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1. Introduction

Recent advances in data availability now allow economic forecasters to examine hundreds
of economic time series during each forecasting cycle. Consider, for example, the problem of
forecasting of the U.S. index of industrial production. A forecaster can collect monthly
observations on, say, 200 (or more) potentially useful predictors beginning in January 1959. But
what should the forecaster do next?

This paper considers this problem for aforecaster using a linear regression model with K
regressors and T observations, whose loss function is quadratic in the forecast error. The regressors
are taken to be orthonormal, an assumption that both simplifies the analysis and is motivated by the
empirical work summarized in section 6, in which the regressors are principal components of a
large macroeconomic data set. In this framework, the forecast risk (the expected value of the
forecast 10ss) is the sum of two parts: one that reflects unknowable future events, and one that
depends on the estimator used to construct the forecast. Because the forecaster can do nothing
about the first, we focus on the second part, which is the estimation risk. Because the regressors

are orthonormal, we take this to be tr(V, ), the trace of the mean squared error matrix of the

candidate estimator, b .
This econometric forecasting problem thus reduces to the statistical problem of finding the

estimator that minimizestr(V, ). When K islarge, this (and the related K-mean problem) isa

difficult problem that has received much attention ever since Stein (1955) showed that the ordinary
least squares (OLS) estimator isinadmissible for K3 3. A variety of approaches are availablein

the literature, including model selection, model averaging, shrinkage estimation, ridge regression,



and parameter reduction schemes such as factor models (references are given below). However,
outside of a subjectivist Bayesian framework (where the optimal estimator is the posterior mean),
the quest for an optimal estimator has been elusive.

We attack this problem from two perspectives, one classical (“frequentist”), and one
Bayesian.

Our frequentist approach to this problem is based on the theory of equivariant estimation.
Suppose for the moment that the regression errors arei.i.d. normally distributed, that they are
independent of the regressors, and that the regressor and error distributions do not depend on the
regression parameters; this shall henceforth be referred to as the "Gaussian case’. In the Gaussian
case, the likelihood does not depend on the ordering of the regressors, that is, the likelihood is
invariant to simultaneous permutations of the cross sectional index of the regressors and their
coefficients. Moreover, in the Gaussian case the OL S estimators are sufficient for the regression
parameters. These two observations lead us to consider the class of estimators that are equivariant
functions of the OL S estimator under permutations of the cross sectional index. Because the form
of these estimators derives from the Gaussian case, we call these "Gaussian equivariant estimators.”
This classislarge, and contains common estimators in this problem, including OLS, OLS with
information criterion selection, ridge regression, the James-Stein (1960) estimator, the positive part

James-Stein estimator, and common shrinkage estimators. The estimator that minimizestr(V, )

among all equivariant estimators is the minimum risk equivariant estimator. If this estimator

Two other approaches to the many-regressor problem that have attracted considerable attention are
Bayesian model selection and Bayesian model averaging. Recent devel opments in Bayesian model
averaging are reviewed by Hoeting, Madigan, Raftery and Volinsky (1999). Some recent
developments in Bayesian model selection are reviewed by George (1999). The work in this
literature that is, as far as we know, closest to the present paper is George and Foster (2000), which
considers an empirical Bayes approach to variable selection. However, their setup is fully
parametric and their results refer to model selection, a different objective than ours.



achieves the minimum risk uniformly for all true regression coefficientsin an arbitrary closed ball
around the origin, the estimator is uniformly minimum risk equivariant over this ball.
The Bayesian approach has two different motivations. One is to adopt the perspective of a

subjectivist Bayesian, and to model the coefficients asi.i.d. draws from some subjective prior

distribution Gp. This leads to considering the Bayesrisk, ¢yr(V;)dG, (b,)---dG, (b, ), rather than

the frequentist risk tr(V, ). The subjectivist Bayesian knows his prior, and because of quadratic loss

the Bayes estimator is the posterior mean. In the Gaussian case, this depends only on the OLS
coefficients, and computation of the subjectivist Bayes estimator is straightforward. A different
motivation is to adopt an empirical Bayes perspective and to treat the "prior" G as an unknown
infinite dimensional nuisance parameter. Accordingly, the empirical Bayes estimator is the
subjectivist Bayes estimator, constructed using an estimate of G.? We adopt this |atter perspective,
and consider empirical Bayes estimators of b. In the Gaussian case, the OL S estimators are
sufficient for the regression parameters, so we consider empirical Bayes estimators that are
functions of the OL S estimators. In parallel to the nomenclature in the frequentist approach, we
refer to these as "Gaussian empirical Bayes' estimators.

Although the form of these estimators is motivated by the Gaussian case, the statistical
properties of these estimators are examined under more general conditions on the joint distribution
of the regression errors and regressors, such as existence of certain moments, smoothness of certain
distributions, and mixing. Accordingly, al our results are asymptotic. If KisheldfixedasT® ¥,

the risk of all mean-square consistent estimators converges to zero, and the forecaster achieves the

2 Empirical Bayes methods were introduced by Robbins (1955, 1964). Efron and Morris (1972)
showed that the James-Stein estimator can be derived as an empirical Bayes estimator. Maritz and
Lwin (1989) and Carlin and Louis (1996) provide a recent monograph treatments of empirical
Bayes methods.



optimal forecast risk for any such estimator. This setup does not do justice to the forecasting
problem with, say, K = 200 and T = 500. We therefore adopt a nesting that treats K as proportional
to T (an assumption used, in adifferent context, by Bekker [1994]); specificaly, KIT® r asT®
¥ . If the true regression coefficients are fixed, then as K increases the population R? of the

forecasting regression approaches one. Thisaso isunrealistic, so for the asymptotic anaysis we

model the true coefficientsasbeingina 1/ JT ne ghborhood of zero. Under this nesting, the
estimation risk (frequentist and Bayesian) has a nontrivial (nonzero but finite) asymptotic limit.

This paper makes three main theoretical contributions.

Thefirst concerns the Bayesrisk. In the Gaussian case, we show that a Gaussian empirical
Bayes estimator asymptotically achieves the same Bayes risk as the subjectivist Bayes estimator,
which treats G as known. Thisis shown both in a nonparametric framework, in which G is treated
as an infinite dimensional nuisance parameter, and in a parametric framework, in which G is
finitely parameterized. Thus this Gaussian empirical Bayes estimator is asymptotically optimal in
the Gaussian case in the sense of Robbins (1964), and the Gaussian empirical Bayes estimator is
admissible asymptotically. Moreover, the same Bayesrisk is attained under the weaker, non-
Gaussian assumptions on the distribution of the error term and regressors. Thus, the Gaussian
empirical Bayes estimator is minimax (as measured by the Bayes risk) against a large class of
distributional deviations from the assumptions of the Gaussian case.

The second contribution concerns the frequentist risk. 1n the Gaussian case, the Gaussian
empirical Bayes estimator is shown to be, asymptotically, the uniformly minimum risk equivariant
estimator. Moreover, the same frequentist risk is attained under weaker, non-Gaussian assumptions.
Thus, the Gaussian empirical Bayes estimator is minimax (as measured by the frequentist risk)

among equivariant estimators against these deviations from the Gaussian case.



Third, because the same estimator solves both the Bayes and the frequentist problems, it
makes sense that the problems themselves are the same asymptotically. We show that thisis so.
Specifically, it is shown that the empirical Bayes estimator asymptotically achieves the same Bayes
risk as the subjectivist Bayes estimator based on the "prior" which is the weak limit of the cdf of the
true regression coefficients (assuming this exists). Furthermore, this Bayes risk equals the limiting
frequentist risk of the minimum risk equivariant estimator.

This paper also makes several contributions within the context of the empirical Bayes
literature. Although we do not have repeated forecasting experiments, under our asymptotic
nesting in the Gaussian case the regression problem becomes formally similar to the Gaussian
compound decision problem. Also, results for the compound decision problem are extended to the
nonGaussian case by exploiting Berry-Esseen type results for the regression coefficients; thisleads
to our minimax results. Finally, permutation arguments are used to extend an insight of Edelman
(1988) in the Gaussian compound decision problem to show that the empirical Bayes estimator is
also minimum risk equivariant.

The remainder of the paper is organized as follows. The model, Bayesian risk function, and
Gaussian empirical Bayes estimators are presented in section 2. Assumptions and theoretical
results regarding the OL S estimators and the Bayesrisk are given in section 3. The frequentist
equivariant estimation problem islaid out in section 4, and the minimum risk equivariant estimator
is characterized in section 5. The link between the two problemsis discussed in section 6. Section
7 summarizes a Monte Carlo study of the Gaussian empirical Bayes estimators from both Bayesian
and frequentist perspectives. An empirical application, in which these methods are used to forecast

several U.S. macroeconomic time series, is summarized in section 8. Section 9 concludes.



2. The Model, Bayes Risk, and Gaussian Empirical Bayes Estimators
2.1. TheMode and Asymptotic Nesting

We consider the linear regression model,

(2.1) Yir1 = DX+ s,

where X; isavector of K predictor time series and .1 isan error term that is a homoskedastic

martingale difference sequence with E[e.1|F] = 0 and E(e?, |Fy) = s 2, where Fy = { X, &, X1,

Q.l,...}.

We are interested in out-of-sample forecasting, specifically forecasting yr+1 using Xr under

quadratic loss. Let b bean estimator of b constructed using observations on { X1, yi, t=1,...,T},

andlet §.,, = b'Xr beacandidate forecast of yr+1. Theforecast lossis,

(2.2) L(b, b) = (yrs1- )7T+1)2 =[er1+ (b-b)X{]2

The forecast risk is the expected loss,

(2.3) EL(b,b)=s2 +E(b —b)Hr(b —b),

where Hr = E(X, X; |F ., ¥y ) -

To keep the analysis tractable, we make two simplifying assumptions: first, that the

regressors are orthonormal, s0 T'8 | X, X¢ = Ix; and second, that Hr = I, the KxK identity
a t=p Tt



matrix. Asdiscussed in the introduction, the first assumption arises from our empirical application,
in which the regressors are orthonormal by construction. The second assumption, that Hr = Ik, is
motivated by the first: because the regressors are orthonormal, it is plausible to weight each
diagonal element of the estimation risk equally and to apply zero weight to the off diagonal
elements, that is, to set Hy = Ik.

The forecaster would like to minimize the forecasting risk (2.3). Because s 2 does not

depend on the estimator, only the second term in the forecasting risk is affected by statistical

considerations; thisis the estimation risk which, upon setting setting Hr = I, istr(V, ), where

V. =E(b- b)(b- b)'. Looking ahead to the asymptotic analysis, we rewrite this term using the

change of variables,

(2.4) b =b/JT and b = b/J/T.

Using this change of variables and setting Hr = I , the estimation risk tr(V, ) is,

lOK

(2.5) R(b, b) = £K 4 LE® - b)*.

where by isthe i element of b, etc.

2.2 Asymptotic Nesting
The asymptotic nesting formalizes the notion that number of regressorsislarge,

specifically, that



(2.6) KIT® rasT® ¥.

To simplify notation, we ignore integer constraints and set K = r T.

Under this nesting, if each b; is bounded away from zero, the population R? tends to one,
which is unrepresentative of the empirical problems of interest. We therefore adopt a nesting in
which each predictor is treated as making a small but potentially nonzero contribution to the
forecast, specifically we adopt the local parameterization (2.4) with {bi} held fixedasT® ¥.
Because K and T are linked, various objects are doubly indexed arrays, and b and its estimates are
sequences indexed by K, but to simplify notation this indexing is usually suppressed. All limitsin

this paper are taken under (2.4) and (2.6).

2.3 OLSEstimators

Under the nesting (2.4) and (2.6) with T™*Q tT:lXtXt' = |k, the OLS estimator of b is,

~ 3
(27) b = T-llza Xt—lyt !

t=1
sothat E = by and E(b-b) (b-b)' = s 2. Alsolet $2 bethe usual estimator of s 2,

lOT

(2.8) S2 =(T- K& (%~ b'X.)?.



2.4 Class of Estimators and the Bayes Risk

As discussed in the introduction, the estimators we consider are motivated by supposing that

e isiid N(0,s ), {X¢ and {e} areindependent, the distribution of { X, &} does not depend on b,
and the distribution of { X} does not depend on s ?; these assumptions constitute the " Gaussian
case”. Inthe Gaussian case, (b,s 2) are sufficient for (b, s 2). We therefore restrict attention to
estimators b that are functions of (b, $2).

The likelihood of b (given b and s 2), denoted by f«(b |b), has the location form, fx(b |b) =
f«(b —b). Inthe Gaussian case, b has afinite sample N(b,s 1) distribution, and it is useful to
adopt special notation for thiscase. Letf(2) = O5.f (z), wheref isthe normal density with
mean zero and variance s 2. Thus, in the Gaussian case fx = f k. Notethat, if K were fixed,

standard central limit theory would imply that f ¢ provides a good approximation to fx.
In the Bayesian formulation, {b;} are modeled asi.i.d. draws from the prior distribution G.

We suppose that the subjectivist Bayesian knows s 2 (has a point mass prior on s ). (One
motivation for this simplification is that it will be shown that $'2 isL,-consistent for s 2, so that a

proper prior over s > would be dominated by the informationin S'2.) Accordingly, the Bayes risk

we consider is the frequentist risk (2.5), integrated against the prior distribution G. Upon setting

K/T = r, under the normalization (2.4) the Bayesrisk is,

(O f)=r K& LE® - h)2dG, (b)

10 K

(2.9) . .
=1 K8 LGB 6)- b)? (- b)dbdG, (b)



where Gg(b) = G(by)--- G(bk) and where the second line makes the integration in the inner

expectation explicit.

2.5. The Subjectivist Bayes Estimator in the Gaussian Case

The subjectivist Bayesian knows G. Because lossis quadratic, the Bayesrisk (2.9) is

minimized by the posterior mean. In the Gaussian case, { 6, } arei.i.d., so the posterior mean is,

O « (b= X)dG, (¥)

(2.10) . .
0 « (b- X)dG (x)

Because the likelihood is Gaussian, the posterior mean (2.10) can be written in terms of the score of
the marginal distribution of b (e.g. see Maritz and Lwin [1989, p. 73]). Let mx denote the marginal

distribution of (b,...,b, ) in the Gaussian case,

(2.12) M (X) = ¢ « (x- D)dG, (b),

and let 7, (X) = m¥(x)/m, (x) beits score. Accordingly, the subjectivist Bayes estimator b™® (the

"Normal Bayes' estimator) is,

(2.12) b =p +s2, (b).

10



Note that b™® is based on the prior G through the score, athough this dependence is suppressed

notationally.

