analyses

3.1 Introduction

Graphical analyses should be an integral part of any RD analysis. The nature of RD
designs suggests that the effect of the treatment of interest can be measured by the
value of the discontinuity in the expected value of the outcome at a particular point.
Inspecting the estimated version of this conditional expectation is a simple yet powerful
way to visualize the identification strategy. Moreover, to assess the credibility of the RD
strategy, it is useful to inspect two additional graphs for covariates and the density of
the forcing variable. The estimators we discuss later use more sophisticated methods for
smoothing but these basic plots will convey much of the intuition. For strikingly clear
examples of such plots, see Lee, Moretti, and Butler (2004), Lalive (this volume), and
Lee (this volume). Note that, in practice, the visual clarity of the plots is often improved
by adding smoothed regression lines based on polynomial regressions (or other flexible

methods) estimated separately on the two sides of the cutoff point.

3.2 Outcomes by Forcing Variable

The first plot is a histogram-type estimate of the average value of the outcome for different
values of the forcing variable, the estimated counterpart to the solid line in Figures 2 and
4. For some binwidth h, and for some number of bins Ky and K; to the left and right
of the cutoff value, respectively, construct bins (by, byi1], for k = 1,..., K = Ky + K,

where
bp =c— (Ko—k+1)-h.

Then calculate the number of observations in each bin:

N

Ny = Z H{br < Xi < bgsr},

i=1

[11]



and the average outcome in the bin:

N
Y- Nik PREICEEEL
The first plot of interest is that of the Y, for k = 1,..., K against the mid point of
the bins, b, = (br, + bry1)/2. The question is whether around the threshold ¢ there is
any evidence of a jump in the conditional mean of the outcome. The formal statistical
analyses discussed below are essentially just sophisticated versions of this, and if the basic
plot does not show any evidence of a discontinuity, there is relatively little chance that the
more sophisticated analyses will lead to robust and credible estimates with statistically
and substantially significant magnitudes. In addition to inspecting whether there is a
jump at this value of the covariate, one should inspect the graph to see whether there
are any other jumps in the conditional expectation of Y given X that are comparable to,
or larger than, the discontinuity at the cutoff value. If so, and if one cannot explain such
jumps on substantive grounds, it would call into question the interpretation of the jump
at the threshold as the causal effect of the treatment. In order to optimize the visual

clarity it is important to calculate averages that are not smoothed over the cutoff point.

3.3 Covariates by Forcing Variable

The second set of plots compares average values of other covariates in the K bins. Specif-
ically, let Z; be the M-vector of additional covariates, with m-th element Z;,,. Then

calculate

N
Ziom = Nik : ;Zm by < X; < b b

The second plot of interest is that of the Zj,,, for k = 1,..., K against the mid point

of the bins, by, for all m = 1,..., M. In the case of FRD designs, it is also particularly

useful to plot the mean values of the treatment variable W; to make sure there is indeed

a jump in the probability of treatment at the cutoff point (as in Figure 3). Plotting other

covariates is also useful for detecting possible specification problems (see Section 7.1) in

the case of either SRD or FRD designs.

[12]



3.4 The Density of the Forcing Variable

In the third graph, one should plot the number of observations in each bin, N, against
the mid points by.. This plot can be used to inspect whether there is a discontinuity in the
distribution of the forcing variable X at the threshold. Such discontinuity would raise the
question of whether the value of this covariate was manipulated by the individual agent,
invalidating the design. For example, suppose that the forcing variable is a test score.
If individuals know the threshold and have the option of re-taking the test, individuals
with test scores just below the threshold may do so, and invalidate the design. Such a
situation would lead to a discontinuity of the conditional density of the test score at the
threshold, and thus be detectable in the kind of plots described here. See Section 7.2 for

more discussion of tests based on this idea.

4 Estimation: Local Linear Regression

4.1 Nonparametric Regression at the Boundary

The practical estimation of the treatment effect 7 in both the SRD and FRD designs is
largely a standard nonparametric regression problem (e.g., Pagan and Ullah, 1999; Hér-
dle, 1990; Li and Racine, 2007). However, there are two unusual features. In this case
we are interested in the regression function at a single point, and in addition that single
point is a boundary point. As a result, standard nonparametric kernel regression does
not work very well. At boundary points, such estimators have a slower rate of conver-
gence than they do at interior points. Here we discuss a more attractive implementation

suggested by HT'V, among others. First define the conditional means

p(x) =lImE[Y(0)| X = 2], and pu,(z) =1lmE[Y(1)|X = z].

zlz zlx

The estimand in the SRD design is, in terms of these regression functions,

Tsrp = i, (¢) — ().
A natural approach is to use standard nonparametric regression methods for estimation of
p(x) and p,(z). Suppose we use a kernel K (u), with [ K (u)du = 1. Then the regression

functions at x can be estimated as
X Six,ce Yir K(F2) . Dixize Vit K (5577)
fy(z) = === - and fi,(z) = === —,
: Yix,ce K (5575) Dz K (557

[13]




where h is the bandwidth.
The estimator for the object of interest is then

N o Zi:Xi>ch K (%) Zi:X«LSCY; K (%)

