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Introduction
This paper presents a new numerical method for solving general equilibrium models with many

assets. The method can be applied to models where there are heterogeneous agents, time-varying

investment opportunity sets, and incomplete markets. It also can be used to study models where

the equilibrium dynamics are non-stationary. In this paper, we illustrate how the method is used by

solving a one— and two-sector versions of a two—country general equilibrium model with production.

We check the accuracy of our method by comparing the numerical solution to the one-sector model

against its known analytic properties. We then apply the method to the two-sector model where no

analytic solution is available. A detailed analysis of this model is provided in a companion paper,

Evans and Hnatkovska (2005).

Our approach combines perturbation methods with continuous-time approximations. In so do-

ing, we contribute to the literature along several dimensions. First, relative to the finance literature,

our method delivers optimal portfolios in a discrete-time general equilibrium setting in which re-

turns are endogenously determined. It also enables us to characterize the dynamics of returns and

the stochastic investment opportunity set as functions of macroeconomic state variables.2 Second,

relative to macroeconomics literature, portfolio decisions are derived without assuming complete

asset markets, separable preferences or constant returns to scale in production.3

Our solution method also relates to the literature on perturbation methods as developed and

applied in Judd and Guu (1993, 1997), Judd (1998) and further discussed in Collard and Juillard

(2001), Jin and Judd (2002), Schmitt-Grohe and Uribe (2004) among others. These methods

extend solution techniques relying on linearizations by allowing for second- and higher-order terms

in the approximations of the policy functions. Unfortunately, these methods can only be used

in applications that omit a key feature of models with portfolio choice: namely, the conditional

heteroskedasticity of the state vector that captures the time-varying nature of the investment

opportunity set. Existing methods are also unable to accommodate the non—stationary dynamics

that arise endogenously when markets are incomplete.

The paper is structured as follows. Section 1 presents the one—sector version of the model we

2A number of approximate solution methods have been developed in partial equilibrium frameworks. Kogan and
Uppal (2000) approximate portfolio and consumption allocations around the solution for a log-investor. Berberis
(2000), Brennan, Schwartz, and Lagnado (1997) use discrete-state approximations. Brandt, Goyal, and Santa-Clara
(2001) solve for portfolio policies by applying dynamic programming to an approximated simulated model. Brandt
and Santa-Clara (2004) expand the asset space to include asset portfolios and then solve for the optimal portfolio
choice in the resulting static model.

3Solutions to portfolio problems with complete markets are developed in Heathcote and Perri (2004), Serrat
(2001), Kollmann (2005), Baxter, Jermann and King (1998), Uppal (1993). Pesenti and van Wincoop (1996), Engel
and Matsumoto (2004) analyze equilibrium portfolios in incomplete markets.
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use to illustrate our solution method. Section 2 describes the method in detail. Section 3 presents

and compares the numerical solution of the model to its analytic counterpart. Section 4 presents

the two—sector version of the model and examines its equilibrium properties. Section 5 concludes.

1 The One Sector Model

This section describes the one—sector version of the model we employ to illustrate our solution

method. It is a standard international asset pricing model with portfolio choice and builds upon

Danthine and Donaldson’s (1994) formulation of an asset pricing model with production. We

consider a frictionless production world economy consisting of two symmetric countries, called

home (h) and foreign (f). Each country is populated by a continuum of identical households who

supply their labor inelastically to domestic firms producing a single good freely traded between the

two countries. Firms are perfectly competitive and issue equity that is traded on the world stock

market.

1.1 Firms

Our firms are infinitely lived. They issue equity claims to the stream of their dividends, and

households can use this equity for their saving needs. Each firm owns capital and undertakes

independent investment decisions. A representative firm in the h country starts period t with the

stock of capital Kt and equity liability At = 1. Period t production is

Yt = ZtK
θ
t ,

with θ > 0. The output produced by firms in the f country, Ŷt, is given by an identical production

function using foreign capital K̂t, and productivity Ẑt. (Hereafter we use “ˆ” to denote foreign

variables.) The goods produced by h and f firms are identical and can be costlessly transported

between countries. Under these conditions, the law of one price must prevail to eliminate arbitrage

opportunities.

At the beginning of period t, each firm observes the productivity realization, produces output

and uses the proceeds to finance investment It and to pay dividends to the shareholders. We assume

that firms allocate output to maximize the value of the firm to its shareholders every period. Let

Pt denote the ex-dividend price of a share in the representative h firm at the start of period t, and

let Dt be the dividend per share paid at t. The value of the firm at the start of period t is Pt+Dt,
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and the optimization problem it faces can be summarized as

max
It
(Dt + Pt) , (1)

subject to
Kt+1 = (1− δ)Kt + It, (2)

Dt = ZtK
θ
t − It, (3)

where δ > 0 is the depreciation rate on physical capital. The representative firm in the f country

solves an analogous problem; that is to say they choose investment Ît to maximize D̂t + P̂t, where

P̂t is the ex-dividend price of a share and D̂t is the dividend per share paid at t.

Let zt ≡ [lnZt, ln Ẑt]
0 denote the state of productivity in period t.We assume that zt follows an

AR(1) process:

zt = azt−1 + et,

where et is a 2× 1 vector of i.i.d. mean zero shocks with covariance Ωe.

1.2 Households

Each country is populated by a continuum of households who have identical preferences. The

preferences of households in the h country are defined in terms of h consumption Ct, and are given

by

Ut = Et
∞X
i=0

βi lnCt+i, (4)

where 0 < β < 1 is the discount factor. Et denotes expectations conditioned on information at the
start of period t. Preferences for households in country f are similarly defined in terms of foreign

consumption, Ĉt.

Households in our economy can save by holding domestic equity shares, international bonds

and equity issued by foreign firms. The budget constraint of the representative h household can be

written as

Wt+1 = Rwt+1 (Wt −Ct) , (5)

where Wt is financial wealth, and Rwt+1 is the (gross) return on wealth between period t and t+ 1.

This return depends on how the household allocates wealth across the available array of financial
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assets, and on the realized return on those assets. In particular,

Rwt+1 = Rt + αht (R
h
t+1 −Rt) + αft (R

f
t+1 −Rt), (6)

where Rt is the return on bonds and Rht+1 and R
f
t+1 are the returns on h and f equity. The fraction

of wealth that h country households hold in h and f equity are αht and αft respectively.

The budget constraint for f households is similarly defined as

Ŵt+1 = R̂wt+1(Ŵt − Ĉt),

with R̂wt+1 = Rt + α̂ht (R
h
t+1 −Rt) + α̂ft (R

f
t+1 −Rt),

where α̂ht and α̂ft denote the shares of wealth allocated by f households into h and f country

equities.

Households in country h choose how much to consume and how much wealth to allocate into

the equity of h and f firms to maximize expected utility (4) subject to (5) and (6) given current

equity prices and the interest rate on bonds. This problem can be recursively expressed as:

Vt (Wt) = max
{Ct,αht ,αft}

©
lnCt + βEt

£
Vt+1

¡
Rwt+1 (Wt −Ct)

¢¤ª
, (7)

with Ct ≥ 0 and Wt > 0. The optimization problem facing f households is analogous.

1.3 Equilibrium

This section summarizes the conditions characterizing the equilibrium in our model. The first order

conditions for the representative h household’s problem in (7) are

1 = Et
£
Mt+1R

h
t+1

¤
, (8a)

1 = Et [Mt+1Rt] , (8b)

1 = Et
£
Mt+1R

f
t+1

¤
, (8c)

where Mt+1 ≡ β (∂U/∂Ct+1) / (∂U/∂Ct) is the discounted intertemporal marginal rate of substitu-

tion (IMRS) between the consumption in period t and period t + 1. The returns on equity issued

by h and f firms are defined as

Rht+1 = (Pt+1 +Dt+1) /Pt and Rft+1 =
³
P̂t+1 + D̂t+1

´
/P̂t.
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With these definitions, the Euler equation in (8a) can be rewritten as Pt = Et [Mt+1 (Pt+1 +Dt+1)] .

