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1 Introduction

Inference in the linear simultaneous equations model with weak instruments
has recently received considerable attention in the econometrics literature.
It is now well understood that standard first-order asymptotic theory breaks
down when the instruments are weakly correlated with the endogenous re-
gressor; cf. Bound, Jaeger, and Baker (1995), Dufour (1997), Nelson and
Startz (1990), Staiger and Stock (1997), and Wang and Zivot (1998). In par-
ticular, the 2SLS estimator is biased, and the size of the Wald test is larger
than the nominal significance level. Under standard asymptotics, empirical
Edgeworth expansions show that the bootstrap actually provides asymptotic
refinements. It is then natural to apply either higher-order asymptotics or
the bootstrap to decrease the bias of the 2SLS estimator and the size distor-
tions of the Wald test. However, these procedures appear to be unreliable
in weak-instrument cases; cf., Hahn, Hausman, and Kuersteiner (2002), and
Horowitz (2001), and Rothenberg (1984).

In this paper, we show that the validation of Edgeworth expansions and
bootstrap is not tied to the weak-instrument framework generally, but instead
depends upon the statistic examined. In particular, our results work for the
test of Anderson and Rubin (1949), the score test proposed by Kleibergen
(2002) and Moreira (2001), and the conditional likelihood ratio test of Mor-
eira (2003). To our knowledge, these results contain the first formal proofs of
the validity of Edgeworth expansions and the bootstrap for cases where some
parameters are not identified. At the outset, this exercise appears to face
several potential pitfalls. First, the statistics are typically non-regular when
the instruments are uncorrelated with the endogenous explanatory variable.
Since a general theory of higher-order expansions for non-regular statistics
is unavailable, it is a priori unclear whether the statistics we examine ad-
mit such expansions; see Bhattacharya and Ghosh (1978), Chambers (1967),
Phillips (1977), Sargan (1976), and Wallace (1958). Second, in many known
non-regular cases the usual bootstrap method fails, even in the first-order;
cf. Andrews (2000), Horowitz (2001), and Shao (1994). Thus, the non-

regularity characterizing the unidentified case poses a potential threat to



even first-order validity of the bootstrap. Third, the bootstrap replaces pa-
rameters with estimators that are inconsistent in the weak-instrument case.
Hence, the empirical distribution function of the residuals may differ consid-
erably from their true cumulative distribution function, which runs counter
to the usual argument for bootstrap success.

To show the existence of higher-order expansions, we augment the stan-
dard Bhattacharya and Ghosh approach by breaking the proof into two sim-
ple steps. We first provide an Edgeworth expansion for certain sufficient sta-
tistics, and then we find an approximation to the distribution of the score and
the conditional likelihood ratio statistics. As a result, we obtain higher-order
expansions for any fixed value of 7, including the unidentified case 7 = 0.
We also propose an expansion approach developed in Cavanagh (1983) and
Rothenberg (1984) when errors are normal. Although this method does not
provide a formal proof of high-order expansions for the score, it can be used
to compute Edgeworth expansions in those cases. The fact the score sta-
tistic is non-regular leads to a non-standard result: the higher-order terms
are in general not continuous functions of the nuisance parameters at the
unidentified case. Thus, the empirical Edgeworth expansion approach of re-
placing unknown parameters by consistent estimators can perform poorly in
the weak-instrument case.

Perhaps more unexpectedly, we show the validity up to the first-order of
the bootstrap for the score, and of two conditional bootstrap methods for
the conditional likelihood ratio test. These simulation methods, however,
do not generally provide higher-order improvements in the unidentified case.
Nevertheless, Monte Carlo simulations indicate that the (conditional) boot-
strap tends to outperform the first-order asymptotic approximation for the
score and conditional likelihood ratio tests. Recently there has been some
related work on the bootstrap in weak-instrument settings. Work by Inoue
(2002) and Kleibergen (2003) also presents Monte Carlo results suggesting
that the usual bootstrap may work when applied to the Anderson-Rubin sta-
tistic and score statistics. In the present paper, we provide formal proofs for
the validity of Edgeworth and the bootstrap that work in the unidentified
case. Our theoretical results can in principle be extended to the GMM and



GEL contexts and provide a formal justification for the simulation findings
of Inoue (2002) and Kleibergen (2003). This can be done by replicating our
results on the higher-order expansion and bootstrap behavior of the GMM
and GEL versions of the statistics considered in the simple simultaneous
equations model analyzed here.

The remainder of this paper is organized as follows. In Section 2, we
present the model and establish some notation. In Section 3, we summa-
rize some folk theorems showing the size improvements based on Edgeworth
expansion or the bootstrap for the Wald, score and likelihood ratio tests
under the standard asymptotics. In Section 4, we present the main results.
We show the validity of Edgeworth expansions for the score and conditional
likelihood ratio test statistics when instruments are unrelated to the endoge-
nous explanatory variable. We also establish the validity of the bootstrap for
the score test and of two conditional bootstrap methods for the conditional
likelihood ratio test up to first order. In Section 5, we present Monte Carlo
simulations that suggest that the bootstrap methods may lead to improve-
ments, although in general they do not lead to higher-order adjustments in
the weak-instrument case. In Section 6, we conclude and point out some

extensions.

2 The Model

We begin by introducing the notation for the instrumental variable speci-
fication considered. Throughout the paper, we remark on the extension of
the results to other versions of this specification. The structural equation of

interest is

(1) hn = ?Jzﬁ +u,

where y; and y, are n x 1 vectors of observations on two endogenous vari-
ables, u is an n x 1 unobserved disturbance vector, and 3 is an unknown
scalar parameter. This equation is assumed to be part of a larger linear
simultaneous equations model, which implies that ys is correlated with w.



The complete system contains exogenous variables that can be used as in-
struments for conducting inference on . Specifically, it is assumed that the

reduced form for Y = [y, y2] can be written as

(2) y1 = ZmB+u
Y2 = AT+ vy,

where Z is an n X k matrix of exogenous variables having full column rank &
and 7 is a k X 1 vector. The n rows of Z are i.i.d., and F' is the distribution
of each row of Z and V' = [vy,vs]. Unless stated otherwise, we consider
the case where Z is independent of V. The n rows of the n x 2 matrix of
the reduced-form errors V' are i.i.d. with mean zero and 2 x 2 nonsingular
covariance matrix 2 = |w; ;]. For ease of exposition in the main body of the
paper, we consider statistics designed for the case in which the covariance
matrix €2 is assumed to be known. In the proofs in the Appendix we relax
this assumption. In what follows, X, is the n-th observation of some random
vector X, and X, is the sample mean of the first n observations of X. The
subscript n is typically omitted in what follows, unless it helps exposition.
Finally, let Ngy = A (A’ A)_l A’ and M4 = I — N, for any conformable matrix
A, and let by = (1, —f,)" and ag = (5,,1)".

Tests for the null hypothesis Hy : § = (3, play an important role in our
results. The commonly used Wald test rejects Hy for large values of the Wald

(ﬂzsLs - 50) AY4 yéNZyz
Oy

where 8,515 = (y3Nzy2) " 'y4Nzy1 and 5i = [1, =Bas1slQL, —Basps]”. The
Wald statistic has some important limitations, and it is now well-understood
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that it may have important size distortions when the instruments may be
weak. In particular, under the weak-instrument asymptotics of Staiger and
Stock (1997), the limiting distribution of the Wald statistic is not standard
normal. Other testing statistics designed for Hy are based on the Anderson-



Rubin (AR), score (LM), and likelihood ratio (LR) statistics:

AR = §'S,
LM = S'T/VTT,

1
LR = 3 <S’S ~TT (55 + TT) ~ A(S'S - T'T <S/T)2>> ’

where S = (Z2'2)"Y2Z2'Yby - (ByQo)~ % and T = (Z'Z)"V22'YQ  ay -
(ah2ag)~/2. The test of Anderson and Rubin (1949) rejects the null if
the AR statistic is larger than the 1 — a quantile of the chi-square-k dis-
tribution. The (two-sided) score test proposed by Kleibergen (2002) and
Moreira (2001) rejects the null if the LM? statistic is larger than the 1 — a
quantile of the chi-square-one distribution. The conditional likelihood ratio
test of Moreira (2003) rejects the null if the LR statistic is larger then the
1 — a conditional quantile of its null distribution conditional on 7T". All three
of these tests are similar if the errors are normal with known variance €2,
since the AR and LM statistics are pivotal and the LR statistic is pivotal
conditionally on T

When the covariance matrix €2 is unknown, we can replace it with the
consistent estimator Q = Y'M 7Y /n. For example,

(Z'Z)Y2Z'Y by - (W) Qby) Y2,
(Z'Z) V22V Q  ag - (ahQ tag) "2,
LM = ST/VTT.

§:
T =

With unknown error distribution, the Anderson-Rubin, score and conditional
likelihood ratio tests are no longer similar.? However, unlike the Wald test,
these three tests are asymptotically similar under both the weak-instrument
and standard asymptotics. This important feature allows us to derive the
validity of higher-order expansions and the bootstrap regardless of the degree
of identification.

2An exception occurs with the Anderson-Rubin test, which is similar for normal errors

and unknown covariance matrix.



3 Preliminary Results

In this section, we review the good-instrument case for Edgeworth expansions
and the bootstrap. Some of the results are already known, and those that
are new follow from standard results. The results in this section provide a
foundation for the weak-instrument results to be presented in Section 4.

For any symmetric ¢x ¢ matrix A, let vech(A) denote the £(¢+1)/2-column
vector containing the column by column vectorization of the non-redundant
elements of A. The test statistics given in the previous section can be written
as functions of

R, = wvech((Y,,Z,) (Y,,Z,))
= (fl (Yé, Z;L) PERES] fé (Yria Z;L))

for suitably chosen f;, i = 1,...,¢, where { = (k+2)(k+3)/2. In this
section, we focus on one-sided tests based on W and LM statistics, which

can be written in the form

(3) v (H (R,) - H (1)),

where the gradient of H evaluated at u = E (R,,) differs from zero. At the
end of this section, we briefly address two-sided tests based on AR and LR
statistics. These statistics can be written in the form

2n (H (R,) — H (p))

for suitably chosen functions H whose gradient evaluated at yu = FE (R,)
equals zero, and the Hessian matrix L and variance V' of R,, satisfy LV L' = L.

