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ABSTRACT

It is well-known that size-adjustments based on Edgeworth expansions for the t-statistic perform poorly

when instruments are weakly correlated with the endogenous explanatory variable. This paper shows,

however, that the lack of Edgeworth expansions and bootstrap validity are not tied to the weak instrument

framework, but instead depends on which test statistic is examined. In particular, Edgeworth expansions

are valid for the score and conditional likelihood ratio approaches, even when the instruments are

uncorrelated with the endogenous explanatory variable. Furthermore, there is a belief that the bootstrap

method fails when instruments are weak, since it replaces parameters with inconsistent estimators.

Contrary to this notion, we provide a theoretical proof that guarantees the validity of the bootstrap for the

score test, as well as the validity of the conditional bootstrap for many conditional tests. Monte Carlo

simulations show that the bootstrap actually decreases size distortions in both cases.
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1 Introduction

Inference in the linear simultaneous equations model with weak instruments

has recently received considerable attention in the econometrics literature.

It is now well understood that standard first-order asymptotic theory breaks

down when the instruments are weakly correlated with the endogenous re-

gressor; cf. Bound, Jaeger, and Baker (1995), Dufour (1997), Nelson and

Startz (1990), Staiger and Stock (1997), and Wang and Zivot (1998). In par-

ticular, the 2SLS estimator is biased, and the size of the Wald test is larger

than the nominal significance level. Under standard asymptotics, empirical

Edgeworth expansions show that the bootstrap actually provides asymptotic

refinements. It is then natural to apply either higher-order asymptotics or

the bootstrap to decrease the bias of the 2SLS estimator and the size distor-

tions of the Wald test. However, these procedures appear to be unreliable

in weak-instrument cases; cf., Hahn, Hausman, and Kuersteiner (2002), and

Horowitz (2001), and Rothenberg (1984).

In this paper, we show that the validation of Edgeworth expansions and

bootstrap is not tied to the weak-instrument framework generally, but instead

depends upon the statistic examined. In particular, our results work for the

test of Anderson and Rubin (1949), the score test proposed by Kleibergen

(2002) and Moreira (2001), and the conditional likelihood ratio test of Mor-

eira (2003). To our knowledge, these results contain the first formal proofs of

the validity of Edgeworth expansions and the bootstrap for cases where some

parameters are not identified. At the outset, this exercise appears to face

several potential pitfalls. First, the statistics are typically non-regular when

the instruments are uncorrelated with the endogenous explanatory variable.

Since a general theory of higher-order expansions for non-regular statistics

is unavailable, it is a priori unclear whether the statistics we examine ad-

mit such expansions; see Bhattacharya and Ghosh (1978), Chambers (1967),

Phillips (1977), Sargan (1976), and Wallace (1958). Second, in many known

non-regular cases the usual bootstrap method fails, even in the first-order ;

cf. Andrews (2000), Horowitz (2001), and Shao (1994). Thus, the non-

regularity characterizing the unidentified case poses a potential threat to
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even first-order validity of the bootstrap. Third, the bootstrap replaces pa-

rameters with estimators that are inconsistent in the weak-instrument case.

Hence, the empirical distribution function of the residuals may differ consid-

erably from their true cumulative distribution function, which runs counter

to the usual argument for bootstrap success.

To show the existence of higher-order expansions, we augment the stan-

dard Bhattacharya and Ghosh approach by breaking the proof into two sim-

ple steps. We first provide an Edgeworth expansion for certain sufficient sta-

tistics, and then we find an approximation to the distribution of the score and

the conditional likelihood ratio statistics. As a result, we obtain higher-order

expansions for any fixed value of π, including the unidentified case π = 0.

We also propose an expansion approach developed in Cavanagh (1983) and

Rothenberg (1984) when errors are normal. Although this method does not

provide a formal proof of high-order expansions for the score, it can be used

to compute Edgeworth expansions in those cases. The fact the score sta-

tistic is non-regular leads to a non-standard result: the higher-order terms

are in general not continuous functions of the nuisance parameters at the

unidentified case. Thus, the empirical Edgeworth expansion approach of re-

placing unknown parameters by consistent estimators can perform poorly in

the weak-instrument case.

Perhaps more unexpectedly, we show the validity up to the first-order of

the bootstrap for the score, and of two conditional bootstrap methods for

the conditional likelihood ratio test. These simulation methods, however,

do not generally provide higher-order improvements in the unidentified case.

Nevertheless, Monte Carlo simulations indicate that the (conditional) boot-

strap tends to outperform the first-order asymptotic approximation for the

score and conditional likelihood ratio tests. Recently there has been some

related work on the bootstrap in weak-instrument settings. Work by Inoue

(2002) and Kleibergen (2003) also presents Monte Carlo results suggesting

that the usual bootstrap may work when applied to the Anderson-Rubin sta-

tistic and score statistics. In the present paper, we provide formal proofs for

the validity of Edgeworth and the bootstrap that work in the unidentified

case. Our theoretical results can in principle be extended to the GMM and
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GEL contexts and provide a formal justification for the simulation findings

of Inoue (2002) and Kleibergen (2003). This can be done by replicating our

results on the higher-order expansion and bootstrap behavior of the GMM

and GEL versions of the statistics considered in the simple simultaneous

equations model analyzed here.

The remainder of this paper is organized as follows. In Section 2, we

present the model and establish some notation. In Section 3, we summa-

rize some folk theorems showing the size improvements based on Edgeworth

expansion or the bootstrap for the Wald, score and likelihood ratio tests

under the standard asymptotics. In Section 4, we present the main results.

We show the validity of Edgeworth expansions for the score and conditional

likelihood ratio test statistics when instruments are unrelated to the endoge-

nous explanatory variable. We also establish the validity of the bootstrap for

the score test and of two conditional bootstrap methods for the conditional

likelihood ratio test up to first order. In Section 5, we present Monte Carlo

simulations that suggest that the bootstrap methods may lead to improve-

ments, although in general they do not lead to higher-order adjustments in

the weak-instrument case. In Section 6, we conclude and point out some

extensions.

2 The Model

We begin by introducing the notation for the instrumental variable speci-

fication considered. Throughout the paper, we remark on the extension of

the results to other versions of this specification. The structural equation of

interest is

(1) y1 = y2β + u,

where y1 and y2 are n × 1 vectors of observations on two endogenous vari-

ables, u is an n × 1 unobserved disturbance vector, and β is an unknown

scalar parameter. This equation is assumed to be part of a larger linear

simultaneous equations model, which implies that y2 is correlated with u.
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The complete system contains exogenous variables that can be used as in-

struments for conducting inference on β. Specifically, it is assumed that the

reduced form for Y = [y1, y2] can be written as

y1 = Zπβ + v1(2)

y2 = Zπ + v2,

where Z is an n × k matrix of exogenous variables having full column rank k

and π is a k × 1 vector. The n rows of Z are i.i.d., and F is the distribution

of each row of Z and V = [v1, v2]. Unless stated otherwise, we consider

the case where Z is independent of V . The n rows of the n × 2 matrix of

the reduced-form errors V are i.i.d. with mean zero and 2 × 2 nonsingular

covariance matrix Ω = [ωi,j]. For ease of exposition in the main body of the

paper, we consider statistics designed for the case in which the covariance

matrix Ω is assumed to be known. In the proofs in the Appendix we relax

this assumption. In what follows, Xn is the n-th observation of some random

vector X, and Xn is the sample mean of the first n observations of X. The

subscript n is typically omitted in what follows, unless it helps exposition.

Finally, let NA = A (A′A)−1 A′ and MA = I−NA for any conformable matrix

A, and let b0 = (1,−β0)
′ and a0 = (β0, 1)′.

Tests for the null hypothesis H0 : β = β0 play an important role in our

results. The commonly used Wald test rejects H0 for large values of the Wald

statistic

W =

(
β̂2SLS − β0

) √
y′2NZy2

σ̂u

,

where β̂2SLS = (y′2NZy2)
−1y′2NZy1 and σ̂2

u = [1,−β̂2SLS]Ω[1,−β̂2SLS]′. The

Wald statistic has some important limitations, and it is now well-understood

that it may have important size distortions when the instruments may be

weak. In particular, under the weak-instrument asymptotics of Staiger and

Stock (1997), the limiting distribution of the Wald statistic is not standard

normal. Other testing statistics designed for H0 are based on the Anderson-
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Rubin (AR), score (LM), and likelihood ratio (LR) statistics:

AR = S ′S,

LM = S ′T/
√

T ′T ,

LR =
1

2

(
S ′S − T ′T +

√
(S ′S + T ′T )2 − 4(S ′S · T ′T − (S ′T )2)

)
,

where S = (Z ′Z)−1/2Z ′Y b0 · (b′0Ωb0)
−1/2 and T = (Z ′Z)−1/2Z ′Y Ω−1a0 ·

(a′0Ω
−1a0)

−1/2. The test of Anderson and Rubin (1949) rejects the null if

the AR statistic is larger than the 1 − α quantile of the chi-square-k dis-

tribution. The (two-sided) score test proposed by Kleibergen (2002) and

Moreira (2001) rejects the null if the LM2 statistic is larger than the 1 − α

quantile of the chi-square-one distribution. The conditional likelihood ratio

test of Moreira (2003) rejects the null if the LR statistic is larger then the

1−α conditional quantile of its null distribution conditional on T . All three

of these tests are similar if the errors are normal with known variance Ω,

since the AR and LM statistics are pivotal and the LR statistic is pivotal

conditionally on T .

When the covariance matrix Ω is unknown, we can replace it with the

consistent estimator Ω̃ = Y ′MZY/n. For example,

S̃ = (Z ′Z)−1/2Z ′Y b0 · (b′0Ω̃b0)
−1/2,

T̃ = (Z ′Z)−1/2Z ′Y Ω̃−1a0 · (a′0Ω̃−1a0)
−1/2,

L̃M = S̃ ′T̃ /
√

T̃ ′T̃ .

With unknown error distribution, the Anderson-Rubin, score and conditional

likelihood ratio tests are no longer similar.2 However, unlike the Wald test,

these three tests are asymptotically similar under both the weak-instrument

and standard asymptotics. This important feature allows us to derive the

validity of higher-order expansions and the bootstrap regardless of the degree

of identification.

2An exception occurs with the Anderson-Rubin test, which is similar for normal errors
and unknown covariance matrix.
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3 Preliminary Results

In this section, we review the good-instrument case for Edgeworth expansions

and the bootstrap. Some of the results are already known, and those that

are new follow from standard results. The results in this section provide a

foundation for the weak-instrument results to be presented in Section 4.