Using this expression to substitute for Pt in the h firm’s investment problem 1)-(3) gives the

following recursive formulation:

V(Kt, Zt) = max
It
(Dt + Pt)

= max
It
(Dt + βEt [Mt+1(Dt+1 + Pt+1)])

= max
It

³
ZtK

θ
t − It + βEt [Mt+1V(Kt+1, Zt+1)]

´
(9)

where V(.) denotes the value of the firm. The first order condition associated with this optimization
problem is

1 = Et
h
Mt+1R

k
t+1

i
,

where Rk
t+1 ≡ θZt+1 (Kt+1)

θ−1 + (1 − δ) is the return on capital. This condition determines the

optimal investment of h firms and thus implicitly identifies the level of dividends in period t, Dt,

via equation (3). The first order conditions for firms in country f take an analogous form.

It is worth noting that our model has equity home bias built in as firms use the IMRS of

domestic agents, (e.g. Mt+1 in the case of h firms) to value the dividend steam in (9). Although

the array of assets available to households is sufficient for complete risk-sharing in this version of

the model, in the two—sector version we present below markets are incomplete. As a result, the

IMRS for h and f households will differ and households in the two countries will generally prefer

different dividend streams. In principle, this formulation of how firms choose investment/dividends

can induce home bias in household equity holdings.

Solving for the equilibrium in this economy requires finding equity prices {Pt, P̂t}, and the
interest rate Rt, such that markets clear when households follow optimal consumption, savings

and portfolio strategies, and firms make optimal investment decisions. Under the assumption that

bonds are in zero net supply, market clearing in the bond market requires that

0 = Bt + B̂t. (10)

The goods market clears globally. In particular, since h and f firms produce a single good that can

be costlessly transported between countries, the market clearing condition is

Ct + Ĉt = Yt − It + Ŷt − Ît = Dt + D̂t. (11)
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The market clearing conditions in the h and f equity markets are

1 = Aht + Âht and 1 = Aft + Âft . (12)

where Ai
t denotes the number of shares of equity issued by i = {h,f} firms held by h households.

These share holdings are related to the portfolio shares by the identities, PtAht ≡ αht (Wt − Ct) and

P̂tA
f
t ≡ αft (Wt − Ct). The share holdings of f households are Âht and Â

f
t with PtÂ

h
t ≡ α̂ht (Ŵt− Ĉt)

and P̂tÂ
f
t ≡ α̂ft (Ŵt − Ĉt).

2 Solution Method

2.1 Overview

Our solution method extends the perturbation procedure developed by Collard and Juillard (2001),

Jin and Judd (2002), and Schmitt-Grohe and Uribe (2004). The extension is necessary to address

key features of a general equilibrium model with portfolio choice. As in a standard procedure, the

first step is to derive a set of log-linearized equations that characterize the model’s equilibrium.

The novel aspect of our method is contained in the second step where we use an iterative technique

to derive the equilibrium dynamics of the endogenous variables.

The set of linearized equations characterizing the equilibrium of the model can be written in a

general form as

0 = F (Yt+1, Yt,Xt+1,Xt,S (Xt)) , (13)

Xt+1 = H (Xt,S (Xt)) + Ut+1,

where

E (Ut+1|Xt) = 0, (14)

E
¡
Ut+1U

0
t+1|Xt

¢
= S (Xt) .

Here Xt is a vector of variables that describe the state of the economy at time t. In our illustrative
model, Xt contains the state of productivity, capital stocks and households’ wealth. Yt is a vector
of non-predetermined variables at time t. It includes consumption, dividends, and asset prices.

The function F(..) denotes the log-linearized equations characterizing the equilibrium, while H (., .)
determines how past states affect the current state. Ut+1 is a vector of shocks driving the equilibrium

dynamics of Xt. This vector includes both exogenous shocks, like the productivity shocks, and
endogenous shocks like the shocks to households’ wealth. The shocks have a conditional mean of
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zero and a conditional covariance equal to S (Xt) , a function of the current state vector Xt. Thus
our formulation explicitly allows for the possibility that shocks driving the equilibrium dynamics of

the state variance are conditionally heteroskedastic. By contrast, standard perturbation methods

assume that Ut+1 follow an i.i.d. process. As we shall see, it is not possible to characterize the

equilibrium of a model with portfolio choice and incomplete markets in this way. Conditional

heteroskedasticity arises as an inherent feature of the model, and must be accounted for in any

solution technique.

Given our formulation in (13) and (14), a solution to the model is characterized by a decision

rule for the non-predetermined variables

Yt+1 = G (Xt+1,S (Xt)) , (15)

that satisfies the equilibrium conditions in (13):

0 = F (G (H (Xt,S (Xt)) + Ut+1,S (Xt)) ,G (Xt,S (Xt)) ,H (Xt,S (Xt)) + Ut+1,Xt,S (Xt)) .

The iterative procedure we describe below allows us to approximate the G(.),H(.) and S (.) func-
tions.

2.2 Log-Linearizations

To understand why our formulation in (13) and (14) allows for conditional heteroskedasticy in the

dynamics of the state vector, we return to the model. In particular, let us focus on the log-linearized

equations arising from the households’ first order conditions and budget constraint. Hereafter we

use lowercase letters to denote log transformation of the corresponding variable, measured as a

deviation from its steady state level or initial value.

Following Campbell, Chan and Viceira (2003), hereafter CCV, we use a first-order log-linear

approximation to households’ budget constraints. In the case of h households it is given by

∆wt+1 = ln (1− Ct/Wt) + rwt+1,

= κ− µ
1−µ (ct − wt) + rwt+1, (16)

where µ is the steady state consumption wealth ratio and κ ≡ ln(1− µ). In our model, households

have log preferences so the optimal consumption/wealth ratio is a constant equal to 1− β. In this

case ct − wt = 0 and κ = lnβ. rwt+1 is the log return on optimally invested wealth which CCV
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approximate as

rwt+1 = rt +α0tert+1 +
1
2α

0
t (diag (Θt)−Θtαt) , (17)

where α0t ≡ [ αht αft ] is the vector of portfolio shares, er
0
t+1 ≡ [ rht+1 − rt rft+1 − rt ] is a vector

of excess equity returns, and Θt is the conditional covariance of ert+1. The approximation error as-

sociated with this expression disappears in the limit where returns follow continuous—time diffusion

processes.

Next, we turn to the first-order conditions in (8). Using the standard log-normal approximation,

we obtain

Etrχt+1 − rt +
1
2Vt

¡
rχt+1

¢
= −CVt

¡
mt+1, r

χ
t+1

¢
, (18a)

rt = −Etmt+1 − 1
2Vt(mt+1), (18b)

where rχt+1 is the log return for equity χ = {h,f} , and mt+1 ≡ lnMt+1 is the log IMRS. Vt (.) and

CVt (., .) denote the variance and covariance conditioned on period−t information. With log utility
mt+1 = lnβ −∆ct+1 = lnβ −∆wt+1, so (18a) can be rewritten as

Etert+1 = Θtαt − 1
2diag (Θt) . (19)

Combining this expression with (16) and (17) gives

∆wt+1 = κ− 1−µ
µ (ct − wt) + rt +

1
2α

0
tΘtαt +α0t (ert+1 − Etert+1) . (20)

Equation (20) provides us with a log-linear version of the h household’s budget constraint.

It shows that the growth in household wealth between t and t + 1 depends upon the consump-

tion/wealth ratio in period t (a constant in the case of log utility), the period-t risk free rate,

rt, portfolio shares, αt, the variance-covariance matrix of excess returns, Θt, and the unexpected

return on assets held between t and t + 1, α0t (ert+1 − Etert+1) . Notice that the susceptibility of
wealth in t + 1 to unexpected returns depends on the period-t portfolio choices. Consequently,

the volatility of wealth depends endogenously on the portfolio choices made by households and

the equilibrium behavior of returns. In an equilibrium where returns have an i.i.d. distribution,

αt will be constant, and wealth will be conditionally homoskedastic. Of course in a general equi-

librium setting the properties of returns are themselves determined endogenously, so there is no

guarantee that optimally chosen portfolio shares or the second moments of returns will be con-

stant. Indeed, in general we should expect the equilibrium process for wealth to display conditional

heteroskedasticity. It is worth emphasizing that heteroskedasticity does not arise because we are
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dealing with a log-linearized version of the household’s budget constraint. It is an inherent feature

of the household’s budget constraint because portfolio choices affect the susceptibility of future

wealth to the unexpected returns on individual assets (see equations 5 and 6 above). The log-linear

approximation in (20) simply illustrates the point in a particularly clear way.

