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1 Introduction

Method of Simulated Moments (MSM) estimators (MacFadden (1989), Pakes and Pollard (1989)) have great

value to applied economists estimating structural models due to their simple and intuitive nature. Regardless

of the degree of complication of the econometric model, one only needs the ability to generate simulated data

according to that model. Moments of these simulated data can then be matched to moments of the true data

in an estimation procedure. The value of the parameters that sets the moments of the simulated data ”closest”

to the moments of the actual data is an MSM estimate. Such estimates typically have nice properties such as

consistency and asymptotic normality, even for a finite amount of simulation draws.

This paper addresses a caveat of such procedures that occurs when it is time consuming to solve and gen-

erate data from one’s model. Examples include 1) complicated equilibrium problems, e.g. discrete games

or complicated auction models, and 2) dynamic programming problems with large state spaces or significant

amounts of heterogeneity. In the above estimation procedure, one usually needs to solve such a model numer-

ous times, typically once for every simulation draw, for every observation, for every parameter vector that is

ever evaluated in an optimization procedure. If one hasN observations, performsNSsimulation draws per ob-

servation, and optimization requiresR function evaluations, estimation requires solving the modelNS� N � R

times. This can be unwieldy for these complicated problems.

We suggest using a change of variables and importance sampling to alleviate or remove this problem.

Importance sampling is a technique most noted for its ability to reduce levels of simulation error. We show that

importance sampling can be also be used to dramatically reduce the number of times a complicated economic

model needs to be solved within an estimation procedure. Instead of solving the modelNS� N � R times,

with importance sampling one only needs to solve the modelNS� N times orNStimes. SinceR can be quite

large (e.g. when the number of parameters is around 8 and the function is well behaved, at a minimumRmight

� 500 — andR tends to increase exponentially in the number of parameters), this can lead to very significant

time savings.
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2 The Simple Data Generation MSM Estimator

Consider an econometric model

yi � f �xi � �i � �0�

wherexi and�i are vectors of predetermined variables, observed and unobserved to the econometrician respec-

tively. yi is a vector of dependent variables determined within the model.�0 is a parameter vector that one is

trying to estimate.

Given data�xi � yi �Ni�1 generated at some true�0, a simple MSMestimator of�0 can be formed by examining

the generic moment:

E [yi � E [ f �xi � �i � ���xi ] � xi ]

Sinceyi � f �xi � � i � �0�, this moment is identically zero at� � �0. So is the expectation of any functiong�xi �

of the conditioning variables multiplied by the difference betweeny and its expectation, i.e.

E [�yi � E [ f �xi � �i � ���xi ]� � g�xi � ] � 0 at� � �0 (1)

As a result, the value of� , say�� , that sets the sample analog of this moment

GN��� �
1

N

�
i

[�yi � E [ f �xi � �i � ��]� � g�xi �]

equal to zero or as close as possible to zero is a consistent estimator of�0. Under appropriate regularity

conditions, one obtains asymptotic normality of�� (Hansen (1982)).1

Simulation enters the picture when the functionE [ f �xi � � i � ���xi ] is not easily computable. The straight-

forwardway of simulating this expectation is by averagingf �xi � �i � �� over a set ofNSrandomdraws��i�1� �������� �i�NS�

from the distribution of�i , i.e.

1Note that the vectory can contain higher order moments of the dependent variable (e.g.y, y2, etc.). As the number of moments
used increases, one can approach asymptotic efficiency by the right choice of instruments (i.e. theg function).
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�E fi ��� � 1
NS

�
ns

f �xi � �i�ns� �� (2)

�E f ��� is trivially an unbiased simulator of the true expectationE [ f �xi � �i � ���xi ]. McFadden and Pakes and

Pollard prove statistical properties of the MSM estimator that sets the simulated moment:

�GN��� �
1
N

�
i

�
�yi ��E fi ���� � g�xi ��

as close as possible to zero. Perhaps most important of these statistical properties is the fact that these esti-

mators are typically consistent forfinite NS. The intuition behind this is that the simulation error (i.e. the

difference between the simulated expectation and the true expectation,�E f i ��� � E [ f �xi � �i � ���xi ]) averages
out over observations asN��.2 This consistency property gives the estimator an advantage over alternative

estimation approaches such as simulated maximum likelihood, which typically is not consistent for a finite

number of simulation draws3�4.

