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1 Introduction

In this paper we study the problem of identification and estimation of preferences in hedonic

discrete choice models of demand for differentiated products. This class of models includes

Rosen’s (1974) model, as well as standard econometric models such as logit and probit, and

random coefficients versions of these models. The paper’s primary goal is recovery of the

distribution of preferences in a population using standard data sets on prices and quantities

and the characteristics of products in a narrowly defined market.

Recovery of the distribution of preferences is important for two reasons. The first is that

knowledge of the distribution of preferences allows researchers to analyze the distribution

of welfare effects from a policy change. For example, we may be interested in learning the

distributional impact of technological change, or the distributional impact of price changes.

The second is that if preferences are estimated with few restrictions, then it may be possible

to more accurately estimate the aggregate demand function (using explicit aggregation) than

it would be using standard approaches. For example, using revealed preference arguments

applied at the individual level, it is often possible to learn about the shape of product demand

curves in areas of price space that are not observed in the data.

Like much of the recent empirical literature on demand estimation (e.g., Ackerberg and

Rysman (2000), Berry (1994), Berry and Pakes (2000), Berry, Levinsohn, and Pakes (1995)

[BLP], Berry, Levinsohn and Pakes (1998), Davis (2000), Goettler and Shachar (1999), Hendel

(1999), Nevo (2000), Petrin (1998), McCulloch and Rossi (1996), and others), we focus on

a model in which products are defined as vectors of characteristics. However, one of our

primary goals is to investigate to what extent it is possible to identify consumers’ utility

functions over characteristics in general. Thus, in this paper we begin by considering a more

general model of preferences than has commonly been applied, in which the functional form

of utility and the distributions of taste coefficients are not necessarily known.1

1 However, we note here that one of our conclusions will be that if the data contains only a single choice ob-
servation per individual, then it will not be possible to identify each individual’s preferences without functional
form assumptions similar to those used in the previous literature.
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The characteristics approach to modeling demand for differentiated products has also been

used extensively in the past. Examples include models of horizontal product differentiation

such as Hotelling (1929), Gorman (1980), and Lancaster (1966), models of vertical product

differentiation such as Shaked and Sutton (1987) and Bresnahan (1987), as well as Rosen’s

(1974) model which is the basis of the two-stage hedonics approach.

One thing that differentiates this paper from the past literature on hedonic models is that we

study the identification of preferences when one product characteristic is not observed by the

economist. In section 2.3, we establish that, even with many observations on a consumer’s

choices (such that the consumer’s entire demand function is known), it is not in general

possible to uniquely recover consumer preferences. The intuition for this result, which is is

an extension of the main result of Varian (1988),2 is that in a wide class of models it is possible

to attribute all of the consumer’s utility to the unobserved product characteristics. This result

stands in sharp contrast to the uniqueness results of Mas-Collel (1977), which suggest that

preferences can be recovered uniquely from observed choices if all product characteristics are

observed.

In section 4 we show that individual preferences are only just identified if all product char-

acteristics are observed. An important implication of this result is that, when estimating

preferences, the choice data contains no additional information that can be used to estimate

the unobserved product characteristics. We instead propose a strategy for identifying the

unobserved characteristics using information contained in prices. The intuition for our iden-

tification strategy is that if two products have the same observed characteristics but one has

a higher price, then it must be that this product is better in the unobservable dimension, or

otherwise it would not have positive demand.

Thus, our identification and estimation strategy has two stages, in the spirit of Rosen (1974).

In the first stage, the price function and product unobservables are estimated using data

on prices and characteristics. In the second stage, preferences are estimated using choice

data and the first stage estimates. However, our reasons for using a two stage approach are

2 Varian (1988) proves a similar result but with linear prices and finitely many observations per consumer.
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slightly different from those of Rosen (1974). Rosen’s (1974) primary use of the first stage is

to assist in estimating second stage utility. We also use the first stage estimates in the second

stage, but we primarily need the first stage to identify and estimate the unobserved product

characteristics.

The first stage of our estimation procedure relies on the existence of a hedonic pricing func-

tion. In section 3 we prove that if demand is given by the hedonic discrete choice model,

then prices in each market can be written as a function of the observable and unobservable

characteristics of the products in that market. We also show, under some weak conditions,

that the equilibrium price surface must be Lipschitz continuous in characteristics, and strictly

increasing in the unobserved characteristic.

Since even the simplest I.O. models of competition would suggest that any equilibrium price

function should be nonlinear and nonseparable in all the product characteristics, it would not

be appropriate to specify the unobservable product characteristics as additively separable

and then proceed using standard econometric techniques such as OLS or IV. Instead, we

allow for a completely general functional form for the equilibrium pricing function. We show

that it is possible to use price data to nonparametrically identify the unobserved product

characteristics and the price function in at least four cases.

The first case we study is when unobserved product characteristics are independent of the

observed product characteristics (using the results of Matzkin (1999)). This is the case that

the previous literature on differentiated products demand estimation has concentrated on

(e.g. BLP). Because we believe the independence assumption to be strong, we also consider

several alternatives. In the second case, we think of the consumer’s maximization problem

as one where she first chooses a “model” and second chooses a set of “options packages”.

Many product markets have this feature, such as automobiles or computers. For example,

the models in the auto market include the Camry, Jetta, and Taurus and the options packages

include horsepower, power steering, air conditioning and so forth. A third case that guaran-

tees identification requires monotonicity and rich data on prices, but is unique in requiring

nor estrictions on the joint distribution of observed and unobserved product characteristics.

3



A fourth case is a nonseparable instrumental variables approach due to Imbens and Newey

(2001). These four cases are analogous to standard approaches in separable models, corre-

sponding to i) OLS, ii) model fixed effects, iii) product fixed effects, and iv) IV.

Since our arguments showing the existence of an equilibrium price surface are demand based

and must be satisfied by any supply-side equilibrium, we believe our approach to be quite

general, extending to both static and dynamic equilibrium contexts. The benefit of this

generality is that it allows consistent estimation of preferences even in complex supply en-

vironments, and not subject to any specific assumptions about supply. The cost is that

the estimation strategies we describe for the first stage, which are nonparametric, are data

intensive. However, we believe that it would be straightforward to add supply side assump-

tions to our model, such as those in Bresnahan (1987) or Berry (1994), which would provide

greater efficiency in estimation, at the cost of losing consistency in the event that the supply

assumptions are false.

We also generalize the model to allow for an additive measurement error in prices, because

we believe that often prices are measured poorly in the types of applications we are interested

in. We show that even if prices are measured with error, the price function and the unob-

served product characteristics are identified. Section 3 of the paper is also a contribution to

the literature on estimating hedonic pricing functions when there are unobservable product

characteristics.

Once the unobservable product characteristics are known, we consider the identification of

preferences for several alternative types of data sets on consumer choices. The problem of

identification of preferences is well understood in the event that the data contains enough

observations per consumer that consumers’ entire demand functions are known (see Mas-

Collel (1977)). More typically, the econometrician may have only a handful or even a single

observation per consumer. For example, this would typically be the case in aggregate data.3

In such cases, if the choice set is continuous, and if the economist can consistently estimate

3 In fact there may be many observations per individual in aggregate data, but because there is typically
no way to link these observations, researchers often assume that each unit sold in aggregate data corresponds
to a different individual with independent preferences.

4



the hedonic price surface that relates product characteristics to prices, then for each choice

observed for a given consumer it is possible to recover the consumer’s marginal rate of substi-

tution at the chosen bundle. Knowledge of the marginal rate of substitution at a single bundle

is not enough to identify preferences in complete generality. However, we derive conditions

under which knowing the parametric form of the utility function provides enough information

to allow the econometrician to infer each consumer’s entire utility function using only this

information.

In section 4 we show that for many commonly used parametric forms for utility there ex-

ists an inversion between a consumer’s taste parameters and the consumer’s choice. This

inversion allows the economist to recover each consumer’s preference parameters, and then

nonparametrically estimate the distribution of random coefficients (conditional on the func-

tional form of utility). If micro data linking demographics to choices is available, then the

joint distribution of random coefficients and demographics is also identified. Section 4 also

shows that if multiple observations per consumer are available, or if the researcher is willing

to impose a small amount of homogeneity across individuals, then higher order approxima-

tions of consumers’ utility functions are possible. The latter approach is similar in spirit to

that of Blundell, Browning, and Crawford (2001).

Lastly, in section 4.3, we turn to the important case where the product space is discrete instead

of continuous. In this case, an individual consumer’s taste coefficients are not typically

identified even if the parametric form of utility is known. Instead, each individual’s taste

coefficients can be shown to lie in a set. We also show that, under certain conditions, this

set tends to be smaller when there are more products in the market, and converges to the

individual’s taste coefficients when the number of products becomes large. To estimate the

aggregate distribution of preferences, we develop a simple Gibbs sampling procedure. The

Gibbs procedure is shown to converge to the population distribution of taste coefficients when

characteristics are continuous and the number of products becomes large.

While our two-stage approach is primarily motivated by identification concerns, an advantage

of the two-stage approach is that it facilitates estimation. The two-stage estimators, which
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are described in detail in section 5, are computationally simple. The two-stage approach

allows the use of two different data sets for the two stages, which we believe will often be

desirable.

1.1 Previous Literature

This paper builds on several literatures in microeconomics and applied microeconomics. Prob-

ably the most similar literature to our paper is the literature that uses a two step hedonic

procedure to estimate preferences for differentiated products. This includes Rosen (1974),

Epple (1987) and Bartik (1987), as well as a large literature of empirical work. The primary

differences between this literature and our approach are, first, that we allow for some product

characteristics to be unobserved, and second, that we retain complete heterogeneity in our

second stage, using an inversion to generate preferences rather than a regression. Our ap-

proach to the second stage also solves the simultaneity problems that are the focus of Epple

(1987) and Bartik (1987). A more detailed comparison with this literature is provided in

section 6.

This paper also builds on the recent literature in I.O. on estimating discrete choice demand

models with random coefficients and unobserved product characteristics, including Acker-

berg and Rysman (2000), Berry (1994), Berry and Pakes (2000), BLP, Berry, Levinsohn, and

Pakes (1998), Davis (2000), Goettler and Shachar (1999), Hendel (1999), Nevo (2000), Petrin

(1998), McCulloch and Rossi (1996), and others. This literature, which has attempted to

find better ways to estimate demand systems in markets with differentiated products, has

generalized standard discrete choice demand models such as the logit and nested logit in two

primary ways. First, in order to make the demand systems more flexible and to avoid restric-

tive IIA assumptions on aggregate demand, these papers have estimated demand systems

with random coefficients. BLP in particular have shown that random coefficient logit models

imply more reasonable substitution patterns than standard models. Second, this literature

has emphasized the importance of product characteristics that are not observed by the econo-

metrician (but that are observed by consumers). Several authors (e.g. Berry (1994), BLP)
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have shown that if unobserved product characteristics are positively correlated with price

then estimating a demand system that ignores this correlation, such as the standard logit or

nested logit, results in downwardly biased estimates of price elasticities. This bias inevitably

leads to incorrect measures of welfare effects, substitution effects, and market power.

We maintain the two generalizations listed above by studying a model in which preferences

are heterogeneous and not all product characteristics are observed by the economist. Our

differences with this literature are three-fold. First, we use an alternative model of the error

terms (cf. Berry and Pakes (2000)). Second, we show what role parametric assumptions play

in identification of the model and when they can be eliminated. Lastly, random coefficient

discrete choice models with unobserved product characteristics are computationally burden-

some to estimate, particularly when the number of choices becomes large.4 Our approach is

computationally light, but data intensive.

Our results also rely heavily on several other literatures. Our estimation approach in section

5.3 builds on the Bayesian analysis of discrete choice models, especially Albert and Chib

(1993), Geweke, Keane, Runkle (1994), and McCulloch and Rossi (1996). We also draw on

the literature on revealed preference and integrability, for instance Richter (1966), Hurwicz

and Uzawa (1971), Mas-Collel (1977), and Varian (1988). Lastly, we rely on recent work on

nonparametric estimation of econometric models without additively separable error terms,

including Blundell and Powell (2000), Imbens and Newey (2001), and particularly Matzkin

(1999).