For any symmetric `×` matrix A, let vech(A) denote the `(`+1)/2-column

vector containing the column by column vectorization of the non-redundant

elements of A. The test statistics given in the previous section can be written

as functions of

Rn = vech
(
(Y ′

n, Z ′
n)
′
(Y ′

n, Z ′
n)

)

= (f1 (Y ′
n, Z ′

n) , ..., f` (Y ′
n, Z ′

n))

for suitably chosen fi, i = 1, ..., `, where ` = (k + 2) (k + 3) /2. In this

section, we focus on one-sided tests based on W and LM statistics, which

can be written in the form

(3)
√

n
(
H

(
Rn

)−H (µ)
)
,

where the gradient of H evaluated at µ = E (Rn) differs from zero. At the

end of this section, we briefly address two-sided tests based on AR and LR

statistics. These statistics can be written in the form

2n
(
H

(
Rn

)−H (µ)
)

for suitably chosen functions H whose gradient evaluated at µ = E (Rn)

equals zero, and the Hessian matrix L and variance V of Rn satisfy LV L′ = L.

Hereinafter, we use the following high-level assumptions:

Assumption 1. π is fixed and different from zero.

Assumption 2. E ‖Rn‖s < ∞ for some s ≥ 3.

Assumption 3. lim sup
‖t‖→∞

E exp (it′Rn) < 1.
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Assumption 1 is related to the standard good-instrument asymptotics.

Assumption 2 holds if E ‖(Y ′
n, Z ′

n)‖2s < ∞. This minimum moment as-

sumption seems too strong at first glance, but note that test statistics in-

volve quadratic functions of (Y ′
n, Z ′

n). Assumption 3 is the commonly used

Cramér’s condition. The following result by Bhattacharya (1977) provides a

sufficient condition for Assumption 3.

Lemma 1 (Bhattacharya (1977)) Let (Y ′
n, Z ′

n) be a random vector with

values in Rk+2 whose distribution has a nonzero absolutely continuous com-

ponent G (relative to the Lebesgue measure on Rk+2). Assume that there

exists an open ball B of Rk+2 in which the density of G is positive almost

everywhere. If, in B, the functions 1, f1, ..., f` are linearly independent, then

Assumption 3 holds.

In the identified case in which π is fixed and different from zero, not only

is the 2SLS estimator consistent for β, but both Wald and score statistics

also admit second-order Edgeworth expansions under mild conditions. As

a simple application of Theorem 2 of Bhattacharya and Ghosh (1978), we

obtain the following result:

Theorem 2 Under Assumptions 1-3, the null distributions of Wn and LMn

statistics can be uniformly approximated (in x) by Edgeworth expansions:

(a)

∥∥∥∥P (LMn ≤ x)− [Φ (x) +
s−2∑
i=1

n−i/2pi
LM (x; F, β0, π) φ (x)]

∥∥∥∥
∞

= o
(
n−(s−2)/2

)
,

(b)

∥∥∥∥P (Wn ≤ x)− [Φ (x) +
s−2∑
i=1

n−i/2pi
W (x; F, β0, π) φ (x)]

∥∥∥∥
∞

= o
(
n−(s−2)/2

)
,

where pi
W and pi

LM , i = 1, 2, are polynomials in x with coefficients depending

on moments of Rn, β0 and π.

We now turn to the bootstrap. For each bootstrap sample, a test statistic

is computed, which in turn generates a simulated empirical distribution for

the Wald or score statistics. This distribution can then be used to provide
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new critical values for the test. Importantly, the bootstrap sample is gener-

ated based on an estimate of β, and likewise the null hypothesized value of

β is replaced by that estimate in forming the bootstrap test statistics. Given

consistent estimates β̂ and π̂, the residuals from the reduced-form equations

are obtained as

v̂1 = y1 − Zπ̂β̂

v̂2 = y2 − Zπ̂.

These residuals are re-centered to yield (ṽ1, ṽ2). Then Z∗ and (v∗1, v
∗
2) are

drawn independently from the empirical distribution function of Z and (ṽ1, ṽ2).

Next, we set

y∗1 = Z∗π̂β̂ + v∗1
y∗2 = Z∗π̂ + v∗2.

We want to stress here that the simulation method above is exactly equivalent

to simulating directly from the structural model

y∗1 = y∗2β̂ + u∗

y∗2 = Z∗π̂ + v∗2,

where Z∗ and (u∗, v∗2) are drawn independently from the empirical distribu-

tion function of Z and (ũ, ṽ2), where ũ = ṽ1−ṽ2β̂. Also, the probability under

the empirical distribution function (conditional on the sample) will be de-

noted P ∗ in what follows. Finally, the fact that Z∗ is randomly drawn reflects

the fact that we are interested in the correlated case. We do not consider

the fixed Z case here, although this can be done by establishing conditions

similar to those by Navidi (1989) and Qumsiyeh (1990, 1994) in the simple

regression model. Of course, this entails different Edgeworth expansions and

bootstrap methods.

The following result shows that the bootstrap approximates the empirical

Edgeworth expansion up to the o
(
n−(s−2)/2

)
order.
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Theorem 3 Under Assumptions 1-3,

(a)

∥∥∥∥P ∗ (LM∗
n ≤ x)− [Φ (x) +

s−2∑
i=1

n−i/2pi
LM(x; Fn, β̂, π̂)φ (x)]

∥∥∥∥
∞

= o
(
n−(s−2)/2

)
,

(b)

∥∥∥∥P ∗ (W ∗
n ≤ x)− [Φ (x) +

s−2∑
i=1

n−i/2pi
W (x; Fn, β̂, π̂)φ (x)]

∥∥∥∥
∞

= o
(
n−(s−2)/2

)
,

a.s. as n →∞.

The error based on the bootstrap simulation is of order n−1/2 due to the

fact that the conditional moments of R∗
n converge almost surely to those of

Rn, and that β̂ and π̂ converge almost surely to β and π. Consequently,

Theorem 3 shows that the bootstrap offers a better approximation than the

standard normal approximation.

Finally, if one is interested in the problem of two-sided hypothesis testing,

one could reject H0 for large values of |W | and |LM |. Using the fact that the

polynomials p1
W (x) and p1

LM (x) are even, one can show that the n−1/2-term

for the expansion of |W | and |LM | vanishes. Hence, the approximation error

based on the bootstrap for two-sided Wald and score tests is of order n−1. For

the Anderson-Rubin and likelihood ratio statistics, one could use the results

of Chandra and Ghosh (1979) to get (empirical) Edgeworth expansions for

their density function of the form

κv (x)
m∑

r=0

n−rqr (x) ,

where κv (x) is the density function of a chi-square-v variable and qr (x) are

polynomials of x with q0 (x) = 1. Here, the order of the expansion m is a

function of the largest s such that E ‖Rn‖s < ∞.

4 Main Results

In the previous section, we considered the good-instrument case in which

the structural parameter β is identified. Our results are threefold: the null

distribution of the Wald and score statistics can be approximated by an Edge-

worth expansion up to the n−(s−2)/2 order, for some integer s; the bootstrap

11



estimate and the (s− 1)−term empirical Edgeworth expansion for both sta-

tistics are asymptotically equivalent up to the n−(s−2)/2 order; and, the error

of estimation of the bootstrap is of order n−1/2 for one-sided versions and

of order n−1 for two-sided versions of the Wald and score tests. However,

the three results in Section 3 depend crucially on Assumption 1. First, the

commonly used (and to our knowledge, the only) proof of the existence of

Edgeworth expansions for statistics in the form (3) is given by Bhattacharya

and Ghosh (1978), and crucially depends upon the assumption that deriv-

atives of functions evaluated at µ = E (Rn) are defined and different from

zero (regular case). However, if the instruments are uncorrelated with the

endogenous variables, the score and Wald statistics do not satisfy this re-

quirement. Hence, in the unidentified case, it is not obvious whether these

statistics actually admit second-order expansions, and, if they exist, how to

prove their existence. Second, and more importantly, the hypothesized value

β0 is replaced by an inconsistent estimator β̂. Consequently, it is not clear

whether the bootstrap actually provides valid approximations even in the

first-order. In fact, similar versions of Theorems 2 and 3 have been con-

sidered to fix size distortions of the Wald test in the weak-instrument case.

However, when instruments are weak, it is well-known that this method does

not lead to substantial size improvements.

In this section, we address the issues above that arise in a weak-instrument

setting. We show that the score test admits a standard higher-order expan-

sion, and that the conditional likelihood ratio test admits a higher-order ex-

pansion whose leading term is nuisance-parameter-free. In addition, we prove

that the bootstrap does provide a valid first-order approximation to the null

distribution of the score test, and that conditional bootstrap methods provide

a valid first-order approximation to the null distribution of the conditional

likelihood ratio test. Finally, we point out that these bootstrap simulations

generally do not provide higher-order approximations in the weak-instrument

case due to the inconsistency of any estimator of β.
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4.1 Edgeworth Expansions

Here we show that the score and conditional likelihood ratio tests admit

higher-order expansions for the unidentified case. Formally, we replace As-

sumption 1 by the following assumption in our main Edgeworth expansion

results:

Assumption 1A. (unidentified case) π = 0.

To motive parts of the discussion, it will also be useful to have a statement

of the weak-instrument asymptotics:

Assumption 1B. (locally unidentified case) π = c/n1/2 for some non-

stochastic k-vector c.

To illustrate why the score test admits an Edgeworth expansion, it is

worth considering a stochastic expansion following the work by Nagar (1959).

To compute the approximate bias of the 2SLS estimator, we can expand its

formula into a power series,

(4) β̂2SLS = Xn +
Pn√

n
+

Qn

n
+ Op

(
n−3/2

)
,

where Xn, Pn, and Qn are sequences of random variables with limiting distri-

butions as n tends to infinity. More specifically, we can arrange the expression

for the 2SLS estimator such that:

β̂2SLS = β +
(π′Z ′u + v′2NZu)/n

π′Z′Zπ
n

[1 + 2√
n

(π′Z′v2)/
√

n
(π′Z′Zπ)/n

+ 1
n

v′2NZv2

(π′Z′Zπ)/n
]
.

For fixed, nonzero π and a large enough sample size, we can do a power series

expansion in the denominator to get (4). Taking expectations based on the

terms up to the order n−1 we obtain:

(5) E(β̂2SLS)− β = (k − 2)
σu,v2

π′Z ′Zπ
+ o(n−1),

where σu,v2 is the covariance between the disturbances u and v2. The deriva-

tion of (5) depends on showing that the terms π′Zv2 and v′Z(Z ′Z)−1Z ′v are
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asymptotically negligible relative to π′Z ′Zπ. However, with weakly corre-

lated instruments, π′Z ′Zπ is close to zero, so that in finite samples the other

terms may be just as important to the bias as π′Z ′Zπ. Hence, equation (5)

may not provide a good approximation to the finite sample bias of the 2SLS

estimator when instruments are weak. The Wald statistic presents the same

limitation: its stochastic expansion assumes that some terms are asymptot-

ically negligible, an assumption that breaks down with weak instruments.

Close inspection, however, shows that a stochastic expansion for the score

test is valid for any value of π, including zero. Recall the connection between

stochastic expansions and Edgeworth expansions, as conjectured by Wallace

(1958) and proved by Bhattacharya and Ghosh (1978) for regular cases. Al-

though this connection has not been proved for non-regular cases, a valid

stochastic expansion for any value of π illustrates an important feature of

the score statistic.

