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The Bias of the RSR Estimator and the Accuracy of Some Alternatives

I. Introduction

The repeat sales regression (RSR) and its variants are widely used to infer returns of equal-

weighted portfolios of assets through time.1  Most applications of RSR have been in the area of

home price index estimation.  Indeed, local home indices constructed with the RSR are becoming

the benchmarks for home appraisal -- the RSR allows a rapid-web-based home price estimate that

can be used for quick home mortgage assessment and approval.   Although it is now becoming a

pervasive tool for credit analysis, the RSR has some well-known econometric flaws.2   One well

known problem of the RSR estimators is that they are biased downwards from actual portfolio

returns, which obviously is not desirable because the most common use of any index may be to

estimate the current value of its underlying portfolio.   While equal-weighted portfolios of assets

have returns that are arithmetic averages of cross-sectional individual asset returns, the repeat sales

estimators are essentially cross-sectional geometric averages.   Because of Jensen's inequality, the

logarithmic transformation of the price relatives used as a dependent variable in the repeat-sales

regression results in a bias -- the RSR averages logs rather than takes a log of an average.   Thus

after getting rid of the log, the RSR estimators are geometric averages instead of arithmetic

averages.

Three methods have been suggested to address the bias problem.   Shiller (1991) proposes

arithmetic-average price estimators for equal-weighted and value-weighted portfolios.   Goetzmann

(1992) proposes a method that approximates the arithmetic means given RSR estimators, under the

assumption that asset returns in each period are lognormally distributed and the cross-sectional

variance is constant over time.   In another attempt toward unbiased estimators, Goetzmann and
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Geltner propose a non-linear method that minimizes the sum of squared residuals directly without

taking logs first.3

Though the bias problem of RSR is well known, its source and magnitude may not be well

understood by many researchers and practitioners.  In this paper, we interpret RSR estimators as

sample statistics, and show how they are simultaneously determined in the regression and how they

actually mimic cross-sectional geometric sample means.   Specifically, we interpret each RSR

estimator as a geometric average of proxies of individual single-period asset returns.   As a result,

we are able to explicitly decompose the bias of RSR estimators into two components and study

them separately.

Our analysis shows that the two components of the bias are respectively determined by two

different impacts of the logarithmic transformation of the price relatives: the direct impact and the

serial impact.   These two impacts push RSR coefficients toward opposite directions.   Specifically,

the direct impact makes RSR coefficients biased downwards, while the serial impact makes them

biased upwards.   The actual bias of a repeat sales estimator for one specific time period is jointly

determined by the sum of these two impacts in that period.

We show that the magnitude of the actual bias of RSR estimators may not be uniform from

period to period.   In each time period, the magnitude of both direct impact and serial impact of

logarithmic transformation is generally different.   The magnitude of the direct impact is related to

the cross-sectional sample variance of individual asset returns in that period, while the magnitude

of the serial impact is related to the sample variances in surrounding periods.   Therefore, the

magnitude of the actual bias is generally different through time, since the sample variances of

individual asset returns are usually different through time.   Consequently, magnitude of the bias in

the RSR estimator is predictable to some extent.   For example, for time periods with larger cross-



3

sectional variance of individual asset returns, the RSR estimator tends to be more downwards

biased.   At the same time, the performance of the approximation method proposed by Goetzmann

(1992) is also predictable.   This method would compensate for the bias, insufficiently for time

periods with larger variances while more than enough for time periods with smaller variances.   We

use simulations to show such patterns for RSR and the approximation method.

We propose a new approach to mitigate the bias problem of the RSR estimators.   The new

arithmetic repeat sales estimators proposed here are unbiased, and have a natural interpretation as

equal-weighted averages of individual single-period asset returns.  With simulations, we examine

the performance of this new method together with other alternative RSR approaches.   The

simulation results suggest that the arithmetic repeat sales estimators we propose may be more

accurate than RSR and other alternatives.

The paper is organized as follows.   Section 1 interprets RSR estimators as sample statistics,

and shows that they are essentially geometric averages of individual returns or their proxies.

Section 2 decomposes the bias into two components and investigates the determination of each.   It

shows that the magnitude of the bias of RSR estimators is not uniform from period to period.   It

also predicts patterns of RSR bias and performance of the approximation method.   Section 3

proposes unbiased repeat sales estimators that are analogous with RSR estimators but are arithmetic

averages.   It also provides comparison between the unbiased estimators with the arithmetic-mean

repeat-sale estimators by Shiller (1991), and shows the feasibility of the calculation of the unbiased

estimators as well.   Section 4 uses simulations to test our predictions of the behavior of RSR

estimators and the performance of the unbiased estimators we propose and other alternatives.

Section 5 concludes.
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II. RSR Estimators as Geometric Means

II.1 RSR estimators

The repeat sales regression estimates the return of an equal-weighted portfolio of assets

over each period in time.   Assume in total there are N  observations of repeat sales of individual

assets numbered from 1=i  to Ni = .   Each observation, say observation i , consists of the time of

first sale ib  and the price iB , the time of second sale is  and the price iS .   Denote by iH  the

holding interval of observation i , which consists of all time periods later than ib  and no later than

is .   Thus the length of holding interval for observation i , denoted by iτ , equals ii bs − .   We

suppose that there are 1+T  periods numbered from 0=t  to Tt = .

For each observation i , we define the compound return and the log compound return as

i

i
i B

S
g ≡ , and iiii BSgy logloglog −=≡ .