2.6 Gaussian Empirical Bayes Estimators
The Gaussian empirical Bayes estimators studied here are motivated by the foregoing

expressions derived for the Gaussian case. I1n the empirical Bayes approach to this problem, G is
unknown, asis s 2. Thusthe score/; isunknown, and the estimator (2.12) isinfeasible. However,
both the score and s 2 can be estimated. Moreover, athough the derivation of (2.12) relies on fx =
f k, aswas mentioned f x might be a plausible large sample approximation to fx. This suggests
using an estimator of the form (2.12), with ¢, and s 2 estimated, even outside the Gaussian case.
The resulting estimator is referred to as a smple empirical Bayes estimator ("simple”
because G does not appear explicitly in (2.12), asit doesin (2.10)). Throughout, s ? is estimated
by S'Z, defined in (2.8). Both parametric and nonparametric approaches to estimating the score are

considered. These respectively yield parametric and nonparametric empirical Bayes estimators.
Parametric Gaussian empirical Bayes estimator. The parametric Gaussian empirical Bayes

estimator is based on adopting a parametric specification for G, which will be denoted Gk(b;0),

where 0 is afinite dimensional parameter vector. Using the normal approximation f g to the

likelihood, thisin turn provides a parametric approximation to the marginal distribution of b,

me(x;0) = ¢ « (x- b)dG, (b;q) . The parametric Gaussian empirical Bayes estimator is computed

by substituting estimates of s 2 and g into m(x;0), using this parametrically estimated marginal

11



and its derivative to estimate the score, and substituting this parametric score estimator into (2.12).

The specific parametric score estimator used hereiis,

(2.13) ey =)
m-(Xq) + s

where m-(xq) = ¢§ « (x- b)dG, (b;q) and m¥(x,q) = ¢§ $(x- b)dG, (b;q), where f denotesf

with s 2 estimated, that is, f  (u) = (2pS2)" “"2exp(- u'u/ 25 2) , and where { s} is a sequence of
small positive numbers such that s ® 0. (The sequence { s} isatechnica device used in the
proof to control the rate of convergence.)

The parametric Gaussian empirical Bayes estimator, b™®, is obtained by combining (2.12)

and (2.13) and using S'Z; thus,
(2.14) b™® =b + S, (b,q).

Nonparametric Gaussian simple empirical Bayes estimator. The nonparametric Gaussian
simple empirical Bayes estimator is based on the assumption that { b;} are independent draws from
the distribution G. This permits estimation of the score without assuming a parametric form for G.

The score estimator used for the theoretical results uses a construction similar to Bickel et.

a. (1993) and van der Vaart (1988). Let W(2) be a symmetric bounded kernel with c‘)z“w(z)dz <¥

and with bounded derivative W(2) = dw(z)/dz, and let hx denote the kernel bandwidth sequence.

Define

12



1 %J XO

(2.15) My (X) = (K- Dh, JaI Wg 5
X _ 1 J x0
(2.16) mg (X) = (K- 1)“5 < = and
7 iy = MR ()
2.17 1, () =—" 2
&0 R oS,

The nonparametric score estimator considered hereiis,

_w ,/jzeglogK and |€,K(x)|£qK,y’

1 0 otherwise b

(2.18) 1 (%)=

where {s«} and {qgk} are sequences of constants. Rates for these sequences are given below.
The nonparametric Gaussian simple empirical Bayes estimator, b“® | obtains by

substituting $'2 and (2.18) into (2.12); thus,

(2.19) B = +$2. (b), . K.

Note that although the assumption of normal errors was used to motivate the form of this estimator,

the normal approximation f ¢ isin fact not used in the construction of (2.18).

13



3. Results Concerning OL S and the Bayes Risk

3.1. Assumptions
The following assumptions are used for one or more of the theoretical results. Throughout,
we adopt the notation that C is afinite constant, possibly different in each occurrence.

The first assumption restricts the moments of { X} and {e}. Let Z; = (Xu,..., Xk, €).

Assumption 1 (moments).

() T X X8=1;

(i) sup, EX;? £C<¥ and sup, Ee* £C<¥;
(iii) E(eZi1,..., Z2) = O;

(iv) E(e7 Xy, Ze1,..., Z1) = s 2> 0; and

The next assumption is that the maximal correlation coefficient of Z decays geometrically
(cf. Hall and Heyde [1980], p. 276). Let {n,} denote the maximal correlation coefficients of Z, that

is, let { nn} be a sequence such that sup,, sup ” |corr(x, y) [En ., where H isthe s-field

vl =™ X

generated by the random variables { Zs, s=a,...,b}.

Assumption 2 (time series dependence). {Z, t=1,...,T } has maximal correlation coefficient

N, that satisfies n, £ De’ " for some positive finite constants D and | .

14



The next assumption places smoothness restrictions on the (conditional) densities of { Xi:}
and {&g}. Let p; (X) denotethe conditional density of Xi; given (Zu,....Z:1); let pji (X | X;) bethe
conditional density of Xi; given (X, Z1,...,Zw.1); and let p5, (€) denote the conditional density of &

given (Zl,...,zt.]_).

Assumption 3 (densities).
(i) Thedistribution of { Xi;, &} does not depend on { b;}.
(ii) Thereexistsaconstant C <¥ suchthat, forall i, j,t, K, | pg () [£C, | pjx (% |X)| £C

2

fori #j, and d;—z ¢ (e)|de£C.
e

The next assumption restricts the cross sectional dependence among { X;;} using a
conditional maximal correlation coefficient condition. Let X; = (Xi,..., Xi1) and let £” bethes-

field generated by the random variables { X, i = a,...,b}, and define the cross sectional conditional

maximal correlation coefficients {t,} to be a sequence satisfying sup,, SUP; g v [corr(x,yIX)| £

tnforalj.

Assumption 4 (cross sectional dependence). There exists a sequence of cross sectional

maximal correlation coefficients {tn} suchthat § __t, <¥.

The next two assumptions place restrictions on the family containing the true distribution of

b in, respectively, the parametric and nonparametric cases.

15



Assumption 5 (parametric G).

(i) {b} arei.i.d. with distribution G and var(b)) = s 2 < ¥.

(i) G belongsto aknown family of distributions G(b;q) indexed by the finite-dimensional
parameter g contained in a compact Euclidean parameter space O;

(iii) G hasdensity g(b; g) which is Lipschitz continuousin g uniformly over band q, i.e.
SUPb g 0SUPg=0lg(P; a) — a(b;a) £ Cla - q | .

(iv) There exists an estimator d =q(6,§j) such that, for al K sufficiently large,

E[K”d -q ”2] £ C < ¥, where the expectation is taken either under (fx, G) or under (f x, G).

Assumption 6 (nonparametric G). {bi} arei.i.d. with distribution G and var(by) = s> <¥.

The final assumption provides conditions on the rates of the various sequences of constants

used to construct the estimators.

Assumption 7 (rates). The sequences{s«}, {ax}, and {hx} satisfy: hx ® 0, x® O,

k® ¥, K*hdogk ® 0, K’ ® ¥, s2logK® ¥, K ® ¥, and K% ® 0.
3.2. Reaultsfor the OL S Estimators

The theoretical results pertain to the model (2.1), and al limits are taken under the

asymptotic nesting (2.4) and (2.6). The first result isthat, under this nesting, 2 is consistent.

16



Theorem 1 (standard error of the regression).

Under assumptions 1 and 2, E[(S? - s 2)%b,s 2] £ CIK.

All proofs are given in the appendix.
An immediate consequence of theorem 1isthat S'Z is consistent.
Theorem 1 is nonstandard because the number of regressors increases with the sample size.

In the special casethat & isi.i.d. N(0,s 2) and the regressors are independent of the errors, the proof
is straightforward. Under these special assumptions, in conventional matrix notation 2 = y[l-
XOXCX) X Y(T-K) = e[I-X(X' X)X e/(T-K). Because [-X(X'X)™ X" isidempotent with T-K degrees
of freedom, $2/s 2 isdistributed c2 , /(T - K). ThusE[(S? - s 2)’b,s 2] = 2s */(T-K), so the
result in theorem 1 holds with C = 2r s 2/(1-r). The proof under the more general assumption 1 is,

however, more involved.

The next theorem provides results for the OLS estimator and its forecast, yri .

Theorem 2 (OLSrisk).

Under assumption 1, R(b,b) ® rs 2, rg(b,fi) =rs?, and var(yri- 95 )/s 2 ® 1+r.

3.3 Resultsfor Gaussian Empirical Bayes Estimators
The next two theorems establish the asymptotic Bayes risks of the Gaussian empirical
Bayes estimators. Theorem 3 pertains to the parametric case, and theorem 4 pertainsto the

nonparametric case.

17



Theorem 3 (Parametric Empirical Bayes).

Suppose that the assumptions 1 — 5 and 7 hold. Then:
(i) re(b™® fq) - ro(b™ fx) ® 0, and
(ii) inf, sup, r (0, f,)- rs(b",f, ) ® 0, where the supremum is taken over the class of

likelihoods fx that satisfy assumptions 1 — 4 with fixed constants.

Theorem 4 (Nonparametric Empirical Bayes).

Under assumptions 1-4, 6, and 7,

(i) ro(B" fi) - re(b™ f) ® 0, and

(ii) inf, sup, r (0, f,)- rs(b",f, ) ® 0, where the supremum is taken over the class of

likelihoods fx that satisfy assumptions 1 — 4 with fixed constants.

Part (i) of Theorem 3 states that the Bayes risk of the parametric EB estimator

asymptotically equals the Gaussian Bayes risk of the infeasible estimator, b™®. By definition, b"®
isthe Bayes estimator if G is known when the errors are normally distributed and are independent
of the regressors. Thus the theorem implies that, if the errors are Gaussian and are independent of

the regressors, the feasible estimator b™®®

Is asymptotically optimal in the sense of Robbins (1964).
The theorem further states that the Bayes risk of the infeasible estimator b™® is achieved

even if the conditions for b™® to be optimal (Gaussianity) are not met, as long as the assumptions
of the theorem hold. Moreover, according to part (ii), thisrisk is achieved uniformly over

distributions satisfying the stated assumptions. If {&} has anonnormal distribution, then the OLS

18



estimators are no longer sufficient, and generally alower Bayes risk can be achieved by using the

Bayes estimator based on the true error distribution. Together these observations imply that
rs(b™ f «) isan upper bound on the Bayes risk of the Bayes estimator under the prior G when {&}
is known but nonnormal. However, b™® is asymptotically optimal in the Gaussian case and its

Bayes risk does not depend on the true error distribution asymptotically, so b™® is asymptotically
minimax.

Because the Bayes risk function was derived from the forecasting problem, these statements
about the properties of the parametric EB estimator carry over directly to forecasts based on the

parametric EB estimator.

The interpretation of theorem 4 parallels that of theorem 3. In particular, b"¥® is
asymptotically optimal if the errors are normal and independent of the regressors. Asymptotically
the Bayesrisk of this estimator does not depend on the true distributions, as long as they satisfy the
stated assumptions. Thus this estimator is asymptotically minimax for the family of distributions
satisfying the assumptions of theorem 4.

Finally, because assumption 5 implies assumption 6, if the true distributions satisfy the
conditions of theorem 3, the parametric and nonparametric EB estimators are asymptotically

equivalent in the sense that they achieve the same asymptotic Bayesrisk.

4. Frequentist Risk and Gaussian Equivariant Estimators
4.1 Frequentist Risk
Asin the Bayesian case, the family of estimators considered in the frequentist formulation

of the estimation problem is motivated by the Gaussian case. The sufficiency argument of section
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2.4 applies here, so we consider estimators b which are functions of the OL S estimator b.

Accordingly we write the frequentist estimation risk (2.5) as,

lOK

(4.1) R(b, b:f) = r K*4  E[R (D) - hT*.

where (4.1) differs from (2.5) by making explicit both the likelihood fx under which the expectation

is taken and the dependence of the estimator on b.

4.2 Gaussian Equivariant Estimators

In the Gaussian case, the value of the likelihood f x does not change under a simultaneous
reordering of the cross sectional index i on (X, by), where X; = (Xi1,..., Xit). More precisaly, let P
denote the permutation operator, so that P(Xy, Xz,..., Xk) = (X , X; ,..., X; ), where{ij, j=1,...,K} is
apermutation of {1,...,K}. The collection of al such permutations is a group, where the group
operation is composition. The induced permutation of the parametersis Pb. In the Gaussian case,
the likelihood constructed using (PX, Pb) equals the likelihood constructed using (X, b); that is, the
likelihood is invariant to P.

Following the theory of equivariant estimation (e.g. Lehmann and Casella (1998, ch. 3)),

this leads us to consider the set of estimators that are equivariant under any such permutation. An

estimator 6(6) is equivariant under P if the permutation of the estimator constructed using b

egual s the (non-permuted) estimator constructed using the same permutation applied to b. The set

B of al estimators that are functions of b and are equivariant under the permutation group thusis,
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(4.2) B={b(b): P[b(b)] = b(Ph)}.

Animplication of equivariance is that the risk of an equivariant estimator is invariant under

the permutation, that is,

(4.3) R(b, b:fk) = R(Pb, b(PDb):fx)

for al P, cf. Lehmann and Casella (1998, Chapter 3, Theorem 2.7). Note that, in the problem at

hand, because the risk is quadratic this invariance of therisk holds for all bT B evenif the

motivating assumptions of the Gaussian case do not hold.

The set B contains the estimators commonly proposed for this problem, for example OLS,

OL S with BIC model selection, ridge regression, and James-Stein estimation; b isalso in 3.

5. Results Concer ning the Frequentist Risk

The next theorem characterizes the asymptotic limit of the frequentist risk of the minimum

risk equivariant estimator. Let GK denote the (unknown) empirical cdf of the true coefficients { b}

for fixed K, and let 6('3“:‘ denote the normal Bayes estimator constructed using (2.12), with the true

empirical cdf G, replacing G. Also, let ||x|, = (Xx/K)" for the K-vector x.
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Theorem 5 (Minimum Risk Equivariant Estimator).

Suppose that the assumptions 1 — 4 and 7 hold. Then:

(i) infg, R(b,B:F )3 Rb,bY%f ) =1 (01°,F) forall bl R* and for all K;

(ii) SUP,,en | R(O,D™E5 ) - inf, , R(b,B;f ) [® O for all M <¥; and

(iii) supy,em{sup;, | R(b, bNE8: £, ) - inf, . R(b,b;f () [} ® O for al M <¥, wherethe

supremum over fx is taken over the class of likelihoods fx which satisfy assumptions 1 —4

with fixed constants.