2 The Model

Let j represent a product and let J be the set of all products. If J is finite, we let J = #J .
In our model, a commodity is a collection of a finite number of attributes that we represent

4 It is not clear that it would even be possible using current computing technology to estimate a BLP
model for markets such as computers or housing where there are thousands of choices in the choice set. Bajari
and Kahn (2000) use a BLP style demand model for the housing market, overcoming the high dimension of
the choice set by grouping houses into a much smaller number of housing classes.
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as a vector of real numbers. In most applications, the economist does not observe all of

the product attributes relevant to the consumer. Therefore, we assume that the economist

perfectly observes the first K attributes, which we denote by the vector xj = (xj1, ..., xjK),

but does not observe the attribute ξj. Our analysis is limited to the case where only one

product attribute is not observed.5 All attributes are perfectly observed by the consumer.

We denote the set of product attributes as X ⊆ RK+1.

We assume that there are T markets. We let It be the set of all consumers in market t ∈ T
and we index a single consumer by i ∈ It. Consumers are utility maximizers who select a
product j ∈ J along with a composite commodity c ∈ R+. Each consumer i has a utility
function ui(xj , ξj, c) : X×R+ → R. The price of commodity j in market t is pjt and the price
of the composite commodity in market t is pct. Consumers have income yi and consumer i’s

budget set in market t, B(yi, t), must satisfy:

B(yi, t) = {(j, c) ∈ J ×R+ such that pjt + pctc ≤ yi}

Consumer i in market t solves the following maximization problem:

max
(j,c)∈B(yi,t)

ui(xj , ξj , c) (1)

We denote consumer i’s demand correspondence as h̃(yi, t), which is defined as:

h̃(yi, t) = {(j, c) ∈ J ×R+ : (j, c) solves (1)} (2)

Definition. We say that h̃(yi, t) is generated by ui(x, ξ, c) if h̃(yi, t) satisfies (2).

The goal of this paper is the recovery of consumers’ utility functions, ui, using standard data

sets.

5 Our analysis can be generalized to an arbitrary vector of unobserved attributes, but only for the special
case where these attributes are collapsible to a single index in consumers’ utility functions.
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2.1 Discussion

Implicit in the notation above is the assumption that products are readily identifiable, mean-

ing that it is possible to identify two products in two different markets that are identical.

We make this assumption because in our experience with choice data it has typically been

the case. For example, even when automobile models retain the same name from one year

to the next (“Ford Taurus”), it is usually easy to determine whether or not the product has

actually been redesigned. Under this assumption, all product characteristics, including the

unobservable product characteristic, ξj , are fixed across markets for a given product.

On the other hand, except where otherwise noted, we will not in general assume that indi-

vidual preferences or the distribution of individual preferences are constant across markets.

This is one of the main differences between this paper and the recent I.O. literature. Our

main reason for not making this assumption is that we think that it is not likely to hold in

many data sets due to the importance of complimentary goods. For example, consumers’

preferences for computers change over time with the available software, and consumers’ pref-

erences for the characteristics of autos change over time with the price of fuel.6 Assuming

that preferences are constant over time would provide additional identifying information. We

leave a full investigation of such restrictions to future research.

2.2 Standard Econometric Approaches

The standard econometric approach to estimating preferences has been to apply discrete

choice models such as logit and probit. Typically, practical implementation of these mod-

els involves making a number of parametric, homogeneity, and independence assumptions.

One of our reasons for writing this paper is a desire to understand the importance of these

assumptions.

6 One possible exception to this rule is high frequency data such as scanner data.
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For example, the typical fixed coefficient discrete choice model can be written as:

uij = x1jβ + εij (3)

where x1j is a vector of observable characteristics, β is a taste parameter that is constant

across individuals, and εij is an error term with (usually) known distribution.
7 An alternative

but equivalent way of writing the model is:

uij = x1jβ + x2jηi (4)

where x2j is a J-dimensional vector of zeros with a one in the jth element (a vector of product

dummies), and ηi is a J-dimensional taste vector with known distribution. Thus, relative

to the general model of (1), the assumptions made in (4) include a parametric form for ui,

inclusion of product dummies in x, preferences for x1j that are constant across individuals,

and a known distribution for ηi. Furthermore, the ηi vector is often assumed to be mutually

independent as well as independent across individuals.

Many recent papers in the I.O. literature have used more flexible models. As an example, we

consider the model of BLP,8

uijt = x1jtβi + ξjt + α log(yi − pjt) + εijt (5)

where ξjt is an unobservable product characteristic and yi is income. An alternative but

equivalent way of writing this model that puts it in the form of (1) is,

uijt = x1jtβi + x2jηit + βtξjt + α log(yi − pjt) (6)

We have also added a time-varying taste, βt, for the unobservable product characteristics to

show that the model is general to this possibility. Additional assumptions typically made in

(6) include: βi is normally distributed with unknown mean and variance; the distributions

of yi and of εijt are known; βi, yi, and εijt are independent of one another, as well as

mutually independent. In addition, preferences for the observed characteristics are assumed

7 We use “known distribution” to mean that the entire distribution function is known, including any
parameters to a parametric form.

8 Berry, Levinsohn and Pakes (1998), Davis (2000), Goettler and Shachar (1999), Hendel (1999), Nevo
(2000), Petrin (1998), and others use variations of this model.
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to be constant over time, preferences for the unobserved characteristic are constant across

individuals, and preferences for the outside good are constant across individuals conditional

on income.

One of the main goals of this paper it to understand which of the assumptions that are

commonly made are necessary for identification and which are not, in addition to showing

nonparametric identification of preferences where it exists.

One difference between the general model of (1) and the two examples above is that there is no

error term in (1). As we have shown above, one way to view the error terms in standard models

is as equivalent to including a set of product dummies as observable characteristics in (1).

Thus, our model is in principle general to this case. However, we do not want to emphasize

this generality too much since in the analysis that follows it will become obvious that if

the product dummies are included for all products then identification of the unobservable

product characteristics and of consumer preferences is very weak without making the kind of

distributional and independence assumptions that this paper is trying to relax.

In support of our approach, we do not believe that it is in general appropriate to treat product

dummies as product characteristics, as this leads to some properties of the economic model

that may be unbelievable and undesirable (see our other working paper Bajari and Benkard

(2001) for a full discussion, as well as Ackerberg and Rysman (2001), Anderson, de Palma

and Thisse (1992), BLP, Berry and Pakes (2000), Caplin and Nalebuff (1991), and Petrin

(1998) for similar arguments). Their widespread use through the error terms in standard

models seems largely to have been for econometric convenience. In addition, the fact that

identification of preferences is very weak when product dummies are included means that

in practice the results are likely to be driven by the strict independence and distributional

assumptions that are almost sure to be false.
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2.2.1 Data

We consider identification and estimation of preferences in four cases:

1. Aggregate Data: Prices, pjt, quantities, qjt, and characteristics, xj, are observed for

j = 1..J products and t = 1..T markets.

2. Micro Data: In addition, for each purchase occasion, a vector of demographics of the

consumer, zi, is observed. However, each consumer is only observed once.

3. Scanner Data: In addition, multiple purchase occasions are observed for each con-

sumer.

4. Limit Case: In addition, each consumer’s choices are observed in a large number of

markets and under sufficient price variation such that the consumer’s entire demand

function is known.

The main difference between the four cases is that they contain increasing amounts of infor-

mation about consumer preferences from 1-4. The first three represent commonly available

data sets. The fourth is a limiting case of the scanner data case.

We note that the observed quantities may be unity, as would be the case with, e.g., housing

data. We also assume, for convenience, that all products are observed in all markets. However,

that assumption is not necessary for any of the arguments in this paper.

We will also consider two types of markets: a continuous choice set, and a discrete choice set.

The continuous choice set case refers to the case where the consumer can essentially choose

any combination of characteristics she desires within a compact set. We think that this case

is relevant to markets such as housing or computers, where the choice set is very rich. The

discrete choice set case refers to the case where there are only a small number of products in

the market and hence the consumer may not be able to choose a bundle that is close to her

optimal bundle in characteristics space.
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2.3 Non-Identification in the Best Case

While empirical economists have recently stressed the importance of accounting for unob-

served product attributes when estimating demand for differentiated products, there has

been, to the best of our knowledge, little formal development of the theory of revealed pref-

erence for differentiated products when the economist cannot observe all of the product

characteristics (exceptions include Varian (1988) and Epstein (1982)). When all of the prod-

uct characteristics are observed, this is a standard problem and the assumptions under which

the underlying preferences can be recovered are well understood. Varian (1988) shows that

in the case where the price function is linear and one good is not observed, revealed prefer-

ence with a finite number of observations on a consumer’s choices (corresponding to case 3

above) provide essentially no information about the consumer’s preferences. In this section

we similarly establish that it is not possible to recover consumer i’s weak preference relation

based on observing her choices even if the choice set is continuous and the consumer’s entire

demand function is known (case 4 above).

The intuition behind the result is straightforward. Without any restrictions, it is possible to

attribute all of the variation in price to the unobserved product characteristic ξ. Since the

observed choices satisfy the strong axiom of revealed preference, it is possible to construct a

utility function ui, that only depends on ξ and the composite commodity, that generates the

observed demands.

We begin with some standard assumptions. For a more detailed discussion, see the appendix.

We assume that there are a continuum of products. For convenience, we define the set of

products, J , as the unit interval, J = [0, 1]. We assume that the product space, X, is a
convex, compact subset of IRK+1 with 0 ∈ X. For all t, we assume that pt(x, ξ) is a continuous
function, with pt(0) = 0 and pct > 0. The last two assumptions imply that the budget set is

compact. We also assume that ui(x, ξ, c) is continuous in all its arguments, which guarantees

that the demand correspondence is non-empty.

In revealed preference, it is often convenient to work with preference relations instead of
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utility functions since utility functions are never uniquely determined. In our model, as in

the standard analysis of the consumer in partial equilibrium, maximization implies that the

strong axiom of revealed preference is satisfied.

We now turn to the problem of identification. That is, we wish to know whether those objects

that are typically not observable to the economist, such as the unobserved product character-

istics and weak preference relation, are uniquely determined by those objects the economist

might typically expect to observe in an empirical study, the first K product characteristics,

prices, and the consumer’s choices. We define identification formally below.

Definition 1. We say that the weak preference relation �i is identified if

a. �i generates the demand correspondence h̃(yi, t) and

b. If any other weak preference �̃i generates the demand correspondence h̃(yi, t) then �̃i =�i.

We now show that, without further assumptions, the weak preference relation is not identified.

This result holds so long as there is at least one point at which the utility function is strictly

increasing in the observed product characteristics.

Theorem 1. Suppose that the demand correspondence h̃(yi, t) is generated by the utility func-

tion ui. Also suppose that there exists at least one point (x, c) such that ui(x, c) is strictly

increasing in some neighborhood of (x, c). Then the weak preference relation �i is not iden-
tified.

Sketch of Proof: Set ξj = j. Define the price function to satisfy pt(xj , ξj) = pjt for all

xj .
9 Since we have constructed price functions pt that match the data and are nowhere

strictly increasing in the observed product characteristics, the hedonic pricing function and

unobserved characteristics are not identified.10

Using the construction above, suppose that all of the price is due to the product unobservable.

9 Please see Theorem 2 for proof that a price function exists in our model.
10 This result is obvious as it is analogous to running OLS with no assumptions on the errors.
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Since the demand correspondence is generated by a utility function, it satisfies the strong

axiom of revealed preference. Since demand obeys the strong axiom of revealed preference

and the budget set depends only on the unobservable characteristic, it is possible following

standard arguments provided in Richter(1966) to construct a preference relation over only the

unobserved product characteristic ξj that generates the observed demand. It is then trivial

to show this preference relation is nowhere strictly increasing in the observed characteristics,

which proves that the weak preference relation is not identified.

The above theorem demonstrates that if the economist fails to perfectly observe all product

characteristics then it is not possible to identify the hedonic pricing function or the consumer’s

weak preference relation. Outside of experimental settings, it is seldom possible for the

economist to observe all of the product characteristics. We believe, therefore, that it is

important to investigate whether the conditions under which it is possible to recover the

consumer’s weak preference relation using information that might plausibly be available to

the economist in an empirical study.

