
TECHNICAL WORKING PAPER SERIES

THE METHOD OF ENDOGENOUS GRIDPOINTS
FOR SOLVING DYNAMIC STOCHASTIC OPTIMIZATION

Christopher D. Carroll

Technical Working Paper 309
http://www.nber.org/papers/T0309

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
June 2005

I am grateful to Wouter den Haan, Michael Haliassos, Ken Judd, Albert Marcet, Dimitri Mavridis, Michael
Reiter, Victor Rios-Rull, John Rust, Eric Young, and participants in the 2002 meetings of the Society for
Computational Economics for discussions of the literature and existing solution techniques. Excellent
research assistance has been provided by Zhou Lu and Marc Chan. All errors are my own. The views
expressed herein are those of the author(s) and do not necessarily reflect the views of the National Bureau
of Economic Research. 

©2005 by Christopher D. Carroll.  All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to the
source.  



The Method of Endogenous Gridpoints for Solving Dynamic Stochastic Optimization
Christopher D. Carroll
NBER Technical Working Paper No. 309
June 2005
JEL No. C6, D9, E2

ABSTRACT

This paper introduces a method for solving numerical dynamic stochastic optimization problems that

avoids rootfinding operations. The idea is applicable to many microeconomic and macroeconomic

problems, including life cycle, buffer-stock, and stochastic growth problems. Software is provided.

Christopher D. Carroll
Department of Economics
Mergenthaler 440
Johns Hopkins University
Baltimore, MD 21218
and NBER
carroll@jhu.edu



1 The Problem

Consider a consumer whose goal is to maximize discounted utility from consumption

max

T∑

s=t

βt−su(Cs) (1)

for a CRRA utility function u(C) = C1−ρ/(1 − ρ).1

The consumer’s problem will be specialized below to two cases: A standard microe-
conomic problem with uninsurable idiosyncratic shocks to labor income, and a standard
representative agent problem with shocks to aggregate productivity (the ‘micro’ and the
‘macro’ models).2

The consumer’s initial condition is defined by two state variables: Mt is ‘market
resources’ (macro interpretation: capital plus current output) or ‘cash-on-hand’ (micro
interpretation: net worth plus current income), while Pt is permanent labor productivity
in both interpretations.

The transition process for Mt is broken up, for convenience of analysis, into three
steps. Assets at the end of the period are market resources minus consumption, equal
to

At = Mt − Ct, (2)

and capital at the beginning of the next period is what remains after a depreciation factor
k is applied,

Kt+1 = Atk, (3)

where k = (1 − δ) in the usual macro notation and k = 1 in the micro interpretation.
The final step can be thought of as the transition from the beginning of period t + 1,

when capital Kt+1 but has not yet been used to produce output, and the middle of that
period, when output has been produced and incorporated into resources:

Mt+1 =

≡Lt+1

︷ ︸︸ ︷

ℓΘt+1Pt+1 Wt+1 + Kt+1Rt+1 (4)

where Wt+1 is the wage rate; Θt+1 is an iid transitory shock (e.g., unemployment)
that satisfies Et[Θt+n] = 1 ∀ n > 0 (usually Θt = 1 ∀ t in the macro interpretation);
and ℓ is a placeholder for labor supply, which for purposes of this paper is fixed at
ℓ = 1, but in general could be allowed to vary. The disarticulation of the flow of income
into labor and capital components is useful in thinking separately about the effects of
productivity growth (captured in the P component of the ‘labor income’ term) and capital
accumulation.

1Putting leisure in the utility function is straightforward but would distract from the paper’s point.
2Different aspects of the setup of the problem will strike micro and macroeconomists as peculiar; with

patience, it should become clear how the problem as specified can be transformed into more familiar
forms.



Permanent labor productivity (in either interpretation) evolves according to

Pt+1 = Gt+1PtΨt+1 (5)

for a permanent shock that satisfies Et[Ψt+n] = 1 ∀ n > 0 and Gt is exogenous and
perfectly predictable (see below for varying interpretations of G).

Defining lower case variables as the upper-case variable scaled by the level of perma-
nent labor productivity, e.g. at = At/Pt, we have

at = mt − ct (6)

while with a bit of algebra the state transition becomes

mt+1 = ℓΘt+1
︸ ︷︷ ︸

≡lt+1

Wt+1 + (atk/Gt+1Ψt+1)
︸ ︷︷ ︸

=kt+1

Rt+1. (7)

The interest and wage factors are assumed not to depend on anything other than
capital and productive labor input; together with the iid assumption about the struc-
ture of the shocks, this implies that the problem has a Bellman equation representation
(henceforth boldface indicates functions)