Following Bhattacharya and Ghosh (1978), the Wald and score statistics

can still be written as functions of averages for various moments in the data.

For the Wald statistic, this function includes a division by zero under As-

sumption 1A when evaluated at the expected values of the averages. Hence,

the results in Bhattacharya and Ghosh (1978) are unavailable for the Wald

statistic. In fact, in the locally unidentified case, asymptotic approximations

for the Wald statistic based on Edgeworth expansions break down. In this

case, the leading term is not the c.d.f. of a standard normal. In fact, its lim-

iting distribution depends on nuisance parameters that are not consistently

estimable, as we can see using the results of Staiger and Stock (1997).

Proposition 4 Under Assumptions 1B and 2,

β̂2SLS ⇒ B =
(λ + zv2)

′ (λβ0 + (ω11/ω22)
1/2 zv1)

(λ + zv2)
′ (λ + zv2)

,

where

λ = ω
−1/2
22 E (ZnZ

′
n)

1/2
c, and

(
z′v1

, z′v2

)′ ∼ N (0, Ξ⊗ IK) ,
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where Ξ is a 2 × 2 matrix with diagonal elements being equal to one, and

off-diagonal elements equal to ω12/
√

ω11ω22. Moreover, under the null hy-

pothesis,

Wn ⇒ ω
1/2
22

σB
·
[λ + zv2 ]

′
[
(ω11/ω22)

1/2 zv1 − zv2β0

]

(
[λ + zv2 ]

′ [λ + zv2 ]
)1/2

,

where σ2
B = [1,−B]Ω[1,−B]′.

Like the Wald statistic, the score statistic is not differentiable at π = 0,

making a Bhattacharya and Ghosh (1978)’s expansion method unavailable.

Unlike the Wald procedure, however, the score test does admit a second-order

Edgeworth expansion with a normal c.d.f. as the leading term, even in the

unidentified case. Since we cannot apply Theorem 2 of Bhattacharya and

Ghosh (1978) directly, we break the proof of the existence of an Edgeworth

expansion for the score statistic into two simple steps. First, we present the

following intermediate result:

Lemma 5 Under Assumptions 1 or 1A, 2 and 3, the joint null distribution

of S and T can be uniformly approximated by an Edgeworth expansion:

∥∥∥∥∥P (Sn ≤ x1, Tn ≤ tn)− [ΦA (x) +
s−2∑
i=1

n−i/2qi (x) φA (x)]

∥∥∥∥∥
∞

= o
(
n−(s−2)/2

)
,

where tn =
√

nΩ
1/2
ZZπ · (a′0Ω−1a0)

1/2 + x2 and and ΦA denotes the c.d.f. of a

mean zero normal distribution with variance A.

An explicit expression for A will be given in section 4.2. It should be

noted here that when π = 0, A = I2k. Otherwise, A is a block diagonal

matrix with upper diagonal block Ik. Also, note that the end-point tn =√
nΩ

1/2
ZZπ · (a′0Ω−1a0)

1/2 + x2 changes with the sample size. This adjustment

is due to the fact that the mean of T drifts off to infinity in the case π 6= 0,
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and guarantees an Edgeworth expansion. Note that we can understand the

weak-instrument asymptotics as if the drift term tn were fixed at the level

Ω
1/2
ZZc · (a′0Ω−1a0)

1/2 + x2.

Thus, Lemma 5 can be seen as a higher-order expansion to the weak-instrument

asymptotics of Staiger and Stock (1997). In particular, it allows us to analyze

the behavior of many tests in the unidentified case. As a direct application,

it guarantees that the score test admits an Edgeworth expansion even when

π = 0:

Theorem 6 Under Assumptions 1A, 2 and 3, the null distribution of LM

can be approximated by an Edgeworth expansion:

∥∥∥∥∥P (LMn ≤ x)−
[
Φ (x) +

s−2∑
i=1

n−i/2qi
LM (x; F, β0) φ (x)]

]∥∥∥∥∥
∞

= o
(
n−(s−2)/2

)
.

Note that the leading term in the expansion for the score test is the c.d.f.

of a standard normal. Therefore, we extend previous results in the literature,

which show that the score test is asymptotically normal even in the uniden-

tified case; c.f., Kleibergen (2002) and Moreira (2001). Theorems 2(b) and 6

show that the null rejection probability of the score test can be approximated

by a second-order Edgeworth expansion pointwise in the nuisance parameters

π. Unfortunately, the score test does not present very good power properties.

In particular, this test is dominated in practice by the conditional likelihood

ratio test; cf., Moreira (2003) and Andrews, Moreira, and Stock (2003). Like

the Wald test, the null distribution of the likelihood ratio statistic is not

nuisance-parameter-free. Hence, we focus here on obtaining an expansion for

the conditional null distribution of the likelihood ratio statistic. We follow

Barndorff-Nielsen and Cox (1979), and begin by providing expansions for the

unconditional probabilities of S and T :

(6) P (Sn ≤ x1, Tn ≤ tn) and P (Tn ≤ tn)
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where the end-point tn =
√

nΩ
1/2
ZZπ·(a′0Ω−1a0)

1/2+x2 changes with the sample

size. Of course, under the same conditions as given in Lemma 5, we can also

obtain an Edgeworth expansion for the marginal distribution P (Tn ≤ tn) .

By obtaining Edgeworth expansions for (6), we can approximate the null

conditional distribution of S up to a o
(
n−(s−2)/2

)
term:

P (Sn ≤ x1|Tn = tn) = [Φ (x1) +
s∑

i=1

n−i/2pi (x1|x2) φ (x1)].

By using this approximation, we can compute Edgeworth expansions for the

conditional distribution of a statistic ψ(S, T ). In particular, we can obtain an

approximation for the conditional distribution of the likelihood ratio statistic

for the known Ω case:

LR =
1

2

(
S ′S − T ′T +

√
(S ′S + T ′T )2 − 4(S ′S · T ′T − (S ′T )2)

)
.

The leading term of the conditional distribution in this expansion is nuisance-

parameter-free, but not of a standard normal random variable. Thus, al-

though we may be able to achieve size improvements by considering higher-

order terms in this expansion, it may prove difficult to do in practice. In

fact, the leading term has not even been computed, and in practice is ap-

proximated by simulation methods; cf., Moreira (2003).

Although all stated results are for tests designed for the known covariance

matrix case, analogous results hold when we replace Ω with its consistent

estimator Ω̃. In particular, the L̃M and W̃ statistics also admit Edgeworth

expansions, but with different polynomials in the higher-order terms (see

Appendix A). Of course, the Edgeworth expansion breaks down for the W̃

statistic in the unidentified case.

We finish this section presenting an alternative way to find second-order

Edgeworth expansions for the L̃M statistic when Ω is unknown but the

errors are normal. Applying the results in Cavanagh (1983) and Rothenberg

(1988), Proposition 7 computes the second-order Edgeworth distribution for

L̃M based on a stochastic expansion:

L̃M = LM + n−1/2Pn + n−1Qn + Op

(
n−3/2

)
,
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where P and Q are stochastically bounded with conditional moments

pn (x) = E (Pn|LMn = x) , qn (x) = E (Qn|LMn = x) , vn (x) = V (Pn|LMn = x) .

Cavanagh’s method re-writes the statistic of interest to include the normal-

ization provided by the denominator in the numerator. What remains in the

denominator can then be expanded. This approach allows us to avoid the

division by zero problem and the non-differentiability at π = 0.

Proposition 7 If the errors are jointly normally distributed, and L̃M ad-

mits a second-order Edgeworth expansion, P
(
L̃Mn ≤ x

)
can be approxi-

mated by

Φ
[
x− n−1/2pn (x) + 0.5 · n−1 [2pn (x) p′n (x)− 2qn (x) + v′n (x)− xvn (x)]

]

up to a o (n−1) term.

Comment: The terms pn (x), qn (x), and vn (x) can be approximated by

functions such that the terms in the higher-order expansion are expressed

exactly as powers of n−1/2; see Rothenberg (1988).

Recall that under normality the LM statistic is N (0, 1) under H0, but the

L̃M statistic is not. Therefore, Proposition 7 provides a second-order cor-

rection for the L̃M statistic using conditional moments on the LM statistic.

In FGLS examples, Edgeworth expansions are known to correct for skew-

ness and kurtosis due to an estimated error covariance matrix; cf. Horowitz

(2001) and Rothenberg (1988). We find that this behavior carries over to

the IV setting as well. Finally, unlike Theorems 2(a) and 6, Proposition 7

does not prove the existence of second-order Edgeworth expansions. It only

states that if such an expansion exists (as shown in Theorems 2(a) and 6),

it can be found by computing some moments conditional on LM , the score

statistic for known Ω. In principle, this technique can also be applied to the

multivariate case and, consequently, to the conditional tests; see Appendix

B.
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In practice, we do not know π and Ω, and need replace them with con-

sistent estimators in the high-order terms. As long as the high-order poly-

nomials are continuous functions of the parameters, empirical Edgeworth

expansions lead to high-order improvements. However, the continuity of the

high order terms cannot be taken for granted in the weak-instrument case due

to the possible non-differentiability of statistics at the unidentified case. For

example, suppose that E(vi|zi) = 0, E(viv
′
i|zi) = Ω, and µzz = E (ziz

′
i) < ∞.

Tedious algebraic manipulations show that, for π 6= 0, the polynomial of the

first-order term for the score is given by [α2 + (α1 − α2)x
2], where

α1 =
1

2

E[(z′π)(v′b)3]

(b′Ωb)3/2(π′µzzπ)1/2
and α2 =

1

6

E[(z′π)3(v′b)3]

(b′Ωb)3/2(π′µzzπ)3/2
.

This higher order term in general cannot be extended to be continuous at

π = 0. Thus, the empirical Edgeworth expansion approach may not provide

a n−1/2 correction and can perform poorly at the unidentified case. This

finding need not apply to other statistics. For instance, the Anderson-Rubin

statistic can be written as a function of sample moments which has higher

order derivatives even in the unidentified case. Thus, the Anderson-Rubin

statistic has continuous higher order terms, and its empirical Edgeworth

expansion would provide higher order corrections even at π = 0.

4.2 Bootstrap

The usual intuition for the bootstrap requires that the empirical distribution

from which the bootstrap sample is drawn is close to the distribution of

the data under the null. For the model given in equations (1) and (2), the

empirical distribution used in bootstrap sampling depends on the residuals

from these equations. When instruments are weak, these residuals depend on

inconsistent parameter estimates, so it is not clear a priori that the empirical

distribution will be close to the distribution of the errors. However, we

typically have

π̂
a.s.−→ π and π̂β̂

a.s.−→ πβ

for any fixed value of π, including the important π = 0 case; see Lemma A

in the appendix for an example. Since the reduced-form residuals depend on
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the parameter estimates only through π̂ and π̂β̂, this result suggests that the

estimated residuals (v̂1, v̂2) are close to (v1, v2) in the reduced-form model.

This is a simple but important insight for the results of this section.