Hereinafter, we use the following high-level assumptions:

Assumption 1. 7 is fixed and different from zero.

Assumption 2. F R, || < oo for some s > 3.
Assumption 3. limsup Fexp (it'R,,) < 1.

l[¢]]—o00



Assumption 1 is related to the standard good-instrument asymptotics.
Assumption 2 holds if E||(Y/, Z!)|* < oo. This minimum moment as-
sumption seems too strong at first glance, but note that test statistics in-
volve quadratic functions of (Y., Z!). Assumption 3 is the commonly used
Cramér’s condition. The following result by Bhattacharya (1977) provides a

sufficient condition for Assumption 3.

Lemma 1 (Bhattacharya (1977)) Let (Y,,Z]) be a random vector with
values in R¥*2 whose distribution has a nonzero absolutely continuous com-
ponent G (relative to the Lebesque measure on R¥*2). Assume that there
exists an open ball B of R*2 in which the density of G is positive almost
everywhere. If, in B, the functions 1, fi,..., fo are linearly independent, then
Assumption 3 holds.

In the identified case in which 7 is fixed and different from zero, not only
is the 2SLS estimator consistent for 3, but both Wald and score statistics
also admit second-order Edgeworth expansions under mild conditions. As
a simple application of Theorem 2 of Bhattacharya and Ghosh (1978), we
obtain the following result:

Theorem 2 Under Assumptions 1-3, the null distributions of W,, and LM,

statistics can be uniformly approximated (in x) by Edgeworth expansions:

@) [P 23, < 0) = 180 4 £ 0oy @ F o @] =0 (ae-27),
(b)) |P (W, <z)—[®(z)+ s: n" 2l (33 F, By, ) ¢ (w)]” =0 (n*(sf2)/2) 7

where py, and p .., 1 = 1,2, are polynomials in x with coefficients depending

on moments of R, 3, and 7.

We now turn to the bootstrap. For each bootstrap sample, a test statistic
is computed, which in turn generates a simulated empirical distribution for

the Wald or score statistics. This distribution can then be used to provide
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new critical values for the test. Importantly, the bootstrap sample is gener-
ated based on an estimate of 3, and likewise the null hypothesized value of
[ is replaced by that estimate in forming the bootstrap test statistics. Given
consistent estimates B and 7, the residuals from the reduced-form equations
are obtained as

v = Y1 —Zﬁﬁ

i)\g = Y2 — 7.

These residuals are re-centered to yield (v7,v2). Then Z* and (vf,v;) are
drawn independently from the empirical distribution function of Z and (vy, v3).

Next, we set

yi = Z'FB+
Yy, = Z'm+0;.

We want to stress here that the simulation method above is exactly equivalent
to simulating directly from the structural model

yi = ypbtu’
Yy = 2T+,

where Z* and (u*,v3) are drawn independently from the empirical distribu-
tion function of Z and (u, v3), where u = v; —'1723. Also, the probability under
the empirical distribution function (conditional on the sample) will be de-
noted P* in what follows. Finally, the fact that Z* is randomly drawn reflects
the fact that we are interested in the correlated case. We do not consider
the fixed Z case here, although this can be done by establishing conditions
similar to those by Navidi (1989) and Qumsiyeh (1990, 1994) in the simple
regression model. Of course, this entails different Edgeworth expansions and
bootstrap methods.

The following result shows that the bootstrap approximates the empirical
Edgeworth expansion up to the o (n=(¢72/2) order.

10



Theorem 3 Under Assumptions 1-3,
5—2 ) ) ~

(a) || P* (LM} < @) = [@ () + 30 n™Ppip(; Fo, B, 7)¢ (2)]
i=1

W [P0 <o) - 00+ S0ty BRI ]| =0 (ameon),

(2

= o (n~(-2/2)

’ o

oo
a.s. as n — Q.

The error based on the bootstrap simulation is of order n~/? due to the
fact that the conditional moments of R} converge almost surely to those of
R,, and that B and 7 converge almost surely to § and 7. Consequently,
Theorem 3 shows that the bootstrap offers a better approximation than the
standard normal approximation.

Finally, if one is interested in the problem of two-sided hypothesis testing,
one could reject Hy for large values of |W| and |LM]|. Using the fact that the

—1/2_term

polynomials pj;, (x) and pj,, (z) are even, one can show that the n
for the expansion of |W| and |LM | vanishes. Hence, the approximation error
based on the bootstrap for two-sided Wald and score tests is of order n~!. For
the Anderson-Rubin and likelihood ratio statistics, one could use the results
of Chandra and Ghosh (1979) to get (empirical) Edgeworth expansions for

their density function of the form

Ky () Z n~"q (),

where £, (x) is the density function of a chi-square-v variable and ¢, () are
polynomials of x with gy () = 1. Here, the order of the expansion m is a
function of the largest s such that F ||R,||” < oc.

4 Main Results

In the previous section, we considered the good-instrument case in which
the structural parameter (3 is identified. Our results are threefold: the null
distribution of the Wald and score statistics can be approximated by an Edge-

s—2)/2

worth expansion up to the n= order, for some integer s; the bootstrap

11



estimate and the (s — 1) —term empirical Edgeworth expansion for both sta-

§-2)/2 order; and, the error

tistics are asymptotically equivalent up to the n—(
of estimation of the bootstrap is of order n~'/2 for one-sided versions and
of order n=! for two-sided versions of the Wald and score tests. However,
the three results in Section 3 depend crucially on Assumption 1. First, the
commonly used (and to our knowledge, the only) proof of the existence of
Edgeworth expansions for statistics in the form (3) is given by Bhattacharya
and Ghosh (1978), and crucially depends upon the assumption that deriv-
atives of functions evaluated at u = E (R,,) are defined and different from
zero (regular case). However, if the instruments are uncorrelated with the
endogenous variables, the score and Wald statistics do not satisfy this re-
quirement. Hence, in the unidentified case, it is not obvious whether these
statistics actually admit second-order expansions, and, if they exist, how to
prove their existence. Second, and more importantly, the hypothesized value
B, is replaced by an inconsistent estimator B Consequently, it is not clear
whether the bootstrap actually provides valid approximations even in the
first-order. In fact, similar versions of Theorems 2 and 3 have been con-
sidered to fix size distortions of the Wald test in the weak-instrument case.
However, when instruments are weak, it is well-known that this method does
not lead to substantial size improvements.

In this section, we address the issues above that arise in a weak-instrument
setting. We show that the score test admits a standard higher-order expan-
sion, and that the conditional likelihood ratio test admits a higher-order ex-
pansion whose leading term is nuisance-parameter-free. In addition, we prove
that the bootstrap does provide a valid first-order approximation to the null
distribution of the score test, and that conditional bootstrap methods provide
a valid first-order approximation to the null distribution of the conditional
likelihood ratio test. Finally, we point out that these bootstrap simulations
generally do not provide higher-order approximations in the weak-instrument

case due to the inconsistency of any estimator of (.
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4.1 Edgeworth Expansions

Here we show that the score and conditional likelihood ratio tests admit
higher-order expansions for the unidentified case. Formally, we replace As-
sumption 1 by the following assumption in our main Edgeworth expansion
results:

Assumption 1A. (unidentified case) = = 0.

To motive parts of the discussion, it will also be useful to have a statement

of the weak-instrument asymptotics:

Assumption 1B. (locally unidentified case) 7 = ¢/n'/? for some non-
stochastic k-vector c.

To illustrate why the score test admits an Edgeworth expansion, it is
worth considering a stochastic expansion following the work by Nagar (1959).
To compute the approximate bias of the 25LS estimator, we can expand its
formula into a power series,

) Qn _
(4) Basps = Xn + T + =240, (n7?),
where X,,, P,, and @),, are sequences of random variables with limiting distri-
butions as n tends to infinity. More specifically, we can arrange the expression
for the 2S5LS estimator such that:
(7' Z'u + vhNzu) /n

2 (WZ'v3)/v/n | 1_UNzvs ]

Basrs = 0+ !
+ Vn (#'Z'Zn)/n n (7' Z' Zx)/n

’Z’Z7r[

For fixed, nonzero 7w and a large enough sample size, we can do a power series
expansion in the denominator to get (4). Taking expectations based on the

-1

terms up to the order n™" we obtain:

(5) B(Bases) = 8= (k= 222 + o(n”"),

where o0, is the covariance between the disturbances u and vy. The deriva-
tion of (5) depends on showing that the terms 7' Zvy and v'Z(Z2'Z) 1 Z'v are

13



asymptotically negligible relative to n'Z’Zmw. However, with weakly corre-
lated instruments, 7’ Z’ Zr is close to zero, so that in finite samples the other
terms may be just as important to the bias as 7'Z'Zm. Hence, equation (5)
may not provide a good approximation to the finite sample bias of the 2SLS
estimator when instruments are weak. The Wald statistic presents the same
limitation: its stochastic expansion assumes that some terms are asymptot-
ically negligible, an assumption that breaks down with weak instruments.
Close inspection, however, shows that a stochastic expansion for the score
test is valid for any value of 7, including zero. Recall the connection between
stochastic expansions and Edgeworth expansions, as conjectured by Wallace
(1958) and proved by Bhattacharya and Ghosh (1978) for regular cases. Al-
though this connection has not been proved for non-regular cases, a valid
stochastic expansion for any value of 7 illustrates an important feature of
the score statistic.

Following Bhattacharya and Ghosh (1978), the Wald and score statistics
can still be written as functions of averages for various moments in the data.
For the Wald statistic, this function includes a division by zero under As-
sumption 1A when evaluated at the expected values of the averages. Hence,
the results in Bhattacharya and Ghosh (1978) are unavailable for the Wald
statistic. In fact, in the locally unidentified case, asymptotic approximations
for the Wald statistic based on Edgeworth expansions break down. In this
case, the leading term is not the c.d.f. of a standard normal. In fact, its lim-
iting distribution depends on nuisance parameters that are not consistently

estimable, as we can see using the results of Staiger and Stock (1997).