Vt(Mt, Pt) = max
Ct

{u(Ct) + βEt[Vt+1(Mt+1, Pt+1)]} (8)

subject to the transition equations.
Defining Γt+1 ≡ Gt+1Ψt+1, consider the related problem

vt(mt) = max
ct






u(ct) + βEt



Γ1−ρ
t+1vt+1(

=mt+1

︷ ︸︸ ︷

lt+1Wt+1 + atRt+1k/Γt+1)










. (9)

Assume that there is some last period T in which

VT (MT , PT ) = P 1−ρ
T vT (MT /PT ) (10)

for some well-behaved vT (we will be more specific about the terminal value function
below). In this case it is easy to show that the solution to the ‘normalized’ problem
defined by (9) yields the solution to the original problem via Vt = P 1−ρ

t vt for any t < T .3

Now define an end-of-period value function ‘Gothic v’ as

vt(at) = βEt[Γ
1−ρ
t+1vt+1(lt+1Wt+1 + k atRt+1 /Γt+1)] (11)

with derivative

v
a
t (at) = βEt

[
Γ1−ρ

t+1v
m
t+1(Rt+1atk/Γt+1 + lt+1Wt+1)Rt+1k/Γt+1

]
(12)

= kβEt

[
Γ−ρ

t+1v
m
t+1(Rt+1atk/Γt+1 + lt+1Wt+1)Rt+1

]

3See Carroll (2004) for a proof.
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and (11) and (6) imply that (9) can be rewritten using vt as

vt(mt) = max
{at}

{u(mt − at) + vt(at)} , (13)

and the envelope theorem can be applied

vm
t (mt) = u′(ct) (14)

while the first order condition yields the Euler equation

u′(ct) = v
a
t (at) (15)

= kβEt[u
′(Γt+1ct+1)Rt+1].

2 Recursion

Generically, problems like this can be solved by specifying a final-period decision rule cT

and a procedure for recursion (obtaining ct from ct+1). Here we specify the recursion;
below we specify choices for the terminal decision rule.

2.1 A Standard Solution Method

The absence of a closed-form solution means that optimal decision functions (e.g. the
consumption function) must be constructed by calculating their values a finite grid of
possible values of the state variables. Call some ordered set of such values µi ∈ ~µ ≡
{µ1, µ2, ..., µI}.

With ct+1 in hand, the usual solution procedure is to specify a ~µ and, for each element,
to use a numerical rootfinding routine to find the χi that satisfies (15),

u′(χi) = v
a
t (µi − χi). (16)

The points {µi, χi} are then used to construct an interpolating approximation to ct.
(Choice of interpolation method is separable from the point of this paper; see Judd (1998)
for a discussion of choices). Given the interpolated ct function the solution for earlier
periods is found by recursion.

One of the most computationally burdensome steps in this approach is the numer-
ical solution of (16) for each specified state gridpoint. Even if efficient methods are
used for constructing the expectations (cf. the parameterized expectations method of
den Haan and Marcet (1990)) and shrewd choices are made for the points to include in
~µ, for each gridpoint a numerical rootfinding operation still must evaluate a substantial
number of candidate values for the control variable before finding values that satisfy (16)
to an acceptable degree of precision.
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2.2 Endogenous Gridpoints Solution Method

This paper’s key contribution is to introduce an alternative approach that does not require
numerical rootfinding. The trick is to begin with end-of-period assets at and to use
the end-of-period marginal value function v

a
t , the first order condition, and the budget

constraint to construct the unique values of middle-of-period mt generated by those at

values.
Specifically, define an exogenous, time-invariant ordered set of values of at collected

in αi ∈ ~α ≡ {α1, α2, . . . , αI}. For each end-of-period state αi the maginal value v
a
t (αi) is

easy to calculate; inverting the consumption first order condition, the α’s generate

χi = u′−1 (va
t (αi)) . (17)

Note that the budget constraint implies that

µi = αi + χi. (18)

We now have a collection of {µi, χi} pairs in hand and can interpolate as before to
generate an approximation to ct. This completes the recursion.

The key distinction between this approach and the standard one is that the gridpoints
for the policy functions are not predetermined; instead they are endogenously generated
from a predetermined grid of values of end-of-period assets (hence the method’s name).
One reason the method is efficient is that expectations are never computed for any grid-
point not used in the final interpolating function; the standard method may compute
expectations for many unused gridpoints.

3 Macro Specialization

We first specialize to a macroeconomic stochastic growth model. Assuming a Cobb-
Douglas aggregate production function F (K, P ) = KεP 1−ε, after normalizing by produc-
tivity P (and assuming a constant value G for the the labor productivity growth factor),
under the usual assumptions of perfect competition etc. if there is no aggregate transitory
shock (lt+1 = 1) we have

Rt+1 = 1 + εkε−1

t+1 (19)

Wt+1 = (1 − ε)kε
t+1 (20)

and market resources are the sum of capital and production,

mt+1 = kt+1Rt+1 + Wt+1 (21)

= kt+1 + kε
t+1. (22)

We specify the terminal consumption function as

cT (m) = m, (23)
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which is very far from the converged infinite horizon consumption rule, but easy to verify
as satisfying the assumption (10) imposed earlier. More efficient choices are available,
but for our purposes simplicity trumps efficiency.