As an additional complication, the null hypothesized value of β = β0 is

replaced by the estimator β̂ in the corresponding bootstrap test statistics.

Recall that β̂ is not a consistent estimator under Assumptions 1A or 1B.

Also, as before, we treat the known Ω case here for expositional ease. So, Ω

will be replaced by the estimator Ω̃ based on (ṽ1, ṽ2) in the bootstrap test

statistics. Therefore, we have:

S∗ = (Z∗′Z∗)−1/2Z∗′Y ∗b̂ · (b̂′Ω̃b̂)−1/2,

T ∗ = (Z∗′Z∗)−1/2Z∗′Y ∗Ω̃−1â · (â′Ω̃−1â)−1/2,

where â = (β̂, 1)′ and b̂ = (1,−β̂)′. In particular, the bootstrap score test

statistic is given by

LM∗ =
S∗′T ∗
√

T ∗′T ∗
.

To derive the asymptotic distribution of the bootstrap versions of the score,

we must re-center T ∗ in (bootstrap) analogy with Lemma 5 by subtracting

the term

t∗n =
√

n

(
Z ′Z
n

)1/2

π̂
√

â′Ω̃−1â.

We can then consider the joint limiting distribution of (S∗, T ∗ − t∗n), where

T ∗−t∗n =
√

n

[(
Z∗′Z∗

n

)1/2

−
(

Z ′Z
n

)1/2
]

π̂
√

â′Ω̃−1â+

(
Z∗′Z∗

n

)−1/2
Z∗′V ∗

n
Ω̃−1â

√
â′Ω̃â

.

To describe this limiting distribution, we require some additional notation,

namely Lyapunov’s Central Limit Theorem and the Delta method,

√
n[(Z ′Z/n)1/2 − E(Z ′Z/n)1/2]π

d−→ N(0, Σ),

where Σ depends directly on π. In particular, define Σ = 0 when π = 0.

For π = 0,
√

nπ̂ is bounded in probability and (Z∗′Z∗/n)1/2 − (Z ′Z/n)1/2

has zero conditional probability limit almost surely. Hence, the first term of
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T ∗− t∗n is asymptotically negligible, the second term has a joint normal limit

distribution with S∗, and the bootstrap score has the expected distribution.

Theorem 8 Suppose that, for some δ > 0, E‖zi‖2+δ, E‖vi‖2+δ < ∞, and let

π̂ and β̂ be estimators such that π̂
a.s.−→ π and π̂β̂

a.s.−→ πβ. Under Assumptions

1 or 1A, we have

LM∗|Xn
d−→ N(0, 1) a.s. ,

where Xn = {(Y ′
1 , Z

′
1), . . . , (Y

′
n, Z ′

n)}.

Theorem 8 yields first-order validity of the bootstrap score test regardless

of instrument weakness. The validity of the bootstrap in approximating the

asymptotic distribution of the score test in the unidentified case is notable.

Unfortunately, the bootstrap in the weak-instrument case does not provide

a second-order approximation, because higher-order terms depend on β̂ sep-

arately from the term π̂β̂. In other words, second-order improvements for

the score test based on the bootstrap may worsen as π approaches zero. An

alternative bootstrap method could be pursued by not replacing β0 with β̂.

This avoids the problem of replacing the structural parameter with the in-

consistent estimator β̂, yet it possibly entails power losses (recall that the

e.d.f. of the residuals will not be close to their c.d.f. when the true β is

different from the hypothesized value β0).

Lemma A in the Appendix shows that the assumption of almost sure

convergence of π̂ and π̂β̂ is the norm even in the unidentified case. However,

we note that the proof of Theorem 8 (and 9) also works for the case where π̂

and π̂β̂ converge in probability. Then the weak convergence in the conclusion

of the theorem occurs with probability approaching one rather than almost

surely. Both almost-sure and in-probability conclusions correspond to modes

of convergence that have been proposed for the bootstrap; cf. Efron (1979)

and Bickel and Freedman (1981).

Following the discussion of Section 2, conditioning can be used to provide

asymptotically similar tests, as is the case with the likelihood ratio statistic.
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These tests rely on a theoretically constructed (and typically Monte Carlo-

simulated) critical value function. The bootstrap provides another way of

obtaining a critical value for conditional tests. We provide a parallel result

to Lemma 5, which gives the joint limiting behavior of (S∗, T ∗ − t∗n).

Theorem 9 Suppose that, for some δ > 0, E‖zi‖4+δ, E‖vi‖2+δ < ∞ , and let

π̂ and β̂ be estimators such that π̂
a.s.−→ π and π̂β̂

a.s.−→ πβ. Under Assumptions

1 or 1A, (
S∗

T ∗ − t∗n

)∣∣∣∣Xn
d−→ N(0, A) a.s. ,

where

A =

(
Ik 0

0 Ik + Σa0
′Ω−1a0

)
.

The joint distribution of S∗ and T ∗ can therefore be used to derive the

bootstrapped distribution of the score test in the unidentified case, but it

requires stronger moment conditions than Theorem 8. More importantly,

Theorem 9 suggests two bootstrap methods for the conditional tests3. The

first method exploits the (first-order) independence of S∗ and T ∗ − t∗n from

Theorem 9 by fixing T at its observed value and obtaining S∗ from bootstrap

samples. The second method is proposed by Booth, Hall, and Wood (1992).

When conditioning on the observed value of T , we make use of the bootstrap

samples for which T ∗ is close to T .

The first method has a significant, computational efficiency advantage

over the non-parametric proposed by Booth, Hall, and Wood (1992), but

its ability to provide asymptotic refinements depends on higher-order inde-

pendence of S∗ and T ∗. Consequently, it may entail more size distortions

than the non-parametric method, at least in the good-instrument case. On

the other hand, the second method depends crucially on bandwidth choice,

3Unfortunately, the conditional bootstrap methods do not work for the conditional
Wald testing procedure, since the Wald statistic depends on β not only through S and T .
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which may prove problematic in practice. In addition, T ∗ is a random vec-

tor with dimension k, and non-parametric methods are known to perform

poorly for high dimensions. The high-dimension problem can be avoided for

the class of invariant similar tests analyzed by Andrews, Moreira, and Stock

(2003). These tests depend exclusively on S ′S, S ′T and T ′T , which allows us

to consider modified versions of the fixed-T and non-parametric conditional

bootstraps. For example, the LR statistic can be rewritten as

(7) LR =
1

2

[
Q1 + Qk−1 − T ′T +

√
(Q1 + Qk−1 + T ′T )2 − 4Qk−1T ′T

]
,

where Q1 = S ′T (T ′T )−1T ′S and Qk−1 = S ′[I − T (T ′T )−1T ′]S. Conditional

on T ′T = τ , Q1 and Qk−1 are asymptotically independent, and, under the

null hypothesis, have limiting chi-square distributions with one and k − 1

degrees of freedom, respectively. The first conditional bootstrap method

adapted to similar tests exploits the asymptotic first-order independence of

Q = (S ′S, S ′T/
√

T ′T ) and T ′T . For each bootstrap sample, the bootstrap

version of the statistic Q, denoted Q∗, is generated. The bootstrap critical

value is then the 1−α quantile of the empirical distribution of LR(Q∗, T ′T ).

Note that T ′T is fixed at its observed value here. The second conditional

bootstrap procedure is based on the non-parametric method described in

Booth, Hall, and Wood (1992). Suppose B bootstrap samples are generated.

Let Q∗
j and T ∗′

j T ∗
j denote the values of Q and T ′T in the j-th bootstrap sam-

ple. Booth, Hall, and Wood (1992) suggest using a standard non-parametric

kernel estimate of the desired conditional distribution based on these boot-

strap samples. Therefore, the problem of finding the critical value of the LR

statistic conditional on T ′T = τ boils down to determining the value x(τ)

such that:

1
B

∑B
j=1 1

[
LR(Q∗

j , T
∗′
j T ∗

j ) ≤ x(τ))
]
φ

(
T ∗′j T ∗j −τ

h

)

1
B

∑B
j=1 φ

(
T ∗′j T ∗j −τ

h

) = 1− α,

where 1[·] is an indicator function, φ(·) is a kernel function and h is a band-

width parameter. In the next section, each of these bootstrap procedures is

implemented and compared in a Monte Carlo exercise.
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5 Monte Carlo Simulations

Theorem 3 suggests that the bootstrap can decrease size distortions for the

score and Wald tests when instruments are good. More importantly, Theo-

rems 8 and 9 provide a theoretical support for bootstrapping the score test

and the conditional likelihood ratio test, even when instruments are weak.

The same validation of the bootstrap does not hold for the Wald test. This

crucial difference has implications for the ability of the bootstrap to im-

prove inference for each of these tests. In this section, we present Monte

Carlo simulations that support our theoretical results. We first compare the

performance of the bootstrap for the score test and the Wald test. Then we

provide results of simulations for the two conditional bootstrap methods that

are applied to the conditional likelihood ratio test.

Following designs I and II of Staiger and Stock (1997), we simulate the

simple model introduced in equations (1) and (2). The true value of the

structural parameter, β, is assumed to be zero. We assume that the n rows

of [u, v2] are i.i.d. random variables with mean zero, unit variance, and cor-

relation coefficient ρ. The correlation coefficient represents the degree of

endogeneity of y2. The first column of the matrix of instruments, Z, is a

vector of ones and the other k − 1 columns are drawn from independent

standard normal distributions, which are independent from [u, v2]. To exam-

ine the performance of the bootstrap under various degrees of identification,

we consider three different values of the population first-stage F-statistic,

π′(nIk)π/k. The first-stage F-statistic corresponds to the concentration pa-

rameter λ′λ/k in the notation of Staiger and Stock (1997). In particular, we

consider the completely unidentified case (λ′λ/k = 0), the weak-instrument

case (λ′λ/k = 1), and the good-instrument case (λ′λ/k = 10). For design I,

we assume that ut and v2t are normally distributed with unit variance and

correlation ρ. For design II, we assume that ut = (ξ2
1t −1)/

√
2 and v2t = (ξ2

2t

−1)/
√

2, where ξ1t and ξ2t are standard normal random variables with cor-

relation
√

ρ. In these simulations, we are considering two-sided versions of

the score and Wald tests. For each specification, 1000 pseudo-data sets are

generated under the null hypothesis (β = 0). For each pseudo-data set, we
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consider the score and Wald statistics using chi-square-one and bootstrap

critical values at 5% significance level.

Table I and II report null rejection probabilities for the score and Wald

tests when the sample size equals 20 and 80, respectively. The bootstrap

yields null rejection probabilities for the score test fairly close to the nominal

5% level. Perhaps more important, bootstrapping the score test instead of

using the first-order asymptotic approximation always takes actual rejection

rates closer to the nominal size, including the case λ′λ/k = 0.4 By contrast,

bootstrapping the Wald test offers improvements over first-order asymptotics

only when instruments are good. In fact, when λ′λ/k = 0 and ρ are small,

the bootstrap can be even worse than first-order asymptotics. The poor

behavior of the bootstrap for the Wald test is explained by its dependence

on π. For small values of π, the null distribution of the Wald statistic is quite

sensitive to π in the weak-instrument case. Consequently, the bootstrap is

likely to give very different answers depending on the initial estimation of

this parameter. The sensitivity is considerably reduced for large values of

π. On the other hand, the null asymptotic distribution of the score does not

depend on π asymptotically. Hence, the bootstrap procedure exhibits little

sensitivity to its initial estimate of π.