Proposition 4 Under Assumptions 1B and 2,

A+ 2,,) (ABg + (Wi /wa2)"? 2,,)
(A+ sz), (A + 2u,) ’

Bosrs = B =
where

A= wpn'?E(Z,2) ¢, and (2),,2.) ~ N (0,2 @ Ix),

V1) Tvg

14



where = is a 2 X 2 matrix with diagonal elements being equal to one, and
off-diagonal elements equal to wia/\/wi1waz. Moreover, under the null hy-
pothests,

wéf A+ ZUQ], [(wn/wm)l/2 Zyp T szﬁo}
o5 (N 2] A+ 200]) 7 ’
where o = [1,—B]Q[1, —B] .

w, =

Like the Wald statistic, the score statistic is not differentiable at 7 = 0,
making a Bhattacharya and Ghosh (1978)’s expansion method unavailable.
Unlike the Wald procedure, however, the score test does admit a second-order
Edgeworth expansion with a normal c.d.f. as the leading term, even in the
unidentified case. Since we cannot apply Theorem 2 of Bhattacharya and
Ghosh (1978) directly, we break the proof of the existence of an Edgeworth
expansion for the score statistic into two simple steps. First, we present the

following intermediate result:

Lemma 5 Under Assumptions 1 or 1A, 2 and 3, the joint null distribution

of S and T can be uniformly approximated by an Edgeworth expansion:

= o (n~=/2)

e}

P (S0 < a0 Ty < 6) — [Ba (2) + Y0 V2 (1) 6 ()

where t, = \/nSom - (ah ag) /2 + x5 and and O 4 denotes the c.d.f. of a
mean zero normal distribution with variance A.

An explicit expression for A will be given in section 4.2. It should be
noted here that when # = 0, A = I5,. Otherwise, A is a block diagonal
matrix with upper diagonal block I;. Also, note that the end-point t, =
QY2 - (a2 ag)Y? + x5 changes with the sample size. This adjustment
is due to the fact that the mean of T' drifts off to infinity in the case m # 0,

15



and guarantees an Edgeworth expansion. Note that we can understand the

weak-instrument asymptotics as if the drift term ¢,, were fixed at the level
le/ZQC (apQ ag)Y? + .

Thus, Lemma 5 can be seen as a higher-order expansion to the weak-instrument
asymptotics of Staiger and Stock (1997). In particular, it allows us to analyze
the behavior of many tests in the unidentified case. As a direct application,
it guarantees that the score test admits an Edgeworth expansion even when
m=0:

Theorem 6 Under Assumptions 1A, 2 and 3, the null distribution of LM
can be approximated by an Edgeworth expansion:

=0 (n’(s’QW) )

[e.e]

P (LM, < ) [ +an/“ :cFﬁo)qﬁ()]]

Note that the leading term in the expansion for the score test is the c.d.f.
of a standard normal. Therefore, we extend previous results in the literature,
which show that the score test is asymptotically normal even in the uniden-
tified case; c.f., Kleibergen (2002) and Moreira (2001). Theorems 2(b) and 6
show that the null rejection probability of the score test can be approximated
by a second-order Edgeworth expansion pointwise in the nuisance parameters
7. Unfortunately, the score test does not present very good power properties.
In particular, this test is dominated in practice by the conditional likelihood
ratio test; cf., Moreira (2003) and Andrews, Moreira, and Stock (2003). Like
the Wald test, the null distribution of the likelihood ratio statistic is not
nuisance-parameter-free. Hence, we focus here on obtaining an expansion for
the conditional null distribution of the likelihood ratio statistic. We follow
Barndorff-Nielsen and Cox (1979), and begin by providing expansions for the
unconditional probabilities of S and T

(6) P(S, <x,T, <t,) and P (T, <t,)

16



where the end-point ¢,, = \/ﬁle/Z27r~(a69_1ao)1/2+x2 changes with the sample

size. Of course, under the same conditions as given in Lemma 5, we can also
obtain an Edgeworth expansion for the marginal distribution P (7, <t,).
By obtaining Edgeworth expansions for (6), we can approximate the null

conditional distribution of S up to a o (n=(=2/2) term:

P (S, <, =t,) = [®(z1) + Zn—i/2pi (z1|z2) @ (21)].
i=1
By using this approximation, we can compute Edgeworth expansions for the
conditional distribution of a statistic ¢(S,T"). In particular, we can obtain an
approximation for the conditional distribution of the likelihood ratio statistic
for the known (2 case:

1
LR = <st STT 4 (SIS + T~ A(S'S - T'T <S'T)2)> |

The leading term of the conditional distribution in this expansion is nuisance-
parameter-free, but not of a standard normal random variable. Thus, al-
though we may be able to achieve size improvements by considering higher-
order terms in this expansion, it may prove difficult to do in practice. In
fact, the leading term has not even been computed, and in practice is ap-
proximated by simulation methods; cf., Moreira (2003).

Although all stated results are for tests designed for the known covariance
matrix case, analogous results hold when we replace () with its consistent
estimator Q. In particular, the LM and W statistics also admit Edgeworth
expansions, but with different polynomials in the higher-order terms (see
Appendix A). Of course, the Edgeworth expansion breaks down for the 1%
statistic in the unidentified case.

We finish this section presenting an alternative way to find second-order
Edgeworth expansions for the LM statistic when € is unknown but the
errors are normal. Applying the results in Cavanagh (1983) and Rothenberg
(1988), Proposition 7 computes the second-order Edgeworth distribution for

LM based on a stochastic expansion:

LM = LM +n" 2P, + n'Q, + 0, (n™%?),

17



where P and () are stochastically bounded with conditional moments
pn () = E(P,| LM, =x), q, () = E(Q,| LM, = x), v, (x) =V (P,| LM,, = x).

Cavanagh’s method re-writes the statistic of interest to include the normal-
ization provided by the denominator in the numerator. What remains in the
denominator can then be expanded. This approach allows us to avoid the
division by zero problem and the non-differentiability at = = 0.

Proposition 7 If the errors are jointly normally distributed, and LM ad-
mits a second-order FEdgeworth expansion, P (LMn < Z‘) can be approxi-
mated by

@ [z —n""p, (£) +05 - 07" (2, () P, (2) — 2q () + 1, (&) — 20, (2)]]

up to a o(n=t) term.

Comment: The terms p, (z), ¢, (z), and v, () can be approximated by
functions such that the terms in the higher-order expansion are expressed
exactly as powers of n~1/2; see Rothenberg (1988).

Recall that under normality the LM statistic is N (0, 1) under Hy, but the
LM statistic is not. Therefore, Proposition 7 provides a second-order cor-
rection for the LM statistic using conditional moments on the LM statistic.
In FGLS examples, Edgeworth expansions are known to correct for skew-
ness and kurtosis due to an estimated error covariance matrix; cf. Horowitz
(2001) and Rothenberg (1988). We find that this behavior carries over to
the IV setting as well. Finally, unlike Theorems 2(a) and 6, Proposition 7
does not prove the existence of second-order Edgeworth expansions. It only
states that if such an expansion exists (as shown in Theorems 2(a) and 6),
it can be found by computing some moments conditional on LM, the score
statistic for known €2. In principle, this technique can also be applied to the

multivariate case and, consequently, to the conditional tests; see Appendix
B.
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In practice, we do not know 7 and €2, and need replace them with con-
sistent estimators in the high-order terms. As long as the high-order poly-
nomials are continuous functions of the parameters, empirical Edgeworth
expansions lead to high-order improvements. However, the continuity of the
high order terms cannot be taken for granted in the weak-instrument case due
to the possible non-differentiability of statistics at the unidentified case. For
example, suppose that E(v;|z;) = 0, E(v;vl|z;) = Q, and p,, = E (z;2]) < oc.
Tedious algebraic manipulations show that, for 7 ## 0, the polynomial of the
first-order term for the score is given by [as + (o — as)x?], where

S E[Gm) @)Y oy — LBl RGO
2 () (n' ) 2 6 (W52 (1)

This higher order term in general cannot be extended to be continuous at

7 = 0. Thus, the empirical Edgeworth expansion approach may not provide

a n—1/2

correction and can perform poorly at the unidentified case. This
finding need not apply to other statistics. For instance, the Anderson-Rubin
statistic can be written as a function of sample moments which has higher
order derivatives even in the unidentified case. Thus, the Anderson-Rubin
statistic has continuous higher order terms, and its empirical Edgeworth

expansion would provide higher order corrections even at m = 0.

4.2 Bootstrap

The usual intuition for the bootstrap requires that the empirical distribution
from which the bootstrap sample is drawn is close to the distribution of
the data under the null. For the model given in equations (1) and (2), the
empirical distribution used in bootstrap sampling depends on the residuals
from these equations. When instruments are weak, these residuals depend on
inconsistent parameter estimates, so it is not clear a prior: that the empirical
distribution will be close to the distribution of the errors. However, we
typically have

%gwand%\gﬂﬂﬁ

for any fixed value of 7, including the important m = 0 case; see Lemma A

in the appendix for an example. Since the reduced-form residuals depend on
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the parameter estimates only through 7 and %\B, this result suggests that the
estimated residuals (vq,07) are close to (vy,vs) in the reduced-form model.
This is a simple but important insight for the results of this section.