Part (i) of this theorem provides a device for calculating alower bound on the frequentist
risk of any equivariant estimator in the Gaussian case. Thislower bound can be expressed as the
Bayes risk of the subjectivist normal Bayes estimator computed using the "prior" that equals the
empirical cdf of the true coefficients; because thisis computed using the true (unknown) empirical

cdf, thisis better thought of as a pseudo-Bayes risk. The estimator that achieves thisin finite
samplesis the Bayes estimator constructed using the "prior" GK , but because this prior is unknown

this estimator is infeasible.

Part (ii) of the theorem shows that, in the Gaussian case, this optimal risk is achieved
asymptotically by the nonparametric Gaussian simple empirical Bayes estimator. Moreover, this
optimality holds uniformly for coefficient vectors in a normalized ball (of arbitrary radius) around
the origin. Thus, in the Gaussian case the nonparametric Gaussian simple empirical Bayes
estimator is asymptotically uniformly (over the ball) minimum risk equivariant.

Part (iii) of the theorem parallels the final parts of theorems 3 and 4, and shows that even

outside the Gaussian case the frequentist risk of b"*® does not depend on fx, aslong as
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assumptions 1 — 4 hold. Because b™® is optimal among equivariant estimators in the Gaussian
case, and because its asymptotic risk does not depend on fk, it is minimax among equivariant

estimators.

6. Connecting the Frequentist and Bayesian Problems

The fact that bN®® is the optimal estimator in these two seemingly different estimation
problems suggests that the problems themselves are related. 1t iswell known that in conventional,
fixed dimension parametric settings, by the Bernstein — von Mises argument, Bayes estimators and
efficient frequentist estimators can be asymptotically equivalent. In these settings, a proper prior is
dominated asymptotically by the likelihood. Thisis not, however, what is happening in this
problem. Here, because the number of coefficientsis increasing with the sample size and the
coefficients are local to zero, the { b} cannot be estimated consistently. Indeed, Stein's (1955)
result that the OL S estimator is inadmissible holds here asymptotically, and the Bayes risks of the
OLS and subjectivist Bayes estimators differ even asymptotically. Thus the standard argument,
applicable to fixed parameter values, does not apply here.

Instead, the reason that these two problems are similar is that the frequentist risk for
equivariant estimators isin effect the Bayes risk, evaluated at the empirical cdf G, . For
equivariant estimators, in the Gaussian case the i™ component of the frequentist risk (4.1),

E[b (b) - b ]?depends only on bi. Thuswe might write,

RBif ) =1 K8 EIB (B)- BT’
(6.1) =1

=r ¢EIB(D) - b]?dG, (b)
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If the sequence of empirical cdfs{ G, } hasthe weak limit G that is, G, = G, and if the integrand

in (6.1) is dominated, then

(6.2) R(b,b;f ) = r OE[B(D) - B]°dG, (b) P r E[B(D) - b]*dG(h)

which isthe Bayesrisk of b. This reasoning extends Edelman's (1988) argument linking the
compound decision problem and the Bayes problem (for a narrow class of estimators) in the
problem of estimating multiple means under a Gaussian likelihood.

This heuristic argument is made precise in the next theorem.

Theorem 6.
If G, P G and sup, ], £M, then | R(b,b%;f ) - rs (0",f ) [® 0.

Gy’

Thus, in the Gaussian case the frequentist risk of the subjectivist Bayes estimator BE“KB ,

based on the true empirical cdf GK , and the Bayes risk of the subjectivist Bayes estimator b'e
based on its weak limit G, are the same asymptoticaly. It follows from theorems 3, 4 and 5 that
thisrisk is also alower bound on both the frequentist and Bayesian risks. Thislower bound is
achieved by the feasible nonparametric Gaussian ssimple empirical Bayes estimator, which,

asymptotically, behaves as well asif the weak limit G were known.
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7. Monte Carlo Analysis
7.1. Estimators
Parametric Gaussian EB estimator. The parametric Gaussian EB estimator examined in

this Monte Carlo study is based on the parametric specification that {b;} arei.i.d. N(mt?). Using

A

the normal approximating distribution for the likelihood, the marginal distribution of b isthus

N(ms ?), wheres 2 = s 2 +t% Theparametersmand s ? are consistently estimated by

lOK

~ 10 K~ ~2 . S .
m=K'gq _h ads:=(K-1)"q _(h- M. FortheMonte Carloanalysis, we treat the
sequence of constants s« as a technical device and thus drop this term from (2.13). Accordingly,

the parametric Gaussian empirical Bayes estimator, b™® , is given by (2.14) with

(7.9 RCHESE

Nonparametric Smple EB estimator. The nonparametric Gaussian smple EB estimator is
computed asin (2.10) and (2.11), with some modifications. Following Hardle et. al. (1992), the
score function is estimated using the bisquare kernel with bandwidth proportional to (T/100)".
Preliminary numerical investigation found advantages to shrinking the nonparametric score
estimator towards the parametric Gaussian score estimator. We therefore use the modified score

estimator,

(7.2) 75 (0 =1 1000, () +[1- 1 1 (917, (x9)
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where %iK (x) is(2.18) implemented using the bisquare kernel nonparametric score estimator and s¢
=0, and, and 7, (x,q) isgivenin (7.1). The shrinkage weights are| 1(x) = exp[-¥k’(x- h)/s 2.
Results are presented for various shrinkage parameters k; small values of k represent less
shrinkage, and when k = 0, 75, (X) =, (X) .

Deconvolution EB estimator. An alternative to the nonparametric SEB estimator isto
estimate the density g directly by nonparametric deconvolution, and then to use the estimated g in
an empirica version of (2.10). Let § be such an estimator of g. The nonparametric deconvolution

EB estimator is,

(7.3) ™= =

Various approaches are available for estimating g. The specific deconvolution estimator

considered here is constructed in the manner of Fan (1991) and Diggle and Hall (1993). If { 6,} are

i.i.d. normal (conditional on b), then the marginal distribution of 6, IS,

(7.4) m (¥) =@ (x- u)g(u)du.

Let cm(t) = gn(x)e "™dx, etc. Then (7.4) impliesthat cm(t) = ¢; (t)cg(t), socy(t) =

cm(t)/cs(t). Let m be akernel density estimator of m. This suggests the nonparametric estimator
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of the characteristic function of g, ég(t) =c(t)/c(t). Following Diggle and Hall (1993), we

therefore consider the nonparametric deconvolution estimator of g,

(7.5) G0 = J(B)E, (He™dx+ JL- w(b)]c,. (1)edx,

where w(t) is aweight function and g* is afixed density. Diggle and Hall(1991) choose cg(t) =0
and wW(t) = 1(|t|Epr), wherepr>0and pr® ¥ asT® ¥.

No formal results are presented here for this estimator. If { 6, } arei.i.d., aresult similar to
Theorem 4 can be proven using the central limit theorem and arguments similar to those in Fan
(1991) and Diggle and Hall (1993). However, extending this proof to the case that { 6,} are
dependent appears to be difficult.

The nonparametric deconvolution EB estimator, b"°® , is computed using (7.3) and (7.5),
where the integrals are evaluated numerically. The kernel density estimator m was computed from
{ 6, } using at-distribution kernel with five degrees of freedom and bandwidth c(T/100)?7/$ 6
where c is a constant (referred to below as the t-kernel bandwidth parameter). This heavy-tailed
kernel was found to perform better than truncated kernels because m appears in the denominator of
the EB estimate of the posterior mean. Diggle and Hall (1993) chose cg+ in (7.5) to be zero, so that
the deconvolution estimator was shrunk towards a uniform distribution. However, numerical
experimentation indicated that it is better to shrink towards the parametric Gaussian prior, so thisis
the choice of g* used for the results here. The weight function w(t) was chosen to be triangular so

w(0) = 1 and w(pr) = 0.
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Both the nonparametric deconvolution EB and nonparametric ssmple EB estimators

occasionally produced extremely large estimates, and some results were sensitive to these outliers.
We therefore implemented the upper truncation |l:A),EB | £ maxi|l:A)I | for al nonparametric estimators.
Other benchmark estimators. Results are also reported for some estimators that serve as
benchmarks: the infeasible Bayes estimator, the OL S estimator, and the BIC estimator. The
infeasible Bayes estimator is the Bayes estimator based on thetrue G and s ?; thisisfeasible only

in a controlled experimental setting. The BIC estimator is the estimator that estimates b; either by

A

b or by zero, depending on whether this regressor isincluded in the regression according to the

BIC criterion. Enumeration of all possible models and thus exhaustive BIC selection is possible in

this design because of the orthonormality of the X's.

7.2 Experimental Design

The data were generated according to (1.1), with e i.i.d. N(0,1), where X; are the K principal
components of {W, t=1,...,T}, where W arei.i.d. N(0,1) and independent of {e}; X; was rescaled
to be orthonormal. The number of regressorswas set at K =r T. Results are presented for r = 0.4
andr =0.7.

Two sets of calculations were performed. The first examines the finite sample convergence
of the Bayes risk of the various estimators to the Gaussian Bayes risk of the true Bayes estimator;
that is, this calculation examines the relevance of theorems 3 and 4 to the finite sample behavior of
these estimators. For these calculations, the parameters b; were drawn from the mixture of normals

distribution,
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(7.6) bi i.i.d. N(m,sZ)w.p.l and N(m,s2) w.p. 1 .

Six configurations of the parameters, taken from Marron and Wand (1992), were chosen to
generate awide range of distribution shapes. The densities are shown are shown in figure 1. The
first sets| =1, so that the b's are normally distributed. The second and third are symmetric and
bimodal, and the fourth is skewed. The fifth density is heavy tailed, and the sixth is extremely so.
In al of the experiments, the mean and variance parameters were scaled so that the population
regression R? was 0.40.

The normal/mixed normal design allows analytic calculation of the Bayesrisk for the
(infeasible) Bayes estimator and the OL S estimator (where the risk only depends on the second
moments). For the other estimators, the Bayes risk rg was estimated by Monte Carlo simulation,
with 1000 Monte Carlo repetitions, where each repetition entailed redrawing (b, X, €).

The second set of calculations evaluates the frequentist risk of the various estimators for a
design in which the coefficients are fixed rather than drawn from a distribution. For these

calculations, b; was set according to

i=1..[1K] @

_1g,
(7.7) b; _%O,i =[l K]+1,..., K%

where| isadesign parameter between 0 and 1, and g is chosen so that the population R = 0.4.

For these results, r was set at 0.4.
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7.3 Resultsand Discussion

The Bayes estimation risk results are presented in table 1; resultsforr =0.4andr = 0.7 are
shown in panels A and B, respectively. First consider the resultsin panel A. The Bayesrisk of the
OLS estimator isr = 0.4 for all sample sizes; the experimental design means that the asymptotic
result in Theorem 2 holds exactly in finite samples. The Bayes estimators offer substantial
improvements over OLS, with risks ranging from 0.25 to 0.12 (improvements of 40% — 70%
relativeto OLS). The BIC estimator generaly performs worse than OLS, presumably because BIC
isin part selecting variables that have small true coefficients but large estimated coefficients
because of sampling error. The exception to thisis when the b's are generated by the outlier
distribution. Here 10% of the b's are drawn from alarge-variance normal, and 90% of the b's are
drawn from a small-variance normal concentrated around 0. Thus, most of the regression’s
predictive ability comes from afew regressors with large coefficients, and BIC does arelatively
good job selecting these few regressors.

Two results stand out when looking at the performance of the empirical Bayes estimators.
First, their performance is generally very close to the infeasible Bayes estimator for al of the
sample sizes considered here, and thus they offer substantial improvement on the OLS and BIC
estimators. The exception occurs when the b's are generated by the outlier distribution. In this case
the empirical Bayes estimators achieve approximately half of the gain of the infeasible Bayes
estimator, relativeto OLS. For these outlier distributions, the BIC estimator dominates the
empirical Bayes estimators. The second result that stands out is that the three empirical Bayes
estimators have very similar performance. Thisis not surprising when the b's are generated from
the Gaussian distribution, since in this case the parametric Gaussian empirical Bayes is predicated

on the correct distribution. In this case, the similar performance of the non-parametric estimators
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suggests that little is lost ignoring this information. However, when the b's are generated by non-
Gaussian distributions, the parametric Gaussian empirical Bayes estimator is misspecified. Yet,
this estimator still performs essentially as well as the non-parametric estimators, and, except in the
case of the outlier distribution, performs nearly as well as the optimal infeasible Bayes estimator.

Theresultsin panel B, for which r = 0.7, present asimilar picture. The Bayes risks of the
OLS and BIC estimators is typically poor and is worse than the parametric or nonparametric EB
estimators. The parametric and nonparametric EB estimators have Bayes risk approaching that of
the true Bayes estimator except when the b's are generated by the outlier distribution.

The frequentist risk results are given in table 2. No prior is specified so the Bayes estimator
isnot relevant here. When | issmall there are only afew non-zero (and large) coefficients, much
like the b's generated by the outlier distribution. Thus, the resultsfor | = 0.05 are much like those
for the outlier distribution in table 1; BIC does well selecting the few non-zero coefficients; the
empirical Bayes estimators perform well relative to OLS, but are dominated by BIC. However, the
performance of BIC drops sharply as| increases; BIC and OLS are roughly comparable when | =
.30, but when | = 0.50, therisk of BIC is50% larger than the risk of OLS. In contrast, the
empirical Bayes estimators work well for all valuesof | . For example, the (frequentist) risk of the
nonparametric ssimple empirical Bayes estimator offer a 50% improvement on OLSwhen | is

small, and more than a 75% improvement when | islarge.

8. Application to Forecasting Monthly U.S. M acroeconomic Time Series
This section summarizes the results of using these methods to forecast monthly U.S.
economic time series. The forecasts are based on the principal components of 151 macroeconomic

time series. Forecasts based on the first few of these principal components from closely related

31



data sets are studied in detail in Stock and Watson (1998, 1999). Here, we extend the analysisin

those papers by considering forecasts based on all of the principal components.