2.4 Identification/Estimation Strategy

Our identification and estimation strategy in this paper is based upon a two-stage approach

in the spirit of the approach suggested in Rosen (1974). In the first stage, the price function

and product unobservables are estimated using data on prices and characteristics,

pjt = pt(xj , ξj). (7)

In the second stage, preferences ui are estimated using choice data.

We will show in section 4 that even if all product characteristics are known (the unobserved

product characteristics having been estimated in the first stage), and the parametric form of

the utility function is known, the second stage of the model is just identified. Therefore, the

choice data contains no additional information that can be used to estimate the unobserved

product characteristics.
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In order to identify the unobserved characteristics, we use additional information contained in

prices in the first stage, specifically, the information that there exists a price function.11 The

next section will prove the existence of a price function under weak conditions. There is no

benefit to joint estimation of the two stages because of the lack of overidentifying information

in the choice data.

3 Identification of the Price Function and the Unobservable

Characteristics

3.1 The Price Function

We first show under weak conditions and using only demand based arguments that in any

equilibrium, prices in each market have the following properties: (i) there is one price for

each bundle of characteristics (that is, there is an equilibrium price surface), (ii) the price

surface is increasing in the unobserved characteristic, and (iii) the price surface satisfies a

Lipschitz condition.

We make the following three assumptions.

A1 ui(xj , ξj , c) is continuously differentiable in c and strictly increasing in c, with
∂ui(xj ,ξj ,c)

∂c >

ε for some ε > 0 and any c ∈ (0, yi].

A2 ui is Lipschitz continuous in (xj , ξj).

A3 ui is strictly increasing in ξj .

Assumption A3 is the most restrictive assumption of the three. It implies that there is no

satiation in the unobservable product characteristic. Without A3 it would not be possible to

identify the unobservable product characteristics as no inversion would exist.12

11 Additional assumptions are also necessary. See section 3.
12 For the same reason, assumption A3 is also necessary for the inversion of Berry (1994) and BLP.
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Theorem 2. Suppose that A1-A3 hold for every individual in every market. Then, for any

two products j and j′ with positive demand in some market t,

(i) If xj = xj′ and ξj = ξj′ then pjt = pj′t.

(ii) If xj = xj′ and ξj > ξj′ then pjt > pj′t.

(iii) |pjt − pj′t| ≤M(|xj − xj′ |+ |ξj − ξj′ |) for some M <∞.

Proof. See appendix.

The intuition for the theorem is that if properties (i)-(iii) were not satisfied by the equilibrium

prices, then some of the goods could not have positive demand.

We denote the equilibrium price function for market t as pt(xj , ξj). It is a map from the

set of product characteristics to prices that satisfies pt(xj , ξj) = pjt for all j ∈ J and we
assume throughout the rest of the paper that (i)-(iii) hold. Because (iii) holds for all pairs of

products, in the limit the price function must be Lipschitz continuous.13

We note here that the price function in each market is an equilibrium function that is depen-

dent upon market primitives. It does not tell us what the price of a good would be that is

not already in the market. If a new good were added, in general all the prices of all the goods

would change to a new equilibrium. It also does not tell us what the price of a good would

be if any other market primitives were changed, such as consumer preferences, firm costs, or

if the same good were to be produced by another multi-product firm. This is the primary

reason for the fact that the price function is different in every market (hence the subscript

t). What the price function in a particular market does tell us is the relationship between

characteristics and prices as perceived by a consumer in that market.

13 Differentiability of the price function would also be desirable because it would improve the efficiency of
estimation. However, it is not possible to show differentiability using purely demand based arguments. The
reason for this result is that a kinked budget set set does not necessarily rule out positive demand everywhere.
Differentiability of the price surface would instead have to be derived from both demand and supply side
primitives. For example, if the cost function were continuously differentiable and the market were perfectly
competitive then the price function would be continuously differentiable.
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Because the theorem is based on demand side arguments only, these results are general to

many types of equilibria, both dynamic and static. We thus remain largely agnostic on the

supply side of the model in this paper. The lack of supply side information has benefits and

costs. The benefit is that our results are general to a large class of equilibria. The cost is

that assumptions about supply would provide additional identifying information, specifically

about the shape of the pricing function.

We emphasize that even the simplest I.O. models of competition would suggest that any

equilibrium price function should be nonlinear and nonseparable in all the characteristics.

For example, the standard single product firm inverse elasticity markup formulas imply a

nonseparable price function even if the marginal cost function is linear in characteristics.

Thus, it would not be appropriate for us to specify the unobservable product characteristics

as additively separable and then proceed using standard econometric approaches such as OLS

or IV. Instead, we proceed by allowing the price function in each market take on a completely

general form.

3.2 Identification Using Independence.

In this section we demonstrate that the price function and the unobservables {ξj} are identi-
fied if the unobserved product characteristic ξ is independent of the observed product char-

acteristics x. This is true even if the econometrician observes price with measurement error.

We first consider identification of the price surface in the case where there is no measurement

error. If there is no measurement error, then the observed prices are equal to the equilibrium

price surface,

pjt = pt(xj , ξj), (8)

where pt : A × E → IR, A ⊆ IRK is the support of x, and E ⊆ IR is the support of ξ. For
the case where there is a single market and no measurement error in prices, Matzkin (1999)

shows under weak conditions that both the functional form of p1(·), and the distribution of
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the unobserved product characteristics, {ξj}, are identified up to a normalization on ξ. Thus,
the first part of our identification proof follows that of Matzkin (1999), the only difference

being that we extend her results to cover the case of many markets. We begin with two

assumptions,

A4 ξ is independent of x.

A5 For all markets t and all x, pt(x, ·) is strictly increasing, with ∂pt(x,ξ)∂ξ > δ for all (x, ξ)

for all t and some δ > 0.

Assumptions A4 and A5 are the primary identifying assumptions. A5 ensures that at each

x there could only be one value of the unobservable consistent with each price. The lower

bound on the derivative is needed to ensure that as the number of markets becomes large

the price function does not become arbitrarily close to a weakly increasing function. A5 is

implied (without the lower bound) by A3 (see Theorem 2).

Let the set I be the set of price functions satisfying A5, and Γ be the set of distribution

functions that are strictly increasing.

I = {p′ : A×E → IR | for all x ∈ X, p′(x, ·) is strictly increasing} (9)

Γ = {F : IR→ IR | F is strictly increasing} (10)

Since the unobserved product attribute has no inherent units, it is only possible to identify

it up to a normalization. Thus, without loss of generality, we assume that a normalization

has been made to ξ such that at some point x̄ ∈ X the pricing function in one market is
equal to the unobservable, ξ. Because the price function is monotonic in ξ, this normalization

amounts to a monotonic transformation of ξ and the price function. We define the set of

functions characterized by this normalization as,

M = {p′ : A× E → IR | p′ ∈ I and p′(x̄, ξ) = ξ} (11)
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In the theorem below, we assume without loss of generality that p1(·) ∈M .14 Define identi-
fication to mean identification within the set satisfying the normalization made above,

Definition 2. The pair (p1, Fξ) is identified in (M × Γ) if

i. (p1, Fξ) ∈ (M × Γ), and

ii. For all (p′, F ′ξ) ∈ (M × Γ),

[Fp,x(·; p, Fξ) = Fp,x(·; p′, F ′ξ)]⇒ [(p, Fξ) = (p′, F ′ξ)]

We now show that identification holds in the case where there is no measurement error.

Theorem 3. If prices are observed without error, A4-A5 hold, and if p1 ∈M , then (p1, Fξ)
is identified in (M×Γ), and pt is identified in I for all t > 1. Furthermore, {ξj} is identified.

Proof. Identification of p1, Fξ, holds by Matzkin (1999) Theorem 1. Identification of the

price function in the remaining markets is as follows,

pt(x0, e0) = F
−1
pt|x=x0(Fξ(e0)), (12)

where Fpt|x=x0 is the observed distribution of prices in market t at the point x0.

To show that the unobserved product characteristics are identified, note that for each product

j,

ξj = F
−1
ξ (Fp1|x=xj(pj1)) (13)

From the proof of the theorem we can see that if there is no measurement error, cross-market

variation is not needed for identification of the unobserved product characteristic.

14 The set M here corresponds to the set M2 in Matzkin (1999).
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We now consider the case where prices are observed with error. Specifically, we assume that

pjt is not observed. Instead, the econometrician observes yjt, where

yjt = pjt + εjt ≡ pt(xj, ξj) + εjt (14)

We also assume classical measurement error.

A6 εjt is iid, and E[ε|x, ξ] = 0.

Note that for the purposes of identification it is not necessary that εjt be iid. All that matters

is that, for every x and ξ, a law of large numbers holds for εjt across each of j and t.

Theorem 4. If prices are observed with error, A4-A6 hold, and if p1 ∈M , then (p1, Fξ , Fε)
is identified in (M × Γ × Γ), and pt is identified in I for all t > 1. Furthermore, {ξj} is
identified.

Proof. Let

p̄T (x, ξ) =
1

T

T∑
t=1

pt(x, ξ) (15)

and let p̄Tj ≡ p̄T (xj , ξj). For each product, j, we can observe p̄Tj by averaging the observed
prices, yjt, across markets. Since the measurement error is conditional mean zero for every

(x, ξ), it averages to zero for large T .15

For each product, j, define the set

Jj = {k ∈ J | xk = xj and lim
T→∞

p̄Tj − p̄Tk = 0} (16)

The set Jj is the set of all products with the same characteristics, both observed and unob-
served, as product j. The value of the price function for each product j, pjt is identified by

averaging prices within each market t across the set of products Jj:

pjt = E[ykt|k ∈ Jj] (17)

15 Note that we do not assume that limT→∞ p̄T (xj , ξj) exists.
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The measurement error again averages to zero.

Since the value of the price function is identified for each product in each market, the rest of

the proof of identification for Fξ, {ξj}, and pt(·) follows by Theorem 3 above.

Finally, εjt = yjt − pt(xj , ξj), so εjt and the joint distribution of ε and x and ξ are also
identified.

3.3 Identification Using “Options Packages”

We believe the independence assumption made in the previous subsection to be strong. There-

fore, in this section we provide an alternative set of assumptions that also provide identifica-

tion and that we believe may be satisfied in many applications.

In many applications, consumers may simultaneously choose a model, and an options package

for that model. For instance, a car buyer’s problem could be represented as choosing a model

(Camry, Taurus, RAV4,...) and a package of options associated with the model (horsepower,

air conditioning, power steering, ...). Purchases of computers might also be well represented

as the joint choice of a model (Dell Dimension 8100, Gateway Profile 2, Compaq Presario

5000 Series,...) and an options package (amount of RAM, type of processor, hard drive

size,...). In this section, we demonstrate that if it is the case that the product unobservable

ξj corresponds to a model and the xj correspond to an options package then it is possible to

identify the pricing function and the unobservable product characteristics.

We begin by providing a precise definition of what it means to be a model. For the purposes

of our analysis, the set of models is a partition of J . We let z denote a model and Z denote
the set of all models. We assume that there exists a map π : J → Z that associates products
with models. The inverse image of z under the map π are those products that are model z,

although with possibly different options packages. We assume that z is observable, and that

x and z have joint distribution Fx,z : A×Z → IR.
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The first assumption in this section is that all products that are the same model have the

same value of the unobservable,

A7. For all j1, j2 ∈ Z, if π(j1) = π(j2) then ξj1 = ξj2.

In order to identify the product unobservable, we need there to be a “baseline” or standard

options package that is available for all models z.16 We formalize this requirement using the

following assumption,

A8. There exists an x̄ ∈ A such that for all z ∈ Z, f(x̄|z) > 0.

The baseline package here corresponds to the “reference” package in the above section. Due

to the lack of implicit units for ξ, we again can only identify ξ and the price function up

to a normalization. In this case we assume that the price function in market 1 has been

normalized such that at the baseline package, x̄, it equals the unobservable, ξ.

Finally, let

Γ′ = {F : IRK+1 → IR | F is strictly increasing in the natural ordering of IRK+1} (18)

We are now ready to show identification, again beginning with the case where there is no

measurement error,

Theorem 5. If prices are observed without error, A5 and A7-A8 hold, and if p1 ∈M , then
(p1, Fx,ξ) is identified in M × Γ′, and pt is identified in I for all t > 1. Furthermore, {ξj} is
identified.