As an additional complication, the null hypothesized value of 5 = 3, is
replaced by the estimator B in the corresponding bootstrap test statistics.
Recall that 3 is not a consistent estimator under Assumptions 1A or 1B.
Also, as before, we treat the known €2 case here for expositional ease. So, €2
will be replaced by the estimator Q based on (9, ;) in the bootstrap test
statistics. Therefore, we have:

1/2

S* = (2Y 72V Z2¥ Y b - (WQb)~
T* — (Z*/Z*) 1/ZZ*IY Q la (&Q ) 1/2’
where a = (B, 1)" and b= (1, —B)’. In particular, the bootstrap score test

statistic is given by
S*/T*

To derive the asymptotic distribution of the bootstrap versions of the score,

LM* =

we must re-center 7™ in (bootstrap) analogy with Lemma 5 by subtracting

7'7\ V/? -
th=+/n ( ) TV aQla.
n

We can then consider the joint limiting distribution of (S*, T — t¥), where
1 7% _1/2 I
VA A 1/2 g7 1/2 <Z Z ) va Q_I&
=) ()

n
To describe this limiting distribution, we require some additional notation,

the term

Tty =+/n a'Q11a

a’'Qda

namely Lyapunov’s Central Limit Theorem and the Delta method,
Vrl(Z'Z)n)? — B(Z' Z/n)?r -5 N(0, %),

where ¥ depends directly on 7. In particular, define ¥ = 0 when 7 = 0.
For 7 = 0, \/n7 is bounded in probability and (Z*'Z*/n)/? — (Z'Z/n)"/?

has zero conditional probability limit almost surely. Hence, the first term of
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T —t is asymptotically negligible, the second term has a joint normal limit
distribution with S*, and the bootstrap score has the expected distribution.

Theorem 8 Suppose that, for some § > 0, E||zl||2+5 E|lvi||*"° < oo, and let
7 and ﬁ be estimators such that T =5 7 and Wﬂ L% w3, Under Assumptions

1 or 1A, we have
LM*|X, -5 N(0,1) a.s. ,

where X, = {(Y{,Z}),..., (Y, Z!)}.

Theorem 8 yields first-order validity of the bootstrap score test regardless
of instrument weakness. The validity of the bootstrap in approximating the
asymptotic distribution of the score test in the unidentified case is notable.
Unfortunately, the bootstrap in the weak-instrument case does not provide
a second-order approximation, because higher-order terms depend on B sep-
arately from the term ?T\@ In other words, second-order improvements for
the score test based on the bootstrap may worsen as m approaches zero. An
alternative bootstrap method could be pursued by not replacing 3, with B
This avoids the problem of replacing the structural parameter with the in-
consistent estimator B, yet it possibly entails power losses (recall that the
e.d.f. of the residuals will not be close to their c.d.f. when the true [ is
different from the hypothesized value ;).

Lemma A in the Appendix shows that the assumption of almost sure
convergence of 7 and frB is the norm even in the unidentified case. However,
we note that the proof of Theorem 8 (and 9) also works for the case where 7
and 7%3 converge in probability. Then the weak convergence in the conclusion
of the theorem occurs with probability approaching one rather than almost
surely. Both almost-sure and in-probability conclusions correspond to modes
of convergence that have been proposed for the bootstrap; cf. Efron (1979)
and Bickel and Freedman (1981).

Following the discussion of Section 2, conditioning can be used to provide
asymptotically similar tests, as is the case with the likelihood ratio statistic.
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These tests rely on a theoretically constructed (and typically Monte Carlo-
simulated) critical value function. The bootstrap provides another way of
obtaining a critical value for conditional tests. We provide a parallel result
to Lemma 5, which gives the joint limiting behavior of (S*,T* — t¥).

Theorem 9 Suppose that, for some § > 0, EHle‘“”S E|lvi||*™° < 00, and let

T and 6 be estimators such that T <= 7 and Wﬂ L% w3, Under Assumptwns

1 or 1A,

S* d

X, — N(0,A) a.s.,
T —t*

I, 0
A= .
0 I+ ECLQIQ_I(IO

The joint distribution of S* and T™ can therefore be used to derive the
bootstrapped distribution of the score test in the unidentified case, but it

where

requires stronger moment conditions than Theorem 8. More importantly,
Theorem 9 suggests two bootstrap methods for the conditional tests®. The
first method exploits the (first-order) independence of S* and T* — t! from
Theorem 9 by fixing 7" at its observed value and obtaining S* from bootstrap
samples. The second method is proposed by Booth, Hall, and Wood (1992).
When conditioning on the observed value of T, we make use of the bootstrap
samples for which T is close to T.

The first method has a significant, computational efficiency advantage
over the non-parametric proposed by Booth, Hall, and Wood (1992), but
its ability to provide asymptotic refinements depends on higher-order inde-
pendence of S* and T*. Consequently, it may entail more size distortions
than the non-parametric method, at least in the good-instrument case. On

the other hand, the second method depends crucially on bandwidth choice,

3Unfortunately, the conditional bootstrap methods do not work for the conditional
Wald testing procedure, since the Wald statistic depends on 3 not only through S and T'.
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which may prove problematic in practice. In addition, 7™ is a random vec-
tor with dimension £, and non-parametric methods are known to perform
poorly for high dimensions. The high-dimension problem can be avoided for
the class of invariant similar tests analyzed by Andrews, Moreira, and Stock
(2003). These tests depend exclusively on S'S, ST and T'T, which allows us
to consider modified versions of the fixed-T" and non-parametric conditional

bootstraps. For example, the LR statistic can be rewritten as

(1 LR=[Q+Qus~TT+ (@it Qo + TTF 3G, 1T

where Q; = S'T(T'T)'T'S and Qx_1 = S'[I — T(T'T)~'T']S. Conditional
on T'"T' = 7, (1 and Q_1 are asymptotically independent, and, under the
null hypothesis, have limiting chi-square distributions with one and k£ — 1
degrees of freedom, respectively. The first conditional bootstrap method
adapted to similar tests exploits the asymptotic first-order independence of
Q = (9'S,S'T/VT'T) and T'T. For each bootstrap sample, the bootstrap
version of the statistic (), denoted Q*, is generated. The bootstrap critical
value is then the 1 — a quantile of the empirical distribution of LR(Q*, T'T).
Note that T"T is fixed at its observed value here. The second conditional
bootstrap procedure is based on the non-parametric method described in
Booth, Hall, and Wood (1992). Suppose B bootstrap samples are generated.
Let Q7 and T7'T* denote the values of @) and T'T in the j-th bootstrap sam-
ple. Booth, Hall, and Wood (1992) suggest using a standard non-parametric
kernel estimate of the desired conditional distribution based on these boot-
strap samples. Therefore, the problem of finding the critical value of the LR
statistic conditional on 7"T = 7 boils down to determining the value z(7)
such that:

5501 [LRQ T < a(m)] 6 (F5)
1 B T*T* _ =1
pEle ()

where 1[-] is an indicator function, ¢(-) is a kernel function and h is a band-

_a’

width parameter. In the next section, each of these bootstrap procedures is

implemented and compared in a Monte Carlo exercise.
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5 Monte Carlo Simulations

Theorem 3 suggests that the bootstrap can decrease size distortions for the
score and Wald tests when instruments are good. More importantly, Theo-
rems 8 and 9 provide a theoretical support for bootstrapping the score test
and the conditional likelihood ratio test, even when instruments are weak.
The same validation of the bootstrap does not hold for the Wald test. This
crucial difference has implications for the ability of the bootstrap to im-
prove inference for each of these tests. In this section, we present Monte
Carlo simulations that support our theoretical results. We first compare the
performance of the bootstrap for the score test and the Wald test. Then we
provide results of simulations for the two conditional bootstrap methods that
are applied to the conditional likelihood ratio test.

Following designs I and II of Staiger and Stock (1997), we simulate the
simple model introduced in equations (1) and (2). The true value of the
structural parameter, (3, is assumed to be zero. We assume that the n rows
of [u,ve] are i.i.d. random variables with mean zero, unit variance, and cor-
relation coefficient p. The correlation coefficient represents the degree of
endogeneity of y5. The first column of the matrix of instruments, 7, is a
vector of ones and the other £ — 1 columns are drawn from independent
standard normal distributions, which are independent from [u, v5]. To exam-
ine the performance of the bootstrap under various degrees of identification,
we consider three different values of the population first-stage F-statistic,
7' (nly)m/k. The first-stage F-statistic corresponds to the concentration pa-
rameter A'A\/k in the notation of Staiger and Stock (1997). In particular, we
consider the completely unidentified case (A'A\/k = 0), the weak-instrument
case (M'A\/k = 1), and the good-instrument case (A'A\/k = 10). For design I,
we assume that u; and vy, are normally distributed with unit variance and
correlation p. For design II, we assume that u, = (&2, —1)/v/2 and vy = (€5,
—1)/V/2, where &, and &,, are standard normal random variables with cor-
relation /p. In these simulations, we are considering two-sided versions of
the score and Wald tests. For each specification, 1000 pseudo-data sets are
generated under the null hypothesis (5 = 0). For each pseudo-data set, we
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consider the score and Wald statistics using chi-square-one and bootstrap
critical values at 5% significance level.

Table I and IT report null rejection probabilities for the score and Wald
tests when the sample size equals 20 and 80, respectively. The bootstrap
yields null rejection probabilities for the score test fairly close to the nominal
5% level. Perhaps more important, bootstrapping the score test instead of
using the first-order asymptotic approximation always takes actual rejection
rates closer to the nominal size, including the case N'A/k = 0.* By contrast,
bootstrapping the Wald test offers improvements over first-order asymptotics
only when instruments are good. In fact, when M'A\/k = 0 and p are small,
the bootstrap can be even worse than first-order asymptotics. The poor
behavior of the bootstrap for the Wald test is explained by its dependence
on 7. For small values of 7, the null distribution of the Wald statistic is quite
sensitive to 7w in the weak-instrument case. Consequently, the bootstrap is
likely to give very different answers depending on the initial estimation of
this parameter. The sensitivity is considerably reduced for large values of
. On the other hand, the null asymptotic distribution of the score does not
depend on 7 asymptotically. Hence, the bootstrap procedure exhibits little
sensitivity to its initial estimate of .

In the following set of results, we compare the sizes of the conditional like-
lihood ratio test when based on the two conditional bootstrap methods for
computing the critical value function. We calculate actual rejection probabil-
ities of nominal 5% tests based on these two methods using 1000 simulations.
We follow again designs I and IT of Staiger and Stock (1997). Table III shows
rejection rates computed using the fixed-T' conditional bootstrap. The re-
jection probabilities using bootstrap critical values are considerably smaller
than the ones using the critical value function used in Moreira (2003). The
size distortions obtained by the bootstrap are particularly important when
instruments are weak. This seems to hold for different values of p, sample

sizes (n = 20 or 80), and error distributions (normal or Wishart).