8.1. Data

Forecasts were computed for four measures of aggregate real economic activity in the
United States: total industrial production (ip); real personal income less transfers (gmyxpq); real
manufacturing and trade sales (msmtq); and the number of employees on nonagricultural payrolls
(Ipnag). The forecasts were constructed using a set of 151 predictors that cover eight broad
categories of available macroeconomic and financial time series. The series are listed in appendix

B. The complete data set spans 1959:1-1998:12.

8.2. Construction of the Forecasts

Forecasts were constructed from regressions of the form

(8.1) Yer1 = DX + @41,

where X; is composed of the first K principal of the standardized predictors. The coefficient vector
b was estimated by OL S and by the parametric and nonparametric simple empirical Bayes
estimators. These estimators were implemented as in the Monte Carlo experiment. Results are
presented for both one month ahead and one quarter ahead predictions. These |atter results were
calculated using quarterly aggregates of the data constructed using the final monthly observation of

the quarter.
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All forecasts are computed recursively (that is, in ssmulated real time) beginning in 1970:1.
Thus, for example, to compute the forecasts for month T, principal components of the predictors
were computed using data from 1960:1 through month T. The first K = min(151,r T) principal
components were used as X;, wherer = 0.4. To capture seria correlation in the variables being
predicted, residuals from univariate autoregressions were used for yi+1. Thus, letting z denote the
variable to be forecast, yi+1 was formed as the residual from the regression z.; onto (1, z, z.,...,
z.3) with data from t = 1960:1 through T-1. The regression coefficientsin (5.1) were then estimated
using the methods described above with data through from t = 1960:1 through T-1. These
estimated coefficients, together with the coefficients from the autoregression were used to construct
forecasts for zr.1. This procedure was carried out for T = 1970:1 through the last available
observation in 1998.

In addition, as a benchmark we report forecasts based on the first two principal components,
aconstant, and lags of z estimated by OLS, that is, OLS forecasts with (X, Xot, 1, %,...,z-3) &S

regressors. Following Stock and Watson (1998), we refer to these as“DIAR” forecasts.

8.3 Results

Results are presented in table 3. The entriesin this table are the mean square error of the
simulated forecast errors relative to the mean square error from the univariate autoregression.
Thus, for example, the first row of table 3 shows the results for the 1-month-ahead predictions of
industrial production. The value of 1.01 under the column heading "OLS" means that the forecast
constructed using the OL S estimates of b had a mean square error that was 1% greater than the
forecasts that set b = O (the univariate autoregressive forecast). Results are also shown for the

empirical Bayes estimators and for the DIAR estimator.
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Severa findings stand out in table 3. Firgt, in all cases the empirical Bayes estimators
improve upon OLS. Second, the relative MSE of the empirical Bayes estimators are always less
than 1.0, so that these forecasts improve on the univariate autoregression. Third, asin the Monte
Carlo experiment, the parametric and non-parametric empirical Bayes estimators have nearly
identical performance. Finaly, the DIAR models yielded the most accurate forecasts.
Apparently, it is better to forecast using only the first two principal components of the predictors
with no shrinkage, than to use many of the principal components and shrink them toward a
common value.

Taken as awhole the table suggests only modest improvement of the empirical Bayes
estimators relative to the univariate autoregression. Thisis somewhat surprising given the
performance of the Empirical Bayes estimators in the Monte Carlo experiments reported in section
4.3. The explanation seems to be that the predictive power of the regression (measured by the
regression R?) is not as great in as in the Monte Carlo design. In the Monte Carlo experiment, the
R? was 0.40, and for the series considered here it is considerably less than 0.40. For example,
suppose for a moment that the DIAR results give a good estimate of the forecastibility of y given all
of the predictors. Thus, for the 1-month ahead forecasts, the R? is approximately 10% — 15%. A
calculation shows that if the population R? is 15% and r = 0.4, then the asymptotic relative
efficiency of the empirical Bayes estimators is only 0.95, and deteriorates to 0.98 when R? falls to
10%.

The final question addressed in this section is whether the empirical Bayes methods can be
used to improve upon the DIAR models. To answer this question the forecasting experiment was
repeated, but now using the DIAR model as baseline regression rather than the univariate

autoregression. Thus, residuals from the DIAR forecasts were used for i1 in the empirical Bayes



regressions. The results for this experiment are shown in table 4. There is some evidence that the
EB estimators can yield small improvements on the DIAR model. For example, PEB yields an

average 3% improvement over DIAR.

9. Discussion and Conclusion

This paper studied the problem of prediction in alinear regression model with alarge
number of predictors. Thisframework leads to a natural integration of frequentist and Bayesian
methods. In particular, in the Gaussian case, the limiting frequentist risk of permutation-
equivariant estimators and the limiting Bayes risk share alower bound which is the risk of the
subjectivist Bayes estimator constructed using a“prior” that equals the limiting empirical
distribution of the true regression coefficients. This bound is achieved by the empirical Bayes
estimators laid out in this paper. The empirical Bayes estimators use the large number of estimated
regression coefficients to estimate this "prior." These results differ in an important way from the
usual asymptotic analysis of Bayes estimators in finite dimensional settings, in which the likelihood
dominates the prior distribution. Here the number of parameters grows proportionally to the
sample size so that the prior affects the posterior, even asymptotically.

The Monte Carlo analysis suggested that the proposed empirical Bayes methods work well
in finite samples for arange of distributions of the regression coefficients. An important exception
was adistribution that generated a very few large non-zero coefficients with the remaining
coefficients very closeto zero. Only in this case did choosing the regressors by BIC perform better
than the empirical Bayes estimators.

Although macroeconomic forecasting motivated our interest in the methods developed here,

the theoretical results also contribute to the econometric literature on regression with many
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unknown parameters. Thus, for example, these methods may prove useful for instrumental variable
models with many instruments (e.g., Angrist and Krueger (1991), Bekker (1994), Chamberlain and
Imbens (1996)).

There are severa unfinished extensions of thiswork. The theoretical analysis relied on
martingale difference regression errors and orthonormal regressors. The assumption of martingale
difference errors prevents these results from applying directly to multiperiod forecasting, a problem
of practical interest. Within the framework of orthonormal regressors, one might want to model the
potential forecasting importance of the factors as diminishing with their contribution to the R? of
the original data. It isstraightforward to do this using parametric empirical Bayes techniques, but it
isless clear how to extend thisideato the nonparametric empirical Bayes or equivariant estimation
problems. Similarly, although the assumption of orthonormal regressors coincides with the factor
structure used in the empirical application, in other applications it might be more natural to forecast
using the original, nonorthogonalized regressors.

Finally, the empirical Bayes estimators yielded considerable improvement in the Monte
Carlo design — indeed they approached the efficiency of the infeasible “true” Bayes estimator — yet
they delivered only small improvements in the empirical application. This suggests that the
empirical finding is not the result of using an inefficient forecast, but rather that there simply is
little predictive content in these macroeconomic principal components beyond the first few. If true,
this has striking and, we believe, significant implications for empirical macroeconomics and large-
model forecasting. Additional analysis remains, however, before we can be confident of this

intriguing negative finding.
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Tablel
Bayes Estimation Risk of Various Estimators

Regression R*=0.40, s 2= 1.0

A.r=04
Estimators
b Distribution Bayes |OLS |BIC |PEB |NSEB | NDEB
i. T=50
Gaussian 0.25 0.40 0.54 0.29 0.29 0.31
Bimodal 0.24 0.40 0.62 0.29 0.28 0.29

Separated Bimodal 0.22 0.40 0.69 0.29 0.28 0.28

Asymmetric Bimodal | 0.24 0.40 0.61 0.28 0.28 0.29

Kurtotic 0.24 0.40 0.44 0.28 0.28 0.32

Outlier 0.13 0.40 0.17 0.25 0.24 0.28
ii. T=100

Gaussian 0.25 0.40 0.56 0.27 0.27 0.28

Bimodal 0.24 0.40 0.63 0.27 0.27 0.27

Separated Bimodal 0.22 0.40 0.69 0.27 0.26 0.25

Asymmetric Bimodal | 0.23 0.40 0.62 0.26 0.26 0.26

Kurtotic 0.24 0.40 0.46 0.26 0.27 0.29

Outlier 0.12 0.40 0.16 0.24 0.23 0.27
iii. T=200

Gaussian 0.25 0.40 0.57 0.26 0.26 0.26

Bimodal 0.24 0.40 0.64 0.26 0.26 0.26

Separated Bimodal 0.22 0.40 0.70 0.26 0.25 0.24

Asymmetric Bimodal | 0.23 0.40 0.63 0.25 0.25 0.25

Kurtotic 0.24 0.40 0.49 0.26 0.26 0.27

Outlier 0.12 0.40 0.16 0.24 0.22 0.27
iv. T=400

Gaussian 0.25 0.40 0.59 0.25 0.26 0.26

Bimodal 0.24 0.40 0.65 0.26 0.26 0.25

Separated Bimodal 0.22 0.40 0.69 0.25 0.24 0.25

Asymmetric Bimodal | 0.23 0.40 0.65 0.24 0.25 0.24

Kurtotic 0.24 0.40 0.51 0.25 0.25 0.26

Outlier 0.12 0.40 0.17 0.25 0.21 0.30




Tablel Continued

A.r =07
Estimators
b Distribution Bayes |OLS |BIC |PEB |NSEB |NDEB
i. T=50
Gaussian 0.34 0.70 0.69 0.42 0.43 0.39
Bimodal 0.33 0.70 0.75 0.43 0.43 0.39

Separated Bimodal 0.32 0.70 0.81 0.43 0.42 0.38

Asymmetric Bimodal | 0.32 0.70 0.73 0.41 0.41 0.36

Kurtotic 0.34 0.70 0.61 0.42 0.42 0.39

Outlier 0.19 0.70 0.34 0.39 0.38 0.34
ii. T=100

Gaussian 0.34 0.70 0.68 0.38 0.39 0.37

Bimodal 0.34 0.70 0.75 0.38 0.38 0.36

Separated Bimodal 0.33 0.70 0.81 0.39 0.38 0.36

Asymmetric Bimodal | 0.32 0.70 0.74 0.36 0.37 0.35

Kurtotic 0.33 0.70 0.60 0.38 0.39 0.37

Outlier 0.19 0.70 0.32 0.36 0.35 0.33
iii. T=200

Gaussian 0.34 0.70 0.68 0.36 0.37 0.36

Bimodal 0.34 0.70 0.75 0.36 0.37 0.36

Separated Bimodal 0.32 0.70 0.80 0.36 0.36 0.35

Asymmetric Bimodal | 0.32 0.70 0.73 0.34 0.35 0.34

Kurtotic 0.33 0.70 0.59 0.36 0.37 0.36

Outlier 0.19 0.70 0.29 0.35 0.33 0.33
iv. T=400

Gaussian 0.34 0.70 0.68 0.35 0.36 0.35

Bimodal 0.34 0.70 0.74 0.35 0.36 0.35

Separated Bimodal 0.33 0.70 0.79 0.35 0.35 0.35

Asymmetric Bimodal | 0.32 0.70 0.74 0.33 0.34 0.33

Kurtotic 0.33 0.70 0.60 0.35 0.36 0.35

Outlier 0.18 0.70 0.27 0.35 0.32 0.33

Notes: The values shown in the table are the Bayesrisk r, (b, f.) where the distribution

of the coefficientsis shown in first column. The estimators are the exact (infeasible)
Bayes estimator, OL S, BIC models selection over all possible regressions, the parametric
Gaussian simple empirical Bayes estimator (PEB), the nonparametric Gaussian simple
empirical Bayes estimator (NSEB), and the nonparametric deconvolution Gaussian
empirical Bayes estimator (NDEB).




Table2
Classical Estimation Risk of Various Estimators
Regression R*=0.40, s = 1.0, T = 200, r = 0.40

b.=g” 1(i £1 K)

Estimator
[ OoLS BIC PEB NSEB NDEB
0.05 0.40 0.08 0.26 0.20 0.27
0.10 0.40 0.11 0.25 0.19 0.29
0.20 0.40 0.28 0.24 0.21 0.27
0.30 0.40 0.42 0.23 0.21 0.24
0.40 0.40 0.52 0.21 0.21 0.22
0.50 0.40 0.58 0.20 0.19 0.20
0.60 0.40 0.63 0.17 0.18 0.17
0.70 0.40 0.66 0.15 0.15 0.15
0.80 0.40 0.69 0.12 0.12 0.11
0.90 0.40 0.71 0.08 0.09 0.08

Notes: The values shown in the table are the classical risk, R(b,b), where thefirst | K
values of b take on the value g and the remaining values are 0. The estimators are OL S,
BIC models selection over al possible regressions, the parametric Gaussian ssimple
empirical Bayes estimator (PEB), the nonparametric simple Gaussian empirical Bayes
estimator (NSEB), and the nonparametric deconvolution Gaussian empirical Bayes
estimator (NDEB).



Table3
Simulated Out-of-Sample Forecasting Resultswithr =0.4
Mean Square Errors Relative to Univariate Autor egression

Forecast Method
Series oLS PEB NSEB DIAR
1 Month Ahead Forecasts
Industrial Production 1.01 0.94 0.94 0.89
Personal Income 1.07 0.98 0.98 0.91
Mfg. & Trade Sales 1.03 0.94 0.94 0.88
Nonag. Employment 1.04 0.95 0.95 0.82

1 Quarter Ahead Forecasts
Industrial Production 0.95 0.94 0.94 0.72
Personal Income 0.96 0.95 0.95 0.81
Mfg. & Trade Sales 0.92 0.91 0.91 0.72
Nonag. Employment 1.02 0.96 0.96 0.73

Note: The table entries show the simulated out-of-sample forecast mean square error
relative the mean square forecast error for a univariate autoregression. All forecasts were
computed using recursive methods described in the text with a sample period beginning
in 1960:1. The simulated out-of-sample forecast period is 1970:1-1998:12.



Table4

Simulated Out-of-Sample Forecasting Resultswithr =0.4
Mean Square Errors Relativeto DIAR forecasts

Forecast Method

Series oLS PEB NSEB

1 Month Ahead Forecasts

Industrial Production 1.04 0.95 0.97

Personal Income 111 0.99 1.00

Mfg. & Trade Sales 1.03 0.96 0.96

Nonag. Employment 111 0.98 0.98
1 Quarter Ahead Forecasts

Industrial Production 1.06 0.95 0.95

Personal Income 1.02 0.98 1.00

Mfg. & Trade Sales 0.98 0.99 0.98

Nonag. Employment 1.19 1.01 1.01

Note: The table entries show the simulated out-of-sample forecast mean square error
relative the mean square forecast error for the DIAR model with 2 factors. All forecasts
were computed using recursive methods described in the text with a sample period
beginning in 1960:1. The simulated out-of-sample forecast period is 1970:1-1998:12.
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1 Appendix A: Proofs of Theorems

The first part of this appendix contains proofs of Theorems 1 and 2. The second part
contains proofs of Theorems 3 and 4. Please note that when an equation number is
referred to in this appendix, the reference is to the equation in this appendix (rather

than in the body of the paper) which has that number, unless otherwise stated.