In the following set of results, we compare the sizes of the conditional like-

lihood ratio test when based on the two conditional bootstrap methods for

computing the critical value function. We calculate actual rejection probabil-

ities of nominal 5% tests based on these two methods using 1000 simulations.

We follow again designs I and II of Staiger and Stock (1997). Table III shows

rejection rates computed using the fixed-T conditional bootstrap. The re-

jection probabilities using bootstrap critical values are considerably smaller

than the ones using the critical value function used in Moreira (2003). The

size distortions obtained by the bootstrap are particularly important when

instruments are weak. This seems to hold for different values of ρ, sample

sizes (n = 20 or 80), and error distributions (normal or Wishart).

4We have also done some simulations using the empirical Edgeworth expansion for the
one-sided score test. Results not reported here indicate that this approximation method
is outperformed by the bootstrap.
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The non-parametric conditional bootstrap method can in principle work

even better than the fixed-T conditional bootstrap. Recall that the non-

parametric bootstrap offers second-order improvements at least in the good-

instrument case. Tables IV and V summarize the results for the non-parametric

bootstrap with Gaussian kernel for different sample sizes (n = 20 or 80)

and error distributions (normal or Wishart). In general, the non-parametric

bootstrap offers size improvements over the critical value function, but its

performance is below the fixed-T bootstrap. The nonparametric procedure

is not very sensitive to the choice of h, although an intermediate value of

the bandwidth parameter tends to outperform extreme choices. Finally, we

considered other kernels, such as the Epanechnikov and truncated types.

Simulations not reported here suggest that our results are not very sensitive

to the choice of kernel function.

6 Conclusions and Extensions

It is well-known that the Wald, score and likelihood ratio statistics admit

higher-order Edgeworth expansions under some regularity conditions. Re-

placing the unknown parameters by consistent estimators and using the con-

tinuity of the polynomials in the high-order terms guarantee that empirical

Edgeworth expansions leads to smaller size distortions than those found when

using the chi-square-one critical value. Computing the critical value with

the bootstrap also leads to size improvements given the asymptotic equiva-

lence between the bootstrap and the empirical Edgeworth expansion up to

higher-order terms. However, when the instruments are uncorrelated with

the endogenous explanatory variable, those regularity conditions break down.

The consequences of this break down are threefold. First, the Wald statis-

tic no longer admits a standard high-order Edgeworth Expansion. Second,

the Wald statistic is a non-differentiable function of sample means and, con-

sequently, non-regular. Third, the bootstrap and the empirical Edgeworth

expansion approaches replace unknown parameters by estimators that are

inconsistent in the unidentified model.
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Like the Wald statistic, the score statistic is non-regular in the unidenti-

fied model. The standard Bhattacharya and Ghosh argument breaks down,

so that there is no guarantee that the score statistic admits a high-order

Edgeworth expansion for each fixed value of π including zero. To show its

existence, we write the score statistic as a function of two statistics that

admit Edgeworth expansions, but do not approximate this function by the

Generalized Delta method. Unlike standard situations, the high-order terms

for this expansion are not necessarily continuous when the correlation be-

tween the instruments and the explanatory variable is zero. Consequently,

the empirical Edgeworth expansion approach does not necessarily lead to

high-order improvements from the standard first-order asymptotic theory.

Our second striking result is the validity of the bootstrap. Given previous

warnings in the literature concerning the bad performance of the bootstrap

in approximating the null distribution of the Wald statistic, there has been

a perception that the bootstrap as a general simulation method fails in the

unidentified model. This argument seems justified since the bootstrap re-

places unknown parameters with estimators that are not consistent and the

statistics are non-regular in the unidentified case. Nevertheless, we show the-

oretically that the bootstrap actually provides a correct approximation for

the score statistic up to first-order. Although other methods, such as the

m-out-of-n bootstrap (or, of course, using the chi-square-one critical value),

also provide first-order asymptotic approximations for the score statistic, the

usual bootstrap method has the advantage of providing a higher-order ap-

proximation in the good instrument case. We also consider two conditional

bootstrap methods to approximate the conditional null distribution of the

conditional likelihood ratio statistic. The first conditional bootstrap fixes the

value of the statistic we are conditioning on, and bootstraps the remaining

statistic(s). The second conditional bootstrap is based on a non-parametric

estimation of a conditional probability, and is proposed by Booth, Hall, and

Wood (1992).

To assess the performance of the (conditional) bootstrap, we provide some

Monte Carlo simulations for the score and conditional likelihood ratio statis-

tics. Even without a guarantee that the standard bootstrap and the two con-
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ditional bootstrap methods provide improvements in the unidentified model,

our simulations show that they outperform the previous methods based on

first-order (weak-instrument) asymptotics. This raises the question as to why

the bootstrap performs so remarkably well, but is beyond the scope of this

paper. In fact, there is a lack of general theoretical justifications of why the

bootstrap outperforms second-order empirical Edgeworth expansions even in

the standard regular cases.

Finally, our results for the unidentified case can in principle be extended

to the GEL and GMM contexts; cf. Guggenberger and Smith (2003) and

Stock and Wright (2000). Inoue (2002) and Kleibergen (2003) present some

simulations which indicate that the bootstrap can lead to size improvements

for the unidentified case also in the GMM context. However, there is a

lack of formal theoretical results that show the validity of the bootstrap

and Edgeworth expansions in the (locally) unidentified case. Our theoretical

results can then be adapted to those cases by analyzing GMM and GEL

versions of the two sufficient statistics for the simple simultaneous equations

model analyzed here.
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Appendix A - Proofs

Proof of Theorem 2. First, we prove part (a). Under H0,

LM =
√

n
b′0 (Y ′Z/n) (Z ′Z/n)−1 (Z ′Y/n) Ω−1a0/

√
b′0Ωb0√

a′0Ω−1 (Y ′Z/n) (Z ′Z/n)−1 (Z ′Y/n) Ω−1a0

can be re-written as

LM =
√

n
(
H

(
Rn

)−H (µ)
)
,

where H is a real-valued Borel measurable function on R(k+2)(k+3)/2 such that

H (µ) = 0. All the derivatives of H of order s and less are continuous in the

neighborhood of µ. Using Assumptions 2 and 3, the result follows Theorem

2 of Bhattacharya and Ghosh (1978). For the unknown Ω case, note that

Ω̃ = Y ′Y/n− (Y ′Z/n) (Z ′Z/n)
−1

(Z ′Y/n) .
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Hence, L̃M statistic can also be written as

L̃M =
√

n
(
H

(
Rn

)−H (µ)
)

under H0 for a real-valued Borel measurable function H such that H (µ) = 0.

Therefore, by Theorem 2 of Bhattacharya and Ghosh (1978), L̃M admits an

Edgeworth expansion up to the second term.

The proof for part (b) is analogous to the proof for part (a). The Wald

statistic equals

W =
√

n
(y′2Z/n (Z ′Z/n)−1 Z ′y2/n)−1/2y′2Z/n (Z ′Z/n)−1 Z ′ (y1 − y2β0) /n√

[1,−β̂2SLS]Ω[1,−β̂2SLS]′
,

where

β̂2SLS = (y′2Z/n (Z ′Z/n)
−1

Z ′y2/n)−1y′2Z/n (Z ′Z/n)
−1

Z ′y1/n.

Like the score statistic, the Wald statistic can be written as

W =
√

n
(
H

(
Rn

)−H (µ)
)

under H0, where H is a real-valued Borel measurable function such that

H (µ) = 0. All the derivatives of H of order s and less are continuous in the

neighborhood of µ. The result then follows by Theorem 2 of Bhattacharya

and Ghosh (1978). The Wald statistic for unknown variance, W̃ , also admits

an Edgeworth expansion by proceeding as it was done for the L̃M statistic.

¤

Proof of Theorem 3. Let F be the distribution of

R̃n = vech
(
(Ỹ ′

n, Z
′
n), (Ỹ ′

n, Z ′
n)

)

and let Fn be the distribution of

R̃∗
n = vech

(
(Ỹ ∗′

n , Z∗′
n )′(Ỹ ∗′

n , Z∗′
n )

)
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conditional on Xn = {(Y ′
1 , Z

′
1), . . . , (Y

′
n, Z ′

n)}. Here, Z∗
n has probability 1/n

in taking the values Zn, and Y ∗
n has probability 1/n in taking the values

Ỹn = Znπ̂â + Ṽn = Znπ̂(β̂, 1) + Ṽn.

The resampling mechanism for Ỹn and Zn and the recentering procedure for V̂

of subtracting samples means reflect the fact that Z and V are independent.

If Z and V were uncorrelated, it would entail different drawing mechanisms

and recentering procedures. But the essence of the proofs for the bootstrap

presented here would remain the same.

Let F̂n be the Fourier transform of Fn. Following Lemma 2 of Babu and

Singh (1984), there exists for each d > 0 positive numbers ε and δ such that

lim sup
n→∞

sup
d≤‖t‖≤enδ

∣∣∣F̂n (t)
∣∣∣ ≤ 1− ε a.s.

Since the rows R̃∗
n are i.i.d. (conditionally given Xn) with common distribu-

tion Fn, one can proceed as in Bhattacharya (1987) to show that

sup
A∈A

∣∣∣∣∣P
∗
(√

n
(
R̃
∗
n − R̃n

)
∈ A

)
−

∫

A

[
1 +

s−2∑
i=1

n−i/2Pi (−D : Fn)

]
φV (x) dx

∣∣∣∣∣

is o (n−1) a.s. as n → ∞ for every class A of Borel subsets of R` satisfying,

for some θ > 0,

sup
A∈A

ΦV ((∂A)ε) = O
(
εθ

)
as ε ↓ 0.

Reduction of the expansion of n1/2
(
R̃
∗
n − R̃n

)
to LM∗ follows as in Bhat-

tacharya and Ghosh (1978) once we realize that

LM∗ =
√

n
(
H

(
R̃
∗
n

)
−H

(
R̃n

))

with H
(
Rn

)
= 0 (due to recentered residuals).

¤

Proof of Proposition 4. The Wald statistic for known covariance matrix

Ω can be re-written as

W =
(y′2NZy2)

−1/2y′2NZ (y1 − y2β0)

σ̂
.
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Using the fact that π = c/
√

n, we have

(Z ′Z)
−1/2

Z ′y2 = (Z ′Z/n)
1/2

c + (Z ′Z/n)
−1/2

Z ′v2/
√

n

⇒ ω
1/2
22 [λ + zv2 ] , and

(Z ′Z)
−1/2

Z ′y1 = (Z ′Z/n)
1/2

cβ0 + (Z ′Z/n)
−1/2

Z ′v1/
√

n

⇒ ω
1/2
22

[
λβ0 + (ω11/ω22)

1/2 zv1

]
.