An arbitrary specification of the process for permanent productivity shocks is a
three point distribution defined by ~Ψ = {0.9, 1.0, 1.1} with probabilities Pr(~Ψ) =
{0.25, 0.50, 0.25}.4

The top panel of figure 1 plots the converged consumption function that emerges
from this solution method for the benchmark set of parameter values specified in Table 1,
along with the consumption function for the standard perfect foresight version of the
model (~Ψ = Pr(~Ψ) = {1}).

4 Micro Specialization

In the microeconomic literature, the usual approach is to take aggregate interest and
wage rates as exogenous, and to focus on transitory (Θ) and permanent (Ψ) shocks to
idiosyncratic labor productivity. We again start the recursion with cT (m) = m, and the
permanent shocks are retained exactly as specified for the macro problem.5

4.1 Life Cycle Models

Life cycle models specify a stereotypical pattern of lifetime income growth defined by
Gt where t is age rather than time and T is the maximum possible lifespan;6 mortality
uncertainty can be accommodated by age-varying values of β.

4.2 Buffer Stock Models

If R, W, G and β are constant, k = 1, and the impatience condition

RβE[(GΨ)−ρ] < 1 (24)

holds, Deaton (1991) and Carroll (2004) show that the problem defines a contraction
mapping so that the consumption functions defined by the problem converge from any
well-behaved initial starting function cT (m); the converged function is defined as

c(m) = lim
n→∞

cT−n(m). (25)

We solve for the converged consumption function for two versions.

4With careful choice of points and weights, small-dimensional discrete representations like this do a
good job of approximating commonly-used continuous distributions like a lognormal, cf. Judd (1998).

5Of course, appropriate calibrations for macro and micro permanent shocks are very different, but
appropriate calibration is not the point of this paper.

6This is the context in which the assumption that cT (m) = m actually makes economic sense, as
distinct from merely providing a convenient starting point for recursion.
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4.2.1 Version With Unemployment

Assume that in future periods there is a small probability ℘ that income will be zero
(corresponding to a substantial spell of unemployment):

Θt+1 =

{

0 with probability ℘ > 0

Ξt+1/(1 − ℘) with probability (1 − ℘)
(26)

where ~Ξ = {0.9, 1.0, 1.1} and Pr(~Ξ|Θ > 0) = {0.25, 0.50, 0.25} (the same structure of
non-unemployment transitory shocks as for the permanent shocks).

Carroll (2004) shows that in this model,

lim
mt→0

ct(mt) = 0. (27)

This implies that the minimum value in ~α should be α1 = 0, which will generate {µ1, χ1} =
{0., 0.} as the first point in the set of interpolating points. The resulting converged c(m)
is shown as the thin solid locus in the bottom panel of figure 1; see the software for details
of how the remaining values in ~α were chosen.

4.2.2 Version With Liquidity Constraints

Microeconomic models often include a liquidity constraint in addition to the usual tran-
sition equations, and capturing the constraint often induces much additional code.

Dealing with a liquidity constraint using the method of endogenous gridpoints is
simple. The key observation is that when the constraint is on the cusp of binding, the
marginal value of consumption is equal to the marginal value of saving exactly zero
(assuming the constraint is of the form that requires a to be nonnegative; generalization
to more elaborate kinds of constraints is straightforward). If the first value in the ordered
set ~α is α1 = 0, then the method will produce

χ1 = µ1 = u′−1(va
t (0)), (28)

and if we define ĉt(m) as the function produced by interpolation among the points gen-
erated by ~α, the consumption function imposing the constraint will be

ct(m) = min(m, ĉt(m)). (29)

If the consumption function is defined as a piecewise linear spline interpolation among
the {µ, χ} points, the constraint can be handled simply by adding the point {µ0, χ0} =
{0, 0} to the set of points that constitute the interpolation data.

The converged solution is shown as the bold locus in the bottom panel of figure 1.