Proof. For each product, j,

ξj = p1(x̄, ξj) (19)

= p1k for k ∈ π−1(π(j)) such that xk = x̄. (20)
16 This support condition is the price paid for non-separability.
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Equation (19) holds due to the normalization. A baseline product, k, exists for every model

π(j) by A8. This equation identifies {ξj} and Fx,ξ.

The price function in each market is then given by the prices of non-baseline packages. For

any point (x0, e0) ∈ A× E,

pt(x0, e0) = pkt for k ∈ J such that ξk = e0 and xk = x0 (21)

Proving identification when there is measurement error in prices is trivial since models are

observed.

Theorem 6. If prices are observed with error, A5-A6 and A7-A8 hold, and if p1 ∈M , then
(p1, Fx,ξ, Fε) is identified in (M ×Γ′×Γ), and pt is identified in I for all t > 1. Furthermore,
{ξj} is identified.

Proof. Let Jj = {k ∈ π−1(π(j)) | xk = xj}. As above, Jj is the set of all products with the
same characteristics as j. Then

pt(xj , ξj) = E[ykt|k ∈ Jj], (22)

where the measurement error again averages to zero. The rest of the proof is by Theorem

5.

We note that, unlike the independence case above, in this case cross-market variation in

prices is not needed for identification. We instead use the fact that models are observed to

group products according to their unobservable. However, as shown in the independence case,

cross-market variation in prices would provide us with an additional source of identification

for the unobservable. This is important because in estimating the model it would be optimal

to use both sources of information.
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3.4 Identification With a Rich Set of Price Functions

The third approach to identification is unique in that it requires no additional assumptions on

the joint distribution of x and ξ. Instead, we rely on two assumptions about the set of price

functions that are observed in the data. First, we suppose that the data is rich enough that

there is one market in which prices do not depend very much on the observed characteristics,

A9 There exists a market, t, such that pt(x, ξ) = f(ξ), with fξ > 0.

We do not assume that the researcher knows which market this is. We also need a mono-

tonicity condition on the price functions that are observed,

A10 For all markets t, pt(x, ξ) is weakly increasing in all of the observed characteristics, x,

and strictly increasing in the unobserved characteristic, ξ.

We think that A10 is likely to hold in many applications. If all individuals have monotone

preferences over all characteristics, then A10 holds by an argument similar to that of Theorem

2. However, A10 might hold even if this were not the case. For example, if marginal costs

were sufficiently increasing in all characteristics, then A10 would also hold.

Theorem 7. If prices are observed without error, A9 and A10 hold, p1 ∈M , and (x, ξ) have
full support on A×E, then (p1, Fx,ξ) is identified in M × Γ′, and pt is identified in I for all
t > 1. Furthermore, {ξj} is identified.

Proof. Let x ≡ (x1, ..xk, ξx) and y ≡ (y1, ..., yk, ξy) be two points in the commodity space. In
order to prove that the {ξj} are identified, we will first show that the ranking of ξx and ξy is
uniquely determined. Let x∗ = (min(x1, y1), ...,min(xk, yk)) be the component by component

minimum of the observed characteristics of the two products. Define J ′ ⊆ J as follows:

J ′ = {j′ ∈ J : (xj′,1, ..., xj′,k) = x∗ and pj′,t ≤ pt(x) for all t} (23)
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It follows from A9 and A10 that there exists an element j′ ∈ J ′ and a market t such that
pj′,t > pt(y) if and only if ξx > ξy.

This identifies the ranking of {ξj}. The normalization M thus identifies the {ξj} and Fx,ξ.
Identification of p(x, ξ) follows directly.

3.5 Identification Using Instruments

A fourth approach is provided by Imbens and Newey (2001), which demonstrates that it is

possible to use an instrumental variables approach even in nonseparable models. We omit

the details here in the interest of brevity. Therefore, if one can find a set of instruments that

influence the observed product characteristics but that are independent of the unobserved

product characteristic, then it is possible to nonparametrically identify the price surface and

the unobservable product characteristics. However, we note that such instruments may be

hard to obtain in practice.

4 Identification of Preferences

4.1 Identification of Preferences in the Best Case

The results of section 3 demonstrate that the price functions pt(x, ξ) and the unobserved

product characteristics {ξj} are identified (up to a normalization). Once ξ is known, recover-
ing the weak preference relation �i from observed choice behavior is a well studied problem
if there is sufficiently rich data that the consumer’s entire demand function is known (case

4). We refer readers to Mas-Colell (1977) for a set of conditions under which the consumer’s

weak preference relation is identified.
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4.2 Identification of Preferences with a Continuous Choice Set and a Finite

Number of Observations Per Individual.

In the previous sections, we studied the identification problem in the case where the economist

can observe the consumer’s entire demand function. It is important to study this case to know,

in principle, as the number of observations per individual becomes sufficiently large that we

can identify the consumer’s preferences. However, in applied work the economist typically

observes only a handful of choices per consumer, often just one. In this section, we study

identification in cases 1-3, which better reflect available data sets.

When the entire demand function is not observed, it is clear that recovery of the entire weak

preference relation is not possible. In figure 4.2 we suppose that the good is a bundle of two

characteristics. The slope of the budget surface identifies the marginal utilities at the chosen

bundle. However, without further assumptions, it is clear that many indifference curves would

rationalize the observed choice.

Figure 1: Global Identification of Indifference Curves

Characteristic 1

C
haracteristic 2

p(x) MRS

Indifference Curve
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Some weak assumptions can tell us a range within which the indifference curve must lie. If

we assume a diminishing MRS, then the indifference curve must lie everywhere above the

tangency line at the chosen bundle, providing us a global lower bound on the indifference

curve. If we assume monotonicity of preferences, then the indifference curve must lie every-

where below the indifference curve for Leontieff preferences. Together, the two assumptions

allow us to conclude that the indifference curve must lie in the shaded area of our figure. One

approach to measuring the effects of a policy change would be to use these two functional

forms as bounds. However, depending on the policy of interest, we may still be left with a

wide range of possibilities.17

The simplest way to narrow down the range of possibilities is by using functional form as-

sumptions. Many discrete choice models used in the previous literature specify the utility

function as being linear in product characteristics and the composite commodity. In that

case, the random coefficients are the marginal utilities. Thus, for this commonly used case,

looking at the tangency conditions for all consumers in the population allows nonparamet-

ric identification of the population distribution of random coefficients (conditional on the

functional form of the utility function) even if individuals are only observed only once. Iden-

tification of the indifference curve away from the point of tangency is based on the functional

form of utility.

We now derive identification conditions for a general parametric model of preferences. An

agent in this economy is characterized by a B dimensional parameter vector βi that is an

element of RB. We write the utility function as:

ui(x, c) = u(x, yi − p(x);βi). (24)

Agents are assumed to choose the element x ∈ X that maximizes utility. We note that
since the previous section has shown that the unobservables, {ξj}, are identified by the price
function, we proceed in this section as if all characteristics are observed.

If both u and p(x) are differentiable in x and if agents choose an interior maximizer, then
17 Note that if the budget set is not convex, tighter bounds can be obtained because the budget set itself is
a lower bound to the indifference curve.
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the following first order conditions are necessary for maximization:

∂

∂xk
{u(x, yi − p(x);βi)} = 0 for k = 1, ...,K (25)

The next theorem derives formal conditions under which there exists an inversion between an

individual’s choices and the individual’s preference parameters. For simplicity, we consider

the case where individuals are observed once. The case where individuals are observed more

than once is a straightforward extension.

We assume that the econometrician observes the choices of a randomly sampled group of

i = 1..I individuals, in a single market. Suppose that agent i is consuming a product defined

by a vector of characteristics x. The Jacobian for the first order conditions (25) for agent i

is:

Dβ (Dx′ {u(x, yi − p(x);βi)}) (26)

Theorem 8. Suppose βi ∈ IRB and x ∈ IRK . Then if the rank of the K ×B matrix given by
(26) is greater than or equal to B for all bundles x, then βi can be written as a function of

the consumption bundle x.

Proof. This follows directly from the Global Inverse Function Theorem.

Theorem 8 places tight restrictions on the types of utility functions that can be identified

using the choice data. Conditional on knowing the price surface p(x), we can identify at

most K random coefficients per choice observation. The more observations we have for an

individual (e.g., case 3: scanner data), the more flexibly we can estimate her utility function.

While this may seem like a negative result, even a first order approximation to the utility

function should provide accurate results for local changes in utility. For example, the ex-

periment of removing a single good from the market (to evaluate welfare obtained from the

good) would involve only local changes to utility if the choice set is rich.
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We also emphasize that, while the recent literature on discrete choice has focused on the

case of linear indifference curves, this assumption is not necessary, and in many cases would

be undesirable. Linear indifference curves imply an extreme amount of substitutability. In

many cases, particularly those relying on the global properties of indifference curves, it may

be more reasonable to use functional forms such as Cobb-Douglas, which impose declining

marginal rates of substitution. Robustness checks on the results of interest subject to changes

in the functional form of u(·) would also be desirable.

While the theorem does place restrictions on what functional forms can be identified, condi-

tional on the functional form of utility, the entire joint distribution of the taste coefficients is

identified even in the case of aggregate data (case 1). If demographics are observed (case 2),

then the joint distribution of demographics and taste coefficients, F (z, β), is identified. In

the case of aggregate data, demographics are not observed so the joint distribution of demo-

graphics and tastes is not identified. However, if the distribution of demographics and tastes

are assumed to be independent, and the marginal distribution of demographics is observed,

then the joint distribution is identified even in aggregate data. This is the strategy used in

the recent I.O. literature.

Finally, we note that if the number of random coefficients to be estimated equals the number

of characteristics (B = K), as would typically be the case, then the distribution of the random

coefficients is just identified. All of the information in the choice data is needed in order to

estimate preferences, and there is no information remaining.

4.3 Identification of Preferences if the Choice Set is Discrete.

In practice, there are at least three reasons why the continuous choice model might not

provide a good approximation to choice behavior. First (1), the number of products in the

choice set may not be sufficiently large that the choice set is approximately continuous. If

a consumer has only a handful of choices available to her then her observed choice may be

far from the bundle of characteristics that would maximize her utility simply because the
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latter is not available. Second (2), many product characteristics are fundamentally discrete.

While miles per gallon and fuel efficiency might naturally take on continuous values, power

steering and airbags are better represented by binary variables. Third (3), it may not be

possible to reliably infer marginal utilities for consumers who choose products at boundaries.

For example, while the commodity space for personal computers is quite dense in the interior

of the space, for consumers that buy products on the boundary of this space (e.g., the fastest

CPU currently available) there is a corner solution to their utility maximization problem and

we can not reliably infer their taste coefficients.

If the product space is discrete, then in place of the marginal conditions in (25) we can only

derive a set of inequality constraints. That is, if consumer i chooses product j ∈ 1..J then it
must be the case that

uij(βi, xj , yi − pj) ≥ uik(βi, xk, yi − pk) for all k 6= j (27)

Therefore, it must be that βi ∈ Aj , where

Aij = {βi : uij(βi, xj , yi − pj) ≥ uik(βi, xk, yi − pk) ∀k 6= j}. (28)

Thus, we have the result that if the choice set is discrete then the βi parameters are not

identified, meaning that we can not learn their exact values. However, that does not mean

that the data is non-informative as to the taste coefficients. If the choice set is rich, the

Aj sets may be small. We show in appendix section 8.4 that if all of the characteristics are

continuous and the choice set is compact, then as the number of products increases, the Aij

sets converge to the individual taste coefficients βi (where it is assumed that individual i

purchases good j).

In applications where the Aij sets are large enough that the lack of identification matters,

it is possible to proceed in two ways. First, we could use the Aij sets to construct bounds

on the aggregate distribution of the taste coefficients. Second, it is possible to use Bayesian

techniques to identify one candidate aggregate distribution of interest. In section 5.3, we

follow the latter strategy. In either case, the identification of the aggregate distribution is

weakest in the cases of (2) and (3) above.
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Note that, while there is no need to explicitly model the price function in the discrete choice

set case, the price function plays an identical role here to the continuous choice set case. The

solution to the discrete maximization problem will be close to the solution of the continuous

maximization problem if the choice set is rich. In that case, even if the derivatives or the

price function are never estimated, the Aij set will be close to the set of parameters that

solve the continuous first order condition. Implicitly, the solution is the same even though it

is obtained in a different way. Therefore, even in the discrete choice set case it is important

to take care in choosing the global functional form for the utility function, subject to the

discussion in section 4.2.