The LLN and CLT holds here since E ‖(Yn, Zn)‖s < ∞ for some s ≥ 3.

Thus, under the null hypothesis,

β̂2SLS ⇒ B =
(λ + zv2)

′ (λβ0 + (ω11/ω22)
1/2 zv1)

(λ + zv2)
′ (λ + zv2)

.

and, consequently,

W ⇒ ω
1/2
22

σB
·
[λ + zv2 ]

′
[
(ω11/ω22)

1/2 zv1 − zv2β0

]

(
[λ + zv2 ]

′ [λ + zv2 ]
)1/2

,

Finally, note that the Wald statistic for unknown Ω, W̃ , has the same as-

ymptotic distribution as the W statistic, since Ω̃ converges in probability to

Ω.

¤

Proof of Lemma 5. The statistics S and T − tn can be written as

S =
√

n(Z ′Z/n)
−1/2

(Z ′V/n)b0 · (b′0Ωb0)
−1/2,

T − tn =
√

n

[
(Z ′Z/n)1/2π · (a′0Ω−1a0)

1/2 − Ω
1/2
ZZπ · (a′0Ω−1a0)

1/2

+(Z ′Z/n)−1/2(Z ′V/n)Ω−1a0 · (a′0Ω−1a0)
−1/2

]

under H0. Therefore,

(S ′, T ′ − t′n)
′
=
√

n
(
H

(
Rn

)−H (µ)
)

for a measurable mapping H from R(k+2)(k+3)/2 onto R2k with derivatives of

order s and less being continuous in the neighborhood of µ. Using the results
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for the multivariate case by Bhattacharya and Ghosh (1978, p. 437), S and

T − tn admit an Edgeworth expansion

ψn (s, t) =

(
1 +

s−2∑
i=1

n−i/2Pi (−D : F )

)
φA (s, t) ,

where φM (s, t) is the normal density on R2k with mean zero and dispersion

M , Pi (−D : F ) is a polynomial in p variables whose coefficients do not de-

pend on n, and −D = (−D1, ...,−D2k). Analogous result holds for statistics

in the unknown variance case, S̃ and T̃ , albeit the Edgeworth expansion

would have different polynomials for the higher-order terms.

¤

Proof of Theorem 6. Note that

sup
B∈B

∣∣∣∣P
(
(S ′n, T ′

n)
′ ∈ B

)−
∫ ∫

B

ψn (s, t) dsdt

∣∣∣∣ = o
(
n−1

)

holds uniformly over every class B satisfying

sup
B∈B

∫

(∂B)ε
φ (x) dx = O (ε) as ε ↓ 0.

In particular this holds for the class {Bx; x ∈ R}, where

Bx =
{

(s′, t′)′ ∈ R2k; s′t/
√

t′t ≤ x
}

.

¤

In Lemma A, we show that we typically have
(
π̂, π̂β̂

)
converging almost

surely to the zero vector 02k when π = 0. In particular, this result holds

for the maximum likelihood estimator θ̂MLE = ( π̂MLE, β̂MLE). This lemma

assumes some conditions that are satisfied if their equivalent conditions hold

in the reduced-form model that ignores the constraint in the parameters.

Almost sure convergence of π̂MLE and π̂MLEβ̂MLE to π and πβ trivially holds

for any fixed value π 6= 0 under the regularity conditions in Wald (1949), and

is not shown here.
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Lemma A Let L = {(0, β) ∈ Π× B} be the set of unidentified points; that

is, f (X; θ) is the same for any θ = (π, β) ∈ L. Let W be any closed subset

of the parameter space Θ = Π×B which does not intersect L. Let

f (X; θ, ρ) = sup
|eθ−θ|≤ρ

f
(
x, θ̃

)
,

ϕ (X; r0) = sup
eθ∈W ;|eθ|>r0

f
(
x, θ̃

)

for a density function f (x, θ) that is absolutely continuous with respect to

the Lebesgue measure or counting measure. Suppose that the following holds:

i) Eθ0 ln f (X; θ) < Eθ0 ln f (X; θ0) for any θ0 ∈ L, θ /∈ L,

ii) lim
ρ→0

Eθ0 ln f (X; θ, ρ) = Eθ0 ln f (X; θ) for any θ0 ∈ L, θ ∈ Θ,

iii) Eθ0 ln ϕ (X; r0) < Eθ0 ln f (X; θ0) for any θ0 ⊂ L, some r0 ∈ R+.

Finally, let θ̂n (x1, ..., xn) =
(
π̂, β̂

)
be a function of the observations such

that for all θ0 ∈ L

(8)

∏n
α=1 f

(
xα; θ̂n

)
∏n

α=1 f (xα; θ0)
≥ γ > 0 for all n and x1, ..., xn.

Then:

Pθ0

(
lim

n→∞
sup

θ∈W

∏n
α=1 f (Xα; θ)∏n
α=1 f (Xα; θ0)

= 0

)
= 1,

Pθ0

(
lim

n→∞

(
π̂, π̂β̂

)
= 02k

)
= 1.

Proof. This proof is essentially a proof by Redner (1981), which augments

Theorems 1 and 2 of Wald (1949). Let W1 be the subset of W consisting of

all points θ ∈ W for which |θ| ≤ r0. Conditions (i) and (ii) guarantee that,

for each point θ ∈ W1, there exists a positive value ρθ such that

Eθ0 ln f (X; θ, ρθ) < Eθ0 ln f (X; θ0) for any θ0 ∈ L.
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Since the set W1 is compact, there exists a finite number of points θ1, ..., θh

such that the balls centered at θi and with radius ρθi, B (θi, ρθi), i = 1, ..., h, cover

W1. Now,

0 ≤ sup
θ∈W

n∏
α=1

f (xα; θ) ≤
n∏

α=1

ϕ (xα; r0) +
h∑

i=1

n∏
α=1

f (xα; θi, ρθi) .

Therefore, the first part of Lemma A is proved if the following holds:

Pθ0

(
lim

n→∞

∏n
α=1 f (Xα; θi, ρθi)∏n

α=1 f (Xα; θ0)
= 0

)
= 1, i = 1, ..., h.

Pθ0

(
lim

n→∞

∏n
α=1 ϕ (Xα; r0)∏n
α=1 f (Xα; θ0)

= 0

)
= 1.

This can be shown by taking logarithms and using the Strong Law of Large

Numbers.

For the second part of Lemma A, it suffices to show that, for any ε > 0,

the probability is one that all limit points θ =
(
π, β

)
of the sequence {θn}

satisfy the inequality
∣∣(π, πβ

)∣∣ ≤ ε. The event that there exists a limit point

θ such that
∣∣(π, πβ

)∣∣ > ε implies that

sup
θ;|(π,πβ)|≥ε

n∏
α=1

f (xα; θ) ≥
n∏

α=1

f (xα; θn)

for infinitely many n. But then

sup
|(π,πβ)|≥ε

∏n
α=1 f (xα; θ)∏n
α=1 f (xα; θ0)

≥ γ > 0

for infinitely many n. However, by the first part of this lemma, this event

has probability zero.

¤

Comments: The maximum likelihood estimator θ̂MLE = ( π̂MLE, β̂MLE),

if it exists, satisfies (8) with γ = 1.

Note also that this lemma does not assume compactness, but if B is

compact, then trivially β̂MLE
a.s.−→ 0 for π = 0.
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The following lemma holds regardless of the weakness of the instruments.

Lemma B Suppose π̂
a.s.−→ π and π̂β̂2sls

a.s.−→ πβ. If, for some δ > 0,

E‖zi‖2+δ < ∞, E‖vi‖2+δ < ∞ , then

(
(Z∗)′V ∗1√

n
(Z∗)′V ∗2√

n

)∣∣∣∣Xn
d−→ N(0, Ω× E(zizi

′)) a.s.

Proof. Using the Cramér-Wald device, let c = (c′1, c
′
2)
′ be a nonzero vector.

Let

Xn,i =
c′√
n

(
z∗i v

∗
1i

z∗i v
∗
2i

)
.

To prove the result, we just need to verify the conditions of the Lyapunov

Central Limit Theorem:

(i) E∗Xn,i = 0.

(ii) E∗X2
n,i finite.

(iii) limn−→∞
∑n

i=1
1

s2+δ
n

E∗[|Xn,i|2+δ] = 0, where s2
n =

∑n
i=1 E∗X2

n,i.

(i) First note

E∗v∗1i =
1

n

n∑
j=1

(
v̂1j − 1

n

n∑

l=1

v̂1l

)
= 0,

and similarly E∗v∗2i = 0.

E∗Xn,i =
c′1√
n

E∗z∗i v
∗
1i +

c′2√
n

E∗z∗i v
∗
2i

=
c′1√
n

E∗z∗i E
∗v∗1i +

c′2√
n

E∗z∗i E
∗v∗2i

= 0.

(ii) Note that

E∗X2
n,i =

c′

n
E∗

[(
v∗1i

2 v∗1iv
∗
2i

v∗1iv
∗
2i v∗2i

2

)
⊗ z∗i z

∗
i
′
]

c =
c′

n

[
Ω̃⊗

(
Z ′Z
n

)]
c
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is finite a.s. Now,

s2
n = c′

[
Ω̃⊗

(
Z ′Z
n

)]
c.

(iii) Note that 1
n

∑
i |ṽ1i|2+δ is bounded a.s.:

1

n

∑
i

|ṽ1i|2+δ =
1

n

∑
i

∣∣v1i − z′i(π̂β̂ − πβ)− 1

n

∑
j

(
v1j − z′j(π̂β̂ − πβ)

) ∣∣2+δ

≤ C1

(
1

n

∑
i

|v1i|2+δ + |z′i(π̂β̂ − πβ)|2+δ +

∣∣∣∣
1

n

∑
j

(
v1j − z′j(π̂β̂ − πβ)

) ∣∣∣∣
2+δ)

≤ C2

(
1

n

∑
i

|v1i|2+δ +
k∑

j=1

1

n

∑
i

|zji|2+δ|(π̂β̂ − πβ)j|2+δ

)

a.s.−→ C2E|v1i|2+δ.

for large enough constants C1 and C2. The first inequality follows from

Minkowski’s inequality, and the second inequality follows from the following

reasoning

∣∣ 1
n

∑
j

(
v1j − z′j(π̂β̂ − πβ)

) ∣∣2+δ ≤ 1

n1+δ

1

n

∑
j

|v1j − z′j(π̂β̂ − πβ)|2+δ.