Standard perturbation methods can still be used to solve models where the equilibrium dynamics

of the wealth are conditionally heteroskedastic. If the equilibrium dynamics of the model can be

described in terms of the state variable Xt that excludes wealth, it may be possible to retain the
i.i.d. assumption on the Ut shocks. This is possible in models with portfolio choice when the

array of assets allows for perfect risk-sharing among agents, so that markets are complete. When

markets are incomplete, by contrast, it is not possible to characterize the equilibrium dynamics

of the economy without including household wealth in the state vector Xt. As a consequence, in
this setting it is necessary to allow for conditional heteroskedasticity in the dynamics of the state

variable as our formulation in (13) and (14) does.

Equation (19) implicitly identifies the optimal choice of the h households’ portfolio shares, αt.

This equation was derived from the household’s first-order conditions under the assumption that the

joint conditional distribution of log returns is approximately normal. Notice that the approximation

method does not require an assumption about the portfolio shares chosen in the steady state. By

contrast, standard perturbation methods consider Taylor series approximations to the model’s

equilibrium conditions with respect to decision variables around the value they take in the non-

stochastic steady state. As Judd and Guu (2000) point out, this method is inapplicable when the

steady-state value of the decision variable is indeterminate. This is an important observation when

solving a model involving portfolio choice. In the non-stochastic steady state, assets are perfect

substitutes in household portfolios because returns are identical, so the optimal choice of portfolio

is indeterminate.

While the steady state portfolio shares are absent from equation (19), the problem of indetermi-

nacy still arises in our model. In particular, we have to take a stand on the steady state distribution

of asset holdings when log-linearizing the market clearing conditions: Consider, for example, the

market clearing condition for h equity in (12). Combining this condition with the portfolio share

definitions, and the fact that the consumption/wealth ratio for all households is equal to 1− β, we

obtain
Pt
βWt

= αht + α̂ht
Ŵt

Wt
.

We consider a second-order Taylor series approximation to this expression around the steady state

values for Pt/βWt and Ŵt/Wt. To pin down these values, we parameterize the value of Ŵ/W and
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then work out its implications for the value of P/βW. 4 This is particularly simple in the case where

wealth is equally distributed (i.e. Ŵ/W = 1). Here symmetry and market clearing in the goods

market requires that D = C = (1− β)W. It follows that P/βW = [(1− β)/β] (P/D) = 1 because

the Euler equation for stock returns implies that the steady state value of P/D equals β/(1− β).

In this case, the second-order log-approximation embedding goods market clearing becomes

1 + pt − wt +
1
2 (pt − wt)

2 = αht + α̂ht

³
1 + ŵt − wt +

1
2 (ŵt − wt)

2
´
.

Log-linear approximations implied by the other market clearing conditions are similarly obtained.

Specifically, when wealth is equally distributed, market clearing in f equity, bonds and goods imply

that

1 + p̂t − ŵt +
1
2 (p̂t − ŵt)

2 = α̂ft + αft

³
1 + wt − ŵt +

1
2 (wt − ŵt)

2
´
,

pt + p̂t = dt + d̂t, (21)

ct + ĉt = dt + d̂t.

This approach to the indeterminacy problem also has another important advantage. The pres-

ence of wealth as a state variable introduces a nonstationary unit root component into the Xt
process because shocks to returns will generally have permanent effects on wealth.5 As we show

below, our procedure accommodates the presence of a unit root by characterizing the equilibrium

dynamics of the model in a neighborhood of the initial state, X0. To study the equilibrium properties
of the model we must therefore specify the elements of X0. Thus, specifying the initial distribution
of wealth not only provides a way to resolve indeterminacy concerning portfolio shares in the non-

stochastic steady state, it also allows us to analyze the equilibrium dynamics of a model that is

inherently nonstationary.

The remaining equations characterizing the model’s equilibrium are log-linearized in a standard

way. Optimal investment by h and f firms requires that

Etrkt+1 − rt +
1
2Vt

³
rkt+1

´
= CVt

³
rkt+1,∆wt+1

´
, (22a)

Etr̂kt+1 − rt +
1
2Vt

³
r̂kt+1

´
= CVt

³
r̂kt+1,∆ŵt+1

´
, (22b)

4Our approach of parametrizing the initial wealth distribution across agents is an alternative to the Judd and Guu
(2000) bifurcation procedure for dealing with portfolio indeterminacy.

5For example, when households have log preferences the first two terms on the right in (20) are constant. Under
these circumstances, a positive unexpected return will permenantly raise wealth unless the household finds it optimal
to adjust their future portfolio shares so that α0t+iΘt+iαt+i falls and/or rt+i falls by a compensating amount.
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where rkt+1 and r̂kt+1 are the log returns on capital approximated by

rkt+1
∼= ψzt+1 − (1− θ)ψkt+1 and r̂kt+1

∼= ψẑt+1 − (1− θ)ψk̂t+1, (23)

with ψ ≡ 1− β(1− δ) < 1. The dynamics of the h and f capital stock are approximated by

kt+1 ∼=
1

β
kt +

ψ

βθ
zt −

µ
ψ

θβ
− δ

¶
dt and k̂t+1 ∼=

1

β
k̂t +

ψ

βθ
ẑt −

µ
ψ

θβ
− δ

¶
d̂t. (24)

Finally, we turn to the relationship between the price of equity, dividends and returns. As in

Campbell and Shiller (1989), we relate the log return on equity to log dividends and the log price

of equity by

rht+1 = ρpt+1 + (1− ρ)dt+1 − pt and rft+1 = ρ̂p̂t+1 + (1− ρ̂)d̂t+1 − p̂t, (25)

with ρ ≡ 1/(1 + exp(d− p)) and ρ̂ ≡ 1/(1 + exp(d̂− p̂)) where d− p and d̂− p̂ are the average log

dividend-price ratios in the h and f countries. In the non-stochastic steady state ρ = ρ̂ = β.Making

this substitution, iterating forward with limj→∞ βjpχt+j = 0, and taking conditional expectations,

we obtain

pt =
∞X
i=0

βi
©
(1− β)Etdt+1+i − Etrht+1+i

ª
, (26a)

p̂t =
∞X
i=0

βi
n
(1− β)Etd̂t+1+i − Etrft+1+i

o
. (26b)

These approximations show how log equity prices are related to expected future dividends and

returns.

2.3 State Variables Dynamics

The key step in our solution procedure is deriving a general yet tractable set of equations that

describe the equilibrium dynamics of the state variables. One problem we immediately face in this

regard is the dimensionality of the state vector. As we noted above, the distribution of wealth

plays an integral role in determining equilibrium prices and returns when markets are incomplete,

so household wealth needs to be included in the state vector. In models with a continuum of

heterogenous households it is obviously impossible to track the wealth of individuals, so moments

of the wealth distribution need to be included in the state vector. The question of how many
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moments to include is not easily answered.

Dimensionality is still a problem when heterogeneity across households is limited. In our model

there are only two types of households, so it suffices to keep track of h and f households’ wealth.