4We have also done some simulations using the empirical Edgeworth expansion for the
one-sided score test. Results not reported here indicate that this approximation method
is outperformed by the bootstrap.
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The non-parametric conditional bootstrap method can in principle work
even better than the fixed-T' conditional bootstrap. Recall that the non-
parametric bootstrap offers second-order improvements at least in the good-
instrument case. Tables IV and V summarize the results for the non-parametric
bootstrap with Gaussian kernel for different sample sizes (n = 20 or 80)
and error distributions (normal or Wishart). In general, the non-parametric
bootstrap offers size improvements over the critical value function, but its
performance is below the fixed-T bootstrap. The nonparametric procedure
is not very sensitive to the choice of h, although an intermediate value of
the bandwidth parameter tends to outperform extreme choices. Finally, we
considered other kernels, such as the Epanechnikov and truncated types.
Simulations not reported here suggest that our results are not very sensitive
to the choice of kernel function.

6 Conclusions and Extensions

It is well-known that the Wald, score and likelihood ratio statistics admit
higher-order Edgeworth expansions under some reqularity conditions. Re-
placing the unknown parameters by consistent estimators and using the con-
tinuity of the polynomials in the high-order terms guarantee that empirical
Edgeworth expansions leads to smaller size distortions than those found when
using the chi-square-one critical value. Computing the critical value with
the bootstrap also leads to size improvements given the asymptotic equiva-
lence between the bootstrap and the empirical Edgeworth expansion up to
higher-order terms. However, when the instruments are uncorrelated with
the endogenous explanatory variable, those regularity conditions break down.
The consequences of this break down are threefold. First, the Wald statis-
tic no longer admits a standard high-order Edgeworth Expansion. Second,
the Wald statistic is a non-differentiable function of sample means and, con-
sequently, non-regular. Third, the bootstrap and the empirical Edgeworth
expansion approaches replace unknown parameters by estimators that are
inconsistent in the unidentified model.
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Like the Wald statistic, the score statistic is non-regular in the unidenti-
fied model. The standard Bhattacharya and Ghosh argument breaks down,
so that there is no guarantee that the score statistic admits a high-order
Edgeworth expansion for each fixed value of 7 including zero. To show its
existence, we write the score statistic as a function of two statistics that
admit Edgeworth expansions, but do not approximate this function by the
Generalized Delta method. Unlike standard situations, the high-order terms
for this expansion are not necessarily continuous when the correlation be-
tween the instruments and the explanatory variable is zero. Consequently,
the empirical Edgeworth expansion approach does not necessarily lead to
high-order improvements from the standard first-order asymptotic theory.

Our second striking result is the validity of the bootstrap. Given previous
warnings in the literature concerning the bad performance of the bootstrap
in approximating the null distribution of the Wald statistic, there has been
a perception that the bootstrap as a general simulation method fails in the
unidentified model. This argument seems justified since the bootstrap re-
places unknown parameters with estimators that are not consistent and the
statistics are non-regular in the unidentified case. Nevertheless, we show the-
oretically that the bootstrap actually provides a correct approximation for
the score statistic up to first-order. Although other methods, such as the
m-out-of-n bootstrap (or, of course, using the chi-square-one critical value),
also provide first-order asymptotic approximations for the score statistic, the
usual bootstrap method has the advantage of providing a higher-order ap-
proximation in the good instrument case. We also consider two conditional
bootstrap methods to approximate the conditional null distribution of the
conditional likelihood ratio statistic. The first conditional bootstrap fixes the
value of the statistic we are conditioning on, and bootstraps the remaining
statistic(s). The second conditional bootstrap is based on a non-parametric
estimation of a conditional probability, and is proposed by Booth, Hall, and
Wood (1992).

To assess the performance of the (conditional) bootstrap, we provide some
Monte Carlo simulations for the score and conditional likelihood ratio statis-
tics. Even without a guarantee that the standard bootstrap and the two con-
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ditional bootstrap methods provide improvements in the unidentified model,
our simulations show that they outperform the previous methods based on
first-order (weak-instrument) asymptotics. This raises the question as to why
the bootstrap performs so remarkably well, but is beyond the scope of this
paper. In fact, there is a lack of general theoretical justifications of why the
bootstrap outperforms second-order empirical Edgeworth expansions even in
the standard regular cases.

Finally, our results for the unidentified case can in principle be extended
to the GEL and GMM contexts; cf. Guggenberger and Smith (2003) and
Stock and Wright (2000). Inoue (2002) and Kleibergen (2003) present some
simulations which indicate that the bootstrap can lead to size improvements
for the unidentified case also in the GMM context. However, there is a
lack of formal theoretical results that show the validity of the bootstrap
and Edgeworth expansions in the (locally) unidentified case. Our theoretical
results can then be adapted to those cases by analyzing GMM and GEL
versions of the two sufficient statistics for the simple simultaneous equations
model analyzed here.

References

ANDERSON, T. W., anp H. RUBIN (1949): “Estimation of the Parame-

ters of a Single Equation in a Complete System of Stochastic Equations,”
Annals of Mathematical Statistics, 20, 46-63.

ANDREWS, D. W. K. (2000): “Inconsistency of the Bootstrap When a
Parameter is on the Boundary of the Parameter Space,” FEconometrica,
68, 399-405.

ANDREWS, D. W. K., M. J. MOREIRA, anxD J. H. STOCK (2003): “Op-
timal Invariant Similar Tests for Instrumental Variables Regression,” Un-
published Manuscript, Yale University.

BaBu, J., anp K. SINGH (1984): “On one term Edgeworth correction by
Effron’s bootstrap,” Sankhya, Series A, 46, 219-32.

28



BARNDORFF-NIELSEN, O., anp D. R. Cox (1979): “Edgeworth and

Saddle-Point Approximations with Statistical Applications,” Journal of
the Royal Statistical Society, Series B (Methodological), 41, 279-312.

BHATTACHARYA, R. N. (1977): “Refinements of the Multidimensional Cen-
tral Limit Theorem and Applications,” Annals of Probability, 5, 1-27.

(1987): “Some Aspects of Edgeworth Expansions in Statistics and
Probability,” in New Perspectives in Theoretical and Applied Statistics,
ed. by M. L. Puri, J. P. Vilaplana, and W. Wertz, pp. 157-170. New York:
John Wiley and Sons.

BHATTACHARYA, R. N., anxp J. GHOSH (1978): “On the Validity of the
Formal Edgeworth Expansion,” Annals of Statistics, 6, 434-451.

BickeL, P. J., axnp D. A. FREEDMAN (1981): “Some Asymptotic Theory
for the Bootstrap,” Annals of Statistics, 9, 1196-1217.

BootH, J., P. HALL, anD A. WooD (1992): “Bootstrap Estimation of
Conditional Distributions,” The Annals of Statistics, 20, 1594-1610.

Bounp, J., D. A. JAEGER, AND R. M. BAKER (1995): “Problems with
Instrumental Variables Estimation When the Correlation Between the In-
struments and the Endogenous Explanatory Variables is Weak,” Journal
of American Statistical Association, 90, 443-450.

CAVANAGH, C. (1983): “Hypothesis Testing in Models with Discrete De-
pendent Variables,” Ph.D. thesis, UC Berkeley.

CHAMBERS, J. M. (1967): “On Methods of Asymptotic Approximation for
Multivariate Distributions,” Biometrika, 54, 367-383.

CHANDRA, T., anDp J. GHOSH (1979): “Valid Asymptotic Expansions for
the Likelihood Ratio Statistic and Other Perturbed Chi-Square Variables,”
Sankhya, 41, 22—47.

29



DUFOUR, J.-M. (1997): “Some Impossibility Theorems in Econometrics

with Applications to Structural and Dynamic Models,” Econometrica, 65,
1365-1388.

EFRrRON, B. (1979): “Bootstrap Methods: Another Look at the Jacknife,”
The Annals of Statistics, 7, 1-26.

GUGGENBERGER, P., AND R. SMITH (2003): “Generalized Empirical Like-
lihood Estimators and Tests Under Partial, Weak and Strong Identifica-
tion,” CEMAP Working Paper, CWP08/03.

HanN, J., J. HAUSMAN, anD G. KUERSTEINER (2002): “Estimation with
Weak Instruments: Accuracy of Higher Order Bias and MSE Approxima-
tions,” Unpublished Manuscript, MIT.

Horowitz, J. (2001): “The Bootstrap,” in Handbook of Econometrics, ed.
by J. J. Heckman, and E. Leamer, vol. 5, chap. 52, pp. 3159-3228. New
York: North-Holland.

INOUE, A. (2002): “A Bootstrap Approach to Moment Selection,” Unpub-
lished Manuscript, North Caroline State University.

KLEIBERGEN, F. (2002): “Pivotal Statistics for Testing Structural Parame-
ters in Instrumental Variables Regression,” Econometrica, 70, 1781-1803.

KLEIBERGEN, F. (2003): “Expansions of GMM statistics that indicate their
properties under weak and/or many instruments and the bootstrap,” Un-
published Manuscript, University of Amsterdam.

MOREIRA, M. J. (2001): “Tests with Correct Size when Instruments Can
Be Arbitrarily Weak,” Center for Labor Economics Working Paper Series,
37, UC Berkeley.

(2003): “A Conditional Likelihood Ratio Test for Structural Mod-
els,” Econometrica, 71, 1027-1048.

30



NAGAR, A. (1959): “The Bias and Moment Matrix of the General k-Class
Estimators of Parameters in Simultaneous Equations,” FEconometrica, 27,

575-595.

Navipi, W. (1989): “Edgeworth Expansions for Bootstrapping Regression
Models,” The Annals of Statistics, 17, 1472-1478.