1.1 A.1 Proofs of Theorems 1 and 2

Before we begin, note that Assumption 2 clearly implies the following summability

inequalities (due to the exponentially decaying upper bound on the v,,)

i i v, < D < o (1)
m=1n=m
inun < D < >
which evidently yield (since v,, is nonnegative by definition)
Z v, < D < oo. (2)
n=1

Proof of Theorem 1: First, we show unbiasedness:

1 1
E|6? = ——E[ce] - ——E [’ X Xe] (3)
T-K T(T - K)
T 1 K T T
T T-K’° T(T-K) ;;;E [Xis Xireoei]
T




T , KTo?

where the first equality follows easily from the definition of 42, the second is by
Assumption 1 and calculation, for the first and second terms respectively, the third
equality is due to the fact that F [X;sXuee] = 0 if s # ¢, and = o2F [X2] if
s = t. The fourth equality follows from the fact that ., X2 = T and from
trivial summation. The final equality follows by simple cancellation. Note that the
unbiasedness does not depend on the mixing assumption, although it is crucial later
in the proof.

Before entering into the proof of the squared-error bound, it is worth noting that,
for any random variables Zi, ..., Z,, each of which has an n'* absolute moment, and

if p; >0, >, p; = n, then, by iterating Holder’s inequality,

B[, 20 <TI0 (B[ Z)")" ™. (4)

This fact will prove useful when we apply Assumption 1 to various cross-moments
below, and we will not explicitly cite it when it is applied, in the interest of brevity.

Now, using unbiasedness,

A-2



- ol (-5 (-5
1 ('e)” — 2 () (e 5Ke) +

(T - K>2 (e’XTX'€> (5’XTX'5) )

B [ﬁz Yemt Yict 535?]

+E [T(T__QK)z ) IRD VD HED D ARE-D, 9. CHHN

1 K K T T T T
T2(T7K)§ Zi:l Zj:l Zs:l Zt:l Zu:l Zw:l

+E

Xiinthquwgsgtgugw

.

and we shall address each of the three expectations in the final expression in turn.

The first expectation can be written as

1 r T 9 9 B 1 T T )
(T — K)? ;;53515 = (T—K)QS;;E[‘ESQ} (6)
1 r ) )
= GoRp LTVt El]
B T(T—1)04+25T:1E[5§]
- (T-K)y° (T-K)*
so that
_1 A 2.2 T(T_l) 4
‘E l(T— K)? ;;58@1 T T-rp” (7)
- (T-K)
DT
- (T-K)
C,
< -
- K
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where the first inequality is clear, the second follows from Assumption 1, and the third

is by the asymptotic nesting which has been assumed, in which K is an asymptotically

constant fraction of 7.

The second expectation may be evaluated as follows:

Now we must break out 6 cases:

Case 1: s =1 =u.

This contributes, in absolute value,

IN

<

&

where the first inequality is by Assumption 1, the first equality is by the lin-

earity of expectations, the second equality is by >, X2 = T, and the second

inequality is by the asymptotic nesting, in which K is asymptotically a constant

fraction of 7.

A4



Case 2: All time subscripts are distinct.

Then FE [X;;Xiues6467] = 0 by using the m. d. s. property of ¢, or, if ¢ is the
greatest subscript, by the homoskedastic m. d. s. property of ¢ followed by the

m. d. s. property.

Case 3: s=t>uoru=t>s.

Suppose w. 1. 0. g. that s =t > u; then

\E [ Xiue? Xiueu (10)
= |B[Xue! Xueu] — B [Xuel] B [Xuedl
< vea(B i) (m ]
< My, (11)

where the equality follows from the fact that F [X;.e,] = 0, and the first in-

equality follows from Doukhan (1994, Theorem 3 (5) on page 9), which states

e .o]

that, if r and z are H{'-measurable and H;;,

-measurable random variables,

respectively, and if E [r?], F[z?] < oo, then

|Cov (r,2)] < vpn/E[r?]\/E [2?].

Note in particular that the moment bounds hold by Assumption 1, and that the

o-field H® is generated by the random variables { X, &4, - - ., X5, €5 }. The second

A-5



inequality follows from the uniform (over i,u, and t) bounds on the moments

guaranteed by Assumption 1. Thus, the absolute value of the contribution of

these terms to the expectation is

IN

IN

IN

<

T s 3, B et (12)
T(T ZZZ‘E[ et X

2IM T
T( QZZ Z Vi

i=1 u=1t=u+1

K T T-u
Un
- ZZZ
2M- K T o
Un
EES 3Py
QMC* K T
s
2M10*KT
T(T - K)*
%
K

where the first inequality is by the triangle inequality, the second inequality is

by the preceding display, the first equality is by setting n = ¢ — u, the third

inequality is due to the fact that v,, > 0 by definition, the fourth inequality is

by expression (2), and second equality is by trivial summation, and the final

inequality is due to the asymptotic nesting, in which K is asymptotically a

constant fraction of 7.

Case 4: s =1 < u.



Here F [X;e}X;,e,] = 0 by the m. d. s. property of €.

Case b: s =u > t.

Here E [X2e2e?] = o?E [XZe?] by the homoskedastic m. d. s. property of e,
and
2 [xiel] - Bxi] £ [ (13)
¢ (e[ (B
S MZVs—t

where the first inequality is that of Doukhan (1994, Theorem 3 (5) on page 9)
used above (noting that Assumption 1 guarantees moment existence), while the

second follows from Assumption 1’s uniform (over i, s, and ¢) bound on the

moments. But E [X2] F [¢7] = 02FE[X2]. Thus

- KZ I ERD SRS Dl i1 B [XPe2e?]

(%ﬁ Zz 1215 123 t—‘,—lE[XES])

< T Q;ES;JE[)@&S el| —otE X7
K T o
* K T
= T(Z:}%CKZZ;tzl
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2MC*KT

- T(T-K)
< G
- K
Case 6: t > s = u.
Here F[X2e2e?] = o2E [X2] by the homoskedastic m. d. s. property of € as

given in Assumption 1. Thus the overall contribution of these terms is:

K T t-1

Tg%EQDSZEMQ. (15)

i=1t=1s=1

Now that we have broken out the cases, we may pull them back together again:

T

| o)

(T - K)

T K T

‘E l Rk ZZZ 5,52Xi5Xm555u] — (
T( - t=11i=1s=1u=1

T T S S BIXE]

Ci+Cy+C3+Cy vy
< e | s OE SL S B (X

(%02)

C1+Cg+Cg+C4 9
< E[Xx
: K +T< KZZ Xi +

r r —2KT
Elx2] - [ 22,2

o - ()

C+C—H7+C 20" K d
- 2K3 4+T(— VZEgpﬂ+

—9KT
E —ag)

et (5 - (R

C1+CQ+03+C4 20';1K
= + -+

K (T — K)
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—20!KT* [ —2KT ,
T(T — K)° (

T — K)QJE
. Cl—|—02+03—|-04 QUgK
B K (T - K)?
< G
- K

Finally, the third expectation is

D YR D DD DHRD RS DARD Dl
E TK) =1 =1 =1 Zt=1 =1 (17)

Xiinthquwgsgtgugw

K K T T T T

- T TLLIYYY

i=1 j=1s=1t=1 u=1 w=1

B [ Xis Xt X ju X juwEs€tEutu)
for which we will need to consider 11 different cases.
Case l: s=t=u=w.

E {X " Xo.E ﬂ < DE {XESX ]28} < D? by Assumption 1 (and nonnegativity, for

the first inequality), so the absolute value of the contribution of these terms is

K K T ) -
T( — QZ;Z;Z‘ZE[X X5 el (18)
i=1 j=1s=
D K T
< 1
- T2(T - K2;JZ:§;:
K2D?

T T(T—K)

< &%

- K



Case 2: All time subscripts are distinct.

Here E [ X;s Xi X juXjwescteucw] = 0by them. d. s. property of € (Assumption

1).
Case 3: s=t>u>w (w. L. 0. g.;also, t =u>w > s, etc.).

The terms here are of the form F[X2e?X;,6,X;,6,]. Noting that, by the m.

d. s. property of ¢ (Assumption 1), E[X;,e,Xjuew] = 0, we see that
|B [XEe? XueuXjuen]| (19)
< |E[XieiXuenXuew] — B [X33] B [XjueuXjueu)
< v (B [xi)) /2 (E [X]?ueinwefu])l/Q

S M3Vt7u

where the first inequality follows by the observation preceding the display, the
second inequality is by Doukhan (1994, Theorem 3 (5) on page 9) and Assump-

tion 2, and the third inequality follows from Assumption 1.

Observing that F [X;,e,] = 0 by the m. d. s. property of £ (Assumption

1), we also obtain

|B [XEe? XueuXjuen]| (20)

< |B[XieEXueXuen| — B [X23Xjueu| B [Xjueu)

A-10



< Vu_w(E[Xﬁ X2 QDI/Z<E[X2 Dl/Z

ju €u Jw Ew
S M4Vufw
in an entirely similar fashion.

Thus, the total absolute-value of the contribution of the terms covered by

this case satisfies

LYYy Y Y | @1
E X282 X 060X juwtw 21
T2 (T — K)2 i=1 j=1 w=1 u=w+1 t=ut1 e !
20 3 DID DD Dl 215  Eo PR N
< 26t XjueuXjuweuw
Y (T—K)2 =1 j=1 w—1 u—wt1 t—ut1 e !
1 K K T T T
< - min { Msv u,M Vy— w}
TQ(T—K)2i21j21wZ:1u§+1t=;+1 Mo, Mo
maX{M3,M4} rKEZ T I .
< min{ Vs o, Vy w
- T2(T-K) ;32 ngrlt:uﬂ b }
Dmax{M;, M} LKL L I (1) o= 3w-w)
< min{e 2
o T2(T—K) ;;wz:lu;rltgrl { }
K K T T 2u—w
_ Dmax{Mg,]\gﬂ ZZ Z Z Z (u w) + Z e—%(t u)
17 (T_ K) i=1 j=1 w=1 u=w+1 | t=u+1 t=2u—w-+1

o DmaX{M3,M4} EEZ
- T2(T-K)? ZZZ

i=1 j=1w=1 T T —2(t—u
+ Eu=w+1 Zt:2u7w+1 e 2( )

w A’I'L

B Dmax{Mg,M4}iii i e
- T2 T—K2 i=1 i=1 w= ntw) A,
R E =l

A
o ne 2"

_2
+ 2 Xeng1 € 2
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i=1 j=1w=1
. 2D2 max {Mg,M4} K2
B T(T — K)?
.G
- K

where the first inequality is clear, the second inequality follows from the two
bounds given above (since each of the previous two bounds holds for each term,
the smaller of them must hold), the third inequality is evident, the fourth in-
equality follows from Assumption 2, the first equality follows from the fact that
t—u > u—w if and only if ¢ > 2u—w (and the monotonicity of e~"), the second
equality follows from trivial summation and rearrangement, the third equality
follows upon setting m =t — u and n = u — w, the fifth inequality follows from
the nonnegativity of v,, and n, the sixth inequality follows directly from the
bounds of expression (1), the third equality is due to simple summation, and
the seventh and final inequality follows from the asymptotic nesting, in which

K is asymptotically a constant fraction of 7.

Case 4: s >t =u > w (w. L. o. g.; this case includes all terms whose time

subscripts take this form, with one greatest, two equal, and one least).

Here we obtain, by the m. d. s. property of & (Assumption 1), E [X;ses X X167 X juwew] =

0.

A-12



Case 5: s >t >u = w (w. L. o. g.; this case includes all terms whose time
subscripts take this form, with one greatest, one intermediate, and two equal and

minimal).

Just as in Case 4, F [Xiseinteth 52} = 0 by the m. d. s. property of ¢.

Jju~u
Case 6: s=t=u>w (w. L. 0. g.; this case includes all terms which have three

equal time subscripts and one lesser time subscript).

Noting that E [Xj,e,] = 0 by the m. d. s. property of ¢ (Assumption 1), we

have that
|B [ X3 X8} Xjweu| (22)
< |B[X2XuEi X juen] — B [X3Xue}| B [Xjueu]|
< v (BXEXG) (B X))

S M5Vt7w

where the first inequality follows from the preceding observation, the second is
due to Doukhan (1994, Theorem 3 (5) on page 9) and Assumption 2, and the

final inequality is due to the uniform moment bounds of Assumption 1.

The total absolute-value contribution of the terms handled in this case is

thus
1 SRt ali E|X2X.e3X 23
TR S 2 2 P KX Ko (23)
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&
>
SN
s
Ry
R

g

Q)
£

A IA
3 3
Hlo =

| |
s =
M= )=
M T
= 1)~

DM5 K K T
< 1
PI-KP 5
_ DM;K?
- T(T-K)
.G
- K

where the first inequality is standard, the second follows from the above bound
on each summand, the third inequality follows from the summability condition
of expression (2), the equality follows by simple summation, and the final in-
equality is due to the asymptotic nesting, in which K is a constant fraction of

T asymptotically.

Case 7: s >t =u=w (w. 1. 0. g.; this case handles all terms which have three

equal time subscripts and one greater time subscript).
By the m. d. s. property of the €, we have that £ [XisssttX tst = 0.

Case 8: s =t > u = w (note that here, we deal only with the specific subscript

ordering given).

We have that F [X2e2X2e2| = o2F [X2X2e2|, B (X2} = o2E[XZ, and

]uu ]uu %

E[X2e] = 0?E[X2], s

]uu

juu

B[ Xieix}el] - olB | X3 E [ X3]| (24)
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[Xixet] - ot [x3] £

ju €u ju

XiXpe] -2 [xi] B[]

juu juu

I

juu

S MGthu

where the first two equalities follow from the observations made immediately
above the display, the first inequality comes from Hall and Heyde (1980, Theo-
rem A.6 on page 278) and Assumption 2, and the final inequality comes from

the uniform moment bounds given by Assumption 1.

We can now bound the absolute value of the difference between the total

contribution of the terms handled by this case and

K K T T , ,
TToRY Y Y E X5 B (25)
This is done as follows:

mﬁz YK ZJK=1 Y1 Zfqurl E [XltSQXJZu 3} (26)

e Tt T Y T BIXE] B [ X2,
K T

Y Y [B[xiexte] - otp X3 B [x2)]

j=lu=1t=u+1

ilZVtu

u=1t=u+1
1

T oo
> 2 v
u=1n=

<
T2 (

1=

IN

K
T KPS
1

K K

T2 Z;Z
K K

T KP

1
7=1
=1

IN

T2 (

iiil

i=1 j=1u=1

IN

T2 (
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MgDK*>
T(T — K)*
e

- K
where the first inequality is standard, the second is by the above bound on each
summand, the third follows from nonnegativity of the v,, and setting n =t — u,
the fourth follows from expression (2), the equality is by simple summation,

and the final inequality is due to the asymptotic nesting, in which K is an

asymptotically constant fraction of 7.