Denote by tir ,  the log gross return of the asset corresponding to observation i  in period t .











≡

−1,

,
, log

ti

ti
ti P

P
r

Thus

∑
∈

=
iHt

tii ry , . (1)

Denote by tmP ,  the value of the portfolio (market) at the end of time period t .   We define tβ  as the

gross return of index portfolio for time period t , and tµ  as )log( tβ .

1,

,

−

≡
tm

tm
t P

P
β  and 1,, logloglog −−=≡ tmtmtt PPβµ .

The RSR assumes that
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tittir ,, εµ += , (2)

where the error term is assumed i.i.d. normally distributed.

From equation (1) and (2),

∑∑
∈∈

+=
ii Ht

ti
Ht

tiy ,εµ . (3)

Equation (3) provides conditions for identifying maximum likelihood estimators { }T

tt 1
ˆ

=µ .

The RSR estimators are calculated according to

( ) YXXX 111ˆ −−− Ω′Ω′=µ . (4)

where X , Y , and Ω  are defined as follows.   The X  is a N  by T  dummy matrix whose i th row

corresponds to the i th observation and t th column corresponds to time period t .   In the i th row,

the first nonzero dummy appears in the column that corresponds to the time period immediately

after the buy period, and the last nonzero dummy appears in its sale period.   Between are nonzero

dummies.   Other elements in this row are zero.   For instance, if a asset was purchased at time 2

and sold at time 4, and 5=T , the its corresponding row is (0,0,1,1,0).   The Ω  is a N  by N

diagonal matrix with i th diagonal element is iτ , i.e. the length of the holding interval.   The Y  is a

N  by 1 matrix with whose i th element is iy .

The biases of RSR estimators resulting from the logarithmic transformation of the price

relatives are discussed in Goetzmann (1992) who uses a one-period example to show how the

logarithmic transformation makes RSR estimators biased downwards.  I.e. the RSR estimator is

expressed as:

( ) Y111ˆ 1 ′′= −µ

or the simple average of the elements in the logged price relative vector Y .   Because the log

function is concave, Jensen's inequality implies that the average of the logs is less than the log of
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the average, when there is any variance in the data.    Thus, if the elements in the Y  vector differ at

all, µ̂  is a biased estimate of the value )1log( m+ , where m  is the simple return 0,0,1, )( mmm PPP − ,

and 0,mP  and 1,mP  are the initial and terminal values of the index over the single period.   That is

∑∑
==









+≥
















+

N

i i

i
N

i i

i

B
S

NB
S

N 11

1log
1

1
1

log .

Under the assumption that the property returns in each period are lognormally distributed,

Goetzmann (1992) proposes a method to correct the bias of RSR and approximate the return of

market index for each period.

)var(
2
1ˆ)ˆlog( ttt εµβ +≈ (5)

The )var( tε  term is the cross-sectional variance of the gross returns of individual assets at time t .

Although this method works well in simulations, the bias of RSR turns out to be more complex

when there are more periods.

II.2 Illustration

To investigate the bias of RSR estimators more thoroughly, we interpret the RSR estimators

sample statistics of repeat-sale coefficient observations.   Consider a data set consisting of three

repeat-sale observations and four time periods numbered from 0 to 2.   Since period 0 is the base

period, there are two index returns to estimate, corresponding to period 1 and 2.   The first two

observations respectively cover period 1 and 2.   The third observation covers both period 1 and 2.

Thus by assuming i.i.d. normally distributed errors, we have
















=

11

10

01

X , 















=
















=

)log(

)log(

)log(
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

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From equation (4), we have

( ) YXXX 11 ˆ −− Ω′=Ω′ µ , (6)

In the example, we are able to write down the equations explicitly.

( ) ( )
( ) ( )




−+=+

−+=+

1322

2311

ˆ21ˆ211

ˆ21ˆ211

µµ
µµ

yy

yy
(7)

From equation (7), we are easily able to interpret the RSR estimators of index returns as geometric

averages of individual single period returns or their proxies.

( )
( )[ ]

( ) ( )[ ]









−+
+

=

−+
+

=

1322

2311

ˆ21
211

1ˆ

ˆ21
211

1
ˆ

µµ

µµ

yy

yy

(8)

For example, the RSR estimator of log index return for the first time period 1µ̂  is

( )2311 ˆ
3
1

3
2ˆ µµ −+= yy . (9)

Obviously it is a weighted average with the weights inversely proportional to the assets' holding

periods.   This is the motivation for the GLS version of the RSR, which weights observations by the

root inverse of the holding period. Therefore the estimator of actual (not-log) index return is

( )

( )

( )3
1

233

2

1

231

11

ˆ

ˆ
3
1

exp
3
2

exp

ˆexpˆ

β

µ

µβ

gg

yy

=







 −






=

=

. (10)

The ig , as defined earlier, is iiii BSyg == )exp( , the not-log compound return for repeat sale

observation i .

Clearly the RSR estimator of actual index return in period 1 is geometric average of two

numbers.   The first number, 1g , is an individual return in period 1.   The second number, 23 β̂g ,
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is a proxy of individual return in period 1.   The third repeat sale observation covers all two periods

and 3g  is a compound return.   After subtracting the component of the compound return that

corresponds to the second period, one can get a single period return in period 1.   Though this

component is unknown, the estimator for index return in the second period obviously is a proxy of

it.   Thus 23 β̂g  is a proxy of an individual return in period 1.