NELSON, C. R., anp R. STARTZ (1990): “Some Further Results on the
Exact Small Sample Properties of the Instrumental Variable Estimator,”
Econometrica, 58, 967-976.

PuirLips, P. C. B. (1977): “A General Theorem in the Theory of Asymp-
totic Expansions as Approximations to the Finite Sample Distributions of
Econometric Estimators,” Econometrica, 45, 1517-1534.

QuMSIYEH, M. B. (1990): “Edgeworth Expansion in Regression Models,”
Journal of Multivariate Analysis, 35, 86—101.

(1994): “Bootstrapping and Empirical Edgeworth Expansions in
Multiple Linear Regression Models,” Communication in Statistics - Theory
and Methods, 23, 3227-3239.

REDNER, R. (1981): “Note on the Consistency of the Maximum Likelihood
Estimate for Nonidentifiable Distributions,” The Annals of Statistics, 9,
225-228.

ROTHENBERG, T. J. (1984): “Approximating the Distributions of Econo-
metric Estimators and Test Statistics,” in Handbook of Econometrics, ed.
by Z. Griliches, and M. Intriligator, vol. 2, chap. 15, pp. 881-935. Elsevier
Science, Amsterdam.

(1988): “Approximate Power Functions for Some Robust Tests of
Regression Coefficients,” Econometrica, 56, 997-1019.

SARGAN, J. D. (1976): “Econometric Estimators and the Edgeworth Ap-
proximation,” Fconometrica, 44, 421-448.

31



SHAO, J. (1994): “Bootstrap Sample Size in Nonregular Cases,” Proceedings
of the American Mathematical Society, 122, 1251-1262.

STAIGER, D., anp J. H. STOCK (1997): “Instrumental Variables Regression
with Weak Instruments,” Econometrica, 65, 557-586.

Stock, J. H., anp J. WRIGHT (2000): “GMM with Weak Identification,”
Econometrica, 68, 1055-1096.

WALD, A. (1949): “Note on the Consistency of the Maximum Likelihood
Estimate,” Annals of Mathematical Statistics, 20, 595-601.

WALLACE, D. (1958): “Asymptotic Approximations to Distributions,” The
Annals of Mathematical Statistics, 29, 635-654.

WAaNG, J., anp E. Zivor (1998): “Inference on a Structural Parameter
in Instrumental Variables Regression with Weak Instruments,” Economet-
rica, 66, 1389-1404.

Appendix A - Proofs

Proof of Theorem 2. First, we prove part (a). Under Hy,

- \/Ebg (Y'Z/n) (Z'Z/n)" (Z'Y/n) Q@ ag )/ Qbg
Va1 (Y'Z/n) (2/Z)n) ™ (2 Jn) Qg

can be re-written as

LM = a (H () — H (1)

where H is a real-valued Borel measurable function on R*+2)/(:+3)/2 gych that
H (1) = 0. All the derivatives of H of order s and less are continuous in the
neighborhood of p. Using Assumptions 2 and 3, the result follows Theorem
2 of Bhattacharya and Ghosh (1978). For the unknown 2 case, note that

Q=Y'Y/n—(Y'Z/n)(ZZ/n)" (Z'Y/n).
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Hence, LM statistic can also be written as
LM =/n (H (R,) — H (1))

under H for a real-valued Borel measurable function H such that H (1) = 0.
Therefore, by Theorem 2 of Bhattacharya and Ghosh (1978), LM admits an
Edgeworth expansion up to the second term.

The proof for part (b) is analogous to the proof for part (a). The Wald
statistic equals

a2/ (22 )™ 2 ) V7 (2/2)) " 2 = )
VI =BasslQl1, —Basys)

W:

)

where
Bosts = (Wa2/n (Z'Z/n) ™" Z'ya/n) " o2 0 (Z'2/n) ™" Z'y /.
Like the score statistic, the Wald statistic can be written as
W = Vi (H (F,) ~ H (1)

under Hj, where H is a real-valued Borel measurable function such that
H (1) = 0. All the derivatives of H of order s and less are continuous in the
neighborhood of p. The result then follows by Theorem 2 of Bhattacharya
and Ghosh (1978). The Wald statistic for unknown variance, W, also admits
an Edgeworth expansion by proceeding as it was done for the LM statistic.

OJ

Proof of Theorem 3. Let F be the distribution of
Foo = veeh ((V,, 2,), (V1. Z1)
and let F,, be the distribution of

By, = veeh (V. 2) (V. 7))
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conditional on &, = {(Y{, Z}),..., (Y., Z!)}. Here, Z* has probability 1/n
in taking the values Z,,, and Y,* has probability 1/n in taking the values

Yy = Zpwa + Vo = Z,7(5,1) + V.
The resampling mechanism for Y, and Z, and the recentering procedure for 1%
of subtracting samples means reflect the fact that Z and V' are independent.
If Z and V' were uncorrelated, it would entail different drawing mechanisms
and recentering procedures. But the essence of the proofs for the bootstrap
presented here would remain the same.

Let F\n be the Fourier transform of F,,. Following Lemma 2 of Babu and
Singh (1984), there exists for each d > 0 positive numbers ¢ and ¢ such that

limsup sup |F, (t)‘ <1-—¢cas.

n—00 d<||t]|<en?

Since the rows E; are i.i.d. (conditionally given X,) with common distribu-
tion F,,, one can proceed as in Bhattacharya (1987) to show that

p(va(f-R)ea)- [

is 0(n71) a.s. as n — oo for every class A of Borel subsets of R satisfying,

sup by (2) dz

s—2
1+ n 2P (-D:F,
AecA ; ( )

for some 6 > 0,

sup®y ((0A)°) = O (%) ase | 0.
AcA

Reduction of the expansion of n'/2 (EH — En> to LM* follows as in Bhat-
tacharya and Ghosh (1978) once we realize that

Lar = va(u (%) - (%)

with H (R,) =0 (due to recentered residuals).
U

Proof of Proposition 4. The Wald statistic for known covariance matrix

() can be re-written as

W =

(vhNZy2) "2y Ny (y1 — y218,)
2 .
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Using the fact that © = ¢/y/n, we have

22V 2y = (Z2'Z/0) e+ (2 Z/n) 2 20 )i
= Wi’ A+ 2], and
/ —1/2 / . / 1/2 / —1/2 /
(Z'2)" "7y = (Z'Z)n)" By + (Z2'Z/n)""" Z'vy [v/n

= W%f [)‘50+(W11/W22)1/2 Zoy | -

The LLN and CLT holds here since F ||(Y,, Z,)|” < oo for some s > 3.
Thus, under the null hypothesis,

(A + 20) (ABy + (wir/wa)'? 24,)
()‘ + sz)/ (A+ sz) ‘

Basps = B =
and, consequently,

wééZ A+ 24, [(wll/w22)1/2 Zop — szﬁo]

W = - e ,
78 ([)‘+ZU2] [)‘+Zv2])

Finally, note that the Wald statistic for unknown €, /W, has the same as-
ymptotic distribution as the W statistic, since O converges in probability to
Q.

OJ

Proof of Lemma 5. The statistics S and T — ¢,, can be written as

S = VAZ'Z/n)" " (Z'V/n)bo - (bpSbo) 2,
Tot = | FEMY (a0 ) O - (ah " ag)?
! +H(Z'Z/n) V22V /n)Q g - (apQ ag) "V

under Hy. Therefore,

(8" T" =) = Vn (H (Ra) — H (1))

k+3)/2

for a measurable mapping H from R*+2)( onto R?* with derivatives of

order s and less being continuous in the neighborhood of ;. Using the results
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for the multivariate case by Bhattacharya and Ghosh (1978, p. 437), S and

T —t,, admit an Edgeworth expansion
s—2
b (5,8) = (1 +> P (D F)) b4 (s,1),
i=1

where ¢,, (s,t) is the normal density on R* with mean zero and dispersion
M, P,(—D : F) is a polynomial in p variables whose coefficients do not de-
pend on n, and —D = (= Dy, ..., — D). Analogous result holds for statistics
in the unknown variance case, S and T, albeit the Edgeworth expansion

would have different polynomials for the higher-order terms.

O
Proof of Theorem 6. Note that
sup |P((S,,10) € B) — // ¥, (s,1) dsdt‘ =o(n7")
BeB B
holds uniformly over every class B satisfying
sup/ ¢(x)dr=0(e) ase | 0.
BeB J(oB)*
In particular this holds for the class {B,;x € R}, where
B, = {(3’,25’)/ e R¥*:s't/Vi't < m} .
O

In Lemma A, we show that we typically have (%, %B) converging almost
surely to the zero vector 0y, when m = 0. In particular, this result holds
for the maximum likelihood estimator EMLE = ( TymLe, EM .g)- This lemma
assumes some conditions that are satisfied if their equivalent conditions hold
in the reduced-form model that ignores the constraint in the parameters.
Almost sure convergence of Ty p and Ty, EB v g to mand 73 trivially holds
for any fixed value 7 # 0 under the regularity conditions in Wald (1949), and

is not shown here.
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Lemma A Let £ = {(0,5) € Il x B} be the set of unidentified points; that
is, f(X;0) is the same for any 0 = (w,3) € L. Let W be any closed subset
of the parameter space © =11 x B which does not intersect L. Let

f(X50.0) = swp f(2.0),

|9—0]§p

p(Xire) = swp f(x.0)
96W;‘9’>7‘0

for a density function f(x,0) that is absolutely continuous with respect to
the Lebesque measure or counting measure. Suppose that the following holds:

i) Eg, In f (X;0) < Eg,In f (X;60p) for any 6y € L,0 ¢ L,
ii) imEp, In f (X;0,p) = Eyg,In f (X;0) for any 6, € L,0 € O,

p—0

iii) By, In @ (X;70) < Eg,In f (X;0,) for any 0y C L,some ry € R,

Finally, let §n (T1y .y y) = (%\, B) be a function of the observations such
that for all 6y € L

HZ:l / (%u?@z)
HZ:1 [ (%a;00)

>~ > 0 for all n and x4, ..., z,.