The dimensionality problem occurs under these circumstances because uncertainty enters multi-

plicatively into the dynamics of wealth. (Recall that portfolio shares determine the susceptibility

of wealth to unexpected return shocks.) If wealth is part of the state vector, Xt, and both portfolio
shares and realized returns depend on Xt, the level of wealth will depend on the elements in XtX 0t .
This means that the equilibrium dynamics of wealth will in general depend on the behavior of the

levels, squares and cross-products of the individual state variables. This dependence between the

lower and higher moments of the state variables remains even after log-linearization. In equation

(20) we see that h household wealth depends on the quadratic form for portfolio shares, which are

themselves functions of the state vector, including wealth. As a result, the state vector needs to be

expanded to include squares and cross-products. Of course a similar logic applies to the equilibrium

behavior of squares and cross-products involving wealth. So by induction, a complete character-

ization of the equilibrium wealth dynamics could easily require an infinite number of elements in

X . Our solution procedure uses a finite subset of state variables X ⊂ X that provides a good

approximation to the equilibrium dynamics.

We will use the model presented in Section 1 to illustrate our procedure. Let xt ≡ [zt, kt, k̂t, wt, ŵt]
0

where kt ≡ ln (Kt/K), k̂t ≡ ln
³
K̂t/K

´
, wt ≡ ln(Wt/W0) and ŵt ≡ ln(Ŵt/Ŵ0). More generally,

xt will be an n × 1 vector that contains the variables that make up the state vector. We will
approximate the equilibrium dynamics of the model with the vector

Xt =

⎡⎢⎢⎣
1

xt

x̃t

⎤⎥⎥⎦ ,
where x̃t ≡ vec (xtx

0
t) . The vector Xt contains k = 1 + n+ n2 elements.

To determine the dynamics of Xt, we first conjecture that xt follows

xt+1 = Φ0 + (I −Φ1)xt +Φ2x̃t + εt+1, (27)

where Φ0 is the n× 1 vector of constants, Φ1 is the n× n matrix of autoregressive coefficients and

Φ2 is the n × n2 matrix of coefficients on the second-order terms. εt+1 is a vector of innovations

12



with zero conditional mean, and conditional covariance that is a function of Xt :

E (εt+1|xt) = 0,

E
¡
εt+1ε

0
t+1|xt

¢
= Ω(Xt) = Ω0 +Ω1xtx

0
tΩ
0
1.

Below we shall use the vectorized conditional variance which we write as

vec (Ω(Xt)) =
h
Σ0 0 Σ1

i⎡⎢⎢⎣
1

xt

x̃t

⎤⎥⎥⎦ = ΣXt. (28)

The next step is to derive an equation describing the dynamics of x̃t consistent with (27) and

(28). For this purpose we consider the continuous time analogue to (27) and derive the dynamics

of x̃t+1 via Ito’s lemma. As the Appendix shows, the resulting process can be approximated in

discrete time by

x̃t+1 =
1
2DΣ0 + (Φ0 ⊗ I)+ (I ⊗ Φ0)xt +

¡
I− (Φ1 ⊗ I)− (I ⊗ Φ1)+1

2DΣ1
¢
x̃t + ε̃t+1 (29)

where ε̃t+1 = [(I ⊗ xt) + (xt ⊗ I)] εt+1,

D =

∙
U

µ
∂x

∂x0
⊗ I

¶
+

µ
∂x

∂x0
⊗ I

¶¸
, and U =

X
r

X
s

Ers ⊗E0r,s.

Er,s is the elementary matrix which has a unity at the (r, s)th position and zero elsewhere. Equation

(29) approximates the dynamics of x̃t+1 because it ignores the role played by cubic and higher order

terms involving the elements of xt. In this sense, (29) represents a second—order approximation to

the dynamics of the second—order terms in the state vector.6 Notice that the variance of εt+1 affects

the dynamics of x̃t+1 via the D matrix and that ε̃t+1 will generally be conditionally heteroskedastic.

We can now combine (27) and (29) into a single equation:

⎡⎢⎢⎢⎣
1

xt+1

x̃t+1

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎣

1 0 0

Φ0 I − Φ1 Φ2
1
2DΣ0 (Φ0 ⊗ I)+ (I ⊗ Φ0) I− (Φ1 ⊗ I)− (I ⊗ Φ1)+1

2DΣ1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1

xt

x̃t

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

0

εt+1

ε̃t+1

⎤⎥⎥⎥⎦ ,
6One way to check the accuracy of this approximation is to derive a generalization of (29) involving third—order

terms and then compute the contribution of these terms to the dynamics of xt and x̃t. Since the elements of xt are
measured in terms of percentage deviations from steady state or initial values, third order terms are unlikely to be
significant. Nevertheless, as we note below, we are cognizant of the approximation error in (29) when examining the
“solution” to a model.
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or more compactly

Xt+1 = AXt + Ut+1, (30)

with E (Ut+1|Xt) = 0. We also need to determine the conditional covariance of the Ut+1 vector. In

the Appendix we show that

E
¡
Ut+1U

0
t+1|Xt

¢
≡ S (Xt) =

⎛⎜⎜⎝
0 0 0

0 Ω (Xt) Γ (Xt)

0 Γ (Xt)
0 Ψ(Xt)

⎞⎟⎟⎠ , (31)

where

vec (Γ (Xt)) = Γ0 + Γ1xt + Γ2x̃t,

vec
¡
Γ (Xt)

0¢ = Λ0 + Λ1xt + Λ2x̃t,

vec (Ψ(Xt)) = Ψ0 +Ψ1xt +Ψ2x̃t.

The Γi, Λi and Ψi matrices are complicated functions of the parameters in (27) and (28); their

precise form is shown in the Appendix.

To this point we have shown how to approximate the dynamics of Xt given a conjecture con-

cerning Φ0,Φ1,Φ2, Σ0 and Σ1.We now turn to the issue of how these matrices are determined. For

this purpose we make use of two further results. Let at and bt be two generic endogenous variables

related to the state vector by at = πaXt and bt = πbXt, where πa and πb are 1 × k vectors. Our

second-order approximation for the dynamics of Xt implies that

CVt (at+1, bt+1) = A (πa, πb)Xt, (R1)

and atbt = B (πa, πb)Xt. (R2)

A (., .) and B (., .) are 1× k vectors with elements that depend on πa, πb and the parameters of the

Xt process. The precise form of these vectors is also shown in the Appendix.

To see how these results are used, we return to the model. The dynamics of the state vector

depend upon households’ portfolio choices, {αht , αft , α̂ht , α̂ft } , firms’ dividend choices, {dt, d̂t}, equi-
librium equity prices, {pt, p̂t} , and the risk free rate, rt. Let us assume, for the present, that each
of these non-predetermined variables is linearly related to the state. (We shall verify that this is

indeed the case below.) In particular, let πi be the 1× k row vector that relates variable i to the

state Xt and let hi be the 1 × k vector that selects the ith element out of Xt. We can now easily

14



derive the restrictions on the dynamics of productivity, capital and wealth.

Recall that the first two rows of xt comprise the vector of productivities that follow an exoge-

nous AR(1) process. The corresponding elements of Φ0,Φ1,Φ2, Σ0 and Σ1 are therefore entirely

determined by the parameters of this process.

The next elements in xt are the log capital stocks. If equilibrium dividends satisfy dt = πdXt

and d̂t = πd̂Xt, we can rewrite the log-linearized dynamics for kt and k̂t shown in (24) as

hkXt+1 =
³
1
βhk +

ψ
βθhz −

³
ψ
θβ − δ

´
πd

´
Xt,

hk̂Xt+1 =
³
1
βhk̂ +

ψ
βθhẑ −

³
ψ
θβ − δ

´
πd̂

´
Xt.

Notice that these equations must hold for all realizations of Xt. So substituting for Xt+1 with (30)

and equating coefficients we obtain

hkA = 1
βhk +

ψ
βθhz −

³
ψ
θβ − δ

´
πd and hk̂A =

1
βhk̂ +

ψ
βθhẑ −

³
ψ
θβ − δ

´
πd̂.

These equations place restrictions on the elements of Φ0,Φ1, and Φ2. Furthermore, because kt+1

and k̂t+1 are solely functions of the period—t state, the corresponding element rows and columns of

E(εt+1ε0t+1|Xt) ≡ Ω(Xt) are vectors of zeros. This observation puts restrictions on the elements of

Σ0 and Σ1.