Why is the RSR estimator of index return in period 1 an average of 1g  and 23 β̂g ?

Clearly it is because the first and the third repeat sale observation, and no other observation, cover

period 1.   Thus, both of these two observations, and maybe only they, directly provide useful

information about the index return in period 1.   Another question is why RSR gives these two

observations different weights?   Notice that 1g  covers only period 1, while 3g  covers both periods

and then contains both information and noise for all two periods.   So intuitively 3g  contains much

more noise, and the 23 β̂g  term is not an actual individual return but just a proxy.   Thus, it has

smaller weight.

From equation (10), the RSR estimator of index return in period 1, 1β̂ , is a cross-sectional

sample geometric mean of all available individual returns in period 1 or their proxies.   Actually, all

RSR estimators can always be written as weighted geometric averages of individual single-period

returns or proxies of them.   It is also obvious that RSR estimators of index returns for different

periods always depend on each other so that the logarithmic transformation at one period would

have direct impact on that period's RSR estimator and serial impacts on other periods' estimators.
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III. Bias Decomposition

III.1 Bias components

Interpreting the RSR estimator as a sample geometric average facilitates the investigation of

its bias.   Specifically, we are able to decompose the bias, defined as the difference between the

RSR estimator and an unbiased estimation of index return, into two parts.   Denote by { }T

tt 1

*ˆ
=β  the

unbiased estimators of index returns, which are analogous to the RSR estimators but are arithmetic

averages, instead of geometric averages, of individual returns or their proxies.   Therefore they

directly correspond to actual index returns.   We will talk about the estimation of the unbiased

estimators in section four.

In the example, suppose the unbiased estimator for index return in time period 2 is *
2β̂ , we

are able to construct a unbiased proxy of a single period return corresponding to third observation

as *
23 β̂g .   Thus the unbiased estimator for index return in period 1, *

1β̂ , would be the arithmetic

average of 1g  and *
23 β̂g .

( )*
231

*
1

ˆ
3
1

3
2ˆ ββ gg += (11)

Decompose the difference between the RSR estimator 1β̂  and the unbiased estimator *
1β̂  into two

parts.

( ) ( )

( ) ( ) ( ) ( )3

1

233
2

1
3

1
*

233
2

1
3

1
*

233
2

1
*

231

3

1

233

2

1
*

2311
*

1

ˆˆˆˆ
3
1

3
2

ˆˆ
3
1

3
2ˆˆ

ββββ

ββββ

gggggggg

gggg

−+−



 +=

−



 +=−

(12)

Jensen's inequality implies that
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( ) ( ) 0ˆˆ
3
1

3
2

3

1
*

233
2

1
*

231 ≥−



 + ββ gggg . (13)

This component of the bias is essentially the difference between a geometric average and an

arithmetic average, which is always positive as long as all numbers are not the same.   It can be

corrected using equation (5).   However, this is not the end of the story.   The other component of

the bias is

( ) ( )3

1

233
2

1
3

1
*

233
2

1
ˆˆ ββ gggg − . (14)

It is the difference between the geometric mean constructed by subtracting the unbiased estimator

for period 2 index return and the geometric mean constructed by subtracting the RSR estimator.   If

the unbiased estimator for period 2 is larger than the RSR estimator, this component of the bias is

positive, otherwise it is negative.   Clearly the direction and the magnitude of the bias of RSR

estimator for period 2 helps to determine the direction and magnitude of the second component of

the bias for RSR estimator for period 1.   At the same time, for the same reason, the direction and

magnitude of the bias for the RSR estimator for period 1 also helps to determine the direction and

magnitude of the bias for RSR estimators in period 2.

We call the first component of the bias for the RSR estimator in each period the direct

impact of the logarithmic transformation for that period.   We call the second component of the bias

in each period as the serial impact of logarithmic transformation for other periods because it is

determined by the bias of RSR estimators for other periods.

These two impacts tend to offset each other since RSR estimators are simultaneously

determined and depend on each other.   For instance, suppose the direct impact in period 2 is strong

enough that the RSR estimator in that period is biased downward: *
22

ˆˆ ββ < , then the second

component of the RSR bias is negative.
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( ) ( ) 0ˆˆ 3

1

233
2

1
3

1
*

233
2

1 <− ββ gggg .

At the same time, the first component is always positive.   Therefore it is no longer clear if the RSR

estimator for period 1 is lower than the unbiased arithmetic mean for this period or not.

In general, the logarithmic transformation's direct impact in one period tends to make this

period's RSR estimator lower than the unbiased arithmetic mean; at the same time, its serial impact

on other periods' RSR estimators tend to push them upward.   Thus the direction and the magnitude

of the bias of RSR estimators becomes ambiguous in the multi-period case, which is obviously

different from the one-period case where RSR estimator is simply biased down.  We expect on

average that the bias is negative, but it may not be straightforward to correct.