4.4 Imposing Homogeneity

Up to this point, we have not used any information in the data across individuals. In the

aggregate and micro data cases, where there is only a single observation per individual,

without homogeneity restrictions, certain features of preferences such as the Engel curve for

each individual are not identified except through functional form assumptions.

Suppose we were to find in the data that the taste coefficients are correlated with income.

This correlation could be interpreted in two ways. One possibility is that people born into

rich families have different tastes than those born into poor families, and that their income is

correlated with their parents income. Another possibility is that tastes change in a systematic

way with income, i.e., if we were to give a poor family more income their tastes would change

to look more like those of rich families.

Since the latter explanation has some appeal, it may in certain cases be preferable to incor-

porate this feature into our model. One way to do this is to impose some homogeneity across

individuals.

Assume that for some group of individuals,

βik = fk(yi) + ηik where E[ηik|yi] = 0 (29)
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Equation (29) uses covariation in income and tastes across individuals to identify individual’s

Engel curves. However, it retains the differentiation in tastes across individuals. Because ηi

is held fixed when income changes, an individual with a strong preference for a certain

characteristic relative to other individuals with similar income always has a stronger than

average preference for that characteristic, regardless of her income.

Another way to interpret (29) is that it is using homogeneity restrictions to obtain a higher

than first order approximation to the utility function. With this interpretation, our approach

is similar in spirit to that of Blundell, Browning, and Crawford (2001).

4.5 Parametric Identification

In both the continuous choice set case and the discrete choice set case, it is straightforward

to estimate the distribution of preferences parametrically using, e.g., maximum likelihood.

In both cases, parametric forms are overidentified so long as there are more products in the

market than there are parameters.

5 Estimation

5.1 Estimation, Stage 1: Unobservable Characteristics and the Price Sur-

face – Independence Case

We assume that the econometrician observes prices and characteristics for j = 1..J products

across t = 1..T markets. In this section we maintain all of the assumptions in section 3.2. In

particular, we assume that x, ξ, and ε are jointly independent. We leave out estimation of

the options packages case here for the sake of brevity.

In the discrete choice set case (section 5.3 below) our first stage consists of using prices to

estimate the value of the unobservables. In the continuous choice set case, it is also necessary
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to know the price function derivatives. If there is measurement error, then before the first

stage estimation it is necessary to do some smoothing to remove the measurement error. We

show how to do this using a kernel estimator in the following subsection.

5.1.1 Removing the Measurement Error

If there is measurement error in prices, then the first step of the estimation procedure is to

estimate the following general relationship,

yjt = pt(xj, ξj) + εjt (30)

using the expectation in equation (17). To do this, as in the identification section, we utilize

average prices of products across markets.

Note that for each T , p̄T (x, ·) ≡ 1
T

∑T
t=1 pt(x, ·) is strictly increasing for every x since each

pt(x, ·) is. Thus, we can invert it,

ξ = Ψ(x, p̄T ) (31)

Let

gTt (x, p̄
T ) ≡ pt(x,Ψ(x, p̄T )) (32)

What we would like to do is to estimate equation (30). However, we cannot do that because

ξ is not observed. Instead, we substitute gTt (xj , p̄
T
j ) for pt(xj , ξj) and regress observed prices

on the observed characteristics and average prices:

yjt = g
T
t (xj , p̄

T
j ) + εjt (33)

We estimate the true prices, pjt using a nonparametric estimator of g
T
t (). Within each market,

t, a smooth kernel estimator for the true prices pjt is given by ĝ
T
t (xj , ȳ

T
j ), where

ĝTt (x0, p̄
T
0 ) =

1
J

∑J
k=1

1
hK+1J

K1

(
p̄T0 −ȳTk
hJ

)
K2

(
x0−xk
hJ

)
ykt

1
J

∑J
k=1

1
hK+1J

K1

(
p̄T0 −ȳTk
hJ

)
K2

(
x0−xk
hJ

) . (34)
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ȳTk =
1
T

∑T
t=1 ykt is an estimator for p̄

T
k , which we need to estimate because it is not ob-

served directly due to the measurement error. Thus, we are essentially plugging a first step

parametric estimator into the second step nonparametric estimator.

We make the following assumptions (details in appendix):

B1 K1(·) andK2(·) are bounded real-valued Borel measurable functions satisfying
∫
K(r)dr =

1, and K1(·) ∈ K1,m and K2(·) ∈ KK,m1 for some m1 ≥ 2. K1(·) has continuous deriva-
tives up to order m2.

B2 limJ→∞ hJ = 0, limJ→∞ JhK+1J =∞, limJ→∞ hmJ
√
JhK+1J = λ where 0 ≤ λ <∞.

B3 xj , ξj are iid, mutually independent, and distributed according to F (x, ξ), with density

f(xj , ξj).

B4 The functions f(xj, ξj) and g
T
t (xj , p̄

T (xj , ξj))f(xj , ξj) belong to DK+1,m1 for all t, T .

B5 εjt is iid, and independent of x and ξ, E[εjt] = 0, E[ε
2
jt|xj ] = σ2(xj), and E|εjt|r < ∞

for some 2 < r ≤ ∞.

B6 J−2/rTh
2(m2+1)
m2

J →∞, where r is as in B5.

The non-standard assumptions are B5 and B6, which are needed in order to assure that

the estimated ȳTk terms do not affect the estimation of the true prices. B6 requires that T

increase fast enough with J , but T can still increase much slower than J , with the exact

speed depending on the dimension of the problem, K, the properties of the measurement

error distribution, and the smoothness of K1(·). If the measurement error is either bounded
or Normally distributed (r =∞), and K1(·) is very smooth, then T can increase slowly with
J .

Theorem 9. Under B1-B6,

(i) sup{(xj ,ξj)∈IRK+1:f(xj ,ξj)>δ} |ĝTt (xj , ȳTj )− pt(xj , ξj)| → 0 in probability.
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(ii) For all (xj, ξj),
√
JhK+1J (ĝTt (xj , ȳ

T
j )−pt(xj , ξj))→ N

(
λb(xj ,p̄T (xj ,ξj))
f(xj ,ξj)

,
σ2ε (xj ,ξj)
f(xj ,ξj)

∫
K(r)2dr

)

The first step estimator affects the finite sample performance of the two-step estimator, but

not the asymptotic performance so long as B5-B6 hold.

An alternative approach would be to remove the measurement error using a series estimator.

5.1.2 Estimation of {ξj}

Let F̂p1|x=x0(e0) be an estimator for the conditional distribution of prices given x = x0 at

the point e0. For example, if there is no measurement error in prices, then a kernel estimator

(such as those outlined in Matzkin (1999)) or a series estimator (such as those outlined in

Imbens and Newey (2001)) could be used. Define an estimator for ξ by the following,

ξ̂j = F̂
−1
p1|x=x̄F̂p1|x=xj(p̂j1)) (35)

While Matzkin (1999) does not explicitly consider estimation of the unobservable, the asymp-

totic properties of the estimator in (35) are analogous to those of the estimator considered

in Theorem 4 of that paper.

If there is measurement error, then the same estimators can be used except that it is first

necessary to estimate the true prices as in section 5.1.1 above. Note that after plugging in

the estimated true prices, the asymptotic properties of the estimator change. This is because

the estimator in section 5.1.1 has dimension K + 1 while the estimator F̂ has dimension K.

Again for brevity and because much of the work would replicate results from the previous

literature, we omit the asymptotic properties of the measurement error estimator here.

5.2 Estimation of Preferences, Continuous Case

In this section we outline a strategy for estimating preferences for the case of one observation

per individual and a simple functional form for utility. Other more flexible cases can be
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estimated similarly. For the purposes of this section, we assume that the data consists of a

sample of consumers and includes their income, yi, as well as their choice j in some market t.

For the purposes of this section, we assume that the utility function takes the following form

(omitting the t subscripts),

uij = log(xj)βi,x + log(ξj)βi,ξ + log(yi − pj) (36)

where xj ∈ IRK and the coefficient on the yi − pj term is normalized to 1 without loss of
generality.

While we assume in this section that the researcher has access to micro data, it is not

necessary in general to have micro data to use the techniques described in this paper. If only

aggregate data is available, then the only difference would be that the joint distribution of

demographics and taste coefficients would not in general be identified (see section 4.2 for a

discussion).

Assuming an interior maximizer, equation (36) is maximized at

βi,k
x∗j,k

=
1

yi − p(x∗j , ξ∗j )
∂p(x∗j , ξ∗j )
∂xk

for k ∈ 1..K (37)

βi,ξ
ξ∗j

=
1

yi − p(x∗j , ξ∗j )
∂p(x∗j , ξ∗j )
∂ξ

(38)

where (x∗j , ξ∗j ) represents the maximizing bundle. These first order conditions suggest the

following estimator for the taste coefficients for individual i,

β̂i,k =
xij,k

yi − p̂ij
̂∂p(xij , ξ

i
j)

∂xk
for k ∈ 1..K (39)

β̂i,ξ =
ξ̂ij

yi − p̂ij
̂∂p(xij , ξ

i
j)

∂ξ
(40)

where (xij , ξ̂
i
j) represents the (estimated) bundle chosen by individual i, p̂

i
j represents its esti-

mated true price (with the measurement error removed), and
̂∂p(xij ,ξ

i
j)

∂ξ represents an estimator

for the derivative of the price function at the chosen bundle.
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Provided that an estimator is available for the derivatives of the price function, it is thus

possible to estimate the vector of taste coefficients for each individual. One way to estimate

the price function derivatives is by using the derivatives of a price function estimator. The

price function can be estimated analogously to (35) above (except using (12)) and using either

a kernel or series-based approach. Matzkin (1999) also provides a direct estimator for the

price function derivatives.

Note that the asymptotic properties of the taste coefficient estimators depend only on the

sample sizes for the first stage. Because of this, it is possible to obtain accurate estimates of

the entire vector of taste coefficients for each individual using only a single choice observa-

tion.18

Using the estimated taste coefficients for a sample of individuals along with their observed

demographics, it is then possible to construct a density estimate of the joint distribution of

taste coefficients and demographics in the population.

5.3 Estimation of Preferences, Discrete Case

In this section, we propose an approach to estimation when the set of products is finite.

As we discussed in section 3.7, the taste coefficients are typically not identified in this case.

Our approach, therefore, is to recover sets of taste coefficients that are consistent with a

consumer’s choices as opposed to point estimates of taste coefficients. The approach we

develop is in the spirit of the bounds approach (see Manski (1995, 1997) and Manski and

Pepper (2000)). The numerical techniques for our analysis borrow heavily from Bayesian

estimation of discrete choice models (Albert and Chib (1993), Geweke, Keane, and Runkle

(1994), and McCulloch and Rossi (1996)).

We begin by considering the problem when we see a cross section of consumers and markets.

That is, we see a set of spatially distinct markets, each with a distinct price for the j = 1, ..., J

18 Note that a single choice observation reflects a K-dimensional choice vector.
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products and we see the choice of each consumer exactly once. Let the utility of consumer i

for product j , uij satisfy:

uij = u(xj , yi − pj ;βi) (41)

where xj is a vector of characteristics, yi − pj is consumption of all other goods and βi is a
vector of taste parameters. If consumer i chooses product j then it must be the case that

product j maximizes consumer i’s utility:

u(xj , yi − pj;βi) ≥ u(xk, yi − pk;βi) for all k 6= j (42)

As we argued in section 3.7, in general many values of βi satisfy the set of inequalities (42).

However, these inequalities provide bounds on the set of taste coefficients consistent with

choosing product j. As the number of products becomes large, the set of inequalities (42)

can become quite complicated. For each consumer i, there are J−1 inequalities that must be
satisfied. In addition, the unobserved product characteristics enter into J − 1 inequalities for
each consumer in the data set. Despite the complicated nature of these inequalities, we have

found a simple numerical approach to the problem that works in a large class of models. We

cast the problem of estimating the taste coefficients βi, i = 1, ..., I into a Bayesian paradigm.