Note that this simulation procedure can be thought of as a data generating procedure. Each draw�i�ns

generates new dependent variablesyi�ns. Moments of these generatedyi�ns’s are then matched to the observed

yi ’s. This illuminates how general this estimation procedure is. One only needs to be able to generate data

according to the model.

2Another nice property of these estimators is that the extra variance imparted on the estimates due to the simulation is relatively
small – asymptotically it is 1/NS. This means, e.g., that if one uses just 10 simulation draws, simulation increases the variances of the
parameter estimates by just 10%.

3The difference between consisitency or inconsistency for fixed simulation draws can often be seen dramatically in degree of small
sample bias (see, e.g., Ackerberg (1999)).

4Both McFadden and Pakes and Pollard note that it is essential to hold the draws�i �ns contant over different function evaluations
(i.e. different�). Otherwise the likelihood function is infinitely jumpy. It is also usually helpful to use different simulation draws for
different observations, as this will tend to make the simulation error average out faster asN increases.
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3 Importance Sampling and a Change of Variables to Reduce Computational

Burden

A significant caveat of the above simulation procedure is thatf �xi � �i�ns� �� may be hard to compute. Often

numerical methods to are needed to evaluatef . The problem is that performing such operationsNStimes for

eachobservationeachtime the function is evaluated within an optimization procedure can be time consuming.

This is particularly problematic as the number of parameters increases since the number of function evaluations

needed for convergence tends to increase exponentially in the number of parameters. This paper shows how

importance sampling and a change of variables can be used to significantly reduce the number of times that

f �xi � �i�ns� �� needs to be computed.

Importance sampling addresses the simulation ofE [ f �xi � �i � ���xi ]. Consider an arbitrary integrable p.d.f.

g whose density is non-zero over the support of�. Dividing and multiplying byg we have:

E [ f �xi � �i � ���xi ] �
�
f �xi � �i � ��p��i � xi � ��d� �

�
f �xi � �i � ��

p��i � xi � ��

g��i � xi �
g��i � xi �d�i

Importance sampling notes that instead of drawing fromp��i � xi � �� and forming (2), one can take random

draws fromg and form:

E f i ��� �
1
NS

�
ns

f �xi � �i�ns� ��
p��i�ns � xi � ��

g��i �ns � xi �

This is trivially an unbiased simulator ofE [ f �xi � �i � ���xi ]. Unfortunately, usingE f i ��� in an estimation

procedure still requires computingf NS� N � R times. We combine this importance sampling with a change

of variables to solve this computational issue.

Assumption (A1): There exists a functionu�xi � �i � �� such thatf �xi � �i � �� � f �u�xi � �i � ��� and:

.
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I) given anyxi 	 
J, u�xi � �i � �� is a random vector whose supportdoes notdepend on� .

.

II) given xi and�� one can analytically (or quickly) compute the change of variables density ofu�xi � �i � ��

induced by the distribution of�i .

.

Note the slight abuse of notation asf �xi � �i � �� has different arguments thanf �u�xi � �i � ���. One important

case where (A1) is violated is when an element ofu must contain a parameter by itself. In this case, the

support ofu clearly does depend on� . However, many economic models satisfy (A1) – this is exhibited in

examples later. We also discuss cases where it is not satisfied and show how one can either 1) still benefit from

computational savings using our technique, or 2) how economic models can be perturbed to satisfy it.

Let p�ui � xi � �� be the density ofui obtained by the change of variables formula. Combining this change

of variables with an importance sampling density forui , g�ui � xi �, we have:

E [ f �xi � �i � ���xi ] �
�
f �ui �p�ui � xi � ��dui �

�
f �ui �

p�ui � xi � ��

g�ui � xi �
g�ui � xi �dui

Now consider the unbiased importance sampling simulator ofE [ f �xi � �i � ���xi ]:

�E f i ��� � 1
NS

�
ns

f �ui�ns�
p�ui�ns � xi � ��

g�ui�ns � xi �

where theui�ns’s are draws fromg. Now when� changes, theui�ns’s do notchange. As a result,f needs

not be recomputed when� changes. The only components that need to be reevaluated are the numerators of

the importance sampling weights,p�ui�ns � xi � ��, which are typically not computationally burdensome.5 As a

result, in an estimation procedure using�E f i ��� one only needs to computef NS� N times. Additionally, if

one uses the sameg function for every observation,f only needs to be computedNS times. The caveat here

5For example supposef �xi � �i � �� � f �xi � � �i � and that�i is multivariate normal. Then with the change of variablesui �
xi � � �i , the distribution ofui is also mltivariate normal
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is that using the sameg function may limit the extent to which simulation error averages out over observations,

as simulation error is correlated across observations.