III.2 Determination of the magnitude of bias

The first component of the bias of RSR is the difference between a sample arithmetic mean

and a sample geometric mean.   Jensen's inequality tells us that the difference of ))(log( rE  and

))(log( rE  depends on the population variance of the random variable r .   However, when we

estimate the market index, we always work with finite samples and are not able to observe the

population variance.   We want to investigate what determines the difference between the sample

arithmetic mean and the sample geometric mean.   Specifically, we want to make sure which one

actually determines this difference: the population variance of the underlying data generating

distribution or just the sample variance.   Suppose we have different samples of cross-sectional

returns generated from the same distribution.   Are the differences between the log equal-weighted

index returns (log of arithmetic averages of individual returns) and the RSR estimators (averages of

the log individual returns or geometric averages of not-log individual returns) uniform for all these

samples, or they depend on the variance of the sample?
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This question is important because if the difference between arithmetic mean and geometric

mean is determined by the sample variance, the magnitude of the direct impact component of the

RSR bias is potentially predictable from the data no matter what the actual underlying process may

be.   For periods the variances of sample returns are larger, the magnitude of the first component of

the bias for RSR estimators tend to be larger.   Thus the RSR estimators for those periods tend to be

biased downward.   Goetzmann (1992) uses a single number to correct the bias for all periods.   Our

previous example shows the correction would be insufficient for the periods with larger sample

variances, and probably would be too much for other periods with smaller sample variances.

We use a simple experiment to show that sample variance, not the population variance,

determines the difference between an arithmetic average and a geometric average of sample

returns.   We randomly sample from a lognormal distribution 100 times.   Each sample consists of

20 observations, and all observations (say, individual gross returns) are logged terms.   The mean of

the lognormal distribution we use is 0.0414 (1.10 before taking log).   The population standard

deviation is arbitrarily chosen as 0.18 (1.2 before taking log).   We calculate the RSR estimator,

which is just the sample mean of these 20 individual observations (logged).   We can also easily get

the arithmetic average of these 20 individual returns (not logged).   Thus we can get the difference

between the logged value of the arithmetic average and the RSR estimator for each sample.   This

difference is what Goetzmann (1992) intended to adjust with approximation.

Figure 1 clearly shows that the difference is almost perfectly related to sample variance of

these 20 observations, and the slope of the straight line is just 0.5, which confirms the formula in

Goetzmann (1992).   Clearly it is the sample variance, not the population variance, that determines

the magnitude of the first component of the bias of RSR estimators.   Thus, for each time period,

the larger is the cross-sectional sample variance, the bigger is the difference between geometric
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mean and arithmetic mean, i.e., the larger the magnitude of the bias for RSR estimator for that

period tend to be.   For the approximation method, since estimators for all periods are adjusted with

one single number, for periods with larger sample variances, adjustments may be insufficient; for

periods with smaller sample variances, adjustments tend to be too much. This phenomenon has

been found in our simulation results.

IV. Unbiased RSR Estimators

IV.1 Unbiased RSR Estimators

This section proposes a method to calculate the unbiased estimators that we use to compare

with the RSR estimators in earlier section.   The unbiased estimators have natural interpretation as

arithmetic means of the cross-sectional returns of assets or their proxies.   We still denote by

{ }T

tt 1
*ˆ

=β  the unbiased arithmetic mean estimators.   The unbiased estimator of index return in time

period t , *ˆ
tβ , may be expressed as

∑ ∏∑ ∈ ≠∈
∈











=

t i

t

Ni tsHs
sii

Ni
i

t gw
w ,

** ˆ1ˆ ββ . (15)

 The iH  is defined as the holding interval of observation i , which consists of all time periods later

than the purchase time and no later than the sale time.   Thus tsHs i ≠∈ ,  are all time periods,

except period t , that belong to the holding interval of repeat sale observation i .   The tN  is the set

of all repeat sale observations that contain period t  in their holding intervals.   The tn  is the
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number of observations that belong to tN .   The iw  term is the weight of the repeat observation i .

We could follow the RSR and let iw  equal to 
iτ

1
.

Obviously the unbiased estimators are analogous to the RSR estimators.   First of all, the

unbiased estimators are cross-sectional averages of all available individual returns or their proxies

in corresponding time periods, just like RSR estimators.   Second, they are determined

simultaneously and thus depend on each other, also like RSR estimators.   However, the unbiased

estimators are arithmetic averages of individual asset returns thus strictly correspond to actual

index returns, while the RSR estimators are geometric averages.   One special advantage of the

unbiased estimators is that when all assets trade in all periods, i.e., there is no data missing, the

unbiased estimators exactly equal the actual equal-weighted index returns.

Rearrange expression (15) and let iw  equal to 
iτ

1
, we get

∑ ∏∑
∈ ∈∈











=

t it Ni Hs
si

iNi i

g *ˆ11 β
ττ

. (16)

We define ( ) ∏
∈

=
iHs

sii gu ** ˆˆ ββ , and a N  by 1 vector ( )*β̂U  and a N  by 1 vector I .

( )

( )
( )

( )
( ) 













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
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



=

−
*

*
1

*
2

*
1
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ˆ

ˆ
.

ˆ

ˆ

ˆ

β
β

β
β

β
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N

u

u

u

u

U , and 

















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


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1

1

.

1

1

I .

Equation (16) is equivalent to

( )*1
,.

1
,. β̂UXIX tt

−− Ω′=Ω′ ,
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where the ,.tX ′  term is the row t  of the matrix X ′ .   Thus the unbiased estimators for index returns

for all periods are determined by

( )*11 β̂UXIX −− Ω′=Ω′ , or ( )( ) 0ˆ *1 =−Ω′ − βUIX . (17)

In equation (17), there are T  equations and T  unknown tβ̂ .   The solution of these equations is the

unbiased estimators.   Though the equations are not linear, it is feasible to search for the solution

via maximum-likelihood.   At the same time, the unbiased estimators are solutions to the

optimization problem:

{ } ( )( ) ( )( )*11*

ˆ
ˆˆmin

*
ββ

β
UIXXUI −Ω′Ω

′
− −− . (18)

Thus quadratic-searching technology can help to calculate the unbiased estimator *β̂ .