5 Conclusion

The method of endogenous gridpoints can be extended to problems with multiple state
variables and multiple controls, e.g. a micro consumer with a portfolio choice problem,
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or a labor supply decision; or a macro consumer with a utility function that exhibits
habit formation (see Carroll (2000) for examples). The method is useful both because it
is simpler than the standard method and because it reduces computational demands by
eliminating a rootfinding operation.
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Table 1: Parameter Values

Parameters Common to All Models
ρ 2 Relative Risk Aversion
β 0.96 Annual Discount Factor
ℓ 1 Labor supply (fixed)
~Ψ {0.90, 1.00, 1.10} Permanent Shock Realizations

Pr(~Ψ) {0.25, 0.50, 0.25} Permanent Shock Probabilities
Macro Model Parameters

k 0.90 Depreciation Factor
G 1.01 Exogenous Aggregate Productivity Growth Factor
ε 0.36 Capital Share in Production

Micro Model Parameters
k 1 Depreciation Factor
G 1.03 Trend Individual Wage Growth Factor
R 1.04 Real Interest Rate
W 1.00 Wage Rate
~Ξ {0.90, 1.00, 1.10} Transitory Shock Realizations for Employed

Pr(~Ξ|Θ > 0) {0.25, 0.50, 0.25} Transitory Shock Probabilities for Employed
Parameter Unique to Unemployment Model

℘ 0.005 Probability of Unemployment Spell
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Figure 1: Macro and Micro Consumption Functions
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Appendices: Mathematica Code
This appendix contains the core code used to generate the micro and macro model solu-
tions graphed in the figures. Common.nb contains the parameters and code that are shared
for both micro and macro solutions; Micro.nb and Macro.nb contain the specific param-
eterizations and specializations for the respective specific problems. The commands to
execute the solutions and graph them are not of general interest and are not included,
but are part of a downloadable package available on the author’s website. Downloadable
MATLAB code is also available on the author’s webpage; Michael Haliassos and Dimitri
Mavrides have written C++ code that solves a closely related problem, which is available
from them.

Common.nb
In[1]:= uP[c_] := If [c > 0,(*then *) cˆ - Ρ,(* else *)¥];

nP[z_] := zˆ - (1/Ρ);

vP[at_ ] := ¾ Β Sum[

Ytp1 = YVec[[YLoop]];

Gtp1 = G Ytp1 ;

Qtp1 = QVec[[QLoop]];

ktp1 = ¾ at /Gtp1 ;

ltp1 = Qtp1 l;

mtp1 = If [MacroModel && ktp1 == 0, 0, ktp1 R [ktp1 ] + ltp1 W [ktp1 ]];

YVecProb [[YLoop]] QVecProb [[QLoop]] *R[ktp1 ] uP[Gtp1 Last [cInterpFunc ][mtp1]]

,{YLoop, Length [YVec]}

,{QLoop, Length [QVec]}

]; (* End Sum*)

cInterpFunc = {Interpolation [{{0.,0.},{1000.,1000.}}, InterpolationOrder - > 1]};

SolveAnotherPeriod := Block [{},

AppendTo[cInterpFunc ,

Interpolation [

Union [

Chop[

Prepend [

Table [

Α = ΑVec[[ΑLoop]];

Χ = nP[vP[Α]];

Μ = Α + Χ;

{Μ,Χ}

,{ΑLoop, Length [ΑVec]}]

,{0., 0.}] (* Prepending {0, 0} handles potential liquidity constraint *)

] (*Chop cuts off numerically insignificant digits *)

] (*Union removes duplicate entries *)

, InterpolationOrder - > 1] (* Piecewise linear interpolation *)

]; (* End of AppendTo *)

]; (* End of SolveAnotherPeriod *)

{Β,Ρ, n, l} = {0.96,2, 40, 1};
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Micro.nb
{¾,G, p} = {1, 1.03,0.005};
G = G;
MacroModel = False ;
<< Common.nb;

(* Exponential growth picks a good set of values for Α *)

ΑVec = Table [Exp[ΑLoop] - 1 //N,{ΑLoop, 0, Log[10],Log[10]/(n - 1)}];
XVec = YVec = {0.9, 1.,1.1};
XVecProb = YVecProb = {0.25,0.5, 0.25};
QVec = Prepend [XVec / (1 - p), 0.];
QVecProb = Prepend [XVecProb (1 - p),p ];
R[k_] := 1.04;
W[k_] := 1.;

Macro.nb
{¾,G,¶} = {0.9,1.01, 0.36};
G = G;
MacroModel = True ;
<< Common.nb;
kBar = ((((Gˆ Ρ)/Β) - 1)/¶)ˆ (1/(¶ - 1));
ΑVec = Table [Exp[ΑLoop] - 1,

{ΑLoop, 0, Log[10 kBar ], Log[10 kBar ]/(n - 1)}];

YVec = {0.9, 1.,1.1};
YVecProb = {0.25,0.5,0.25};
QVec = {1.};
QVecProb = {1.};
R[k_] := If [k > 0,(*then *)1 + ¶ kˆ (¶ - 1),(*else *)¥];
W[k_] := (1 - ¶)kˆ ¶ ;
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