Note the intuition behind this procedure. As we change� , rather than holding each of the�i�ns and their

implicit weights ( 1NS� constant, this procedure holds theui�ns constant and varies the “weights”
	
p�ui �ns�x���
NS�g�ui �ns�




on each of the draws. Put another way, rather than changing our simulated “people” when we change� , we

change the weight which we put on each simulated person. As such,f does not need to be recomputed for new

simulated people. An additional benefit of this procedure is that while the pure frequency simulator (2) is often

discontinuous (if there is any discreteness in one’s economic model), these importance sampling simulators are

typically smooth6.

3.0.1 Example 1: A Discrete Game

We consider a model similar to that in Davis (1999). Firmj chooses the number of storesqj 	 �0� ������ S� to

operate in a given marketm. The cost of operatingqj stores is given by

c�qj � � ��xj � � j � ��xj � 	 j �qj �qj

wherexj are observables and� j and	 j are unobservables.��xj � � j �measures firmj ’s level of costs,��xj �

	 j �measures its returns to scale. Market inverse demand in marketm is a function of the total number of stores

Qm �
�

j qj and equal to

P�Qm� � 
0� 
1Qm� 
2zm��m

wherezm are observables that shift overall demand and�m is an unobserved market demand shifter. As there

is only actual data on equilibriumQ, and notP, a units normalization is necessary. We normalize
1 � 1,7

6The use of importance sampling as a smoother is briefly discussed in McFadden (1989). An earlier version of the current paper
contained a number of interesting examples of how importance sampling can be used to smooth even very complicated economicmodel.
For a copy please consult the author.

7This normalization is different than that used by Davis (who normalized�� � 1), but is an identical model given that demand is
downward sloping. Interestingly, this alternative normalization is what helps satisfy (A1).
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implying a profit function:

��sj � Qm� � �
0� 
2zm� �m� �xj � � j �sj � ��xj � 	 j �s
2
j � Qmsj

While there are multiple equilibrium in this game, Davis shows conditions under whichall equilibrium

consist of the same total number of storesQm. Thus he uses an estimation strategy similar to Berry (1992) by

estimating the equation

ym � Qm �
�
jm

qj � f �x1� ������� xJm� �1� ������ � Jm� 	1� ������ 	Jm� zm� �m� ��

with the simulated moment

E

�
ym�

1
NS

�
ns

f ��xj �
Jm
j�1� �� j �ns�

Jm
j�1� �	 j�ns�

Jm
j�1� zm� �m�ns� �� � xm� zm



In this case, not only is the expectation off not analytic, but the functionf itself is very complicated.

Given simulated primitives��xj �
Jm
j�1� �� j�ns�

Jm
j�1� �	 j�ns�

Jm
j�1� zm� �m�ns� ��, an interative tatonnment procedure

is required to solve forQm. This estimation algorithm requires computation of thisf NS�N �R times (where

N is the number of markets).

Consider the change of variables function:

um � u��xj �
Jm
j�1� �� j �

Jm
j�1� �	 j �

Jm
j�1� zm��m� �� �

��������
�
�xj � � j

�Jm
j�1�

�xj � 	 j
�Jm
j�1


0� 
2zm��m

��������
The elements ofum are sufficient to compute the equilibriumQm (this is clear from the profit function), and
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under Davis’ joint normality assumption on (�� 	� �), the function satisfies (A1). The distribution ofum� p�um �

xm� zm� ��� is simply multivariate normal.8

Now consider the importance sampling simulator:

�E fm��� � 1

NS

�
ns

f �um�ns�
p�um�ns � xm� zm� ��

g�um�ns � xm� zm�

where theum�ns are draws from some distributiong�um�. As the parameters change, the importance sampling

holds theum�ns constant – as a result thef functions need not be recomputed as� changes. With this simulator,

f only needs to be computedNS� N times instead ofNS� N � R times. If one uses the sameg function

for all markets,f would need to be computedNStimes. Note that this importance sampling also smooths the

objective function – this is in contrast to the pure frequency simulator, which hasflats and jumps.