(8)

Then:

. oo f (Xa;0) >
P, | im  sup=7— =0) =1,
’ (n—»oo HEWp a=1 f (on; 80)

Py, (lim (% %B) _ 0%) — 1.

n—oo

Proof. This proof is essentially a proof by Redner (1981), which augments
Theorems 1 and 2 of Wald (1949). Let W, be the subset of W consisting of
all points € W for which |#| < ry. Conditions (i) and (ii) guarantee that,
for each point 6 € W7, there exists a positive value p, such that

Eop,In f (X;0,py) < Eg,In f (X;00) for any 6 € L.
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Since the set W; is compact, there exists a finite number of points 64, ...,6;,
such that the balls centered at 6; and with radius py;, B (0;, py;), 7 = 1, ..., h, cover
Wl' NOW,

n

h n
0< SupH f xa, S ng(xa;r(ﬁ + Z H xaaehpez

oew

Therefore, the first part of Lemma A is proved if the following holds:

H” 1f<Xa;017p01> > .
Py, | lim =2 =0) = 1,1=1,...,h.
<n—>oo Ha 1 f(XCUeO)

Ha 1@0(Xa,r0)_ ) _
B (Jiri‘onalﬂxa,eo) )=

This can be shown by taking logarithms and using the Strong Law of Large

Numbers.

For the second part of Lemma A, it suffices to show that, for any € > 0,
the probability is one that all limit points 8 = (ﬁ, B) of the sequence {0,}
satisfy the inequality ’ (ﬁ, ﬁﬁ) ‘ < e. The event that there exists a limit point
# such that ‘(ﬁ, ?B)| > ¢ implies that

n

n
Sup | | xOU | | :Eon n

05l(mmB)| =€ o, "y
for infinitely many n. But then

HZ:1 f ($a; 0)
sup -
(wap)zel Lamy [ (Tas 00)

for infinitely many n. However, by the first part of this lemma, this event

>7>0

has probability zero.
OJ

Comments: The maximum likelihood estimator 5MLE = (TymLE, ﬁMLE),
if it exists, satisfies (8) with v = 1.
Note also that this lemma does not assume compactness, but if B is

compact, then trivially BMLE 2% 0 for 7 = 0.
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The following lemma holds regardless of the weakness of the instruments.

Lemma B Suppose 7 % 7 and /7%32315 2% w3, If, for some § > 0,
E|‘Z7LH2+6 < 00, EHUZ'H2+6 <00, then

(z*)'vt
(Z5)'vy
v

Proof. Using the Cramér-Wald device, let ¢ = (¢}, c,)’ be a nonzero vector.

Let
/ %, %
x =€ Zi V14
myn oz )
i U2

To prove the result, we just need to verify the conditions of the Lyapunov

3

X, -5 N(0,Q x E(z2]) as.

Central Limit Theorem:

(i) E*X,,; = 0.

(i) E* X ; finite.

(iii) lim, o 2?21 ﬁE*HXn’,;P*‘S] = 0, where 5% = Z?Zl E*Xfw

(i) First note
.. 1 n ) 1 n )
E*vl, = EX; <U1j - ﬁlzl:vll) =0,
j: =

and similarly E*v3; = 0.

* cll * %k Cl2
NG NG
/ /
C C
— 1 E*ZikE*U*- + 2 E*Z%E*U*-
n i 14 i 2

v v

* k%
E*z v,

(ii) Note that

X2 =Spr
’ n




is finite a.s. Now,

~ AVA
sizc’[Q@( )}c
n

(iii) Note that £ 37, ]91,/*™ is bounded a.s.:

1

ﬁzl 2 = Z‘Uu—z W@_Wﬁ)__Z@lj—z}(%B—ﬂﬁ)) ’2+5
J

)

< O (%Z ol + 207D — wB)F + '%Z (v = (&3 - 7B)

J

k
1 1 -
< Cz(g PRI W S C M (G A wﬂm?”)
i j=1 i

& CQE”[)U’QJFJ.

for large enough constants C; and C5. The first inequality follows from
Minkowski’s inequality, and the second inequality follows from the following
reasoning

|% Z (Ulj - Z;(%\B - Wﬂ)) 2+5 < n1+5 Z fon; — 2. (7D — 7B)[2*°.
i

Therefore, we have:

1 * 244
ZmE [ Xl ™

i

for a large enough constant Cj.
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Let w; = vech (z;z') and W = (wy, ..., w,) . Similarly, let w} = vech (z}z}')
and W* = (wy,...,w}). Also let Quww = Var(W;) and let 1 be an n x 1

vector of ones.

Lemma C Suppose that & —> r, /7%5 2%, 73, for some fixed 7. If, for some
§ >0, E||z]|*"° < oo, E|lv;||*™° < oo , then

(Z*’V*) b

Vi ) Viab

(Z*’V*) Q—jd Xn L} N 0’ 12 X E(ZzZQ) 0 A,
vn a’'Q~1la 0 QWW

Proof. Using the Cramér-Wald device, let d = (d,d5, ds)" be a nonzero
vector (and dio = (d},d,)"), and let

i)/

k) %k

T 2T,

d/ Y!)_le ® Ik 0 i Y14

Xni = = 21y
\/ﬁ a’Q~la w* - l ]
0 Ti(ra1y /2 i o sg=1

The proof follows if we verify the conditions of the Lyapunov Central Limit
Theorem. Similar to the proof of Lemma B, E*X,, ; = 0. Using the fact that

b'a =0, we have:

7' .
n )} dyy + dyQds

d/
’ n

41



is finite a.s., where Q = n~' 3", (w; — n~"! >, w;)?. Now, notice that:

(143

77 . )
|:d/12 (IQ (024 " ) dlg + ded3:| Z E*|Xni’2+6

n

[S])

Z/Z . —(1+%)
(e Z2) )

k ) M1 A
d1j<_52313) 2o d2j(Q 1&)1 2+ * 246
: Z —— + | == E|z UL
j=1 V b/Qb V dlﬁfld
+( dij [77 | |dy(Q ), M) E*|25v3 |2+5}
— — 2
Qb vVaQta
(k+1)k/2 246

+
=1

B |y, — (Zwl,) }

First note that the denominator given by the first term [di, (Io ® (Z'Z/n)) di»

+d. ng} (1+3) is bounded away from zero almost surely since (Z’ Z/n) and
Q converge a.s. to their positive definite limits. When 7 = 0, ﬁ (and hence
a and b) has a non-degenerate limiting distribution. When 7 # 0, 8 (and
hence a and l;) has a finite probabﬂity limit, §. In either case the terms

'( Bas) ' (Q7'a)y
Virdh | \/an al Vb VaQ-ta

are always well-defined. Moreover, the terms in expression (9) are bounded
by

N~ ~2 ~ o~ ~2
011022 — 019 011022 — 019
(10) max — , —
011 022

This bound follows from the fact that

,and

(9)

0 a = @000 14,

and the following claim (which holds regardless of the value of 7). Let

J = ‘7,11 ‘7,12 and 7= m ,
J12 J22 T2
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where J is a symmetric positive definite matrix. Then, the following holds:

Ji1je2 — J12
11

sup
7=
Given the bound given by (10), the verification of the final condition in Lya-

punov’s Central Limit Theorem follows as in the proof of Lemma B (we also
246

wi; — (071 305 wis)
O

use the fact that E|z]|*™° < oo is sufficient to bound E*

almost surely). The desired result follows.

Corollary D Assume 7 is fized. If, for some & > 0, E|z]*™° < oo,
E|lvi||**° < oo , then

<Z*’V*> b
(Z\VF> VO ‘XHLW(O,IQ@E(ZZ»Z;)) a.s.

Vad-ta

Proof. The result is a special case of the result of Lemma C. The main dif-
ference is that the current result has a less stringent moment condition. The
result follows as a direct application of Lyapunov’s Central Limit Theorem,
just as in the proof of Lemma C. 0J

Proof of Theorem 8. Under Assumption 1, the result follows from Theo-
rem 3-a. Now, consider the case in which Assumption 1A holds, and define

t* = /n(Z'Z/n)"*7V @i, Then
Z*/Z* _1/2 Z*/V*Q 1a
A AN /AN B ( " ) n
(22
n n a'Qda

Now, notice that E*[Z*'Z*/n] = Z'Z/n. So by the Markov Law of Large
Numbers,

T —tf =/n

VAV ARAVA

n n
Moreover, the following holds: i) Z'Z/n ** E(zz), and so Z*'Z* /n|X,, *>
E(zz!) a.s.; Z'V* n|lX, 5 E*[Z¥V*/n] = 0 a.s.; /n7 is bounded in prob-
ability, since m = 0; and, B and vV @Q~1a are bounded in probability. Hence,

a.s.
X, — 0 a.s.
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the first term in the sum above is conditionally asymptotically negligible. It
then follows from Corollary D that (S*, (T* — tX))|X, 4, N(0, Iy) a.s.
The usual argument for the first order asymptotics of the score statistic in
the unidentified case can then be applied to yield the desired result.

O

Proof of Theorem 9. The result is a direct application of the Delta Method
and the limiting distribution given in Lemma C (and noting the zero covari-

ances between the three components in the normal limit distribution).
O

Appendix B - Edgeworth Expansions based on
Cavanagh (1983) and Rothenberg (1988) for
the Multivariate Case

The Cavanagh-Rothenberg method can in principle be used for the condi-
tional tests. Suppose

Qn —-3/2
(11) X, =X, +—+— n=32),
where X, is a k x 1 vector that has distribution function F,, and density
function f,,, and the variables P, and @,, (also k x 1 vectors) possess bounded
moments as n tends to infinity.
Let the conditional moments

pn(x):E(Pn\)_(n:x),qn(:c):E(Qn])_(n:x),vn(x):V(Pn|X'n:$)

be smooth functions of x. v,(z) is a k x k variance-covariance matrix, let
v.;n(z) denote the j™ column of v, (x) and

N 0
gn(z) = Z 871}]71(1‘) + vjn(x)% In f,(z)

J=1

44



Next we follow Rothenberg (1988) and extend his results to the multi-
variate case.