The RSR estimators are shown to have other problems.   For example, there are the sample

selectivity (Clapp and Giaccotto [1992]) and unobserved fix-ups between sales (Goetzmann and

Spiegel [1995] and Clapp and Giaccotto [1999]).   The RSR has many variants to address these

problems.   Though the unbiased estimators we propose intend to address the bias problem only, in

principle they could have variants that address not only the bias problem but also other problems at

the same time.

IV.2 Comparison with ARS by Shiller

We use the same small data set to compare the unbiased estimator with the instrumental

variable arithmetic-mean repeat sale estimator (ARS) proposed by Shiller (1991).   The ARS

estimators by Shiller (1991) are for reciprocal index levels instead of returns.   Here we translate

the reciprocal index level estimators into return estimators to facilitate the comparison.
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Denote by S
tβ̂  the ARS estimator of equal-weighted index return in time period t .   The

estimator-determining equations of the ARS for the simple data set are

( )

( )










=++−

=−+

1
ˆˆ

1
ˆ
1

1
ˆˆ

1
ˆ
1

1

21

32

1

21

2

1

1

SSS

SSS

gg

gg

βββ

βββ
.

Rearrange the equations, we have











+=+

−=−

1ˆ
ˆˆ

1
ˆ

ˆ

1

2

3

2

2

2

2
11

S

SS

S

S

gg

g
g

β
ββ

β
β

.

We express the ARS estimators in an economically sensible way as follows:

( )SS gg 2311
ˆ

2
1

2
1ˆ ββ += , ( )13

1

1
2

11

32
2 22

2
2

2ˆ gg
g

g
g

gg
ggS

+
+

+
=

+
+

=β .

Notice both 1g  and 2g  are single period individual returns, in period 1 and 2 respectively, while

the 3g  is a two-period compound return.   Obviously the Sg 23 β̂  is a proxy of single-period return

in period 1 and the 13 gg  is a proxy of single-period return in period 2.   The ARS estimators are

arithmetic averages of individual single-period returns.   Specifically, the index return estimator in

period 1 is average of 1g  and Sg 23 β̂ , and the index return estimator in period 2 is average of 2g

and 13 gg .   As mentioned earlier, the unbiased estimators proposed in this article for the data set

are

( )*
231

*
1

ˆ
3
1

3
2ˆ ββ gg += , ( )*

132
*

2
ˆ

3
1

3
2ˆ ββ gg += .

Obviously they are also arithmetic averages.
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Though both the ARS estimators and the unbiased estimators are arithmetic averages of

individual single-period returns or their proxies, the example shows two interesting differences

between them.   First, in the ARS estimators the proxy for period 2 return is 13 gg , while in the

unbiased estimators it is *
13 β̂g .   If *

1β̂  is a more accurate estimator of index return in period 1

than 1g , then we expect *
13 β̂g  to be a better proxy than 13 gg .   Second, the weights of assets

are consistent in the unbiased estimators.   The first asset, which provides two single-period returns

1g  and 2g , receives two third weight in both periods; while the second asset, which provides one

compound return 3g , receives one third weight in both periods.   The weights of assets in the ARS

estimators are different in two periods: in period 1 two assets receive equal weights, while in period

2 the weight of the first asset is almost two times heavier than that of the second asset.   In short,

based on the example the unbiased estimators seem to be more sensible than the ARS estimators

are in constructing the proxies of individual returns and weighting assets.   However, the ARS

estimators have a great advantage over the unbiased estimators: they are easy to calculate.

IV.3 Feasibility of Calculation

Though the calculation of the unbiased estimators is not as easy as that of the RSR or the

ARS estimators, it is still feasible.   To show this, we use the same data used by Case and Shiller

(1987, 1989) and Shiller (1991) to estimate the equal-weighted quarterly price index for Dallas

from 1970-1 to 1986-2.   The data have 6,669 repeat sale observations.   Let the index value at

1970-1 be 1, there are 65 index returns to estimate.   The software we use is S-plus, and the

computer is a public-shared Unix server in Yale International Center for Finance.   The calculation

of the unbiased estimators is equivalent to searching for { }*β̂  that minimizes the objective function:

( )( ) ( )( )*11* ˆˆ ββ UIXXUI −Ω′Ω
′

− −− .
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 We use an extremely simple but obviously not-efficient search procedure.   First, we

calculate the RSR estimators.   Second, we use the RSR estimators as the starting point, randomly

draw a new point within a small region around the starting point.   We do so until the new point is

better than the starting point, i.e. it reduces the value of the objective function, then use the new

point as the starting point for next run of searching.   This procedure is repeated until the value of

the objective function is small enough.   After several hours' searching, the value of the objective

function is reduced from 238.5, which corresponds to the RSR estimators, to 2.5.   Taking account

that more efficient search procedure and more powerful computer could be dedicated to the

estimation, the feasibility of the calculation of the unbiased estimators is obvious.

Figure 2 shows the RSR, the ARS, and the unbiased estimators for the quarterly equal-

weighted price index for Dallas.   Obviously these indices are different.   However, little can be

said about the accuracy of each method, which is investigated in next section.