3.0.2 Example 2: A Dynamic Programming Problem

Consider a dynamic model of automobile choice. Suppose that in a given year the utility consumeri obtains

from using carj with characteristicsXj and ageaj is given byUi j � �i X j �  i aj where� i is a vector of

consumeri ’s idiosyncratic tastes for the characteristics and i measures consumeri ’s distaste for older cars.

In each period the consumer has the option of keeping their old car or purchasing a new one from some set of

J cars. The single period utility from purchasing or not purchasing, respectively are

Up � max
j

�
�i X j � �i pj

�

Unp � � i Xci �  i aci

8If one wanted to ensure that the marginal cost of an additional store was positive, one could, for example use exp��x j �� j � instead

of ��x j � � j �. The first set of elements of theu function then become
�
exp��x j � � j �

�Jm
j�1. Note that this function also satisfies (A1)

as the support of these elements ofu is always (0,�� regardless of�.
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whereXci are characteristics ofi ’s current car, andaci is the age of the current car.�i is consumeri ’s distaste

for price.aci does not enter the utility from purchasing a new car because new cars are age 0.

The formal state space of this problem is�ci � aci �, i.e. the individual’s current car type and its age
9. This

is of fairly small dimension, so it would be possible to numerically solve fori ’s value functionVi �ci �aci � and

optimal policy (choice) functionPi �ci �aci �. Note that the value and policy functions are indexed byi because

they depend on consumeri ’s characteristics, i.e. the vector�� i1� ���� � i K � �i �  i �.

Econometrically, one might specify� i ’s� �i , and i as linear functions of consumer characteristicszi (e.g.

income, family size) plus unobservable terms, i.e.

�
� ik � zi�k � �ik

�K
k�1

�i � zi� � �i K�1

 i � zi � �i K�2

and specify the joint distribution of�i . Estimation could proceed by simulating from the distribution of� i , solv-

ing the dynamic programming problem for each simulated individual (characterized by�� i1ns� ���� �i Kns� �ins�  ins�)

and matching simulated choices to actual choices, i.e.

GN��� �
1
N

�
i

�
�Pi ��EPi ����� g�X� zi ��

where�EPi ��� is the average of the simulated choices (policies)10, i.e.

�EPi ��� � 1
NS

�
ns

P�� i1ns� ���� � i Kns� �ins�  ins� ci � aci �

andPi is the observed choice.

9This assumes prices and characteristics are not changing over time. Because of the large number of products, it would likely not
be feasible to include a complicated stochastic path of prices. On the other hand, an iid price process could likely be incorporated using
alternative specific value functions similar to Rust (1988). We also ignore initial conditions problem regarding correlation between
current car and tastes. This might be valid, e.g. if the sample was a panel of first car buyers.
10One can think ofP as a vector of 0-1 choices (i.e. which car is bought).
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The problemwith the above estimation procedure is that as� changes, the simulated (� i1ns� ���� � i Kns� �ins�  ins�’s

change. Thus, the dynamic programming problem needs to be solvedNS� N � R times. Again importance

sampling can help reduce computational burden. Consider changes of variables given by:

ui � u�zi � �1� ������ �K�2� �� �

�
�������

�
zi�k � �ik

�K
k�1

zi� � � iK�1

zi � �iK�2

�
�������

and the importance sampling simulator

�EPi ��� � 1
NS

�
ns

f �ui�ns�
p�ui�ns � zi � ��

g�ui�ns � zi �

As parameters change, theui�ns’s do not change. As such, the dynamic programming problemVi �ci � aci � only

needs to be computedNS� N times – once for each simulation draw for each individual. As with the previous

model, one could reduce the number of computations toNS by using the same simulation draws for each

individual.

4 Discussion

4.0.3 Satisfying or Partially Satisfying Assumption 1

The two examples above satisfy (A1), but for somemodels one might not be able to find au that does. The most

common case is when there are parameters in one’s model that do not vary unobservably across the population

and do not enter into an index function that has some unobservable component that varies across the population.