Deriving the equilibrium restrictions on the dynamics of wealth is a little more complicated and

requires the use of R1 and R2. Our starting point is the approximation for log equity returns in

(25) which we now write in terms of the state vector:

rht+1 = πhXt+1 − πpXt and rft+1 = πfXt+1 − πp̂Xt,

where πh ≡ βπp + (1 − β)πd and πf ≡ βπp̂ + (1 − β)πd̂. Notice that unexpected log returns are

rχt+1 − Etr
χ
t+1 = πχ (Xt+1 − EtXt+1) for χ = {h,f}, so applying R1 we obtain

Vt(ert+1) ≡ Θt =

⎡⎣ A(πh, πh)Xt A(πh, πf)Xt

A(πh, πf)Xt A(πf, πf)Xt

⎤⎦ .
Now recall that our log-linearized version of the h household budget constraint contains a quadratic

function of the portfolio shares and Θt. To evaluate this component, let us assume that the portfolio
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shares satisfy αht = πhαXt and αft = πfαXt, so that

α0tΘtαt =
h
πhαXt πfαXt

i⎡⎣ A(πh, πh)Xt A(πh, πf)Xt

A(πh, πf)Xt A(πf, πf)Xt

⎤⎦⎡⎣ πhαXt

πfαXt

⎤⎦ .
Applying R2 to the right hand side gives

α0tΘtαt = B (πhα,B(A(πh, πh), πhα) + B(A(πh, πf), πfα))Xt

+B (πfα,B(A(πh, πf), πhα) + B(A(πf, πf), πfα))Xt,

= ΛXt.

According to (20), Etwt+1 = wt+lnβ+rt+
1
2α

0
tΘtαt, while the dynamics of the state vector imply

that Etwt+1 = hwAXt. Equating these moments for all possible values of Xt requires that

hwA = hw + lnβh1 + πr +
1
2Λ.

This expression provides us with another set of restrictions on the elements of Φ0,Φ1, and Φ2.

The model also places restrictions on the second moments of wealth. To derive these restrictions

we first note that for any variable at = πaXt,

CVt(wt+1, at+1) = αhtCVt(r
h
t+1, at+1) + αftCVt(r

f
t+1, at+1).

Applying R1 and R2 to the right hand side, gives

CVt(wt+1, at+1) = πhαXtA(πh, πa)Xt + πfαXtA(πf, πa)Xt

= (B(πhα,A(πh, πa)) + B(πfα,A(πf, πa)))Xt.

Our conjecture for the conditional covariance of xt in (28) implies that the second moments of

wealth depend only on the constant and second order terms in Xt. This conjecture requires that

ha

h
Σ0 0 Σ1

i
= B(πhα,A(πh, πa)) + B(πfα,A(πf, πa))

where havec(Ω(Xt)) = CVt(wt+1, at+1). For a we use the elements of xt ≡ [zt, kt, k̂t, wt, ŵt]
0. An

analogous set of restrictions apply to the dynamics of f household wealth.
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2.4 Non-Predetermined Variable Dynamics

To this point we have shown how the equilibrium conditions of the model impose restrictions on

the dynamics of the state variables under the assumption that the vector of non-predetermined

variables Yt (i.e., αht , α
f
t , α̂

h
t , α̂

f
tdt, d̂t, pt, p̂t and rt ) satisfy

Yt = ΠXt,

for some matrix Π with rows πi. We now turn to the question of how the elements of Π are

determined from the equilibrium conditions and the dynamics of the state vector.

We begin with the restrictions on h equity prices. In particular, our aim is to derive a set of

restrictions that will enable us to identify the elements of πp where pt = πpXt in equilibrium. Our

derivation starts with expected returns. Specifically, we note from the log—linearized first order

conditions in (18a) that

Etrht+1 = rt +CVt(wt+1, r
h
t+1)− 1

2Vt(r
h
t+1),

= rt +
¡
B(πhα,A(πh, πh)) + B(πfα,A(πf, πh))− 1

2A(πh, πh)
¢
Xt,

= (πr + πher)Xt.

Combining this expression for expected returns with the assumed form for equilibrium dividends,

the dynamics of the state vector, and (26a) gives

pt =
∞X
i=0

βi {(1− β)πdEtXt+1+i − (πr + πher)EtXt+i} ,

= [(1− β)πdA− (πr + πher)] (I − βA)−1Xt.

Thus, given our assumption about dividends, the risk free rate, and the optimality of portfolio

choices we find that log equity prices satisfy pt = πpXt where

πp = [(1− β)πdA− (πr + πher)] (I − βA)−1 . (32)

A similar exercise confirms that p̂t = πp̂Xt where

πp̂ =
£
(1− β)πd̂A− (πr̂ + πfer)

¤
(I − βA)−1 . (33)

The restrictions in (32) and (33) depend on the form of the dividend policies via the πd and πd̂
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vectors. These vectors are determined by the firm’s first order conditions. In particular, using the

fact that Vt

¡
rkt+1

¢
= ψ2Vt (zt+1) and CVt

¡
rkt+1, wt+1

¢
= ψCVt (zt+1, wt+1) , we can use R1 and R2

to write the log-linearized first order condition for h firms in (22a) as

Etrkt+1 = rt +CVt

³
rkt+1, wt+1

´
− 1

2Vt

³
rkt+1

´
,

=
£
πr + ψ (B(πhα,A(πh, hz)) + B(πfα,A(πf, hz)))− 1

2ψ
2A(hz, hz)

¤
Xt.

At the same time, (23) and (24) imply that

Etrkt+1 = ψEtzt+1 − (1− θ)ψ
n
1
βkt +

ψ
βθzt −

³
ψ
θβ − δ

´
dt

o
,

=
h
ψhzA− (1− θ)ψ

n
1
βhk +

ψ
βθhz −

³
ψ
θβ − δ

´
πd

oi
Xt.

Combining these expressions and equating coefficients gives

πd = θβ
(1−θ)ψ(ψ−δθβ)

©
πr + ψ (B(πhα,A(πh, hz)) + B(πfα,A(πf, hz)))− 1

2ψ
2A(hz, hz)− ψhzA

ª
+

1

(ψ − δθβ)
{θhk + ψhz} .

The first order condition for f firms gives an analogous expression for πd̂.

The behavior of the non-predetermined variables must also be consistent with market clearing.

According to (21), market clearing in the bonds requires that pt + p̂t = dt + d̂t, a condition that

implies

πp + πp̂ = πd + πd̂.

In the case of the h and f equity markets we need

1 + pt −wt +
1
2 (pt −wt)

2 = αht + α̂ht

³
1 + ŵt − wt +

1
2 (ŵt − wt)

2
´
,

1 + p̂t − ŵt +
1
2 (p̂t − ŵt)

2 = α̂ft + αft

³
1 + wt − ŵt +

1
2 (wt − ŵt)

2
´
.

Rewriting these equations in terms of Xt, applying R2, and equating coefficients gives

h1 + πp − hw +
1
2B (πp − hw, πp − hw) = πhα + B

¡
πhα̂,

¡
h1 + hŵ − hw +

1
2B (hŵ − hw, hŵ − hw)

¢¢
,

h1 + πp̂ − hŵ +
1
2B (πp̂ − hŵ, πp̂ − hw) = πfα̂ + B

¡
πfα,

¡
h1 + hw − hŵ +

1
2B (hw − hŵ, hw − hŵ)

¢¢
.

The remaining market clearing condition comes from the goods market. Walras Law makes this

condition redundant when the restrictions implied by the other market clearing conditions are
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imposed, so there is no need to consider its implications directly.

2.5 Numerical Procedure

We have described how the log-linearized equations characterizing the equilibrium of the model are

used to derive a set of restrictions on the behavior of the state vector and the non-predetermined

variables. A solution to the model requires that we find values for all the parameters in process

for Xt and Yt that satisfy these restrictions given values for the exogenous taste and technology

parameters. More formally, we need to find all the elements of A, Π and S(.) such that

F (ΠAXt +ΠUt+1,ΠXt,AXt + Ut+1,Xt,S(Xt)) = 0,

where F(.) consists of all the equilibrium conditions, including the restrictions on the second mo-

ments, implied by the model.