V. Simulation Test

V.1 Methods

The goal of the simulation is twofold.   First, we want to test our predictions about the RSR

estimators and the approximation method by Goetzmann (1992).   We predict that the RSR

estimators tend to be biased downward more for periods with larger cross-sectional variances of

asset returns.   We also predict that the adjustment according to Goetzmann (1992) may be

insufficient for periods with larger variances but too much for periods with smaller variances.

Second, we want to test the performance of the unbiased estimators proposed here, together with

some other alternative estimators for RSR.   Specifically, we test performance of five different



19

estimators.   They are RSR estimators, adjusted RSR estimators according to Goetzmann (1992),

ARS suggested by Shiller (1991), nonlinear direct estimators suggested by Goetzmann and Geltner

(1999), and the unbiased arithmetic mean RSR proposed in this article.

The RSR estimators, the adjusted RSR estimator by approximation, and the ARS estimators

are well known.  The direct estimators suggested by Goetzmann and Geltner come from solving

following problem:

{ }

2

1ˆ
1

ˆ
min

1

∑
∏=

∈
















−
=

N

i

Hs
s

i
i

i

T
tt

g
w

ββ
. (19)

Equation (19) can be rewritten as

{ }
( )( ) ( )( )ββ

β

ˆˆmin
1

ˆ
UIWUI

T
tt

−
′

−
=

. (20)

It is interesting to notice that the optimization problem is very similar to that in equation (18),

which our arithmetic repeat sales estimators solve.   The only difference is the weight matrix in the

middle.   While our method uses 11 −− Ω′Ω XX , Goetzmann and Geltner use W .   A nice property of

the direct method is that, if let the weight being constant for all observations, the direct estimators

would minimize the mean-squared-error (MSE).   In the simulations, we let the weight for repeat-

sale observation i  be iτ/1  for the direct method.

V.2 Simulation steps

In each simulation, we construct the "actual" market first.    The following steps are performed:

1. Specify the number of assets N , and length of time horizon T .

2. Randomly draw the underlying marker returns (log term) for all periods from a normal

distribution.   The distribution has mean corresponding to 110% gross return and standard
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deviation corresponding to 17%, which are reasonable numbers for financial market annual

returns.

3. For each and every time period, randomly draw N  individual asset returns from a normal

distribution with mean equal to that period's underlying market return and variance assigned by

us.   After that, we have a N  by T  panel data set, which is treated as a perfect T -period

sample data set from a N -asset market.

4. From this complete data set, construct the actual equal-weighted market index, which is the

benchmark used to test estimators' accuracy.

After constructing the actual market, we are able to construct repeat sale data from the

complete data set.   Following steps are repeated for 100 times for each actual market data we

create:

1. Randomly draw two different dates for each asset, and calculate the compound returns between

them.   Then, instead of having the perfect panel data, we now have only one repeat sale

observation for each asset.

2. Use all five methods to estimate the index returns based on this repeat sale data set.   For two

nonlinear estimators, direct estimators and the unbiased RSR estimators, we use RSR estimators

as starting point for search.

3. For each method, calculate the estimators' percent deviations from the actual index return in

each period. For example, if an estimated return is 1.1 but the real market return is 1.0, the

percent deviation is 10%.   We also calculate all methods' mean squared errors over all periods.

We choose 30=N , 3=T .   We use the short time horizon 3=T  because in each round of

simulation we need to search for two kinds of nonlinear estimators 100 times.   The cross-sectional

variances for three periods are (0.02, 0.02, 0.02), (0.02, 0.08, 0.02), (0.08, 0.02, 0.08), and (0.02,
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0.04, 0.08).   We purposely control the variances so that the actual market will exhibit specific

patterns of time-varying cross-sectional variance.   For example, by setting the variances as 0.02,

0.08, and 0.02, we are able to test if RSR estimators are more biased downward in the second

period.   We are also interested in the performance of five different methods in each scenario.   For

each setting of variances, we run 3 rounds of simulations.   Each round has its own actual market,

and consists of 100 different repeat sale data sets generated from the same actual market.   Thus

there are 12 rounds of simulations overall.

V.3 Simulation results

Table 1 presents simulation results for four different variances specifications.   In each

setting, the table presents the percentage deviation of each method's estimator in each period

(median of 100 simulations), and each method's MSE for all three periods (median of 100

simulations).   In each time period, the two smallest percentage deviations are in bold.   Figure 3

and figure 4 plot the percentage deviations of RSR estimators and adjusted RSR estimators; figure

5 and figure 6 plot the percentage deviation of the ARS and the unbiased RSR estimators, all under

the settings that cross-sectional variances are 0.02, 0.08, and 0.02.

We have four major findings from the simulation results:

1. As we predict, the RSR estimators tend to be more biased down in periods with larger

variances.   After adjusted according to Goetzmann (1992), the estimators tend to be biased

down for periods with larger variances, but tend to be higher than the actual index returns for

periods with smaller variances.   These are shown in Table 1, figure 3, and figure 4.   For

example, in figure 3, the second period has larger variance.   Clearly the RSR estimators are

biased down much more in the second period than in other two periods.   In figure 4, after

adjusted according to Goetzmann (1992), the RSR estimators are biased down in the second
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period, but generally not biased down in other periods.   This confirms that the adjustment may

be insufficient for periods with larger variances, while may be too much for periods with

smaller variances.

2. The unbiased estimators and the ARS estimators seem to be robust to time-varying cross-

sectional variance.    There is no obvious bias-pattern for these two methods, as can be seen in

figure 5 and figure 6.   At the same time, the unbiased estimators seem to be more accurate than

the RSR estimators, the adjusted estimators, and the direct estimators, and may be more the

ARS estimators too.   The unbiased estimators generally have smaller percentage deviations

from actual index returns from period to period, which is shown in Table 1 and the figure 6.