We construct a likelihood function and a prior distribution over the parameters such that

the support of the posterior distribution corresponds to the set of parameters that satisfy

equation (42). We show that there exists a straightforward Gibbs sampling algorithm to

simulate the posterior distribution. As the number of simulation draws becomes sufficiently

large, we can learn the support of the posterior distribution and hence the set of parameters

that solve the parameters (42).

The inequalities (42) generate a likelihood function in a natural fashion. The likelihood that

a consumer with taste coefficients βi chooses product j is:

L(j|x, yi, βi) =
 1 if u(xj , yi − pj ;βi) ≥ u(xk, yi − pk;βi) for all k 6= j0 otherwise

(43)

That is, consumer i chooses product j so long as her taste coefficients imply that product j is

maximizing. In what follows, it is technically convenient to assume that the prior distribution
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for βi, p(βi) has a uniform distribution over the region B. Typically this region would be

defined by a set of conservative upper and lower bounds for each taste coefficient. The

posterior distribution for βi, p(βi|C(i), x, p) conditional on the econometrician’s information
set then satisfies:

p(βi|C(i), x, p) ∝ π(βi)L(j|x, βi) (44)

The posterior distribution is uniform over those βi that are consistent with the agents choice.

So long as B completely covers all of the Aij sets (see (28) for definition of Aij), the posterior

is uniform over Aij for an individual i purchasing good j.

In applications, the econometrician is usually interested in some function of the parameter

values g(βi) such as the posterior mean or the revenue a firm would receive from sending a

coupon to send to household i. In our case we are interested in the value of the aggregate

distribution function of the βi’s. We cover estimation of that below. In general, the object

of interest can be written as:∫
g(βi)p(βi|C(i), x, p) (45)

One way to evaluate the above integral is by using Gibbs sampling. Gibbs sampling generates

a sequence of S pseudo-random parameters β
(1)
i , β

(2)
i , ..., β

(S)
i with the property that:

lim
S→∞

1

s

S∑
s=1

g(β
(s)
i ) =

∫
g(βi)p(βi|C(i), x, p) (46)

In what follows, we describe the mechanics of generating the set of pseudo-random parameters

β
(1)
i , β

(2)
i , ..., β

(S)
i . Readers interested in a more detailed survey of Gibbs sampling can consult

the surveys by Geweke (1994) or Geweke (1997).

Suppose that household i is observed to choose product j. The first step in developing a
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Gibbs sampler is to use equation (43) to find the following conditional distributions:

p(βi,1|x, p,C(i) = j, βi,−1) (47)

p(βi,2|x, p,C(i) = j, βi,−2) (48)

... (49)

p(βi,K |x, p,C(i) = j, βi,−K) (50)

If the support of the posterior distribution is not connected, Gibbs sampling will experience

problems with convergence. One way to avoid these convergence problems is through an

intelligent choice of a flexible functional form for u(βi, xj , yi − pj). If u(βi, xj , yi − pj) is
modeled using an nth order polynomial, it is straightforward to demonstrate that the set of

βi that satisfy the inequalities (42) are convex and therefore connected.

If the specification of utility is linear in the βi and Xj , it is straightforward to derive the

conditional densities (47). For example, consider the following model19 :

u(βi, xj , yi − pj,m) =
∑
k

βi,k log(xj,k) + log(yi − pj,m) (51)

Since j is utility maximizing for household i it follows that:

∑
l

βi,l log(xl,j) + log(yi − pj) ≥
∑
l

βi,l log(xl,k) + log(yi − pk) for all k 6= j (52)

which implies that:

βi,1 ≥
∑
l 6=1 βi,l(log(xl,k)− log(xl,j)) + log(yi − pj)− log(yi − pk)

log(x1,j)− log(x1,k) if x1,j > x1,k (53)

βi,1 ≤
∑
l 6=1 βi,l(log(xl,k)− log(xl,j)) + log(yi − pj)− log(yi − pk)

log(x1,j)− log(x1,k) if x1,j < x1,k (54)

19If we only observe the consumer choose once, even with a continuum of products, we can at best

hope to identify the marginal utilities. While our approach would allow for a more flexible specification

of u(βi, xj , ξj , yi − pj) we see no particular gain from this more flexible parameterization when the consumer
is only observed to choose once.
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Since the prior distribution is uniform and the likelihood is also uniform, it follows immedi-

ately that the conditional distribution (47) must satisfy the inequalities implied by (53)-(54)

and must also lie in the set B that defines the support of the prior.

To summarize, the conditional distribution (47) is uniform on the interval [β1,min, β1,max]

where the support satisfies:

β1,min = max

{
min
β1|β−1

B,max

{∑
l 6=1 βi,l(log(xl,k)− log(xl,j)) + log(yi − pj)− log(yi − pk)

log(x1,j)− log(x1,k)
such that x1,j > x1,k

}}
(55)

β1,max = min

{
max
β1|β−1

B,min

{∑
l 6=1 βi,l(log(xl,k)− log(xl,j)) + log(yi − pj)− log(yi − pk)

log(x1,j)− log(x1,k)
such that x1,j < x1,k

}}
(56)

The conditional distribution for the remaining β’s is also a uniform distribution defined by

inequalities that are analogous to (55) and (56).

Next, to evaluate the integral defined by (46) we need to generate a sequence β
(1)
i , β

(2)
i , ..., β

(S)
i

pseudo random numbers. Let β
(0)
i = (β

(0)
i,1 , β

(0)
i,2 ) be an arbitrary point of support. We then

use the following algorithm to generate the β
(1)
i , β

(2)
i , ..., β

(S)
i

1. Given β
(s)
i draw β

(s+1)
i,1 from the distribution p(βi,1|x, p,C(i) = j, β(s)i,−1).

2. Draw βi,l conditional on the vector βi,−l as in step 1, for l = 2..K.

3. Return to 1.

It can be easily verified that the sufficient conditions stated in Geweke (1994) are satisfied and

that the simulation estimator defined in (46) converges as the number of simulations tend to

infinity. The support of the posterior distribution is equal to the set containing all the taste
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parameters βi that are consistent with the observed choices and the a priori bounds. Even

though this is potentially a complicated system of inequalities, we have found that in monte

carlo experiments with over 100 products, the posterior distribution appears to converge in

just a few minutes.

The algorithm defined above is simple to program since it merely requires the econometrician

to draw a sequence of uniform random numbers. It is also straightforward to use Gibbs sam-

pling to estimate far more general models of choice. Suppose for instance the econometrician

had access to panel data that allowed her to see each consumer choose more than once. If the

preference parameter vector βi is held fixed for each consumer, we now have just a slightly

more complicated set of inequalities. Namely, the consumer’s preference parameter must be

such that in each time period, the consumer is maximizing utility. Upper and lower bounds

for the preference parameter must then be found.

In our case we are interested in recovering the distribution of tastes for the entire population

of consumers. This involves a simple alteration of the algorithm above. Suppose that Nj out

of a population of N consumers choose product j. Then the econometrician merely needs to

simulate the posterior for consumers who choose product j and give each observation a weight

of Nj/N . This can be estimated using the empirical frequency from our posterior simulations.

Let F (β1, ..., βK ) be the cumulative distribution function for the K taste coefficients. It

follows from (46) that:

F (β1, ..., βK) = Pr(β1 ≤ β1, ..., βK ≤ βK)

= lim
S→∞

1

S

S∑
s=1

1{β1 ≤ β1, ..., βK ≤ βK}

A first difficulty that might be faced in practice is finding a value of β
(0)
i that satisfies the set
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of inequalities (42). However, consider the following linear programming problem:

min
∑
i,k

βi,k (57)

subject to (42), and

βi,k ≥ 0 for all i, k (58)

Standard numerical packages can be used to find a solution to problem (57) and hence a

starting point for the Gibbs sampling algorithm.

A second difficulty that might be faced in practice is when there are no parameter values

that satisfy the inequalities in equation (42) (so that Aij is empty for some i and j). This

would happen if, for example, one product strictly dominated another in all dimensions of

characteristics space (suppose one product was ”better” in every dimension of characteristics

space than another but had a lower price). Such an occurrence is likely with strict functional

forms for utility such as linear utility, particularly if the price function is also approximately

linear. In cases such as these we would interpret that as a rejection of the functional form.

In the above algorithm, we have proceeded as if all product characteristics were observed.

This will not in general be true as we have emphasized in previous sections. One approach

to this problem would to use an estimate of ξj obtained as in section 5.1.2 and proceed as

above. 20

It can easily be shown that if all of the characteristics are continuous, then the discrete model

converges to the continuous model at a rate of 1J (see section 8.4). That is, as the number of

20 In general, an estimate of ξj will have limited precision. It is possible to account for this in our estimation
algorithm by using hierarchical Bayesian methods.
Suppose for instance that the prior distribution over the vector ξ = (ξ1, ..., ξJ ) is p(ξ). Then given a random

draw of ξ one can use the steps (1)-(3) in the above algorithm conditional upon a random draw of ξ from p(ξ).

Suppose that Sξ such draws are made from p(ξ). For each vector ξ
(s), let β

(ξ(s),1)
i , β

(ξ(s),2)
i , ..., β

(ξ(s),S)
i be a

vector of pseudo-random βi’s drawn from the above distribution.
Then it can easily be shown that:

limSξ⇀∞ limS→∞
1
SSξ

∑Sξ
sξ=1

∑S
s=1 g(β

(ξ
(sξ),s)

i ) =
∫ {∫ {g(βi)p(βi|C(i), x, ξ, p)dβi}

}
p(ξ)dξ
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products becomes large a consumer’s true preference parameter is perfectly learned, and in

expectation the set that contains the consumer’s preference parameter has measure 1J . This

is because the average measure of the Aij sets is
1
J .

6 Comparison with Two-Stage Hedonics

Our two-stage approach is similar to that of the two-stage hedonics literature started by Rosen

(1974), with two primary differences. First, we treat one product characteristic as unobserved

to the economist and allow the price function to be nonseparable in the unobserved product

characteristic. Second, our second stage is an inversion rather than a regression, and thus

is not subject to many of the criticisms of the second stage regression of Rosen (1974) (see

Epple (1987) and Bartik (1987)). Because the first stage comparison is straightforward, we

compare only the second stage in this section.

The second stage demand equation of Rosen (1974) can be represented as follows,21

∂p(xi)

∂xik
= Fk(x

i, yi) + εik (59)

where xi is the bundle chosen by individual i, and yi are consumer demographics (empirical

counterparts to consumer tastes). The utility function implied by this equation is

ui(x, c) = u(x, yi, c) + ε
′x− p(x) (60)

where ε is a K-dimensional vector of the error terms in equation (59), and Fk is the kth

partial derivative of u(·).

The problems with running regression (59) in practice are well-known (see Epple (1987),

Bartik (1987), and others). The primary problem is that maximization implies that ε and x

are correlated, and it has proven difficult to find valid instruments. Epple (1987) suggests

an instrumental variables strategy that uses information across different markets. Another

problem is that in practice the procedure imposes a lot of homogeneity across individuals.

21 Rosen (1974) equation (16), page 50.
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An implication of imposing this homogeneity is that the only utility function to rationalize

the data (in which different individuals choose different bundles) is if all individuals have

utility function p(x). A third criticism, that we believe is new to this paper, is that typically

the errors in (59) were not treated as structural and were thus thrown out for the purposes

of economic analysis.

The two-stage procedure described in this paper solves these three problems. The second

stage inversion retains a large amount of preference heterogeneity and thus naturally leads to

the kind of sorting described above, yet still retains the ability to identify preferences using

data for just a single market. Furthermore, the inversion is just identified so no information

in the choice data is thrown away.

7 Conclusions

This paper has investigated the identification and estimation of hedonic discrete choice models

of differentiated products. We showed that in general the hedonic discrete choice model with

an unobserved product characteristic is not identified even if the entire demand function is

observed. Moreover, we showed that even if all characteristics are observed, preferences are

only just identified. We concluded that choice data contains no information about unobserved

product characteristics.

However, if the unobserved product characteristic corresponds to a model, or if the unobserved

product characteristic is independent of the observed characteristic, or if the data contains

a rich set of price functions, or if it is possible to find instruments, we showed that it is

possible to use information in prices to recover the unobserved product characteristics. These

assumptions are analogous to standard econometric assumptions in separable models and we

think that they are likely to hold in many applications.