Y, (t) = Ee'*r ~ F [eit,X"eit,P”/\/ﬁeit/Q”/\/ﬂ

#P,  it'P,P'ti it'Q
E it' X, 1 ? n n-n 1 n
o (e ) (5]

t'P, it'P,Pti  it'Q
E it Xo, 1 ¢ n n-n n
o (e e S )
. {eitlx (prn(X) it'ga(X) | iton(X) + pn(x)pn(X)’]ti>]

Q

Q

+

vn n 2n

= Eg. [exp (z’t’ (X - p”\%() + q”gQ))} + %Exn [e”th vn(X)tz}

For the last term, integrate by parts,

—FE5 [e“/X it v, (X )tz]

1 ztx :
= 5 it' v, (2)ti fr(x)dx

k
| ., .
= 2_2/6215jil?j/eltjfﬂjit’v,jyn(:E)tjifn(x)d:pjd;p_j
n ‘7
== Z/ Zt/ xr_j ’Lt]m]Zt U]’VL( )fn( ) oo

. 9 0
— /e”j“’f@'t’ [a—x]vjn(x) + 'U-j,n(x>a_l,j1n fn(x)} fn(x)dx]} dr_;

- -5 Xk: [ V() + V(2 )aij lnfn(x)} fulx)d
= —%E [ X! gn()_(n)]
So,
), (t) =~ Ex, [exp( [X n fﬁ() N 2qn(X)2; gn(X)m By [eit,gn(x)]

where h(x) = @ + pu(2) /vl + (240(x) — gu(2))/(2y/).
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We can then approximate P (X, <z) = P (h(X,) <z) ~ Pr(X, <
W ().
Solving for h=!(z):

AT IS

_ Ai(z) Ay 1 . Ai(z) | Ay 1 . Ai(z) | Ay
ERRERYC *N«#’"(* i *n)* q”(* v +n)
1 Aj(x) Ay
—%gn (x—l— Jn +7)
S a T (Bala) +p(@) + - (Bole) 4 (@A) + 4a(2) — 9 (2)2)

Bofa) = P@pne) — aule) + 304()

where p, () = (p1.n(2), ..., pren(x)) is k x 1 and
5%111 (z) - %pl(x)
Po(®) = : :
k() - GEpi(a)

2p}, () pu () — 2, () + g (x)}
N 2n '
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7 Appendix C - Tables

TABLE 1
Percent Rejected Under Ho, Nominal 5%
Number of Simulations = 1000

n=20,k=4
Normal Disturbances Wishart Disturbances
LM Wald LM Wald

NNk BS 384 BS 384 BS 384 BS 384

1 41 74 13 24 62 95 1.7 4.0

10 45 65 34 49 58 95 57 87
0.5 0 5.8 9.1 120 154 74 113 145 21
0.5 1 42 64 130 141 69 104 93 146
0.5 10 46 66 57 74 65 97 63 88
0.75 0 6.1 7.6 427 487 7.5 128 39.0 50.7
0.75 1 43 6.5 279 326 69 9.7 227 29.2
0.75 10 49 63 76 106 7.0 105 82 123
0.99 0 59 7.6 952 99.1 9.0 13.3 93.7 98.3
0.99 1 45 6.5 354 572 7.0 103 31.7 51.3
0.99 10 51 65 91 142 70 106 9.0 152

p
0 0 48 80 00 05 79 119 09 20
0
0
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TABLE II
Percent Rejected Under Ho, Nominal 5%
Number of Simulations = 1000

n=280,k=4
Normal Disturbances Wishart Disturbances
LM Wald LM Wald

p  MNMk BS 384 BS 38 BS 384 BS 384
0 0 58 6.3 0.0 00 57 6.6 02 0.3
0 1 55 6.1 0.1 13 56 6.0 03 14
0 10 52 58 43 46 51 56 4.7 50
0.5 0 6.4 7.1 128 159 53 6.0 108 14.0
0.5 1 56 59 160 13.8 53 6.0 11.2 129
0.5 10 55 6.0 6.9 69 55 6.2 56 6.7
0.75 0 6.0 6.8 46.3 479 58 6.4 442 49.2
0.75 1 48 54 295 314 58 6.1 26.1 285
0.75 10 64 64 77 91 48 6.0 59 90
0.99 0 55 5.9 952 989 6.2 6.7 954 98.8
0.99 1 49 52 293 543 7.2 7.7 28.6 56.9
0.99 10 54 53 7.7 122 72 80 7.6 129
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TABLE II1
Percent Rejected Under Ho, Nominal 5%

Conditional LR Test
Number of Simulations = 1000, £ = 4

Normal Disturbances

Wishart Disturbances

n =20 n = 80 n =20 n = 80

Crit. Crit. Crit. Crit.

p  MNAk BS Va. BS Val. BS Val. BS Val

Func. Func. Func. Func.

0 0 5.0 10.6 5.3 6.4 7.9 13.8 6.4 7.7
0 1 5.9 9.2 5.1 6.3 7.6 12.3 6.1 7.8
0 10 4.9 6.9 5.4 5.6 6.5 9.7 5.9 6.6
0.5 0 7.2 12.5 5.8 6.8 7.0 12.9 7.8 9.0
0.5 1 6.3 10.2 5.1 5.8 6.4 11.5 6.8 8.5
0.5 10 5.3 7.6 4.6 5.6 5.9 9.8 6.5 7.8
0.75 0 4.5 8.9 5.4 6.3 6.5 12.9 6.3 7.6
0.75 1 4.2 7.2 5.2 6.2 5.2 9.7 5.9 7.3
0.75 10 4.5 6.8 4.8 5.4 4.5 8.1 4.9 6.2
0.99 0 5.9 10.9 5.0 6.2 9.4 15.7 6.5 7.6
0.99 1 3.8 5.9 5.2 6.2 5.7 8.5 5.7 6.6
0.99 10 4.3 6.1 4.9 5.5 5.9 8.1 5.4 6.3




TABLE IV - Panel A (Normal Disturbances)
Percent Rejected Under Ho, Nominal 5%
Conditional LR Test
Non-Parametric Bootstrap with Normal Kernel and Bandwidth h
Number of Simulations = 1000, n = 20, £ = 4, B = 5000

h

Critical Value

p NNk 1 757 5t 257 17 057 ‘
Function
0 6.5 65 6.1 59 6.1 59 10.6
0 1 59 5.8 55 54 55 58 9.2
0 10 53 53 53 54 52 52 6.9
0.5 0 5.2 48 47 46 6.0 6.9 12.5
0.5 1 5.7 5.6 54 52 54 56 10.2
0.5 10 58 58 58 59 60 6.0 7.6
0.75 0 6.0 53 44 46 51 6.2 8.9
0.75 1 5.1 49 47 48 53 56 7.2
075 10 6.0 6.0 59 59 58 56 6.8
0.99 0 63 56 52 59 66 7.3 10.9
0.99 1 3.0 3.0 29 28 92 128 5.9
099 10 37 37 37 38 122 16.6 6.1
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TABLE IV - Panel B (Wishart Disturbances)
Percent Rejected Under Ho, Nominal 5%
Conditional LR Test
Non-Parametric Bootstrap with Normal Kernel and Bandwidth h
Number of Simulations = 1000, n = 20, £ = 4, B = 5000

h

Critical Value

p  XNXk 1 757 57 257 1r 057 ,
Function
0 102 98 96 98 98 98 13.8
0 1 94 92 9.0 89 93 95 12.3
0 10 70 70 72 72 72 71 9.7
0.5 0 89 84 83 84 89 95 12.9
0.5 1 75 74 73 72 73 71 11.5
0.5 10 62 63 64 63 63 6.3 9.8
0.75 0 92 88 88 88 95 104 12.9
0.75 1 72 72 71 75 76 75 9.7
0.75 10 56 57 57 59 59 59 8.1
0.99 0 10.1 96 89 9.6 102 11.3 15.7
0.99 1 53 54 53 4.6 105 14.3 8.5
0.99 10 69 71 71 64 13.0 181 8.1
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TABLE V - Panel A (Normal Disturbances)
Percent Rejected Under Ho, Nominal 5%
Conditional LR Test
Non-Parametric Bootstrap with Normal Kernel and Bandwidth h
Number of Simulations = 1000, n = 80, £ = 4, B = 5000

h

Critical Value

p NNk 1 757 5t 257 17 057 ‘
Function
0 84 78 76 72 73 73 6.4
0 1 79 79 75 T4 77T 7 6.3
0 10 64 63 63 63 64 59 5.6
0.5 0 75 74 69 71 75 79 6.8
0.5 1 63 59 59 56 59 6.2 5.8
0.5 10 6.2 62 62 64 65 6.6 5.6
0.75 0 6.0 58 55 54 63 7.0 6.3
0.75 1 44 44 45 48 47 4.6 6.2
075 10 50 5.0 51 52 52 50 5.4
0.99 0 6.5 62 58 52 54 6.6 6.2
0.99 1 3.0 3.0 30 30 106 185 6.2
0.99 10 4.1 41 41 41 80 17.7 5.5
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TABLE V - Panel B (Wishart Disturbances)
Percent Rejected Under Ho, Nominal 5%
Conditional LR Test
Non-Parametric Bootstrap with Normal Kernel and Bandwidth h
Number of Simulations = 1000, n = 80, £ = 4, B = 5000

h

Critical Value

p NNk 1 757 5t 257 17 057 ‘
Function
0 72 72 69 69 72 77 7.7
0 1 80 77 72 68 69 7.0 7.8
0 10 63 62 62 65 66 6.3 6.6
0.5 0 81 78 75 78 7.8 83 9.0
0.5 1 71 70 70 70 71 70 8.5
0.5 10 62 63 64 64 66 6.3 7.8
0.75 0 86 85 82 83 87 92 7.6
0.75 1 56 56 56 58 57 5.7 7.3
075 10 59 6.0 60 64 68 6.7 6.2
0.99 0 81 80 79 72 73 84 7.6
0.99 1 48 49 49 49 119 17.0 6.6
099 10 57 57 56 53 99 169 6.3

93