We proceed in the following steps:

1. For the given set of exogenous parameter values we conjecture some initial values for policy

matrix Π(1) and the coefficient matrices {Φ(1)0 ,Φ
(1)
1 ,Φ

(1)
2 } governing the state vector dynamics.

We also need to choose starting values for {Ω0,Ω1} and arrange them into [Σ]i (the rows of

Σ). Σ characterizes the heteroskedastic nature of the variance-covariance matrix of the state

vector. We start with a homoskedastic guess:

[Σ]
(1)
i =

h
σ2e 01×(k−1)

i
, i = {Vt (z)} ,

[Σ]
(1)
i = [01×k] , i 6= {Vt (z)} .

2. With these guesses we can construct a coefficient matrixA(1) from (30) and variance-covariance
function S(1) from (31).

3. Now we form the value function

J 1
³
Π(1)

´
= F

³
Π(1)A(1)Xt +Π

(1)Ut+1,Π
(1)Xt,A(1)Xt + Ut+1,Xt,S(1)(Xt)

´
.

4. For the given values of A and S find Π(2) as the solution to J 1
¡
Π(1)

¢
= 0. If Π(2) differs from

Π(1), we return to step 2. The procedure stops when Π(τ) = Π(τ−1).
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3 Results

The one-sector model provides an environment in which we can assess the accuracy of our solution

method. In particular, the structure of the model is sufficiently simple for us to analytically deter-

mine the equilibrium portfolio holdings of households. We can therefore compare these holdings to

those implied by the numerical solution to the model.

The analytic solution to the model is based on the observation that the array of assets available

to households (i.e., equity issued by h and f firms and risk free bonds) permits complete risk-

sharing. We can see why this is so by returning to conditions determining the household portfolio

choices. In particular, combining the log-linearized first order conditions with the budget constraint

as shown in (19) under the assumption of log preferences, we obtain

αt = Θ
−1
t (Etert+1 + 1

2diag(Θt)) and α̂t = Θ
−1
t (Etert+1 + 1

2diag(Θt)), (34)

where, as before, α0t ≡ [ αht αft ], α̂
0
t ≡ [ α̂ht α̂ft ], er

0
t+1 ≡ [ rht+1 − rt rft+1 − rt ], and Θt ≡

Vt(ert+1). The key point to note here is that all households face the same set of returns and have the

same information. So the right hand side of both expressions in (34) are identical in equilibrium.

h and f households will therefore find it optimal to hold the same portfolio shares. This has a

number of implications if the initial distribution of wealth is equal. First, household wealth will be

equalized across countries. Second, since households with log utility consume a constant fraction of

wealth, consumption will also be equalized. This symmetry in household behavior together with the

market clearing conditions implies that bond holdings are zero and wealth is equally split between

h and f equities (i.e., αht = α̂ht = αft = α̂ft = 1/2). The symmetry in consumption also implies that

mt+1 = m̂t+1 so risk sharing is complete.

Table 1 reports statistics on the simulated portfolio holdings of households computed from

the numerical solution to the model. For this purpose we used the solution method described

above to find the parameters of Xt and Yt processes consistent with the log-linearized equilibrium

conditions. These calculations were performed assuming a discount factor β equal to 0.99, the

technology share parameter θ equal to 0.36 and a depreciation rate for capital, δ, of 0.02. The log

of h and f productivity, zt and ẑt, are assumed to follow independent AR(1) processes with the

same autocorrelation coefficient, aii, i = {h,f} , equal to 0.95 and innovation variance σ2e equal to
0.0001. Once the model is “solved”, we simulate Xt over 500 quarters starting from an equal wealth

distribution. We then discard the first 100 quarters from each simulation. The statistics we report

in Table 1 are derived from 100 simulations and so are based on 10,000 years of simulated quarterly
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data in the neighborhood of the initial wealth distribution.7

Table 1: Simulated Portfolio Holdings (One Sector Model)

Aht Aft Bt

(i) (ii) (iii)
% GDP

mean 0.5000 0.5000 0.00%
std dev 0.0000 0.0000 0.25%
min 0.4999 0.4999 -1.52%
max 0.5001 0.5001 2.53%

Columns (i), (ii) and (iii) report statistics on the asset holdings of h households computed from

the model simulations. Theoretically speaking, we should see that Bt = 0 and Aht = Aft = 0.5.

(Recall that the supply of h and f equity are both normalized to unity.) The simulation results

conform closely to these predictions. The equity portfolio holdings show no variation and on average

are exactly as theory predicts. Average bond holdings, measured as a share of model’s GDP are

similarly close to zero, but show a little more variation. Overall, simulations based on our solution

technique appear to closely replicate the complete risk sharing allocation theory predicts.

4 The Two-Sector Model

The power of our solution procedure resides in its applicability to models with portfolio choice

and incomplete markets. Analytic solutions are unavailable in these models and existing numerical

solution methods are inapplicable. In this section we consider a two—sector extension of the model

in which markets are incomplete.

4.1 The Model

In this version of the model households in the two countries have preferences defined over the

consumption of two goods: a tradeable and nontradeable. The preferences of a representative

household in the h country are given by

Ut = Et
∞X
i=0

βiU(Ctt+i, C
n
t+i), ,

7The innovations to equilibrium wealth are small enough to keep h and f wealth close to its initial levels over a
span of 500 quarters so the approximation error in (27) remains very small.
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where 0 < β < 1 is the discount factor, and U(.) is a concave sub-utility function defined over the

consumption of traded and non-traded goods, Ctt and Cnt :

U(Ct, Cn) =
1

φ
ln
h
λ1−φt (Ct)φ + λ1−φn (Cn)φ

i
,

with φ < 1. λt and λn are the weights the household assigns to tradeable and nontradeable consump-

tion respectively. The elasticity of substitution between tradeable and nontradeable consumption is

(1−φ)−1 > 0. Preferences for households in country f are similarly defined in terms of foreign con-
sumption of tradeables and non-tradeables, Ĉtt and Ĉnt . Notice that preferences are not separable

across the two consumption goods.

The menu of assets available to households now includes the equity issued by h and f firms

producing tradeable goods, risk free bonds, and the equity issued by domestic firms producing

nontradeable goods. Households are not permitted to hold the equity of foreign firms producing

nontradeable goods. With the new array of assets, the budget constraint for h households becomes

Wt+1 = Rwt+1 (Wt − Ctt −QntC
n
t ) ,

where Rwt+1 = Rt + αht (R
h
t+1 −Rt) + αft (R

f
t+1 −Rt) + αnt (R

n
t+1 −Rt).

Qnt is the relative price of h nontradeables in terms of tradeables, and R
n
t+1 is the return on equity

issued by domestic firms producing nontradeables, measured in terms of tradeables:

Rnt+1 =
©¡
Pnt+1 +Dn

t+1

¢
/Pnt

ª
{Qt+1/Qt} .

Pnt is the price of equity issued by h firms producing nontradeables and D
n
t is the flow of dividends,

both measured in terms of nontradeables. The budget constraint and returns on f household wealth

are analogously defined (see Evans and Hnatkovska, 2005, for details).

The production side of the model remains unchanged aside from the addition of the nontradeable

sector in each country. For simplicity we assume that the production of nontradeables requires no

capital. Nontradeable output, Y nt and Ŷ nt , in countries h and f is given by

Y nt = ηZnt , and Ŷ nt = ηẐnt ,

where η > 0 is a constant. Znt and Ẑnt denote the period-t state of nontradeable productivity in

countries h and f respectively. The productivity vector is now zt ≡ [lnZtt , ln Ẑtt , lnZnt , ln Ẑnt ]0. We
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continue to assume that zt follows an AR(1) process:

zt = azt−1 + et,

where et is a 4× 1 vector of i.i.d. mean zero shocks with covariance Ωe.