Therefore, we have:

∑
i

1

s2+δ
n

E∗|Xni|2+δ

=

[
c′

(
Ω̃⊗ Z ′Z

n

)
c

]−(1+ δ
2) ∑

i

n−(1+ δ
2)E∗

∣∣∣∣∣c
′
(

z∗i v
∗
1i

z∗i v
∗
2i

)∣∣∣∣∣

2+δ

≤ C3

[
c′

(
Ω̃⊗ Z ′Z

n

)
c

]−(1+ δ
2)

n−
δ
2

k∑
j=1

2∑
m=1

(
|c1j|2+δ 1

n

∑
i

|zji|2+δ 1

n

∑

l

|ṽml|2+δ

)

a.s.−→ 0,

for a large enough constant C3.
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Let wi = vech (zizi
′) and W = (w1, . . . , wn)′. Similarly, let w∗

i = vech (z∗i z
∗
i
′)

and W ∗ = (w∗
1, . . . , w

∗
n)′. Also let ΩWW = Var(Wi) and let 1 be an n × 1

vector of ones.

Lemma C Suppose that π̂
a.s.−→ π, π̂β̂

a.s.−→ πβ, for some fixed π. If, for some

δ > 0, E‖zi‖4+δ < ∞, E‖vi‖2+δ < ∞ , then




(
Z∗′V ∗√

n

)
b̂√
b̂′Ω̃b̂(

Z∗′V ∗√
n

)
Ω̃−1â√
â′Ω̃−1â√

n
(

W ∗′1
n

− W ′1
n

)




∣∣∣∣Xn
d−→ N

(
0,

(
I2 ⊗ E(ziz

′
i) 0

0 ΩWW

))
a.s.

Proof. Using the Cramér-Wald device, let d = (d′1, d
′
2, d

′
3)
′ be a nonzero

vector (and d12 = (d′1, d
′
2)
′), and let

Xn,i =
d′√
n







b̂′√
b̂′Ω̃b̂

âΩ̃−1√
â′Ω̃−1â


⊗ Ik 0

0 Ik(k+1)/2







z∗i v
∗
1i

z∗i v
∗
2i

w∗
i − 1

n

∑
j=1 wj


 .

The proof follows if we verify the conditions of the Lyapunov Central Limit

Theorem. Similar to the proof of Lemma B, E∗Xn,i = 0. Using the fact that

b̂′â = 0, we have:

E∗X2
n,i =

d′12

n

[
I2 ⊗

(
Z ′Z
n

)]
d12 + d′3Ω̂d3
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is finite a.s., where Ω̂ = n−1
∑

i(wi − n−1
∑

j wj)
2. Now, notice that:

[
d′12

(
I2 ⊗ Z ′Z

n

)
d12 + d′3Ω̂d3

]−(1+ δ
2) ∑

i

E∗|Xni|2+δ

≤ C

[
d′12

(
I2 ⊗ Z ′Z

n

)
d12 + d′3Ω̂d3

]−(1+ δ
2)

n−
δ
2

·
{ k∑

j=1

[(∣∣∣∣
d1j(−β̂2sls)√

b̂′Ω̃b̂

∣∣∣∣
2+δ

+

∣∣∣∣
d2j(Ω̃

−1â)1√
â′Ω̃−1â

∣∣∣∣
2+δ)

E∗|z∗jiv∗1i|2+δ

+

(∣∣∣∣
d1j√
b̂′Ω̃b̂

∣∣∣∣
2+δ

+

∣∣∣∣
d2j(Ω̃

−1â)2√
â′Ω̃−1â

∣∣∣∣
2+δ)

E∗|z∗jiv∗2i|2+δ

]

+

(k+1)k/2∑

l=1

E∗
∣∣∣∣∣w

∗
li −

(
1

n

n∑
j=1

wli

)∣∣∣∣∣

2+δ }
.

First note that the denominator given by the first term
[
d′12 (I2 ⊗ (Z ′Z/n)) d12

+d′3Ω̂d3

]−(1+ δ
2) is bounded away from zero almost surely since (Z ′Z/n) and

Ω̂ converge a.s. to their positive definite limits. When π = 0, β̂ (and hence

â and b̂) has a non-degenerate limiting distribution. When π 6= 0, β̂ (and

hence â and b̂) has a finite probability limit, β. In either case the terms

(9)

∣∣∣∣
(−β̂2sls)√

b̂′Ω̃b̂

∣∣∣∣,
∣∣∣∣

(Ω̃−1â)1√
â′Ω̃−1â

∣∣∣∣,
∣∣∣∣

1√
b̂′Ω̃b̂

∣∣∣∣, and

∣∣∣∣
(Ω̃−1â)2√

â′Ω̃−1â

∣∣∣∣

are always well-defined. Moreover, the terms in expression (9) are bounded

by

(10) max





√
σ̃11σ̃22 − σ̃2

12

σ̃11

,

√
σ̃11σ̃22 − σ̃2

12

σ̃22



 .

This bound follows from the fact that

â′Ω̃−1â = â′Ω̃−1Ω̃Ω̃−1â,

and the following claim (which holds regardless of the value of π). Let

J =

(
j11 j12

j12 j22

)
and τ =

(
τ 1

τ 2

)
,
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where J is a symmetric positive definite matrix. Then, the following holds:

sup
τ

∣∣∣∣
τ 1√
τ ′Jτ

∣∣∣∣ ≤
√

j11j22 − j2
12

j11

.

Given the bound given by (10), the verification of the final condition in Lya-

punov’s Central Limit Theorem follows as in the proof of Lemma B (we also

use the fact that E‖zi‖4+δ < ∞ is sufficient to bound E∗
∣∣∣w∗

li − (n−1
∑n

j=1 wli)
∣∣∣
2+δ

almost surely). The desired result follows. ¤

Corollary D Assume π is fixed. If, for some δ > 0, E‖zi‖2+δ < ∞,

E‖vi‖2+δ < ∞ , then



(
Z∗′V ∗√

n

)
b̂√
b̂′Ω̃b̂(

Z∗′V ∗√
n

)
Ω̃−1â√
â′Ω̃−1â




∣∣∣∣Xn
d−→ N (0, I2 ⊗ E(ziz

′
i)) a.s.

Proof. The result is a special case of the result of Lemma C. The main dif-

ference is that the current result has a less stringent moment condition. The

result follows as a direct application of Lyapunov’s Central Limit Theorem,

just as in the proof of Lemma C. ¤

Proof of Theorem 8. Under Assumption 1, the result follows from Theo-

rem 3-a. Now, consider the case in which Assumption 1A holds, and define

t∗n =
√

n(Z ′Z/n)1/2π̂
√

â′Ω̃−1â. Then

T ∗−t∗n =
√

n

[(
Z∗′Z∗

n

)1/2

−
(

Z ′Z
n

)1/2
]

π̂
√

â′Ω̃−1â+

(
Z∗′Z∗

n

)−1/2
Z∗′V ∗

n
Ω̃−1â

√
â′Ω̃â

Now, notice that E∗[Z∗′Z∗/n] = Z ′Z/n. So by the Markov Law of Large

Numbers,
Z∗′Z∗

n
− Z ′Z

n

∣∣∣∣Xn
a.s.−→ 0 a.s.

Moreover, the following holds: i) Z ′Z/n
a.s.−→ E(zizi

′), and so Z∗′Z∗/n|Xn
a.s.−→

E(zizi
′) a.s.; Z∗′V ∗/n|Xn

a.s.−→ E∗[Z∗′V ∗/n] = 0 a.s.;
√

nπ̂ is bounded in prob-

ability, since π = 0; and, β̂ and
√

â′Ω̃−1â are bounded in probability. Hence,
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the first term in the sum above is conditionally asymptotically negligible. It

then follows from Corollary D that (S∗′, (T ∗ − t∗n)′)′|Xn
d−→ N(0, I2k) a.s.

The usual argument for the first order asymptotics of the score statistic in

the unidentified case can then be applied to yield the desired result.

¤

Proof of Theorem 9. The result is a direct application of the Delta Method

and the limiting distribution given in Lemma C (and noting the zero covari-

ances between the three components in the normal limit distribution).

¤

Appendix B - Edgeworth Expansions based on

Cavanagh (1983) and Rothenberg (1988) for

the Multivariate Case

The Cavanagh-Rothenberg method can in principle be used for the condi-

tional tests. Suppose

(11) Xn = X̄n +
Pn√

n
+

Qn

n
+ Op

(
n−3/2

)
,

where X̄n is a k × 1 vector that has distribution function Fn and density

function fn, and the variables Pn and Qn (also k×1 vectors) possess bounded

moments as n tends to infinity.

Let the conditional moments

pn (x) = E
(
Pn| X̄n = x

)
, qn (x) = E

(
Qn| X̄n = x

)
, vn (x) = V

(
Pn| X̄n = x

)

be smooth functions of x. vn(x) is a k × k variance-covariance matrix, let

v·j,n(x) denote the jth column of vn(x) and

gn(x) =
k∑

j=1

∂

∂xj

v·j,n(x) + v·j,n(x)
∂

∂xj

ln fn(x)
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Next we follow Rothenberg (1988) and extend his results to the multi-

variate case.

ψn(t) = Eeit′Xn ≈ E
[
eit′X̄neit′Pn/

√
neit′Qn/

√
n
]

≈ E

[
eit′X̄n

(
1 +

it′Pn√
n

+
it′PnP

′
nti

2n

)(
1 +

it′Qn

n

)]

≈ E

[
eit′X̄n

(
1 +

it′Pn√
n

+
it′PnP

′
nti

2n
+

it′Qn

n

)]

= EX̄n

[
eit′X

(
1 +

it′pn(X)√
n

+
it′qn(X)

n
+

it′[vn(X) + pn(x)pn(X)′]ti
2n

)]

= EX̄n

[
exp

(
it′

(
X +

pn(X)√
n

+
qn(X)

n

))]
+

1

2n
EX̄n

[
eit′Xit′vn(X)ti

]

For the last term, integrate by parts,

1

2n
EX̄n

[
eit′Xit′vn(X)ti

]

=
1

2n

∫
eit′xit′vn(x)tifn(x)dx

=
1

2n

k∑
j=1

∫
eit′−jx−j

∫
eit′jxj it′v·j,n(x)tjifn(x)dxjdx−j

=
1

2n

k∑
j=1

∫
eit′−jx−j

[
eitjxj it′v·j,n(x)fn(x)

∣∣∞
−∞

−
∫

eitjxj it′
[

∂

∂xj

v·j,n(x) + v·j,n(x)
∂

∂xj

ln fn(x)

]
fn(x)dxj

]
dx−j

= − 1

2n

∫
eit′xit′

k∑
j=1

[
∂

∂xj

v·j,n(x) + v·j,n(x)
∂

∂xj

ln fn(x)

]
fn(x)dx

= − 1

2n
E

[
eit′X̄nit′gn(X̄n)

]

So,

ψn(t) ≈ EX̄n

[
exp

(
it′

[
X +

pn(X)√
n

+
2qn(X)− gn(X)

2n

])]
= EX̄n

[
eit′gn(X)

]

where h(x) = x + pn(x)/
√

n + (2qn(x)− gn(x))/(2
√

n).
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We can then approximate P (Xn ≤ x) ≈ P
(
h(X̄n) ≤ x

) ≈ Pr(X̄n ≤
h−1(x)).