In Example 2, for instance, one might be interested in estimating (rather than fixing) a discount factor that is

constant across the population. As the parameter has a degenerate distribution, its supportdoeschange with

� . It would also be very hard to find some random function of the discount factor which both 1) summarizes

11



its impact on the model and 2) has an analytic density. In Example 1, one might consider an alternative model

where returns to scale are the same across firms, i.e.�xj �	 j � �. In this case it would again be hard to find a

u to satisfy (A1). In these examples, thef functions would need to be recomputed if the discount factor or the

returns to scale parameter changed.

While it might be hard to find au that fully satisfies (A1), it is often possible to findu’s that partially satisfy

it. By partially satisfying it, we mean that we can find au that has an analytic density and whose support only

depends on asubsetof the parameters. Denote by�1 the set of parameters which affect the support ofu— �2

is the set of parameters that do not change the support. As�1 changes,f needs to be recomputed, but as�2

changes, it does not. Clearly,u should be chosen to minimize the number of parameters in�1. In the dynamic

programming model with the discount factor, for example, the discount factor would be in�1, the rest of the

parameters in�211�

If (A1) is partially satisfied, a first option is to use derivative based optimization methods. In computing

numeric first derivatives,f needs to be recomputed only when elements of�1 are perturbed. This reduces

computational time bydim��1�
dim���

relative to a standard procedure. A second alternative is to use a nested search

algorithm. On the outside, one searches over�1, on the inside, over�2. For the inside search algorithm,

one needs not recomputef ’s. As these nested search algorithms are generally inefficient, this approach is

reasonable only if the dimension of�1 is small, e.g. 1 or 2.

An alternative to the above approach is to slightly perturb one’s model to satisfy (A1). Typically this

involves adding unobserved heterogeneity to the model. When estimating the discount factor, one might be

willing to assume that agents are heterogenous in their discount factors. This model would satisfy (A1)12. In

example 2, one might allow heterogeneity in returns to scale (as in the text). Interestingly, our technique works

better when there is more heterogeneity in the population. The intuition behind this is that the heterogeneity

11The simulator in this case would be�EPi ��� � 1
NS
�
ns f �ui�ns� �1�

p�ui �ns�xi ��2�
g�ui �ns�xi �

, so changes in�2 are adjusted for with impor-
tance sampling weights, changes in�1 adjusted for with changes inf .
12As one needs the discount factor between 0 and 1, one could use, e.g.exp����i �

1�exp����i �
where�i is a normal.
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allows the econometrician to “span” parameter space with the initial draws. If the parameter space can be

spanned, then the moment condition can be evaluated at alternative� ’s by weighting the initial draws. One

caveat of this procedure is that the variance of the unobserved heterogeneity must be bounded away from zero.

If this variance is zero, then (A1) is no longer satisfied. In practice, one should be careful to watch for these

variances approaching zero during estimation. If they do, it is probably best to switch to the first approach.

4.0.4 Choice of g

As mentioned, the traditional use of importance sampling is to reduce the variance of simulation estimators.

An appropriate choice ofg can accomplish this goal. Unfortunately, if one is not careful, importance sampling

can also increase the variance of simulation estimators. When performing the above change of variables and

importance sampling, one needs to be aware of this issue.

Perhaps the obvious choice forg is p itself at some initial parameter vector� �. This importance sampling

simulator is identical to the pure frequency simulator at� � �
�. What is attractive about the pure frequency

simulator is that asymptotically its variance is 1/NS times the variance due to the data generating process. Thus,

with g defined asp at some� �, simulation error in our procedure also has this property at� � �
��

Unfortunately, with this choice ofg simulation error can get quite large as� gets far away from� �. While

theoretically this is not a problem if the parameter space is bounded, this can be an issue in practice. One

needs to be careful that� does not stray too far from� �. There are a number of ways to do this that we have

found to work well in some simple experiments. First, one might repeat the estimation process several times,

updating� � at each repetition. Second, if one is using a (first) derivative based search algorithm, one could

at least begin the algorithm by changing� � at every iteration. Since numeric derivatives are taken in a region

where�  � �, the simulation error in these derivative should be of order 1�NS. Even though thef functions

need to be recomputed at each iteration in this case, they do not need to be recomputed at each parameter

perturbation when computing derivatives. Thus the time savings (relative to the standard procedure) will be

13



1��K � 1�, whereK is the number of parameters13. After one is relatively confident that the parameters are

in the neighborhood of the extremum,� � can be held constant over iterations. This ensures that the procedure

converges. Third, one might pay close attention to the search procedure. If parameters stray too far from� �, it

can be updated.14

Lastly, note that onemight be able to use the importance sampling to one’s advantage in reducing simulation

error. This would involve using an initial guess at� and oversampling parts of thep distribution that are most

informative about the integral (typically those that lead to a high value of the integrand).