3. The direct estimators of Goetzmann and Geltner tend to have larger percent deviations from the

actual index returns.   This may be partially caused by the difficulty of searching for the global

minimum value.  However, this method tends to have small MSE.

VI. Conclusion

We interpret the RSR estimators as sample statistics and show that they are essentially

geometric averages of individual returns or their proxies.   At the same time, it is clear that the RSR

estimators are jointly determined and depend on each other.   We decompose the bias of a RSR

estimator into two parts.   The two components of the bias are respectively determined by two

different impacts of the logarithmic transformation of the price relatives.    One we term the direct

impact and the other we term the serial impact.   These two impacts push the bias toward opposite

directions.   Specifically, the direct impact pushes RSR estimators downwards, while the serial

impact pushes them upwards.   The actual bias of a repeat sales estimator for one specific time

period is jointly determined by the summary of these two impacts in that period.
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We show that the magnitude of the direct impact is positively related to the cross-sectional

sample variance of individual returns in the prevailing period, while the magnitude of the serial

impact is negatively related to the sample variances in surrounding periods.   Therefore, the

magnitude of the actual bias generally varies through time since the sample variances of individual

asset returns are usually different through time.   At the same time, the bias magnitude of the RSR

estimators and the accuracy of the approximation method by Goetzmann (1992) are predictable to

some extent.   The RSR estimator tends to be biased down more in periods with larger cross-

sectional variances of individual asset returns and less in periods with smaller cross-sectional

variances.   The approximation method would insufficiently compensate for the bias in periods with

larger variances while more than enough for time periods with smaller variances.

We propose unbiased repeat sales estimators that are analogous to the RSR estimators but

are arithmetic averages of individual returns instead of geometric averages of them.   The unbiased

estimators strictly correspond to the actual index returns and there is no bias caused by the

difference between geometric means and arithmetic means.   When there is no data missing, i.e. all

assets trade in all periods, the unbiased repeat sale estimators would exactly equal the actual index

returns.

We use simulations to test our predictions of the behavior of RSR estimators and the

adjusted RSR estimators, and the performance of the unbiased estimators proposed in this paper

together with other alternative methods.   We construct artificial "actual" market data, and create

repeat sale observations from them.   We estimate the "actual" index returns with different methods

and calculate the deviations of different estimators from the "actual" index returns.   The simulation

results confirm our predictions.   They show that RSR estimators tend to be more biased down in

periods with larger sample variances.   After adjusted according to Goetzmann (1992), the
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estimators tend to be biased down for periods with larger variance, but tend to be higher than the

actual index returns for periods with smaller variances.   The results also show that the unbiased

estimators are robust to time-varying cross-sectional variance and may be more accurate than the

RSR estimators as well as some other alternatives.
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Table 1
The variances of individual assets for three periods are 0.02, 0.02, and 0.02

Simulation round 1 Simulation round 2 Simulation round 3
Median of deviation for each
period (in percentage)

Median of deviation for each
period (in percentage)

Median of deviation for each
period (in percentage)

Methods 1 2 3

MSE

1 2 3

MSE

1 2 3

MSE

RSR -0.61 -1.13 -0.59 0.21 0.38 -1.88 -0.34 0.32 -2.79 0.54 -2.04 0.64
Adjusted RSR 0.58 -0.28 0.46 0.22 1.11 -1.17 0.50 0.32 -2.34 0.85 -1.63 0.62

ARS 0.60 -1.18 0.69 0.28 0.98 -0.81 0.73 0.37 -3.17 1.82 -2.57 0.73
Direct Method 1.89 0.96 3.55 0.21 2.71 1.21 1.42 0.25 -1.48 4.30 0.55 0.41

Unbiased 0.26 -0.26 0.30 0.23 1.29 -0.90 0.04 0.31 -2.21 1.83 -0.98 0.61
The variances of individual assets for three periods are 0.02, 0.08, and 0.02

Simulation round 1 Simulation round 2 Simulation round 3
Median of deviation for each
period (in percentage)

Median of deviation for each
period (in percentage)

Median of deviation for each
period (in percentage)

Methods 1 2 3

MSE

1 2 3

MSE

1 2 3

MSE

RSR -0.91 -3.67 -1.76 0.89 -0.30 -3.92 -1.26 0.68 -0.60 -2.71 0.29 0.42
Adjusted RSR 0.58 -2.38 -0.24 0.86 0.84 -2.06 0.68 0.69 -0.17 -1.64 1.43 0.44

ARS 0.13 -0.01 -2.79 1.26 1.13 -1.92 0.66 0.87 -0.19 -0.57 0.09 0.46
Direct Method 1.90 6.67 -2.89 1.54 2.55 4.96 3.02 1.04 0.92 2.88 1.05 0.38

Unbiased 0.11 -0.43 -1.66 0.98 0.24 -0.90 0.50 0.68 -0.11 -0.95 0.72 0.42
The variances of individual assets for three periods are 0.08, 0.02, and 0.08

Simulation round 1 Simulation round 2 Simulation round 3
Median of deviation for each
period (in percentage)

Median of deviation for each
period (in percentage)

Median of deviation for each
period (in percentage)