Once the unobserved characteristics are known, identification of preferences is possible through

revealed preference. In the random coefficient models that have been commonly used, where
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the parametric form of the utility function is known, there exists an inversion between a

consumer’s choice and her preference parameters. In such cases, knowledge of the consumers’

marginal utilities at a single bundle is sufficient to non-parametrically identify the population

distribution of random coefficients.

In the case where the set of products is finite we developed a Gibbs sampling approach to

simulate the posterior distribution of random coefficients. We demonstrated that if charac-

teristics are continuous, then as the product space becomes sufficiently filled up, the Gibbs

sampling algorithm converges to an individual consumer’s random coefficients and the pop-

ulation distribution of random coefficients can be recovered. The Gibbs procedure is also

computationally simple.
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8 Appendix

8.1 Details of Non-Identification section

Theorem 10. For all yi > 0 and for all t, B(yi, t) is a compact set. For all t and all yi > 0,

h̃(yi, t) is non-empty.

Proof. Since the pricing function pt(x, ξ) is continuous and p(0) = 0, the budget set is closed

and non-empty. Since X is bounded, the budget set is compact. Since utility is a continuous

function, there is at least one utility maximizing bundle. Therefore the demand correspon-

dence is not empty.

We define a weak preference relation for consumer i.

Definition 3. We say that �i is a weak preference relation for consumer i if for all
j, j′ ∈ J , (xj , c) �i (xj′ , c′) if and only if ui(xj , ξj , c) ≥ ui(xj′ , ξj′ , c′).

Note that given a utility function ui there is a unique binary relation �i that is a weak
preference relation for our consumer.

Definition 4. We say that (j, c) is directly revealed preferred by i to (j′, c′) if there

exists an income level yi and a market t such that (j, c), (j
′ , c′) ∈ B(yi, t), (j, c) ∈ h̃(yi, t) and

(j′, c′) /∈ h̃(yi, t). If (j, c) is revealed preferred to (j′, c′) we write (j, c)Si(j′, c′).

Definition 5. We say that Si satisfies the strong axiom of revealed preference if Si is

acyclic, that is, there does not exist (j1, c1), (j2, c2), ...., (jn, cn) such that:

(j1, c1)Si(j2, c2) and (j2, c2)Si(j3, c3) and...and (jn−1, cn−1)Si(jn, cn) and (jn, cn)Si(j1, c1)

Theorem 11. If h̃(yi, t) is generated by ui(x, ξ, c) then h̃(yi, t) satisfies the strong axiom of

revealed preference.
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Proof. Standard.

8.2 Proof of Theorem 2

Proof. (i) Suppose pjt > pj′t for some t. Then since ui is strictly increasing in c, ui(xj , ξj , yi−
pjt) < ui(xj′ , ξj′ , yi−pj′t) for all individuals. This implies that demand for j is zero in market
t, which is a contradiction.

(ii) Suppose pjt ≤ pj′t for some t. Then since ui is strictly increasing in c and strictly
increasing in ξ, ui(xj , ξj , yi − pjt) > ui(xj′ , ξj′ , yi − pj′t) for all individuals. This implies that
demand for j′ is zero in market t, which is a contradiction.

(iii) If j and j′ have the same prices, then the result holds trivially. This also covers the

case where j and j′ have the same characteristics because of (i). Suppose that j and j′ have

different characteristics in at least one dimension and assume without loss of generality that

pjt > pj′t. Since ui is Lipschitz continuous in (xj , ξj), we have that

|ui(xj , ξj, yi − pjt)− ui(xj′ , ξj′ , yi − pjt)| ≤M1(|xj − xj′ |+ |ξj − ξj′|) (61)

By a mean value expansion, for all individuals,

ui(xj′ , ξj′ , yi − pj′t) = ui(xj′ , ξj′ , yi − pjt) + (pjt − pj′t)
∂ui(xj′ , ξj′ , yi − p∗jt)

∂c
(62)

where p∗jt ∈ [pjt, pj′t] and varies for each i. Plugging (62) into (61) gives∣∣∣(ui(xj , ξj , yi − pjt)− ui(xj′ , ξj′ , yi − pj′t))+(pjt − pj′t)∂ui(xj′ , ξj′ , yi − p∗jt)
∂c

∣∣∣
≤M1(|xj − xj′|+ |ξj − ξj′ |)

(63)

The second term in the absolute value on the left hand side is positive. Since demand for j

is positive, there must be some individuals for which the first term is also positive. For those

individuals, we can ignore the absolute value sign and we only strengthen the inequality by
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also ignoring the first term,

(pjt − pj′t)
∂ui(xj′ , ξj′ , yi − p∗jt)

∂c
≤ M1(|xj − xj′ |+ |ξj − ξj′|) for i that prefer j to j′. (64)

(pjt − pj′t) ≤ M
∂ui(xj′ ,ξj′ ,yi−p∗jt)

∂c

(|xj − xj′ |+ |ξj − ξj′|) for i that prefer j to j′.(65)

≤ M1
ε
(|xj − xj′|+ |ξj − ξj′ |) (66)

= M2(|xj − xj′ |+ |ξj − ξj′|) (67)

8.3 Proofs for section 5.1.1

Some definitions:

Definition 6. Let Kk,p be the class of bounded Borel measurable real-valued functions K(·)
on IRK such that, with z = (z1, ..., zK)

′, zi ∈ IR,
∫
zi11 z

i2
2 · · · ziKK K(z)dz1 · · · dzK =

 1 if i1 = i2 = · · · = iK = 0
0 if 0 < i1 + i2 + · · ·+ ik < p

∫
|z|i|K(z)|dz <∞ for i = 0 and i = p

∫
K(z)dz = 1

Definition 7. Let DK,p be the class of all continuous real-valued functions f on IRK such
that the derivatives

∂If(z)

∂i1z1∂i2z2 · · · ∂iKzK I ≡
K∑
j=1

ij , ij ≥ 0

are continuous and uniformly bounded for 0 ≤ I ≤ p.
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8.3.1 Lemma for ε̄

Let ε̄k =
1
T

∑T
t=1 εkt. We assume that εkt is iid, mean zero, with finite variance,

Assumptions:

E1 εkt is iid with E(εkt) = 0, V ar(εkt) = σ
2
k for all k, and E|εkt|r exists for some 2 ≤ r ≤ ∞.

E2 J−2/rTh2J →∞, where r is as in E1.

Lemma 12. Under E1-E2, supk| ε̄khJ | → 0 in probability.

Proof. Without loss of generality, we order the ε’s such that k = 1 refers to the ε with the

highest variance σ2k.

Pr(supk| ε̄k
hJ
| < δ) = Pr(supk|ε̄k| < δhJ ) (68)

= ΠJk=1Pr(|ε̄k| ≤ δhJ ) (69)

≥ Pr(|ε̄1| ≤ δhJ )J (70)

≥
(
1− E|ε̄1|

r

δrhrJ

)J
(71)

= ((1 − zJ)1/zJ )zJJ (72)

where the first inequality holds by the ordering of the variances, the second holds by Cheby-

shev’s inequality, and

zJ =
E|ε̄1|r
δ2hrJ

=
T r/2E|ε̄1|r
T r/2δ2hrJ

=
E|T 1/2ε̄1|r
(T 1/2δhJ )r

The result of the lemma holds by (72) if zJJ = o(1) (because the term inside the first bracket
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tends to e−1). By a CLT, the numerator of zJ is O(1). J−1 times the denominator of zJ

diverges by E2.

8.3.2 Proofs for ĝ

Let,

ĝTt (x0, p̄
T
0 ) =

1
J

∑J
k=1

1
hK+1J

K1

(
p̄T0 −ȳTk
hJ

)
K2

(
x0−xk
hJ

)
ykt

1
J

∑J
k=1

1
hK+1J

K1

(
p̄T0 −ȳTk
hJ

)
K2

(
x0−xk
hJ

) (73)

and let,

ˆ̂g
T

t (x0, p̄
T
0 ) =

1
J

∑J
k=1

1
hK+1J

K1

(
p̄T0 −p̄Tk
hJ

)
K2

(
x0−xk
hJ

)
ykt

1
J

∑J
j=1

1
hK+1J

K1

(
p̄T0 −p̄Tk
hJ

)
K2

(
x0−xk
hJ

) (74)

Then

ĝTt (xj , ȳ
T
j )− pt(xj , ξj) = (ˆ̂g

T

t (xj , p̄
T
j )− pt(xj , ξj)) + (ĝTt (xj , ȳTj )− ˆ̂g

T

t (xj, p̄
T
j )) (75)

Uniform Consistency:

The first term of equation (75) is standard. Thus,

sup
{(xj ,ξj)∈IRK+1:h(xj ,ξj)>δ}

|ˆ̂gTt (xj , p̄Tj )− pt(xj , ξj)| → 0

in probability.

That leaves the second term. Consider the numerator of the second term first,

(ĝTt (xj , ȳ
T
j )ĥ(xj , ȳ

T
j )− ˆ̂g

T

t (xj , p̄
T
j )
ˆ̂
h(xj , p̄

T
j ))

=
1

JhK+1J

J∑
k=1

[
K1

(
ȳTj − ȳTk
hJ

)
−K1

(
p̄Tj − p̄Tk
hJ

)]
K2

(
xj − xk
hJ

)
ykt

(76)
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=
1

JhK+1J

J∑
k=1

(
ε̄Tj − ε̄Tk
hJ

)
K ′1

(
p̄Tj − p̄Tk
hJ

)
K2

(
xj − xk
hJ

)
ykt

+
1

2

1

JhK+1J

J∑
k=1

(
ε̄Tj − ε̄Tk
hJ

)2
K ′′1
(
λTjk
)
K2

(
xj − xk
hJ

)
ykt

(77)

where λTjk ∈
[
p̄Tj −p̄Tk
hJ
,
p̄Tj −p̄Tk
hJ

+
ε̄Tj −ε̄Tk
hJ

]
and λTjk →

p̄Tj −p̄Tk
hJ

in probability.

Note that

ε̄Tj − ε̄Tk
hJ

=
ε̄Tj − ε̄T−1kt

hJ
− εkt
Thj
,

where ε̄T−1kt = 1
T

∑
s 6=t εks. Substituting in to (77) gives,

=
1

JhK+1J

J∑
k=1

ε̄Tj − ε̄T−1kt

hJ
K ′1

(
p̄Tj − p̄Tk
hJ

)
K2

(
xj − xk
hJ

)
ykt

− (ThJ )−1 1

JhK+1J

J∑
k=1

K ′1

(
p̄Tj − p̄Tk
hJ

)
K2

(
xj − xk
hJ

)
yktεkt

+
1

2JhK+1J

J∑
k=1

(ε̄Tj − ε̄T−1kt )
2

h2J
K ′′1 (λ

T
jk)K2

(
xj − xk
hJ

)
ykt

− (Th2J )−1
1

JhKJ

J∑
k=1

ε̄Tj − ε̄T−1kt

hJ
K ′′1 (λ

T
jk)K2

(
xj − xk
hJ

)
yktεkt

+ (ThJ )
−2 1

2JhKJ

J∑
k=1

K ′′1 (λ
T
jk)K2

(
xj − xk
hJ

)
yktε

2
kt

(78)

≤ sup
k

∣∣∣∣∣ ε̄Tj − ε̄
T−1
kt

hJ

∣∣∣∣∣ 1

JhK+1J

J∑
k=1

∣∣∣∣∣K ′1
(
p̄Tj − p̄Tk
hJ

)
K2

(
xj − xk
hJ

)∣∣∣∣∣ |ykt|
+ (ThJ )

−1
∣∣∣∣∣ 1

JhK+1J

J∑
k=1

K ′1

(
p̄Tj − p̄Tk
hJ

)
K2

(
xj − xk
hJ

)
yktεkt

∣∣∣∣∣
+ sup

k

(ε̄Tj − ε̄T−1kt )
2

2h3J
supλ|K ′′1 (λ)|

1

JhKJ

J∑
k=1

∣∣∣∣K2(xj − xkhJ

)∣∣∣∣ |ykt|
+ (Th2J )

−1 sup
k

∣∣∣∣∣ ε̄Tj − ε̄
T−1
kt

hJ

∣∣∣∣∣ supλ |K ′′1 (λ)| 1JhKJ
J∑
k=1

∣∣∣∣K2(xj − xkhJ

)∣∣∣∣ |yktεkt|
+ (ThJ )

−2 sup
λ
|K ′′1 (λ)|

1

2JhKJ

J∑
k=1

∣∣∣∣K2(xj − xkhJ

)∣∣∣∣ |yktε2kt|

(79)

53



The second and fifth terms converge in probability to zero uniformly over (xj , ξj) by standard

results. The first and fourth terms converge in probability to zero uniformly over (xj , ξj) by

standard results and the lemma above. The third term converges more slowly in T than

any of the others due to the extra hJ term in the denominator. Using only a second order

expansion, in order for this term to converge to zero it is necessary that J−r/2Th3J →∞ (by
the lemma above). However, using a higher order expansion, the required convergence rate

for T can be slowed to that listed in C5.