4.0.5 Comparison to Discretation/Randomization Approaches

Note that an alternative strategy for the dynamic programming problem of example 2 would be to explicitly

solve for the value and policy functions as depending on the individual specific parameters, i.e.

V��i1� ���� �i K � �i �  i � ci � aci � andP��i1� ���� �i K � �i �  i � ci �aci �

If one could solve for these functions, one would only need to solve itonce. Then when simulating a particular

individual at a particular parameter vector, one can just plug the resulting�� i1ns� ���� � i Kns� �ins�  ins� into P to

compute the simulated policy. However, the time required to solve a dynamic programming problem typically

increases exponentially in this “state” space. Thus, if the dimension of heterogeneity (i.e.K ) is large, this

will generally not be feasible. Since the (� i1ns� ���� � i Kns� �ins�  ins) are continuous, this would also require

some discretation, asV can only be solved for at a finite number of points. Even so, if each dimension of

heterogeneity is discretized into 10 points, this procedure would implicitly require solving forV�ci � aci � 10
K�2

times, considerably more than theNS� N or NStimes above. This discretation also adds error to the problem

and likely destroys econometric consistency.

13This is if one uses one-sided numeric derivatives. The time savings would be 1	2K if using two sided derivatives.
14Something else we have found to help is to use ag function where the variance of the heterogeneity in the model is larger than that

at the initial set of parameters. This helps span parameter space better and appears to reduce simulation error at� far from� � (although
it tends to increase simulation error nearby� �)
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In recent work, Keane and Wolpin (1994) and Rust (1997) suggest using randomization to approximate

V�� i1� ���� � iK � �i �  i � c�ac�. The procedure is that instead of discretizing the state space, onerandomlychooses

state space points at which to approximate the value function. Rust shows that such randomization can often

break the curse of dimensionality in the dimension of the state vector, though computational time still increases

polynomially in order to achieve a given degree of approximation error.

After using such an approach to approximateV, simulation estimation would proceed by drawing sets of

�� i1ns� ���� � i Kns� �ins�  ins�, computing simulated choicesP�� i1ns� ���� �i Kns� �ins�  ins� c�ac�� and matching

these simulated choices to observed choices. Since one’s simulation draws will generally not equal the points at

which the value function is approximated, one needs additional approximation (e.g. interpolation) to compute

P�� i1ns� ���� �i Kns� �ins�  ins� ci �aci �.

Our methodology is related to this in that the value function is also being computed at a random set of

points. However, in our procedure, the points for which we solve the value function areexactlythe points that

are chosen by the simulation process in the estimation routine. As a result, there is no approximation error

in computation of value and policy functions – the functions we solve for are exact15. While there is only

one source of simulation error in our estimator (that in the estimation process), the Rust method has two (the

estimation process and that in the value function approximation).

While the Rust methodology addresses the curse of dimensionality by brute force (directly going at the

value function) our methodology in some sense avoids it. The key is that with our estimation method, one never

needs to solve for the entire value function – one only need to solve it for the simulation draws used in the

estimation procedure. As such, the standard results on breaking the curse of dimensionality through Monte-

Carlo integration apply. There are caveats with both procedures however. Our procedure only breaks the curse

of dimensionality in the unobserved individual heterogeneity “state variables”, i.e.�� i1� ���� � iK � �i �  i �. If

the dimension of the observed state variables that evolve over time, i.e.�c� ac�, increases (e.g. consumers are

15This relies onci andac being in discrete space. Even if they were not, we would still expect considerably less approximation error
in our procedure, as our procedure would only need to discretize a subset of the state space rather than the entire state space.
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allowed to own multiple cars), computational time will go up exponentially. Interestingly, Rust’s randomization

method does the reverse. It tends to breaks the curse of dimensionality in the true state variables, but doesn’t

break the curse in unobserved individual heterogeneity16. The reason is that because this heterogeneity is

constant over time, the value function doesn’t have the ability to self approximate itself. It should be noted that

this is more of a technical issue than a practical one – one can still solve for the value function at a random

set of points and use approximation for points in between. One thing this discussion suggests is the possibility

of combining the two methods to break the curse of dimensionality inall variables. To do this, one would

follow our procedure and use the randomization technique to computeV�ci � aci � for each of theNSsimulated

individuals. This has the potential to break the curse of dimensionality inall the state variables.