Solving for h−1(x):

x = h

(
x +

∆1(x)√
n

+
∆2

n

)

= x +
∆1(x)√

n
+

∆2

n
+

1√
n

pn

(
x +

∆1(x)√
n

+
∆2

n

)
+

1

n
qn

(
x +

∆1(x)√
n

+
∆2

n

)

− 1

2n
gn

(
x +

∆1(x)√
n

+
∆2

n

)

≈ x +
1√
n

(∆1(x) + p(x)) +
1

n
(∆2(x) + p′(x)∆1(x) + qn(x)− gn(x)/2)

Then,

∆1(x) = −pn(x)

∆2(x) = p′n(x)pn(x)− qn(x) +
1

2
gn(x).

where pn(x) = (p1,n(x), . . . , pk,n(x))′ is k × 1 and

p′n(x) =




∂
∂x1

p1(x) · · · ∂
∂xk

p1(x)
...

...
∂

∂x1
pk(x) · · · ∂

∂xk
pk(x)




Then,

P (Xn ≤ x) = Fn

[
x− pn (x)√

n
+

2p′n (x) pn (x)− 2qn (x) + gn (x)

2n

]
.
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7 Appendix C - Tables

TABLE I

Percent Rejected Under Ho, Nominal 5%

Number of Simulations = 1000

n = 20, k = 4

Normal Disturbances Wishart Disturbances

LM Wald LM Wald

ρ λ′λ/k BS 3.84 BS 3.84 BS 3.84 BS 3.84

0 0 4.8 8.0 0.0 0.5 7.9 11.9 0.9 2.0

0 1 4.1 7.4 1.3 2.4 6.2 9.5 1.7 4.0

0 10 4.5 6.5 3.4 4.9 5.8 9.5 5.7 8.7

0.5 0 5.8 9.1 12.0 15.4 7.4 11.3 14.5 2.1

0.5 1 4.2 6.4 13.0 14.1 6.9 10.4 9.3 14.6

0.5 10 4.6 6.6 5.7 7.4 6.5 9.7 6.3 8.8

0.75 0 6.1 7.6 42.7 48.7 7.5 12.8 39.0 50.7

0.75 1 4.3 6.5 27.9 32.6 6.9 9.7 22.7 29.2

0.75 10 4.9 6.3 7.6 10.6 7.0 10.5 8.2 12.3

0.99 0 5.9 7.6 95.2 99.1 9.0 13.3 93.7 98.3

0.99 1 4.5 6.5 35.4 57.2 7.0 10.3 31.7 51.3

0.99 10 5.1 6.5 9.1 14.2 7.0 10.6 9.0 15.2
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TABLE II

Percent Rejected Under Ho, Nominal 5%

Number of Simulations = 1000

n = 80, k = 4

Normal Disturbances Wishart Disturbances

LM Wald LM Wald

ρ λ′λ/k BS 3.84 BS 3.84 BS 3.84 BS 3.84

0 0 5.8 6.3 0.0 0.0 5.7 6.6 0.2 0.3

0 1 5.5 6.1 0.1 1.3 5.6 6.0 0.3 1.4

0 10 5.2 5.8 4.3 4.6 5.1 5.6 4.7 5.0

0.5 0 6.4 7.1 12.8 15.9 5.3 6.0 10.8 14.0

0.5 1 5.6 5.9 16.0 13.8 5.3 6.0 11.2 12.9

0.5 10 5.5 6.0 6.9 6.9 5.5 6.2 5.6 6.7

0.75 0 6.0 6.8 46.3 47.9 5.8 6.4 44.2 49.2

0.75 1 4.8 5.4 29.5 31.4 5.8 6.1 26.1 28.5

0.75 10 6.4 6.4 7.7 9.1 4.8 6.0 5.9 9.0

0.99 0 5.5 5.9 95.2 98.9 6.2 6.7 95.4 98.8

0.99 1 4.9 5.2 29.3 54.3 7.2 7.7 28.6 56.9

0.99 10 5.4 5.3 7.7 12.2 7.2 8.0 7.6 12.9
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TABLE III

Percent Rejected Under Ho, Nominal 5%

Conditional LR Test

Number of Simulations = 1000, k = 4

Normal Disturbances Wishart Disturbances

n = 20 n = 80 n = 20 n = 80

ρ λ′λ/k BS
Crit.
Val.

Func.

BS
Crit.
Val.

Func.

BS
Crit.
Val.

Func.

BS
Crit.
Val.

Func.

0 0 5.0 10.6 5.3 6.4 7.9 13.8 6.4 7.7

0 1 5.5 9.2 5.1 6.3 7.6 12.3 6.1 7.8

0 10 4.9 6.9 5.4 5.6 6.5 9.7 5.9 6.6

0.5 0 7.2 12.5 5.8 6.8 7.0 12.9 7.8 9.0

0.5 1 6.3 10.2 5.1 5.8 6.4 11.5 6.8 8.5

0.5 10 5.3 7.6 4.6 5.6 5.9 9.8 6.5 7.8

0.75 0 4.5 8.9 5.4 6.3 6.5 12.9 6.3 7.6

0.75 1 4.2 7.2 5.2 6.2 5.2 9.7 5.9 7.3

0.75 10 4.5 6.8 4.8 5.4 4.5 8.1 4.9 6.2

0.99 0 5.9 10.9 5.0 6.2 9.4 15.7 6.5 7.6

0.99 1 3.8 5.9 5.2 6.2 5.7 8.5 5.7 6.6

0.99 10 4.3 6.1 4.9 5.5 5.9 8.1 5.4 6.3
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TABLE IV - Panel A (Normal Disturbances)

Percent Rejected Under Ho, Nominal 5%

Conditional LR Test

Non-Parametric Bootstrap with Normal Kernel and Bandwidth h

Number of Simulations = 1000, n = 20, k = 4, B = 5000

h

ρ λ′λ/k τ .75τ .5τ .25τ .1τ .05τ
Critical Value

Function

0 0 6.5 6.5 6.1 5.9 6.1 5.9 10.6

0 1 5.9 5.8 5.5 5.4 5.5 5.8 9.2

0 10 5.3 5.3 5.3 5.4 5.2 5.2 6.9

0.5 0 5.2 4.8 4.7 4.6 6.0 6.9 12.5

0.5 1 5.7 5.6 5.4 5.2 5.4 5.6 10.2

0.5 10 5.8 5.8 5.8 5.9 6.0 6.0 7.6

0.75 0 6.0 5.3 4.4 4.6 5.1 6.2 8.9

0.75 1 5.1 4.9 4.7 4.8 5.3 5.6 7.2

0.75 10 6.0 6.0 5.9 5.9 5.8 5.6 6.8

0.99 0 6.3 5.6 5.2 5.9 6.6 7.3 10.9

0.99 1 3.0 3.0 2.9 2.8 9.2 12.8 5.9

0.99 10 3.7 3.7 3.7 3.8 12.2 16.6 6.1
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TABLE IV - Panel B (Wishart Disturbances)

Percent Rejected Under Ho, Nominal 5%

Conditional LR Test

Non-Parametric Bootstrap with Normal Kernel and Bandwidth h

Number of Simulations = 1000, n = 20, k = 4, B = 5000

h

ρ λ′λ/k τ .75τ .5τ .25τ .1τ .05τ
Critical Value

Function

0 0 10.2 9.8 9.6 9.8 9.8 9.8 13.8

0 1 9.4 9.2 9.0 8.9 9.3 9.5 12.3

0 10 7.0 7.0 7.2 7.2 7.2 7.1 9.7

0.5 0 8.9 8.4 8.3 8.4 8.9 9.5 12.9

0.5 1 7.5 7.4 7.3 7.2 7.3 7.1 11.5

0.5 10 6.2 6.3 6.4 6.3 6.3 6.3 9.8

0.75 0 9.2 8.8 8.8 8.8 9.5 10.4 12.9

0.75 1 7.2 7.2 7.1 7.5 7.6 7.5 9.7

0.75 10 5.6 5.7 5.7 5.9 5.9 5.9 8.1

0.99 0 10.1 9.6 8.9 9.6 10.2 11.3 15.7

0.99 1 5.3 5.4 5.3 4.6 10.5 14.3 8.5

0.99 10 6.9 7.1 7.1 6.4 13.0 18.1 8.1
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TABLE V - Panel A (Normal Disturbances)

Percent Rejected Under Ho, Nominal 5%

Conditional LR Test

Non-Parametric Bootstrap with Normal Kernel and Bandwidth h

Number of Simulations = 1000, n = 80, k = 4, B = 5000

h

ρ λ′λ/k τ .75τ .5τ .25τ .1τ .05τ
Critical Value

Function

0 0 8.4 7.8 7.6 7.2 7.3 7.3 6.4

0 1 7.9 7.9 7.5 7.4 7.7 7.7 6.3

0 10 6.4 6.3 6.3 6.3 6.4 5.9 5.6

0.5 0 7.5 7.4 6.9 7.1 7.5 7.9 6.8

0.5 1 6.3 5.9 5.9 5.6 5.9 6.2 5.8

0.5 10 6.2 6.2 6.2 6.4 6.5 6.6 5.6

0.75 0 6.0 5.8 5.5 5.4 6.3 7.0 6.3

0.75 1 4.4 4.4 4.5 4.8 4.7 4.6 6.2

0.75 10 5.0 5.0 5.1 5.2 5.2 5.0 5.4

0.99 0 6.5 6.2 5.8 5.2 5.4 6.6 6.2

0.99 1 3.0 3.0 3.0 3.0 10.6 18.5 6.2

0.99 10 4.1 4.1 4.1 4.1 8.0 17.7 5.5
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TABLE V - Panel B (Wishart Disturbances)

Percent Rejected Under Ho, Nominal 5%

Conditional LR Test

Non-Parametric Bootstrap with Normal Kernel and Bandwidth h

Number of Simulations = 1000, n = 80, k = 4, B = 5000

h

ρ λ′λ/k τ .75τ .5τ .25τ .1τ .05τ
Critical Value

Function

0 0 7.2 7.2 6.9 6.9 7.2 7.7 7.7

0 1 8.0 7.7 7.2 6.8 6.9 7.0 7.8

0 10 6.3 6.2 6.2 6.5 6.6 6.3 6.6

0.5 0 8.1 7.8 7.5 7.8 7.8 8.3 9.0

0.5 1 7.1 7.0 7.0 7.0 7.1 7.0 8.5

0.5 10 6.2 6.3 6.4 6.4 6.6 6.3 7.8

0.75 0 8.6 8.5 8.2 8.3 8.7 9.2 7.6

0.75 1 5.6 5.6 5.6 5.8 5.7 5.7 7.3

0.75 10 5.9 6.0 6.0 6.4 6.8 6.7 6.2

0.99 0 8.1 8.0 7.9 7.2 7.3 8.4 7.6

0.99 1 4.8 4.9 4.9 4.9 11.9 17.0 6.6

0.99 10 5.7 5.7 5.6 5.3 9.9 16.9 6.3
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