Case 9: u = w > s =t (note that here, we deal only with the specific subscript

ordering given).

This is identical to Case 8 above, except that we get the time terms ¢t < u rather
than the terms ¢ > u. Thus, the result is that the total contribution of the

terms to which this case applies is close to

o K K T , ,
T oRY o 2 B X X (27)
in the sense of the following bound:

m YDLED DR DD Syl ) [Xfﬁ?Xfu&ﬂ

0'4 u—
—mz Zilil Ele Egzl Et:ll E[X;E [iju}
Cho
i

IN
|
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Case 10: s = u >t = w (note that here, we deal only with the specific ordering

of the subscripts given).

E[X;sX;se2XuXjel] = 02F[X;sX;sXuXjel] by the homoskedastic m. d. s.
property of £ (from Assumption 1). Now, E [X;Xe?] = 02E [X;X;] for the

salne reasorn, SO

|B [ X0 X562 X X 27| — o2 B [XaX;0) B [Xis X (29)

UEE {Xiszinthﬁﬂ - UEE {Xitht@%} E[Xis Xjs]

_ 2
= o

E {XiSXjSXithteﬂ -k {Xithteﬂ B [Xis X

IN

ey (E [XiXJ?tggbl /2 (E [ststbl /2

IN

M7Vs—t

where the first two equalities are by the identities noted immediately above the
display, the first inequality is by Doukhan (1994, Theorem 3 (5) on page 9) and
Assumption 2, and the final inequality is by the uniform moment bounds given
in Assumption 1. Thus, we can obtain, exactly as in Cases 8 and 9 above, a
bound on the absolute value of the difference between the total contribution of

the terms handled here and the object

2.2 > ElXuXu B[X:.X;] (30)



where the bound is:

—ZTZ(TiK) S S Y Y B X Xee2 X X e -

T2(T K)? EzKl Z =1 Et 1 E —e1 B[ XuXj4) B [ X6 Xjs)

- K

Case 11: t = w > s = u (note that here, we deal only with the specific ordering

of the subscripts given).

This is entirely similar to Case 10, except that the bound is derived on the

distance between the total contribution of the terms handled here and

t—1

T K2ZZZ E[XuXj] B[ Xis Xjs] - (32)

T ( i=1j=1t=1s

Il
—

The bound is:

W S S it iy B [Xis X g2 Xun X e

(33)

0.4

— T E et et et emt B [Xa X o] B [Xis X
- K
Now we may pull all the cases back together again to get:
mz PIAED DED DARD RS DA DA
E [Xiinthquwgsgtgugw] (34)
otK?
- (K7
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IN

C7r+Cs+ Cy

K
Tz(Tl_K)2 Zfil Zngl 25:1 ZtT:qul E [Xi%igngZugi}
ot T
g Tt T T Tt BIXE B X3,
mj i ZJK:1 DRSS ) [Xi%fgngjzuei}
0'4 uU—
_TQ(T—K)Q Zfil Zf:l 25:1 t:ll E [Xlzt] E [iju}
TZ(Tl_K)2 E{il Zf:l Zthl EST:,:H E [Xiszse??Xqutef]
0.4
— TR et et et amrir B [Xa X B [Xis X
TR RF Limt i1 Lim1 St B [Xis Xjae 2 X X e
U4 —
— T Lict Lje1 et Temt B [XatXj) B [Xiu X
0.4
TR Limt Ljm1 et am B [XaeXj] B [ X3, X
0.4
— T rgE et et et B (X X)) B [Xit Xe]
0.4
T T Y Y Y E[X3] B [ X3
0.4
+ TTRI-K)? >E, Zﬁ(ﬂ >, E[X3E [X;t}
oiK?
- (T-K)”




0.4
N TR il Zngl Y1 Y EIXH E [Xfu]
otK?
- (1T-K)?
- K
K K T T
+ zX XisX's
R S X E X XX,
< C7+C8+CQ+ 10 +C11+C12+Cl3+014
- K
o K K T T
+ 2 ZZZE[XX]E[XX]
17 (T_K)2 i=1 j=1t=1s=1
J#i
K T T

+ T2 (T — K2ZZZE[X12’5] [ ]

i=1t=1s=
C7+Cg+09+010+011+012+013+014+015
- K
Cie
K

We may finally combine the bounds we have obtained for each of the three

expectations involved, and notice that o = %SLUE, to yield:
2
‘E [(02) } _ ot (35)
1 rz T(T—1)
< e2e?| — ol
B ‘ l(T—K)Q;; ’ t] (T - K)**
T
+ 203
(T' - K)

b [T(T:2K)2 IARD Y ARD DAND DA 5t2Xiinu535u}

- (@i7?)
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1 K K T T T T
TZ(TfK)Q Ei:l Ej:l Zs:l Et:l Eu:l Ew:l

+ B [ Xis Xt X ju X jwe s€tEut ]
otK?
- (T-K)

C, T Cs Cie
< =+ = + = + =
- K ‘(T—K) K K
_ G, Cr G G
- K K K

C
< i
- K

which completes the proof of Theorem 1. Q.E.D.

Proof of Theorem 2: Because we have w. 1. 0. g. set H = I,

R (b, b)

(36)



2
[N po‘s

where the first four equalities follow from simple calculation, the fifth equality holds
because if s # t, then F[X;sX;ese;] = 0 by the m. d. s. property of ¢ (from
Assumption 1), the sixth equality is due to the fact that F[X2e?] = o2E [X2], the
seventh equality follows from Y7 | X2 = T (since X'X = Tlk), the eighth equality
follows from simple summation, and the limit is due to the asymptotic nesting we
have specified, in which % — pas T — oo. All of the other results are immediate

consequences of the above calculation. Q. E. D.

1.2 A.2 Proofs of Theorems 3, 4, and 5

We start by collecting some additional definitions.

Definition 1

2

dr = % log K
by = (bbb bx)
¢(u) = the univariate normal density with
mean 0 and variance o2
fire (u;) = the marginal likelihood of bi given b;

= fr (u)du_;

U_g
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_ 1 K
fx(z) = ggfm (z)
fiik (lA)z b;, l;] b]> = the likelthood of ZA)Z and I;j given b; and b;
= /u_(. ' fK (’LL) du_(”)
miK (&) = /_O:o fik (l;z - bi) dG (bz)
mi (b) = d‘é [ o:o firc (b — bi) dG (by)
_ 1 l ad
mi (r) = E;mm (x)
my () = /O; ¢ (b —b1) dG (by)
N N my;; i)i, [; ;
I Fuar (b= biyby — by) dG (b:) dG (by)
1 K
mi (x|y) = ﬁ.lmﬁK(afly)
J=1,

i#i
Note that Assumption 7 implies the following limits:
Skqx — 0
Ks§ — oo

S%{logK — o0

K=5/%]og* K

0
3 -
K =5/% i log K
— 0
sk
SK

A-23



qf(/K — 0

The following lemmas are used in proving the main results. The first three
lemmas collect Berry-Esseen-type results about convergence of certain densities and

their derivatives to local limits.

Lemma 1 (Berry-Esseen Results for Densities) Under Assumptions 1, 2, and

3, we have the following local limit rate results: 3 finite C, Ky s.t. V K > K,

sup|fixc (5) =6 ()] < CK TlogK (38)
sup [fixc (s) = ¢/ ()] < CK %logK (39)
Proof of Lemma 1: Let n,, = 2t Suppose that the sequence 7,7y, - .

Oe

satisfies Conditions A and C of Appendix B, where the constants in those conditions
do not depend on i. Then, by Theorem 2 of Appendix B and a simple change of scale

(recalling that o2 is bounded away from both zero and infinity),

sup|fixc (s) = ¢ ()] < CK ilogK (40)

Sgp|f{K(5)—¢,(5)| < CK*élogK

for each 7, where the constant C' does not depend on 7. It follows that these in-
equalities hold uniformly in i = 1,..., K, i. e., that (38) and (39) hold. To prove
the theorem, it therefore suffices to prove that 7,;,1,;s, . . . satisfy Conditions A and C
with constants that do not depend on 7.
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We first verify that Condition C is satisfied. By Assumption 1, £ [n,,] = 0 and

\/T > 1 Lz
nl = tizsgtgs (41)
¢ To? e

1 T

B TagtzE[ ’tgt]
1

- fEL X]

where the first equality is by definition, the second is by the m. d. s. property of the
s (Assumption 1), the third is by the homoskedasticity of the €’s (Assumption 1)
and the fourth equality is by the orthonormality of the X'’s.

Also, by Assumption 1,

sup B [nfy| = sup B | Xfe!| (42)

IN
Q

so the moment conditions in Condition C hold uniformly in . The condition on the
(time series) mixing coefficients in Condition C and the fact that it hold uniformly in
1 follow directly from Assumption 2. This verifies that Assumptions 1 and 2 imply

Condition C.
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It remains to show that Condition A of Appendix B is implied by Assumption 3
uniformly in ¢. Let

o0

¢§t(5 (5) = / eismtp;?t (nit | X(til)a 5(t_1)) dny (43)

—00

be the characteristic function of 7;, (conditional on all past X and ¢), and define

Ui (s) = / e (2| X070, 600 de (44)

to be the characteristic function of €; (conditional on all past X and ¢).

We need to show that dJa > 0, Cy < oo, and My < oo such that

V|| = Co. sup [wi* ()] < Mo ls| (45)

Set Cy = 1. Note that Assumption 3 implies that

sup ¢ (s)] = sup ‘ [ e p; (a0 | X070, 0 dey (46)
1 foo d
. iset e (t—1) _(t-1)
o / e l_da: 5 (et | X ,E )] de;
1 o iSEL d (t—1) t—1
= sup ‘——82 / e ld€2pt (8,5 | X( el )) de,

< s_sup/

= sup

< ]\47|S|_2

where the first equality is by definition, the second is by integration by parts, the third
is by another integration by parts, the first inequality is obvious, the fourth equality is
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by |e~**t| = 1, and the final inequality is by sup, [°2

j—;%pi (& | X(tfl),s(tfl))‘det <
oo according to Assumption 3.
By Feller (1971, page 527) (or simply a short calculation), we have the first in-

equality in the following display, and the rest follow from (46) and our assumptions:

for |s| > 1,
sup [0 () = sup| [ i (50 (@) e (a7)
0o 1
< sup| [0 (s2) Y (@)da| + sup | [0 (s)p ()
it it s
Vsl « —1/lsl N
o) [ i (s)p (r)de| + sup| [ (o) (o) da
—1
+sup| [ (s2)p (2) da
it —00
o M L MeM: 1/]s]
< / —72p;)§ (x)dz + 6—27d:1c Mgdx
1 |sz| 1ls| |sz| ~1/ls|
~1/lsl MM -1 M.
—l—/ 6—27daz + / —72pft( (x)dx
—1 |sz| —oo |si
oM,  2Ms  2M:Mg  2MyM;
S 2 + 2
|s| |s| 5| El

so @ = 1 and we are finished.

Lemma 2 (Berry-Esseen Results for Joint Densities) Under Assumptions 1, 2,

and 3, we have that 3 finite C, Ky s.t. ¥V K > K,

sup |fyrc () — 6()6(w) < CK tlogK (48)
2,7,8,U4

0 1
sup |- (s.0) = & ()0 ()| < CK B log K (49)
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Xitey
Proof of Lemma 2: Let n,;, = Ui . If the sequence of bivariate random

th€t

variables 7),;,, 7,9, - - - satisfies Conditions A and C in Appendix B uniformly in (i, j),
then Theorem 3 of Appendix B holds uniformly in (7, j) and Lemma 2 follows. The
argument that Assumptions 1 and 2 imply Condition C for 71,0, . . . uniformly in
(i,7) parallels the corresponding argument in the proof of Lemma 1 and is omitted.
It remains only to show that Assumption 3 implies Condition A of Appendix B

uniformly in (4, 7). Let
xe _ e o () (t=1) (1)) 7-(1) 7 (2)
Vi~ (s1,82) = Lw Lwe Pijt (mjt | X € )dnijtdmjt (50)

be the characteristic function of 7,;. We need to show that Ja > 0,y < oo, and

My < oo such that

Vls| > Co, sup |6 ()] < Mo |s| ™" (51)

As in the proof of the corresponding part of Lemma 1, choose Cy = 1.
We cannot use the rather simple method of Lemma 1 above to prove (51), because
of the possibility that the vectors (s1,s2) and (x;,x;) might be orthogonal, causing

o)’ +12 P to be undefined (infinite) even when both |s| and |z| are large.
51Ti+52%;

To avoid this problem, define by A the set of points in the plane such that the

angle between the vectors s and x is within «y of either 7 or 37“ (that is, the vectors are

“y-close” to being orthogonal), and the magnitude of the x vector is between |—i| and

|s|"/*. Recall that (siz; + s9;)° = |s|” || cos? B, ., where 6, , is the angle between s
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and x. Also, note that the density pf](-t (xi, z;) is bounded by Assumption 3. Finally,
recall that |cosy| dominates a sawtoothed function of v (draw a line from each zero of
|cos | to the nearest maximum of |cos | to the left of the zero, and another line to the
nearest maximum to the right of the zero, and you will have drawn the sawtoothed
function). Thus, cos™ (g + ’y) < %27_2 for 0 < v < 7, and the same expression
holds for cos—2 (37“ + 7).

Set Cy = (g) — 3, so we will demonstrate that the inequality in display (51) holds
for s such that |s| > (%)74/3, which implies that |s| ~*/* < 5. Set vy = |[s] —3/4
so that v < 7 for |s| > Cj and we may apply the cosine inequality developed in
the preceding paragraph. Let B, denote a ball of radius r centered at 0 in %2, and
let R2 — B, denote R? excluding this ball. If r; > ry, let B,, — B,, denote B,
excluding B,,. By Feller (1971, page 527) (or simply a short calculation), we have

the first inequality in the following display, where the rest follow from (46) and our

assumptions.