Methods 1 2 3

MSE

1 2 3

MSE

1 2 3

MSE

RSR -3.42 -1.44 -4.12 1.05 -2.20 -2.71 -3.04 0.78 -5.41 -0.19 -4.40 1.09
Adjusted RSR -0.33 1.40 -1.75 1.04 1.43 0.33 0.68 0.82 -3.45 2.34 -1.09 1.06

ARS -0.46 0.38 0.88 0.98 2.71 -2.04 0.98 0.83 -1.27 0.49 -2.22 0.85
Direct Method 4.50 3.04 9.63 1.18 9.90 0.49 8.84 1.10 4.51 1.33 3.91 0.90

Unbiased -0.30 -0.42 0.43 1.00 1.42 -1.45 0.67 0.75 -1.68 0.30 -1.62 0.94
The variances of individual assets for three periods are 0.02, 0.04, and 0.08

Simulation round 1 Simulation round 2 Simulation round 3
Median of deviation for each
period (in percentage)

Median of deviation for each
period (in percentage)

Median of deviation for each
period (in percentage)

Methods 1 2 3

MSE

1 2 3

MSE

1 2 3

MSE

RSR -0.92 -1.07 -4.16 0.54 -1.67 -2.06 -2.35 0.87 -0.08 -2.90 -4.04 0.70
Adjusted RSR 1.01 1.20 -2.31 0.57 -0.98 -0.84 -1.66 0.85 1.25 -1.00 -2.20 0.72

ARS -0.56 -0.33 0.63 0.67 -1.27 -0.58 -0.39 0.94 1.09 -0.20 -0.39 0.84
Direct Method 2.82 2.31 5.21 0.51 1.79 3.15 4.75 1.02 1.59 2.54 6.68 0.86

Unbiased 0.14 0.50 -1.15 0.53 -0.23 -0.50 0.14 0.86 0.52 -1.19 -1.61 0.69

In each round of simulation, complete data of individual returns are generated by drawing 100 individual asset returns
each period from a distribution with mean equal to the index return for that period, which is randomly generated too,
and with variances specified by us.   A round consists of 100 simulations.   In each simulation, first we randomly
generate one repeat sale observation for each "asset" and construct a repeat sale data set.   Then we estimate the "actual
" index returns with different methods.   We calculate the percentage deviation from the "actual" index return in each
period for each method.   We also calculate the mean squared errors (MSE) for each method.   The numbers in the table
are medians over 100 simulations.   In each round of simulation, the two smallest percentage deviation numbers are in
bold.
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Figure 1

Regression of Difference to Sample Variance
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We randomly get 100 samples from a lognormal distribution.   Each sample consists of 20 observations randomly
generated from the distribution.   The mean of the lognormal distribution is 0.0414 (1.10 before taking log).   The
population standard deviation is 0.18.   The "difference" for each sample is the difference between the average of these
20 log values and the log of the average of 20 not-log values.   The "sample variance" is the sample variance of these
20 observations.
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Figure 2

Equal-weighted Quarterly Price Index for Dallas

1970-1 to 1986-2
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This figure shows the equal-weighted quarterly price indices for Dallas from 1970-1 to 1986-2 calculated with the
RSR, the ARS, and the unbiased method.
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Figure 3

Median of Pecent Devation: RSR estimators

cross-sectional variances are 0.02, 0.08, 0.02
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This figure shows the accuracy of the RSR estimators measured by the deviation (in percentage) from the "real equal-
weighted market index".   Results (three lines) are for three rounds of simulations.   Three points in each line
correspond to the medians of percent deviation of estimators in three periods.
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Figure 4

Median of Pecent Devation: Adjusted RSR estimators

cross-sectional variances are 0.02, 0.08, 0.02
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This figure shows the accuracy of the adjusted RSR estimators, which correct for the bias caused by Jensen's inequality
with approximation proposed by Goetzmann (1992), measured by the deviation (in percentage) from the "real equal-
weighted market index".   Results (three lines) are for three rounds of simulations.   Three points in each line
correspond to the medians of percent deviation of estimators in three periods.
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Figure 5

Median of Pecent Devation:  ARS estimators (Shiller)

cross-sectional variances are 0.02, 0.08, 0.02
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This figure shows the accuracy of the ARS estimators by Shiller (1991) measured by the deviation (in percentage) from
the "real equal-weighted market index".   Results (three lines) are for three rounds of simulations.   Three points in each
line correspond to the medians of percent deviation of estimators in three periods.



33

Figure 6

Median of Pecent Devation:  Unbiased estimators

cross-sectional variances are 0.02, 0.08, 0.02
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This figure shows the accuracy of the unbiased RSR estimators that we propose measured by the deviation (in
percentage) from the "real equal-weighted market index".   Results (three lines) are for three rounds of simulations.
Three points in each line correspond to the medians of percent deviation of estimators in three periods.
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1 For example, Abraham and Schauman (1990), Case and Quigley (1991), Case and Shiller (1987,
1989), Case, Shiller, and Weiss (1993), Goetzmann (1993), Goetzmann and Spiegel (1997), Mark
and Goldberg (1984), Palmquist (1982), Pollakowski and Wachter (1990).
2 There has been a great deal of research about problems of RSR.   For example, Abraham (1990),
Case, Pollakowsi, and Wachter (1992), Clapp and Giaccotto (1992, 1999), Dombrow, Knight, and
Sirmans (1997), Goetzmann and Spiegel (1995), Geltner (1997), Kuo (1996), and Shiller (1993a,
1993b).
3 No paper has been written to propose this method yet.