4.0.6 Relation to Keane and Wolpin (2000)

Independently, in two empirical papers, Keane and Wolpin use a procedure that is related to ours in order

to solve problems of unobserved state variables. These papers analyze dynamic programming problems of

educational choice (forthcoming) and fertility/marriage choice (2000). In the first paper, where individuals

schooling, work, and savings decisions are analyzed over a lifetime, a significant problem is that assets (a state

variable) are not observed in some years of the data (there are other state variables, choice variables, and initial

conditions, e.g. schooling and hours worked, that are also occasionally unobserved). To estimate this using

standard methods would be exceedingly complex, as one would need to integrate out over very complicated

conditional distributions of the missing data.

Their approach starts by simulating a number of unconditional (i.e. there are no predetermined variables)

outcome paths – these are what they call their “simulated paths”. To create each of these paths, one needs

to solve the simulated agent’s dynamic programming problem. If all outcome variables were discrete, one

could in theory compute the likelihood for observationi by the proportion of ”simulated paths” that match

16In our example, it actually doesn’t break the curse of dimensionality ina either. The reason is thata evolves deterministically. If
a evolved stochastically with constant support, the Rust method would break the curse of dimensionality.
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observationi ’s path. Practically, since there are so many possible paths (and since some of the outcome

variables are continuous), this results in likelihood zero events. To mitigate this problem, Keane and Wolpin

addmeasurement error toall outcome variables.17 This gives any observed path a positive likelihood and allows

for estimation using Simulated Maximum Likelihood.

What is similar to our paper is the fact that Keane and Wolpin use importance sampling while searching

over� . This means that as they change� , there is no need to draw new simulated paths. Instead, one needs to

compute the likelihood of the original simulated paths at the new� . This likelihood is much simpler that the

original problem since the simulated paths have no missing data. The importance sampling also smooths the

likelihood function in� . However, unlike our procedure, itdoesrequire re-solvingNSdynamic programming

problems when� changes.

Formally, and in our notation, Keane and Wolpin are computingL� f ��i � �� � 	i � yi �, the likelihood of

the observed datayi , where	i is measurement error andf ��i � �� are outcomes of the dynamic programming

problem. Integrating out over the density off ��i � �� gives:

L� f ��i � ��� 	i � yi � �
�
L� fi � 	i � yi � fi �p� fi � ��

The inner likelihood is over the measurement error process conditional on the dynamic programming outcomes,

p� fi � �� is the distribution of dynamic programming outcomes (without measurement error). Importance

sampling these dynamic programming outcomes with some distributiong over outcomes gives:

L� f ��i � ��� 	i � yi � �
�
L� fi � 	i � yi � fi �

p� fi � ��

g� fi �
g� fi �

17Note that our simulation procedure is also prone to generating likelihood zero events, and thus is more appropriate for MSM (rather
thanMSL) estimation. If one wanted to useMSL with our technique, one could use Keane andWolpin’s measurement error methodolgy
(or, e.g. kernel smoothing) to solve this issue.
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Keane and Wolpin useg � p� fi � � �� at some initial� � and form the importance sampling simulator:

1
NS

�
ns

L� fns� 	i � yi � fns�
p� fns � ��

g� fns�

where thefns’s are simulated paths generated at� �. As � changes, onlyp� fns � �� needs to be recomputed.

This analogous to the likelihood of a standard dynamic programming problem where there is no missing state

variable data. However, unlike our procedure, itdoesgenerally require resolving the dynamic programming

problems of the simulated agents18

5 Conclusion

This paper suggests a new use of importance sampling to reduce computational burden in simulation of compli-

cated economic models. We show that combining a change of variables with importance sampling can reduce

estimation time by dramatically reducing the number of times that a complicated economic model needs to

be solved or simulated in an estimation procedure. The technique is applicable to a wide range of models,

including single or multiple agent dynamic programming problems or complicated equilibrium problems such

as discrete games or auction models. Use of this technique allows economists to estimate models that were

previously intractable to estimate.
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