'f_ :['\LT‘:E—M:E_ i L B -
SRD (7) 1(2) Zz;xpcK(XZh ) Zi:XiScK<XZh )

In order to see the nature of this estimator for the SRD case, it is useful to focus on a
special case. Suppose we use a rectangular kernel, e.g., K(u) = 1/2 for —1 < u < 1, and
zero elsewhere. Then the estimator can be written as
SN Yi-He< X; <c+h} B SN Yi-He—h< X, <c}

SN He< X, <c+h} SN H{e—h< X, <c}

TSRD =

- ?h'r‘ - ?hh

the difference between the average outcomes for observations within a distance h of the
cutoff point on the right and left of the cutoff, respectively. Nj,. and N, denote the
number of observations with X; € [c,c + h] and X; € [c — h,c), respectively. This
estimator can be interpreted as first discarding all observations with a value of X; more
than h away from the discontinuity point ¢, and then simply differencing the average
outcomes by treatment status in the remaining sample.

This simple nonparametric estimator is in general not very attractive, as pointed out
by HTV and Porter (2003). Let us look at the approximate bias of this estimator through
the probability limit of the estimator for fixed bandwidth. The probability limit of /i, (c),

using the rectangular kernel, is

- S () f () da .0 h 2
plim 7z, (c)] R e(€) +lim = p() - 5 (h?)
Combined with the corresponding calculation for the control group, we obtain the bias
s . h .0 .0
plim [f1,.(c) — ()] — p.(c) — py(c) = 5 (1;?61 I (z) + 1;?01% (x)) +0 (n?).

Hence the bias is linear in the bandwidth h, whereas when we nonparametrically estimate

a regression function in the interior of the support we typically get a bias of order h2.
Note that we typically do expect the regression function to have a non-zero derivative,

even in cases where the treatment has no effect. In many applications the eligibility

criterion is based on a covariate that does have some correlation with the outcome, so
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that, for example, those with poorest prospects in the absence of the program are in the
eligible group. Hence it is likely that the bias for the simple kernel estimator is relatively
high.

One practical solution to the high order of the bias is to use a local linear regression
(e.g., Fan and Gijbels, 1996). An alternative is to use series regression or sieve methods.
Such methods could be implemented in the current setting by adding higher order terms
to the regression function. For example, Lee, Moretti and Butler (2004) include fourth
order polynomials in the covariate to the regression function. The formal properties of
such methods are equally attractive to those of kernel type methods. The main concern
is that they are more sensitive to outcome values for observations far away from the
cutoff point. Kernel methods using kernels with compact support rule out any sensitivity
to such observations, and given the nature of RD designs this can be an attractive
feature. Certainly, it would be a concern if results depended in an important way on
using observations far away from the cutoff value. In addition, global methods put effort
into estimating the regression functions in areas (far away from the discontinuity point)

that are of no interest in the current setting.

4.2 Local Linear Regression

Here we discuss local linear regression. See for a general discussion Fan and Gijbels
(1996). Instead of locally fitting a constant function, we can fit linear regression functions

to the observations within a distance h on either side of the discontinuity point:

N
min Y (Y- —B (Xi—¢)’,
ar,B .
ile—h<X;<c
and
N
min Z Yi—a, — B, (X;— ).
ar»Br
i|le<X;<cth

The value of j;(c) is then estimated as
m(e) =y + By (e = ¢) = d,

and the value of p,(c) is then estimated as

—

/LT(C) :&T+Br ’ (C_C> :&7’7
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Given these estimates, the average treatment effect is estimated as
TSRD = G — Q.

Alternatively one can estimate the average effect directly in a single regression, by solving

N
min He—h<X;<c+h}-(Yi—a—0-(Xi—c)—7-Wi—~-(X; —c) - W;)?,

a) ?T7 .
B,y )

which will numerically yield the same estimate of Tgrp.

An alternative is to impose the restriction that the slope coefficients are the same
on both sides of the discontinuity point, or lim,|. 2> u(z) = limg. 2 p(z). This can
be imposed by requiring that 3, = [,. Although it may be reasonable to expect the
slope coefficients for the covariate to be similar on both sides of the discontinuity point,
this procedure also has some disadvantages. Specifically, by imposing this restriction
one allows for observations on Y (1) from the right of the discontinuity point to affect
estimates of E[Y (0)|X = ¢| and, similarly, for observations on Y (0) from the left of
discontinuity point to affect estimates of E[Y (1)|X = ¢]. In practice, one might wish
to have the estimates of E[Y (0)|X = ¢| based solely on observations on Y (0), and not
depend on observations on Y (1), and vice versa.

We can make the nonparametric regression more sophisticated by using weights that
decrease smoothly as the distance to the cutoff point increases, instead of the zero/one
weights based on the rectangular kernel. However, even in this simple case the asymptotic
bias can be shown to be of order k2, and the more sophisticated kernels rarely make much
difference. Furthermore, if using different weights from a more sophisticated kernel does
make a difference, it likely suggests that the results are highly sensitive to the choice of
bandwidth. So the only case where more sophisticated kernels may make a difference is
when the estimates are not very credible anyway because of too much sensitivity to the
choice of bandwidth. From a practical point of view, one may just want to focus on the
simple rectangular kernel, but verify the robustness of the results to different choices of
bandwidth.