0 0
sup (15 (s1, 82)‘ < sup / / Wi (5125 + 8225) Py (4, 27) did (52)
ijt iyt —00 J—00
< sup / Ui (s12; + szxj)pfj(-t (i, z;) dz| +
ijt %2—3‘8‘1/4
sup Vs (12 + Sij)p;')]('t (i, ;) dz| +
ijt |/ Biyjs|
sup / Y5 (s12; + soxj) pfj(-t (xi, z;) dx
ijt |/ B j1/a=Buys
< sup [V5 (5125 + S25)| p;»’](-t (@i, x5) do +

ijt JR2=B, 1/4
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IN

IN

IN

IN

IN

sup W5 (s1; + s01;)| pisy (24, ;) dow +
ijt JByy|s

sup |07 (512 + s925) | iy (2, 25) dae
it J B 1/a=Biy)s)
X
su o (T, ) doe +
ijtp %273\5‘1/4 p Jt ( ])
sup pf](-t (x4, ;) do +
ijt JByys|
SEP/Apgj(-t (i, z;) dx +
sup |5 (5123 + sa)| Py (3, 25) dae
ijt I B 1/a=Biys—A
¢ G 2,
sup (125 + samj) > iy (i, ;) d
ijt Y B 1/a=Biys—A
C Cy 12,
Tz +—=+2 |S| /
H El
sup |3|_2 |ac|_2 cos 2 Qs,mpfg-t (i, x5) dx
ijt /B 1/a=B1jjs—A
C Cy 1/2
——+ —=+Csls| " v+
|s]2 sl
T (s y 2 sup 2|7 Pl (i, 2;) do
4 ijt /B 1/a=Bujs—A
C Cy 1/2
——+ —=+Csls| " v+
5] sl
2 1
% ||~ 7_204/ —drdf
BT
C Cy 12,
152 +_+C3|3| /

_ 1
lel _20427r11n(|s|)

C 02 03 05
o T gt
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C C 2 03 05

< |s|1/2 + m 1/4 + |s|1/3

5]
where the second-to-last inequality follows from our choice of v = [s|™ /* " Thus,

Condition A is satisfied with a@ = i, and we are finished.

Lemma 3 (Rates for Additional Densities) Under Assumptions 1, 2, and 3,3 C, K, <

00 s.t. ¥ K > Ko,

sup|fxc (s) = ¢ (s)] < CK %logk (a)
sllg) ‘le (bl> —my (bl> < CK %logK (b)
sllg) ‘mK (bl> —my (bl> < CK %logK (c)
Szlip ‘mzK (132> —my, (i)z> < CK slogK (d)
Sllip ‘m’K (132> —my, (i)z> < CK slogK (e)
sup ‘mUK (1327 13;’) —mg (z}z) Mg (y) < CKtlogK (f)
5B b
SUp | ——MijK (IA)Z, BJ> —my, (IA)Z) me (Aj> < CK TlogK (9)
i,jbi,b; 1 Ob;
Proof: Part (a) follows from Lemma 1 and
sup | fic (5) = o (s)| (53)
K
— S| 3 (9 - 6 (9)

1 K
< = Yswlfix (s) = 0(s)
i=1 °
< CK Y*1ogK.
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Part (b) follows from Lemma 1 and

su)p ‘mzK (i)z) — my (132) (54)
Ul /oo |:fzK (i?z - bi) - ([;z - bz)] dG (b;)
< /_oo Szlip fix (bi - bz’) -9 (bi - bz’)

< CK YlogK

= sup

dG (b:)

Part (c) follows from part (b) in exactly the same way that part (a) follows from

Lemma 1. Part (d) follows from Lemma 1 and

sup ‘m;K ( l) m%( ) (55)

/ [ (b= 1) = 0 (b~ 1) ] d )
/ [Fic (b= be) = & (b~ b:)] dG (b0

< [amleli0) o)

< CK Y*logK

= sup

= sup

dG (b,)

where we can interchange differentiation and integration because of the uniformly
bounded derivatives of both of the likelihood functions (see Appendix B for the proof
that 3K, < oo such that f/, is uniformly bounded for all K > K, under our
assumptions). Part (e) follows from Part (d) just as Part (a) follows from Lemma

1.
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Part (f) follows from Lemma 2 and

sbuIZ ‘ngK (i) ) (l; b; )‘ (56)
= sbuE / [ ( ) —¢ (Bz - bi) ¢ (I;y - bj)] dG (b;) dG (b;)

< /°° sup | ¢ (b, _bi,zsj—bj)—¢(Bi—bi)¢(8j—bj)\dG(bi)dG(bj)
1bzbj
< CK YlogK.

Part (g) follows from Lemma 2 and

0 2 s o) <.
Sbuls i (b, b5) — %, (b,0;) (57)
= sw é:/_o:o [ firc (B = i by = by) — & (b = b;) & (b — by )| dG (by)
- s/ - [ab fire (b= b)) — & (zsi—bi)qﬁ(éj—bj)] dG (b))

< /O:O le:jIz))j a_l;ifiK (i)l - b@') — ¢ (BZ — bi) ) (B] — bj)

< CKV'?logK

where we can interchange differentiation and integration because of the uniformly

bounded derivatives of both of the likelihood functions (see Appendix B for the proof

that 3K¢ < oo such that _- fm K is uniformly bounded for all K > K, under our

assumptions).

Lemma 4 (Information and Related Bounds) Assumptions 1, 2, 3, 6, and 7
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imply that

e e (@) dr < o0
o (@ \' = (m @)’
lm (mK (m)(+>sK> mk (z)de — /700 (mq; (m)> dz
0o (m; (m))Q

Further, if in addition Assumption 5 holds,

sup m%(m;@)‘ < 0

z, €O

(63)

Proof: 'We shall prove the above lines in order, beginning with the inequality of

expression (H8).
o (m (:E) 2 o [(m' (m) 2
/_oo —( mq; (x)> de = /_oo <mz (x)) mg (x) dx

- L) o

2 o]
z*my (z) dx

+ U%l/o; (BNB (:U)>2m¢ (x)dx
= % O;a:2m¢(a:)d:v

2 oo ([ b¢ (x—b) dG (b)
+U_§/oo<f°°oo¢(af—b)dG(b)

)2 mg () dz
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2 o0
z*my (z) dz

I
|

ot —00
2 oo [2 0@ (x —b)dG (b)

T T o hyaa ) ™

= — ooa:2m¢(a:)d:1c

2 o] o) 9
+a_g/_oo/_oob & ( — b) dG (b) dz
2 [,

= — d
= L mg (x) dx

+3/°° b2{/°° gb(x—b)dx}dG(b)

0';1 —00 —00

2 oo 2
f— — d

2 o,
+U—§/_OobdG(b)

< o0

where the first equality follows from trivial manipulation, the second equality is due to

meb(m)
emg(z)

the fact that bVB (2) = z2—0 due to the normal likelihood, the first inequality

2 < 2a2 + 2%, the third equality is by definition,

comes from the fact that (a — b)
the second inequality is due to the convexity of the squaring function and an almost-
sure-in-z Jensen’s inequality result for conditional expectations (since b (z) is the
conditional expectation of b given x) (see Billingsley [1995, page 449, equation (34.7)];
note that the distribution for x for which the result holds almost surely is precisely
the distribution with density my, so the stated inequality holds), the fourth equality

holds since my, (x) = [Zo, ¢ (x — b) dG (D), the fifth equality follows from the Tonelli-

Fubini theorem, the sixth equality holds since [*_ ¢ (z — b)dx = 1Vb € R, and the
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final inequality is a direct result of the moment bounds given in Assumptions 1 and

6.
Now we shall prove the convergence in (59).
2
2
= (i (@) s (3 ()
—— | m dr — A Ay 65
/—oo( (>+8K> K(> 00 ¢(I) ( )
_ 2
> mi (z) _
—_— — d it I
I (mK oF SK) (i () — my (@) d (Term 1
PRl 2G5 T oy L ACO N P PR
/ + - —r me (x) dx erm
follows by adding and subtracting [°% (m—zfa%)zm¢ (x)dz. First we show that

Term I converges to zero. Let zx — oo such that si?zxK 1/ %log K — 0 and

stz — 0, which is certainly possible in light of Assumption 7. Then

/_o:o (mK—(@Y (M (2) = my () do (66)

M (2) + sxc
< Cosi? [ (muc () = my () do
J2E (g () = my (x)) doe
= Cosk’ \ + 2 (i (x) — my () da
+Jog (e () = my (@) da
224CK '/ *log K

< GOk [ (e (x) — my (2)) da

+ [ (M () —my (2)) dz
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2:xCK ~1/ *log K
S C()SI_(Q

+ CQZI_(Q

where the first inequality follows from the positivity of m (z) and the boundedness
of m) (z) (from Lemma 3(c)), the first equality is trivial, the second inequality follows
by using Lemma 3(c) to get [*5 (Mg (z) —my (z))de < [ CK ~'/*log Kdz =
22xCK ~1/*1log K, the third inequality follows from Markov’s inequality and the
(uniformly in K) finite second moments (due to Assumptions 1 and 6) of the dis-
tributions with densities mx and mg. Finally, the convergence to zero is by the
construction of zx.

Second we demonstrate that Term II converges to zero. Use the fact that

(a> — ) = (a—b)* +2b(a — b) to obtain

L) - () o

_ /°°< i (7) —m(f)(x))Qm(/)(x)daz (Term IIA)

—0 mK (I) + Sk me (I)

() 222

mx (T) + sk My (2)

We deal with Term ITA, then Term IIB. Add and subtract ™5 (&) inside the square,

mg(2)+sK

then use the fact that (a +b) < 2a? 4 2b?, to obtain

/00< My (z) _mé($;>2m¢(gg)dl~ (68)

—oco \ Mg (I)"’SK me (.T
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< 2/ ( M +3K_m:(l:%)(i>s;<>2m¢(x>dx (Term IIAj)

+ 2/ < mi Ex) ) 2 mg (z) dx. (Term ITAii)

—|— SK m,
Now Term ITAi can be shown to converge to zero by the following argument, which
a (d=b a—c 2 a 2 d—b a—c :
(g (T) + T) <2 (5) (T) + 2 ( ) to obtain

uses the fact that (— — §>2 =

the first inequality below:

2 / ( M (@) >2m¢(aj)dx (69)

—|‘8K me (ZE)+8K

< 4 / < +SK>2(m"igz@fi@ymﬂﬂdm
+4/ mj(x> mg () dx
( Y C?Kj)/(“foZK 2
SN w) (Srrern ) o
+4/ < K 1/8_:05KK> me (z) dz

< 4O K Y/ 2log K 4 48, 2CPK M tlog K

where the second inequality follows from Lemma 3(c,e) and the third inequality follows
from the nonnegativity of mg () and the boundedness (by Lemma 3(c)) of m/y ().
Finally, the convergence to zero is by rate bounds given in equation (37).

! (z m (z)\ 2
To see that Term ITAii converges to zero, note that <mnzgf)( +)SK — m¢§$§> clearly

converges to zero pointwise (since sy — 0). Thus, if there is an integrable (with re-

spect to the measure having density m,) dominating function for <m:(b;’)(ilK — ng) ,
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then we may apply the Dominated Convergence Theorem and be finished. But since

(a — b)* < 2a% + 2b%, we have that

([t _m;<w>>2 -

1) 2
and we know from our above proof of the inequality (58) that [ <%) my (x)dr =

! T 2
7% (nﬁ’,((;)) dr < oo. Thus, Term ITAii converges to zero.

We must still deal with Term IIB:

2f (ZZ Eii) ( e @;) my () dz (71)
(

my () + sk B my (T
2

< o[ () )
([ (o - )

and we see that the first factor is, by our above proof of (58), simply a finite constant,

1/2

while the second factor is just the square root of Term ITA. But this means that Term

IIB converges to zero, so we have demonstrate the convergence displayed in (59).

ne 2 m’ (z)\ 2
To show that the convergence (60) holds, simply note that (#) — < o )>

¢(2)+5K mg(z)

! (x 2 m’, (z 2
pointwise certainly holds, and further that <m—;?;)(+;)sl<> < <—%> and
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o0\ me(2) mg(z)

' (@) 2 m’ (z))°
/= (m“’—()> mg (z)de = [, (@) dr < o0, so we may apply the Dominated
Convergence Theorem to obtain the desired conclusion.

To demonstrate the convergence (61) simply add and subtract

2% (%)2 my (x) dz to obtain
oo ml, (x) 2 o (m/, () ?
[ (o) e - [0

/o:o (%)2 (M (x) —my () do

+/ < +SK>2m¢( Vdo — /W(ngx

where the convergence to zero follows because the first integral can be treated in
exactly the same way that Term I above was, while the difference of the second and
third integrals goes to zero by the convergence (60) shown immediately above.

The finiteness of the Bayes risk in the normal problem, as claimed in (62), can be

shown as follows:
¢ (V7 6x) = p//K S (07 (b))~ b.)” (b b) dbdG (b)  (73)
— pEZ / / (B (8.) — 1) 6 (b, — by) dbidG (by)
- p// (B (B1) = b1)" & (b1 — b1) db1dG (1)
< p//b¢ (b1 — b1) dbrdG (by)

= P/b% {/éb(i?l—lh) di)l}dG(bl)

A-40



- p/bfdc; (by)

< o0

where the first equality is by definition, the second equality is trivial, the third equality
follows because each term in the sum of the expression on the second line is identical,
and we may rename all of the variables we are integrating over b; and by, then take
the average over K such identical terms, and the first inequality holds because pVB
is a Bayes decision rule, so it produces a Bayes risk no higher than that of any
other decision rule; in particular, it performs no worse, in Bayes-risk terms, than the
constant estimator 0. The fourth equality follows from the Tonelli-Fubini theorem.
Finally, the second inequality holds by Assumption 6.

To see that the finite-derivative claim (63) holds in the parametric case, use the

following argument:

d
/ ;0 — — —b)dG b,e 74
s i (ai0)] = sup | [0l G 0) (1)
= sw |[#@-n)dG 9)‘
z, €O

< sup [supl¢! (@ — b)]dG (50)
0cO T
= sup [ CodG (b;0)
0cO
- G
where the first equality is by definition, the second equality is by the form of the

normal likelihood, which satisfies the conditions of Dudley (1999, Corollary A.12 on
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page 394), the inequality is due to the convexity of the sup function, and the third

equality follows by the direct calculation that sup, |¢’ (z —b)] = 02\1/%6_ 1/2 9,

—-1/2

and by defining Cy = gz\l/ge The fourth equality is trivial, since Cj is a

constant with respect to both b and 6.

Lemma 5 (Lower Bounds for Densities) Under Assumptions 1, 2, 3, 6, and 7,

EICl,CQ,KO < 0 st. VK > KO

1 f > C K -1 / 32
e me@ = G (a)
inf mik (I‘) Z CQK_1/32 (b)
i, T € [7(11{,(11{]
sup { 1 } < L (e
2 € [~dic,dic] | M (T) C
1 1
su U Lgue y
4, T € [—EK,CZK] {miK ('T) } - Gy ( )

where dg is defined in Definition 1 in this appendix.