The denominator of the second term in (75) can be treated similarly by changing all of the

ykt terms above to 1’s. Thus, uniform consistency of the whole second term is obtained on a

set where h(x) > δ for some δ > 0.

Asymptotic Normality

By standard results, the asymptotic distribution of the first term is,√
JhK+1J [ˆ̂g

T

t (xj , p̄
T
j (xj , ξj))− pt(xj , ξj)]→ N

(
λb(xj, ξj)

f(xj , ξj)
,
σ2ε (xj , ξj)

f(xj, ξj)

∫
K(r)2dr

)
where

b(xj , ξj)

= lim
J→∞

E[g(xi, p̄
T (xi, ξi))− g(xj , p̄T (xj , ξj))]K1

(
p̄T (xj , ξj)− p̄T (xi, ξi)

hJ

)
K2

(
xj − xi
hJ

)
h
−m−(K+1)
J

and

σ2ε (xj , ξj) = E(ε
2
j |x = xj, ξ = ξj).

To show the result, we again rely on the breakdown in (75) and the bound for the second

term provided by (79). By the lemma above and standard results is easy to show that under

assumptions C5 and C6 the five terms in (79) converge to zero faster than
√
JhK+1J . Therefore

the fact that the estimated average prices are used in place of the actual average prices does

not affect the asymptotic distribution of the estimator.
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8.4 Convergence of the Discrete Model to the Continuous Model

In the text, we demonstrated that typically when the set of products is discrete, the individual

taste parameters cannot be uniquely recovered. However, in this section, we will demonstrate

that as the number of choices become sufficiently large, under suitably regularity conditions

the choice parameters can be learned in the limit. Furthermore, the discrete model converges

to the continuous model at a rate proportional to the inverse of the number of products.

We begin by considering the case where all product characteristics are observable to both the

consumer and the econometrician. We write consumer i’s utility as uij = u(xj , pj, βi). Also,

suppose that there is a pricing function p(x) that maps characteristics into prices in the sense

that pj = p(xj) for any product j. We now make two assumptions about the product space

and the utility:

Assumption 1. All of the product characteristics xj are elements of X an open, bounded

and convex subset of RN . Also, all of the βi lie in B, an open, bounded and convex

subset of RN .

Assumption 2. For any βi, the function u(x, p(x), βi) is strictly concave and continuously

differentiable. Furthermore, the matrix Dβ,xu(x, p(x), βi) has full rank for all X and

for all β.

Assumption 3. Suppose that for every element of x ∈ x there exists a βi in B for which x
is a utility maximizing choice in x.

Suppose that we draw a random sequence x(1), x(2), ..., x(n), ... of products from x. Let S(n) =

{x(1), x(2), ..., x(n)} be a set of choices available to consumer i that is comprised of the first n
elements of our sequence. Let C(n) be the utility maximizing choice for consumer i when

she can choose from S(n). Let B(n) ⊆ B be the set of taste coefficients that make C(n) a
maximizing choice from the set S(n).
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Theorem 13. Suppose that Assumptions 1-3 hold. Then with probability one, limn→∞B(n) =

βi.

Proof. Let x∗ be the utility maximizing product for a household with random coefficients

βi when the entire set of products X is available. As n → ∞ we first demonstrate that as
limn→∞C(n) = x∗, where x∗ = argmaxx∈X u(x, p(x), βi) is the utility maximizing choice

from all of X when the taste coefficients are βi. This follows immediately from the fact

that the utility function is strictly concave. Since Dβ,xu(x, p(x), βi) has full rank, there is a

unique βi that makes x
∗ the utility maximizing choice. Let B∗ = ∩B(n). Let {β(n)} be any

sequence with β(n) ∈ B(n). Since limn→∞C(n) = x∗ it follows from the continuity of the
utility function that for and ε > 0 there exists a sufficiently large n such that if x = C(n),

u(x, p(x), β
(n)
i ) ≤ u(x∗, p(x), β(n)i ) + ε. By assumption 2, there is a unique inversion in the

limit from utility maximizing choices to taste parameters. Therefore, limn→∞ β
(n)
i = βi.

In addition to establishing that in the limit the preference parameters can be uniquely re-

covered, we can also establish a rate of convergence. Let Aij be defined, as in the text.

Obviously, the {Aij}Jj=1 form a partition of B. Let m denote the Lebesgue measure, it

follows immediately that:

ΣJj=1m(Aij) = m(B) (80)

ΣJj=1m(Aij)

J
=
m(B)

J

Since the set B is bounded, it must be the case that m(B)J → 0 which in turn implies that
the average Lebesgue measure of Aij converges to zero at a rate proportional to

1
J .

56



9 References

Ackerberg, D. and M. Rysman (2000), “Unobserved Product Differentiation in Discrete
Choice Models: Estimating Price Elasticities and Welfare Effects,” Working Paper,
Boston University.

Albert, J. and S. Chib (1993), “Bayesian Analysis of Binary and Polychotomous Data,”
Journal of the American Statistical Association, 88, 669-679.

Anderson, S., de Palma, A. and J. Thisse (1992), Discrete Choice Theory of Product Differ-
entiation, Cambridge: MIT Press.

Bajari, P. and M. Kahn (2000), “Why Does Racial Segregation Persist? A Case Study of
Philadelphia,” Working Paper, Stanford University.

Bartik, T. J. (1987), “The Estimation of Demand Parameters in Hedonic Price Models,”
Journal of Political Economy, 95:1, 81-88.

Benkard, C. (2000), “A Dynamic Analysis of the Market for Wide-Bodied Commercial
Aircraft,” NBER Working Paper, #W7710.

Berry, S. (1994), “Estimating Discrete-Choice Models of Product Differentiation,” RAND
Journal of Economics, 25:2, 242-262.

Berry, S., J. Levinsohn, and A. Pakes (1995), “Automobile Prices in Market Equilibrium,”
Econometrica, 63:4, 841-89.

Berry, S., J. Levinsohn, and A. Pakes (1998), “Differentiated Product Demand Systems From
a Combination of Micro and Macro Data: The New Car Market,” NBER Discussion
Paper, #6481.

Berry, S., and A. Pakes (2000), “Estimating the Pure Hedonic Discrete Choice Model,”
Working Paper, Yale University.

Blundell, R. and Powell (2000), “Endogeneity in Nonparametric and Semiparametric Regres-
sion Models,” Working Paper, Econometric Society World Meetings, Seattle, August
2000.

Blundell, R., M. Browning, and I. Crawford (2001), “Nonparametric Engel Curves and
Revealed Preference,” IFS Working Paper W197/14.

Bresnahan, T. and R. Gordon (1997), The Economics of New Goods, Studies in Income and
Wealth, Vol. 58, Chicago: NBER.

Brown, J. N., and H. S. Rosen (1982), “On the Estimation of Structural Hedonic Price
Models,” Econometrica, 50:3.

Caplin, A. and B. Nalebuff (1991), “Aggregation and Imperfect Competition: On the Exis-
tence of Equilibrium,” Econometrica, 59:1, 1-23.

57



Davis, P. (2000) “Spatial Competition in Retail Markets: Movie Theatres,” Working Paper,
MIT Sloan.

Epple, D. (1987), “Hedonic Prices and Implicit Markets: Estimating Demand and Supply
Functions for Differentiated Products,” Journal of Political Economy, 95:1, 59-80.

Epstein, L. G. (1982), “Integrability of Incomplete Systems of Demand Functions,” The
Review of Economic Studies, 49:3, 411-425.

Epstein, L. G. (1983), “Erratum: Integrability of Incomplete Systems of Demand Func-
tions,” The Review of Economic Studies, 50:3, 581.

Feenstra, R. (1995), “Exact Hedonic Price Indexes,” Review of Economics and Statistics,
634-653.

Geweke, J. (1996), ”Monte Carlo Simulation and Numerical Integration,” in H. Amman,
D. Kendrick and J. Rust (eds.), Handbook of Computational Economics. Amsterdam:
North-Holland, 731-800.

Geweke, J. (1997), ”Posterior Simulators in Econometrics”, in D. Kreps and K.F. Wallis
(eds.), Advances in Economics and Econometrics: Theory and Applications, vol. III.
Cambridge: Cambridge University Press, 128-165.

Geweke, J., M. Keane, and D. Runkle (1994), “Alternative Computational Approaches
to Statistical Inference in the Multinomial Probit Model,” Review of Economics and
Statistics, 76, 609-632.

Goettler, R. and R. Shachar (1999), “Estimating Product Characteristics and Spatial Com-
petition in the Network Television Industry,” Working Paper, Carnegie Mellon Univer-
sity.

Hausman, J. (1997), “Valuation of New Goods Under Perfect and Imperfect Competition,”
in Bresnahan, T. and R. Gordon (eds.), The Economics of New Goods, Studies in
Income and Wealth, Vol. 58, Chicago: NBER.

Hendel, I. (1999), “Estimating Multiple-Discrete Choice Models: An Application to Com-
puterization Returns,” Review of Economic Studies, 66:2, 423-446.

Hurwicz, L. and H. Uzawa (1971), “On the Integrability of Demand Functions,” Chapter 6
in Preferences, Utility, and Demand, ed. By John S. Chipman, Leonid Hurwicz, Marcel
K. Richter, and Hugo F. Sonnenschein, New York: Harcourt Brace Jovanovich, Inc.,
1971.

Imbens, G. and W. K. Newey (2001), “Identification and Estimation of Triangular Simul-
taneous Equations Models Without Additivity,” Working Paper.

Jones, L. (1984), “A Competitive Model of Commodity Differentiation,” Econometrica,
52:2, March 1984.

58



Manski, C. F. (1995), Identification Problems in the Social Sciences, Cambridge, Mass:
Harvard University Press.

Manski, C. F. (1997), “Monotone Treatment Response,” Econometrica, 65:6, 1311-1334.

Manski, C. F., and J. Pepper (2000), “Monotone Instrumental Variables: With an Applica-
tion to the Returns to Schooling,” Econometrica, 68:4, 997-1010.

Mas-Colell, A. (1975), “A Model of Equilibrium with Differentiated Commodities,” Journal
of Mathematical Economics, 2:2, 263-295.

Mas-Colell, A. (1977), “The Recoverability of Consumer Preferences from Market Demand
Behavior,” Econometrica, Vol. 45, No. 6. (Sep., 1977), pp.1409-1430.

Matzkin, Rosa (1999), “Nonparametric Estimation of Nonadditive Random Functions,”
Mimeo, Northwestern University.

McCulloch, R., and P. Rossi (1996) “Bayesian Analysis of the Multinomial Probit Model,”
working paper, Graduate School of Business, University of Chicago.

McFadden, D. and M. K. Richter (????), “Stochastic Rationality and Revealed Stochastic
Preference,” in J. Chipman, D. McFadden, and M.K. Richter (eds.), Preferences, Un-
certainty, and Optimality, Essays in Honor of Leo Hurwicz, Westview Press: Boulder,
CO, 161-186.

Nevo, A. (2000), “Measuring Market Power in the Ready-To-Eat Cereal Industry,” Econo-
metrica, forthcoming.

Petrin, A. (1998), “Quantifying the Benefits of New Products: The Case of the Minivan,”
Working Paper, Graduate School of Business, University of Chicago.

Rosen, S. (1974), “Hedonic Prices and Implicit Markets: Product Differentiation in Pure
Competition,” Journal of Political Economy, 82, 34-55.

Trajtenburg, M. (1989), “The Welfare Analysis of Product Innovations: with an Application
to Computed Tomography Scanners,” Journal of Political Economy, 97, 444-479.

59