For inference we can use standard least squares methods. Under appropriate condi-
tions on the rate at which the bandwidth goes to zero as the sample size increases, the
resulting estimates will be asymptotically normally distributed, and the (robust) stan-

dard errors from least squares theory will be justified. Using the results from HTV, the
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optimal bandwidth is h oc N=/°. Under this sequence of bandwidths the asymptotic
distribution of the estimator 7 will have a non-zero bias. If one does some undersmooth-
ing, by requiring that h o N~° with 1/5 < § < 2/5, then the asymptotic bias disappears
and standard least squares variance estimators will lead to valid confidence intervals. See

Section 6 for more details.

4.3 Covariates

Often there are additional covariates available in addition to the forcing covariate that
is the basis of the assignment mechanism. These covariates can be used to eliminate
small sample biases present in the basic specification, and improve the precision. In
addition, they can be useful for evaluating the plausibility of the identification strategy,
as discussed in Section 7.1. Let the additional vector of covariates be denoted by Z;. We
make three observations on the role of these additional covariates.

The first and most important point is that the presence of these covariates rarely
changes the identification strategy. Typically, the conditional distribution of the covari-
ates Z given X is continuous at x = c¢. In fact, as we discuss in Section 7, one may wish
to test for discontinuities at that value of = in order to assess the plausibility of the iden-
tification strategy. If such discontinuities in other covariates are found, the justification
of the identification strategy may be questionable. If the conditional distribution of Z

given X is continuous at z = ¢, then including Z in the regression

N

r%in(S He—h < X; §c+h}-(YZ-—a—6-(Xi—c)—T-W/i—w-(Xi—c)-Wi—cS'Zi)Q,
BTN

will have little effect on the expected value of the estimator for 7, since conditional on
X being close to ¢, the additional covariates Z are independent of W.

The second point is that even though the presence of Z in the regression does not
affect any bias when X is very close to ¢, in practice we often include observations with
values of X not too close to c. In that case, including additional covariates may eliminate
some bias that is the result of the inclusion of these additional observations.

Third, the presence of the covariates can improve precision if Z is correlated with the
potential outcomes. This is the standard argument, which also supports the inclusion

of covariates in analyses of randomized experiments. In practice the variance reduction
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will be relatively small unless the contribution to the R? from the additional regressors

is substantial.

4.4 Estimation for the Fuzzy Regression Discontinuity Design

In the FRD design, we need to estimate the ratio of two differences. The estimation
issues we discussed earlier in the case of the SRD arise now for both differences. In
particular, there are substantial biases if we do simple kernel regressions. Instead, it is
again likely to be better to use local linear regression. We use a uniform kernel, with
the same bandwidth for estimation of the discontinuity in the outcome and treatment
regressions.

First, consider local linear regression for the outcome, on both sides of the disconti-

nuity point. Let

A 2~ . 2
() —ore min S (== Ay (X — )" 13
byl i:c—h<X,;<c
~ ~ . 2
(ayT7 6yr> = arg min Z (}/Z - Qyr — ﬁy’r‘ ’ (XZ - C)) . (44)
oy Byr i:e<X;<c+h

The magnitude of the discontinuity in the outcome regression is then estimated as

A~ ~

Ty = Oéyr — Oéyl.

Second, consider the two local linear regression for the treatment indicator:

(dwl, Bwl> = arg min Z (Wi — ot — By - (X; — €))?, (4.5)
out:Bui i:c—h<X;<c

(s B ) =arg min 3" (V= aw = B, (X = ). (4.6)
GwrPur <X <cth

The magnitude of the discontinuity in the treatment regression is then estimated as

Tw = Oyr — Oy.

Finally, we estimate the effect of interest as the ratio of the two discontinuities:
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Because of the specific implementation we use here, with a uniform kernel, and the
same bandwidth for estimation of the denominator and the numerator, we can character-
ize the estimator for 7 as a Two-Stage-Least-Squares (TSLS) estimator. HTV were the
first to note this equality, in the setting with standard kernel regression and no additional
covariates. It is a simple extension to show that the equality still holds when we use local

linear regression and include additional regressors. Define

1 Ayl
Vi=| HXi<c} - (Xi—¢) |, and =1 B, |- (4.8)
H{X; > ¢} (X —¢) Byr
Then we can write
Y, =8V, +7-W, +¢,. (4.9)

Estimating 7 based on the regression function (4.9) by TSLS methods, with the indi-
cator 1{X; > c} as the excluded instrument and V; as the set of exogenous variables is

numerically identical to T7grp as given in (4.7).

5 Bandwidth Selection

An important issue in practice is the selection of the smoothing parameter, the binwidth
h. In general there are two approaches to choosing bandwidths. A first approach consists
of characterizing the optimal bandwidth in terms of the unknown joint distribution of
all variables. The relevant components of this distribution can then be estimated, and
plugged into the optimal bandwidth function. The second approach, on which we focus