4.2 Equilibrium

As in a one-sector model, the equilibrium conditions comprise the first-order conditions of house-

holds and firms and the market clearing conditions. Since the production of nontradeable output

requires no capital, firms in this sector simply pass on their revenues to shareholders in the form

of dividends. In the tradeable sector, the first-order conditions governing dividends remain un-

changed. Optimal household behavior now covers the choice between different consumption goods,

and a wider array of financial assets. The first-order conditions for h households, in addition to

(8), now include

Qnt =
∂U/∂Cnt
∂U/∂Ctt

,

1 = Et
£
Mt+1R

n
t+1

¤
,

where Mt+1 ≡ β(∂U/∂Ctt+1)/(∂U/∂C
t
t ). The first order conditions for f households are expanded

in an analogous manner.

Solving for an equilibrium now requires finding equity prices, {Pht , P ft , P nt , P̂nt }, goods prices,
{Qnt , Q̂

n
t }, and the interest rate, Rt, such that markets clear when households follow optimal con-

sumption, saving and portfolio strategies, and firms in the tradeable sector make optimal invest-

ment decisions. As above, we assume that bonds are in zero net supply so that (10) continues to

be the bond market clearing condition. Similarly, equation (11) is the market clearing condition in

tradeable goods market. Market clearing in the non-tradeable sector of each country requires that

Cnt = Y nt = Dn
t , and Ĉnt = Ŷ nt = D̂n

t .

As above, we normalize the number of outstanding shares issued by firms in each sector to unity

so market clearing in the equity markets requires that

1 = Aht + Âht , 1 = Aft + Âft ,

1 = Ant , 1 = Ânt .

23



Ant and Ânt are the number of shares held by h and f households in domestic nontradeable firms.

4.3 Results

Table 2 reports statistics on the simulated portfolio holdings of households computed from the

numerical solution to the two-sector model. This is a complex model and is analyzed in depth in

Evans and Hnatkovska (2005). That paper also presents the log-linearized equilibrium conditions

used in the solution procedure. The results in Table 2 are based on the same values for β, θ, δ,

and σ2e. In addition, we set the share parameters λ
t and λ̂

t
equal 0.5, the elasticity of substitution

1/(1−φ) equal to 0.74, the autocorrelation in nontradeable productivity to 0.99, while in tradeable
productivity to 0.78. Innovations to nontradeable productivity are assumed to be i.i.d. with

variance equal to σ2e. As above, the statistics are computed from model simulations covering 10,000

years of quarterly data.

Table 2: Simulated Portfolio Holdings (Two Sector Model)

Aht Aft Ant Bt

(i) (ii) (iii) (iv)
% GDP

mean 0.5000 0.5000 1.0000 -0.23%
std dev 0.0019 0.0019 0.0000 12.19%
min 0.4918 0.4925 1.0000 -40.29%
max 0.5076 0.5077 1.0000 71.19%

Columns (i) - (iv) report statistics on the asset holdings of h households computed from the

model simulations. As in the one-sector model, households continue to diversify their holdings

between the equity issued by h and f firms producing tradeable goods. (Household holdings of

equity issued by domestic firms producing nontradeable goods must equal unity in order to clear

the market.) While these holdings are split equally on average, they are far from constant. Both

the standard deviation and range of the tradeable equity holdings are an order of magnitude larger

than the simulated holdings from the one-sector model. Differences between the one- and two-

sector models are even more pronounced for bond holdings. In the two-sector model shocks to

productivity in the nontradeable sector affect h and f households differently and create incentives

for international borrowing and lending. In equilibrium most of this activity takes place via trading

in the bond market, so bond holdings display a good deal of volatility in our simulations.
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5 Conclusion

We have presented a numerical method for solving general equilibrium models with many assets,

heterogeneous agents and incomplete markets. Our method builds on the log-linear approximations

of Campbell, Chan and Viceira (2003) and the second-order perturbation techniques developed by

Judd (1998) and others. To illustrate its use, we have applied our solution method to a one— and

two-sector versions of a two country general equilibrium model with production. The numerical

solution to the one-sector model closely conforms to the predictions of theory and gives us confidence

in the accuracy of the method. The power of our method is illustrated by solving the two-sector

version of the model. The array of assets in this model is insufficient to permit complete risk sharing

among households, so the equilibrium allocations cannot be found by standard analytic techniques.

To the best of our knowledge, our method provides the only way to analyze general equilibrium

models with portfolio choice and incomplete markets.

In principle, our solution method can be applied to more complicated models than the one- and

two-sector models described above. For example, the method can be applied to solve models with

more complex preferences, capital adjustment costs, or portfolio constraints. The only requirement

is that the equilibrium conditions can be expressed in a log-linear form. We believe that the solution

method presented here will be useful in the future analysis of such models.
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A Appendix:

A.1 Derivation of (29)

We start with quadratic and cross-product terms, x̃t and approximate their laws of motion using

Ito’s lemma. In continuous time, the discrete process for xt+1 in (27) becomes

dxt = [Φ0 − Φ1xt +Φ2x̃t] dt+Ω(x̃t)1/2dWt

Then by Ito’s lemma:

dvec(xtx
0
t) = [(I ⊗ xt) + (xt ⊗ I)]

³
[Φ0 − Φ1xt +Φ2x̃t] dt+Ω(x̃t)1/2dWt

´
+1
2

∙
(I ⊗ U)

µ
∂x

∂x0
⊗ I

¶
+

µ
∂x

∂x0
⊗ I

¶¸
d [x, x]t

= [(I ⊗ xt) + (xt ⊗ I)]
³
[Φ0 − Φ1xt +Φ2x̃t] dt+Ω(x̃t)1/2dWt

´
+1
2

∙
U
µ
∂x

∂x0
⊗ I

¶
+

µ
∂x

∂x0
⊗ I

¶¸
vec {Ω(x̃t)} dt

= [(I ⊗ xt) + (xt ⊗ I)]
³
[Φ0 − Φ1xt +Φ2x̃t] dt+Ω(x̃t)1/2dWt

´
+ 1

2Dvec {Ω(x̃t)} dt,(A1)

where D =

∙
U
µ
∂x

∂x0
⊗ I

¶
+

µ
∂x

∂x0
⊗ I

¶¸
, U =

X
r

X
s

Ers ⊗E0r,s,

and Er,s is the elementary matrix which has a unity at the (r, s)th position and zero elsewhere. The

law of motion for the quadratic states in (A1) can be rewritten in discrete time as

x̃t+1 ∼= x̃t + [(I ⊗ xt) + (xt ⊗ I)] [Φ0 − Φ1xt +Φ2x̃t] + 1
2Dvec (Ω(x̃t))

+ [(I ⊗ xt) + (xt ⊗ I)] εt+1,

∼= 1
2DΣ0 + [(Φ0 ⊗ I) + (I ⊗Φ0)]xt +

£
I − (Φ1 ⊗ I)− (I ⊗ Φ1) + 1

2DΣ1
¤
x̃t + ε̃t+1,

where ε̃t+1 ≡ [(I ⊗ xt) + (xt ⊗ I)] εt+1. The last equality is obtained by using an expression for

vec (Ω(Xt)) in (28), where Σ0 = vec(Ω0) and Σ1 = Ω1 ⊗ Ω1, and by combining together the
corresponding coefficients on a constant, linear and second-order terms.
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A.2 Derivation of (31)

Recall that Ut+1 = [ 0 εt+1 ε̃t+1 ]
0, so E (Ut+1|Xt) = 0 and

E
¡
Ut+1U

0
t+1|Xt

¢
≡ S (Xt) =

⎛⎜⎜⎝
0 0 0

0 Ω (Xt) Γ (Xt)

0 Γ (Xt)
0 Ψ(Xt)

⎞⎟⎟⎠
To evaluate the covariance matrix, we assume that vec(xt+1x̃0t+1) ∼= 0 and define:

Γ (Xt) ≡ Etεt+1ε̃0t+1,

= Etxt+1x̃0t+1 − Etxt+1Etx̃0t+1,

= Etxt+1x̃0t+1 − (Φ0 + (I −Φ1)xt +Φ2x̃t)

×
³
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 + x̃0t
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0´

,

∼= −Φ0
³
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 + x̃0t
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0´

−(I − Φ1)xt
¡
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0
¢
− 1
2Φ2x̃tΣ

0
0D

0,

= −12Φ0Σ
0
0D

0 − Φ0x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 −
1

2
(I − Φ1)xtΣ00D0

−Φ0x̃0t
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0

−(I − Φ1)xtx0t [(Φ0 ⊗ I) + (I ⊗Φ0)]0 − 1
2Φ2x̃tΣ

0
0D

0.

Hence

vec (Γ (Xt)) = Γ0 + Γ1xt + Γ2x̃t,

Γ0 = −1
2
(DΣ0 ⊗ Φ0) vec(I),

Γ1 = − [(Φ0 ⊗ I) + (I ⊗Φ0)]⊗ Φ0 + 1
2 (DΣ0 ⊗ (I − Φ1)) ,

Γ2 = −
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤
⊗ Φ0 − 1

2 (DΣ0 ⊗ Φ2)

− [(Φ0 ⊗ I) + (I ⊗Φ0)]⊗ (I − Φ1).

Note also from above that

Γ (Xt)
0 = −12DΣ0Φ

0
0 − [(Φ0 ⊗ I) + (I ⊗ Φ0)]xtΦ00 − Σ0x0t(I − Φ1)0

−
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤
x̃tΦ

0
0

− [(Φ0 ⊗ I) + (I ⊗ Φ0)]xtx0t(I − Φ1)0 − 1
2DΣ0x̃

0
tΦ
0
2.
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So

vec
¡
Γ (Xt)

0¢ = Λ0 + Λ1xt + Λ2x̃t,

Λ0 = −12 (Φ0 ⊗DΣ0) vec(I),

Λ1 = − (Φ0 ⊗ [(Φ0 ⊗ I) + (I ⊗ Φ0)]) + 1
2 ((I − Φ1)⊗DΣ0) ,

Λ2 = −
¡
Φ0 ⊗

£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤¢
− 1
2 (Φ2 ⊗DΣ0)

− ((I − Φ1)⊗ [(Φ0 ⊗ I) + (I ⊗ Φ0)]) .

Next, consider the variance of ε̃t+1 :

Ψ (Xt) ≡ Etε̃t+1ε̃0t+1

= Etx̃t+1x̃0t+1 − Etx̃t+1Etx̃0t+1,

= Etx̃t+1x̃0t+1 −
³
1
2DΣ0 + [(Φ0 ⊗ I) + (I ⊗ Φ0)]xt +

£
I − ((Φ1 ⊗ I) + (I ⊗Φ1)) + 1

2DΣ1
¤
x̃t

´
×
³
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 + x̃0t
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0´

,

∼= −12DΣ0
³
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗Φ0)]0 + x̃0t
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0´

− [(Φ0 ⊗ I) + (I ⊗ Φ0)]xt
¡
1
2Σ

0
0D

0 + x0t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0
¢

−
£
I − ((Φ1 ⊗ I) + (I ⊗Φ1)) + 1

2DΣ1
¤
x̃t
1
2Σ

0
0D

0,

= −14DΣ0Σ
0
0D

0 − 1
2DΣ0x

0
t [(Φ0 ⊗ I) + (I ⊗ Φ0)]0 − 1

2 [(Φ0 ⊗ I) + (I ⊗ Φ0)]xtΣ00D0

−12DΣ0x̃
0
t

£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤0

− [(Φ0 ⊗ I) + (I ⊗ Φ0)]xtx0t [(Φ0 ⊗ I) + (I ⊗Φ0)]0

−12
£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤
x̃tΣ

0
0D

0.

Hence,

vec (Ψ (Xt)) = Ψ0 +Ψ1xt +Ψ2x̃t,

Ψ0 = −1
4
(DΣ0 ⊗DΣ0) vec(I),

Ψ1 = −12 ([(Φ0 ⊗ I) + (I ⊗ Φ0)]⊗DΣ0)− 1
2 (DΣ0 ⊗ [(Φ0 ⊗ I) + (I ⊗ Φ0)]) ,

Ψ2 = −1
2

£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤
⊗DΣ0

−12
¡
DΣ0 ⊗

£
I − ((Φ1 ⊗ I) + (I ⊗ Φ1)) + 1

2DΣ1
¤¢

− [(Φ0 ⊗ I) + (I ⊗ Φ0)]⊗ [(Φ0 ⊗ I) + (I ⊗Φ0)] .
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A.3 Derivation of Results R1 and R2

Let mt = πmXt and nt = πnXt for two variables mt and nt.We want to find the conditional

covariance between the two:

CVt (mt+1, nt+1) =
h
π0m π1m π2m

i⎡⎢⎢⎣
0 0 0

0 Ω(Xt) Γ (Xt)

0 Γ (Xt)
0 Ψ(Xt)

⎤⎥⎥⎦
⎡⎢⎢⎣

π00n

π10n

π20n

⎤⎥⎥⎦ ,
= π1mΩ(Xt)π

10
n + π2mΓ (Xt)

0 π10n + π1mΓ (Xt)π
20
n + π2mΨ(Xt)π

20
n ,

=
¡
π1n ⊗ π1m

¢
vec (Ω(Xt)) +

¡
π1n ⊗ π2m

¢
vec

¡
Γ (Xt)

0¢
+
¡
π2n ⊗ π1m

¢
vec (Γ (Xt)) +

¡
π2n ⊗ π2m

¢
vec (Ψ (Xt)) ,

=
¡
π1n ⊗ π1m

¢
Σ0 +

¡
π1n ⊗ π2m

¢
Λ0 +

¡
π2n ⊗ π1m

¢
Γ0 +

¡
π2n ⊗ π2m

¢
Ψ0

+
¡¡
π1n ⊗ π2m

¢
Λ1 +

¡
π2n ⊗ π1m

¢
Γ1 +

¡
π2n ⊗ π2m

¢
Ψ1
¢
xt

+
¡¡
π1n ⊗ π1m

¢
Σ1 +

¡
π1n ⊗ π2m

¢
Λ2 +

¡
π2n ⊗ π1m

¢
Γ2 +

¡
π2n ⊗ π2m

¢
Ψ2
¢
x̃t.

So, to summarize,

CVt (mt+1, nt+1) = A (πm, πn)Xt,

A (πm, πn) =
h
A0m,n A1m,n A2m,n

i
,

A0m,n =
¡
π1n ⊗ π1m

¢
Σ0 +

¡
π1n ⊗ π2m

¢
Λ0 +

¡
π2n ⊗ π1m

¢
Γ0 +

¡
π2n ⊗ π2m

¢
Ψ0,

A1m,n =
¡
π1n ⊗ π2m

¢
Λ1 +

¡
π2n ⊗ π1m

¢
Γ1 +

¡
π2n ⊗ π2m

¢
Ψ1,

A2m,n =
¡
π1n ⊗ π1m

¢
Σ1 +

¡
π1n ⊗ π2m

¢
Λ2 +

¡
π2n ⊗ π1m

¢
Γ2 +

¡
π2n ⊗ π2m

¢
Ψ2.

To obtain the products of vectors involving the state vector Xt, we note that

πmXtX
0
tπ
0
n =

h
π0m π1m π2m

i⎡⎢⎢⎣
1 x0t x̃0t

xt xtx
0
t 0

x̃t 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

π00n

π10n

π20n

⎤⎥⎥⎦ ,
=

¡
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¢
π00n +

¡
π0mx

0
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0
t

¢
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0
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n ,

=
¡
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¢
+
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¢
xt +

¡
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¢
x̃t +

¡
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¢
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+
¡
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Hence

πmXtX
0
tπ
0
n = B (πm, πn)Xt,

B (πm, πn) =
h
B0m,n B1m,n B2m,n

i
,

B0m,n =
¡
π0n ⊗ π0m

¢
vec(I) = vec(π0n ∗ π0m),

B1m,n =
¡
π0n ⊗ π1m

¢
+
¡
π1n ⊗ π0m

¢
,
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¡
π0n ⊗ π2m

¢
+
¡
π1n ⊗ π1m

¢
+
¡
π2n ⊗ π0m

¢
.
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