Proof: We prove the parts of the lemma in order, from (a) to (d).

ol () = f (- wdG )
> [T i _
> /_w{me[ggdﬂqb(x u)}dG(u)

o0 . 1 L(aw?
= inf e 2% dG (u
/—oo {w € [-dk,dk] o\ 2T } (u)

> [T e e g )
1n e <% u
o —dg |TE [—dx,dK] O¢ 27T
dre 1 — L 442
> / e @R 4G (u
- —dg OV 27T ( )
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1
> AP / d
el D\/ﬁ eXp < 20_3 K> —dg G (U)
1 1 Cs
> ———Ad: | 1 - =2
> s (o) |- 7]
> Crexp (— 24d§<>

where the first equality is by definition, the first inequality holds because the infimum
function is concave, the second equality is again by definition, the second inequality is
due to the fact that the integrand is nonnegative, the third inequality follows because
the infimum of the normal density over z and u both in [—dk, dk| can be no smaller
than if x and u were 2dy apart, the third equality follows because the integrand
in the previous line is not a function of u, the fourth inequality follows from the
fact that 02 < D < oo by Assumption 1, the fifth inequality is by the existence of
a second moment of G (Assumption 6) and Markov’s inequality, the sixth equality
holds because, for K beyond some K| large enough, we can simply note that 1 — %
is greater than some positive constant, the fourth equality is by the definition of dy
in Assumption 7, and the last equality follows by simple calculation.

To see that the inequality of part (b) holds, note that inf; , ¢ [—ay 4, Mix () >

infy ¢ —ag.ax] Mo () — CK 1/ 4log K > CK ~ /32— CK ~!/*log K, where the
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first inequality comes from Lemma 3(b) and the second comes from part (a) of this
lemma, which we just proved. Now, for K beyond some K, which is sufficiently
large, we can simply absorb the K ~ !/ *log K term into the constant on the K —1/32

term, because the latter goes to zero more slowly. Doing so, we obtain the inequality

of part (b). To prove (c) and (d), simply invert the relations in (a) and (b).

Lemma 6 (Kernel MSE Rates) Under Assumptions 1, 2, 3, 4, 6, and 7, 3 C, Ky <

o0 s.t.V K > K,

sup E{[mK (8:) = ()] | b} (a)

i,|5i|§dK
- ¢ —hK(Il<71) + h3 4+ K ~13/%8]og* K
+ 2K 13/ BplogK + K~ 1/2log* K
~ ~ 2 ~
sup E{ e () — mt (b |b2} (b)
o B {5 - )
< C e +hk KT P log’ K
+ 2K 5/, log K + K~/ *log’ K
sup Pr [ZU@ (IA)@) > gk | lﬂ (c)
i,|bi| <dgx
— 0

Proof: If we have b; € [—dk,d] then

B { v (b)) — e ()] b} (75)



S Var (mz[{ (i),) | ZA)Z> (Term I)

First consider Term I. Now,

~

Var (i (b:) | bi) (76)
b —b;\ |
- (fm x5

K

b — b, by —bn\ | :
< g i n ]
< g Ca) () 1)

JF#E ni

L2
b. — b. A
< S (1 —n) (w( /) m)x
2
h2 (K_ At n#i hK

IN

hic (K = 1)

where the first equality is by definition, the first inequality is familiar, and the second
inequality holds by the following argument: first, note that the o-fields generated by
random variables which are linear combinations of the elements of the T x 1 vectors
X, (where the weights in the linear combinations are fixed) are certainly sub-o-fields
of the o-fields generated by the X; vectors themselves (intuitively, we may lose infor-

mation by taking linear combinations, but we will certainly never gain information by
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doing so). Thus, if we recall the notation of Assumption 4, and in addition define G¢

as the o-field generated by the random variables {131 = %X i€+ b a<i< c},

we see that for any b and for any €, G is a sub-o-field of F¢, so that for any ¢ and

a’

for any b,
T(n) > sup sup ‘C’orr (fE, Yy | Xj,e)‘
m zeF"yeF
1
Corr <£U, Yy | ﬁij-e + bj>‘

m—+n
> sup sup
but this means that the mixing coefficients 7 (n) apply to the b; as well as the X i

m zeGm(e),yeG, , (€)

since we can certainly use the following bound (letting the o-fields generated by the

b; be denoted G¢ as before):

sup  sup ‘C’orr (x, y | l%-,s)‘

m eeGlyeg,

= sup sup FE HCOT’T’ (fE, Yy | Bj,& b)H

m wegm yeg

m—+n

< supsup sup ‘COTT’ (:U, Yy | l%-,e,b)‘

b m zeGmyeg>

m—+n

< 7(n)

which allows us to make use of Doukhan (1994, Theorem 3 (5) on page 9) to con-

oo

mip-measurable random variables,

clude that, if v and v are GJ*-measurable and

respectively, and if F'[u?], E [v?] < oo, then

|Cov (u,v)| < 7(n)\/E[u?\/E[vY].

A-46



The final inequality in display (76) follows from a change of variables (so that the

argument of the kernel is no longer scaled by h ), the boundedness of the kernel, and

the summability of the 7 (n) (from Assumption 4).

Next, turn to Term II in display (75). Because |a||b — | + |ab — ¢?| > |¢||a — ¢,

IN

IN

IN

IN

sup  my () [mc (ylz) —my ()]
’i,wG[de,dK],yGQ

1 c
sup my () mi g (ylx) —me (y)
i2€[~ds dic] yeR (K —1) %é:( " )
1 c
sup ———— ) my (z) |m;x (y|lz) — my (y)
ioel—didg]wer (K — 1) %:1 ‘ " ‘
1
sup  my (2) [mG (yle) — mg ()

(K - 1) j#i br€l—di,dx | ,yER

1 mi e (yl) [mix (x) — my (2)]
—_— sup
(K_ 1) i£i Lhre[—dg,dix],yeR
us o + |mijx (y, ) —my (y) my ()]

L5 SUD; yel - de el yer M (Y1) [Mixc () — my ()]
(K —1)

J#i

+ SUD; sl i) yer [T (Y, @) = Mg (y) my (2))]

j#i LrE[—di,dx],yER

{(Kl_ 1) Z sup mz'CjK (ylz) |mik (x) — my (:v)|}

+ CK ~'/%1og K

{<K1—1>Zl e m?jK(y'@“)H sup |mz»K<x>—m¢<x>|]}

]75,[ i,me[—dK,dK],y@R iyme[_dedK]yyem

+ CK ~'/%1og K

1 c ~1
su m; 2)OK Y/ *4og K
{(K— 1) gme[dﬁmem i (417) © }

+ CK ~'/%logK
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1
< *K1/32 K71/41 K
< {—(K_DZC C og
JF#i
+ CK ~'/%1og K
= C'K'Y/3?CK-'*%ogK + CK~'/%logK

< C3K~YClogK

where the first equality is by definition, the first inequality is by the convexity of the
absolute value function, the second inequality is by the convexity of the sup func-
tion, the third inequality is by the fact stated immediately above the display, the
fourth inequality is again by the convexity of the sup function, the fifth inequality
is by Lemma 3(f), the sixth inequality is again by the properties of the sup function
(the sup of the product may never be greater than the product of the sups when
the arguments are nonnegative), the seventh inequality follows from Lemma 3(b),
and the eighth inequality follows because m{ y (ylz) = % by definition, and
the numerator of this fraction is bounded, since the variance of ¢ is bounded below,
so the density ¢ is bounded, so the density m, is bounded, and Lemma 3(f) im-
plies that then the numerator of the fraction is bounded. But the denominator is
bounded by CLQK 1/32 " as we know from Lemma 5(d). The second equality follows
since the summand does not depend on j, and the final inequality is due to the fact
that K (1/32-0/9]og K = K ~7/32]og K converges to zero more quickly than

K ~1/6log K, so the K ~7/32]og K term may be absorbed into the constant on the
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K ~1/%]og K term for sufficiently large K.

But from the above calculation, it rapidly follows that

s [mf () = ms ()] (77)
z,me[—dK,dK],yeﬂ?

_ sp (@)

i€ —di.dgc]yeR Mg (T)

S (ylz) —my (y)|

1
T
iae]—di dic]yeR Mg (2)
{ o)) - ms )]
i,ZCG[de,dK],yG%
< CiKl/”c;K—l/ﬁlogK
1

= CjK~'/%logK

where the first equality follows by multiplication by one, the first inequality is due
to the fact that the product of the sups is always at least as large as the sup of
the products (for nonnegative arguments), the second inequality follows from the
above calculation and Lemma 5(c), and the second equality comes from a trivial

computation. Now, the result immediately above implies that

%, EZG[de,dK]

(78)

(K1—1) i [ oo w (2) mg’K (1;@ - hKZ|I;1> dz
= sup
i, bi€[—dge k] g (i)z)

_ sup /_oo w (2) M (ZA)Z — th|l;i> dz —my (81)

i, bi€[—dr,dk]

= sup /_oo w(2) {fnlCK (l;l — th|I;i) — My (l;l>} dz

i, b;€|—dx,dK]
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o0
< sup / w(2) |mS,
i, bi€[~ddx] VT

( (

< [Twe s |G (b hucelis) —my (b
(b hczlbe) —mo (
)

- i, bi€[—dx,dk]

o
< / w(2) sup me
’Lb-LG[ dK,dK]

+/ Mg l;i—th — Mg Bz dz
), 2 o (b= faez) =
< [TwE s mG le) - me (v)] dz
ZCEG[ dK,dK],yéR
+ / 2) Cihgzdz
< / w(2) CiK ~ 13/ %og Kdz + C’ZhK/OO 2w (2) dz

< 3K B/%log K + Crhg

where the first equality is by definition, the second equality follows from the linearity
of integration, the third equality is due to the fact that my (z) = [Z0 my (z) w (2)dz
as long as w is a probability density, the first inequality is by the convexity of the
absolute value function, the second inequality is by the convexity of the sup function,
the third inequality follows from adding and subtracting m (132 — th) and then
applying the triangle inequality (and the convexity of the sup function again), the
fourth inequality follows because my is uniformly Lipschitz continuous (since ¢ has
a uniformly bounded first derivative, and we can safely interchange the derivative
and the integral), the fifth inequality follows from the calculation immediately above
the current one, and the sixth inequality is due to the fact that the kernel w has a

bounded second, and thus first, moment (as well as the fact that it integrates to one,
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in the case of the first of the two terms).

Finally, consider Term III in display (75) — we know that

sup (msc (b) —my (b)) < CKHlog? K (79)

i,b;
from Lemma 3(c) above.

Substituting the bounds (76), (78), and (79) into display (75) yields part (a) of
this lemma.

In the case part (b) of this lemma, concerning the derivative of the density, ev-
erything is entirely similar, except that the rates slow somewhat, as we use the rates
from Lemma 3 which pertain to the derivatives, rather than those which pertain to
the densities themselves.

We now have only to demonstrate part (c) of the lemma.

s Pl (5] > a8 L

< o Pt ()] > ona 18]
<o () B[l () 18]
B Z»7|,;1_|§dK SK4K ’

1 2
: o)

SKdK

— 0

! .
™ and the nonnegativ-
SK

where the first inequality follows from the definition of [ = s

ity of m, the second inequality is a direct application of Markov’s inequality, and the
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third inequality follows from part (b) of this lemma and the uniform boundedness of
my, which itself follows from Lemma 3(c) and the uniform boundedness of m,, since
by Assumption 1 there exists D, such that o> > D, > 0. Finally, the convergence
to zero is by Assumption 7 and the rate results in display 37. Q.E.D.

Proof of Theorem 3:

Let bINB = b, — agﬁ%, where sy is as in Assumption 7. This is the

infeasible simple empirical Bayes estimator based on the normal-likelihood marginal

mg (). Now write:

ra (b7, fic) —re (07, 6 ) (81a)
= 16 (0777, fx) — e (BN, fx) (Term I)
tra (07, fic) = ra (87, 6k ) (Term 11
tra (0™, ¢x) —ra (V" ¢x ) (Term IIT)

We will show that Terms I, II, and III all converge to zero. First consider Term

I1I:

ra (B, ¢K) —rq (0, o) (82)
- p//K S (BN (b)) — b:)” o (b b) dbdGc (b:6)

- p//K S0 (07 (b))~ b.)” e (b b) dbdGc (b:6)
_ p?; / / (B{NB (5:) = b)) 6 (b — b:) dbidG (bi: 0)
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- p%i / / (B (B:) = ba)" & (b — br) dbudG (bi; 0)
_ p// (3057 (b1) = 1) 6 (by — b)) dbdG (b1 0)
—p [ [ (07 (b) = 01) 6 (b — br) dbudG (b3 6)

— 0

where the third equality holds because the integrals which make up the summands
on lines 3 and 4 above are identical, and depend only on the i** rescaled least-squares
coefficient, b;. Thus, we could change variables in each of the summand integrals
to make them all notationally the same, then simply perform the resulting (trivial)
sum to get the equality. The convergence to 0 follows since b5 — bVB pointwise,
as sxg — 0, so if there is a dominating function for (i){N B (131) — b1)2 which has
a finite integral with respect to the measure ¢ (61 — bl) db,dG (by;0), then we may
apply the dominated convergence theorem and be finished. But (B{N B (31) - b1)2 <
2 <b1 — 131)2 + 20 (%)2, the first term of which is integrable by Assumption

1; the second term of this bound is also integrable, by Lemma 4 (since it is less, for

1 (b 2
each K, than 204 <%> ).

The negative of Term II is handled as follows:
ra (BIN37 ¢K) —rg (lT)INB7 fK) (83)
= 5 / / z2 b’NB (8:) = 1) 6xc (b—b) dbdCic (b;0)
. p//K S (B () —b)” fx (b b) dbdGirc (5;0)
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_ p%i / / (B (b)) — 1) ¢ (b — b:) dbidG (b3 0)
Spel f [ [ (67 () = 2)° f (b~ ) s (8:6)
- p// (0¥ (bn) = 02)" 6 (by — 1) dbudG (b1 6)
_p / / (3057 (b1) = b2)” Fic (b — b)) dbrdC (013 0)

— 0

where the first equality is by definition, the second follows from noting that the
decision rule l;f NB as a function of b;, is the same for every %, so that I;ZI NB — I;{N B as
functions of l;i, the third equality follows from change of variables and the definition
of fx, and the convergence to zero comes from: first, the fact that fx converges
to ¢ pointwise from Lemma 3, and second, the fact that (B{N B (1;1> - b1>2 fx <
2 (81 - b1)2 fx + 204 <_Trzgl()%)s;<> fx. The first term of this bound is integrable
(for every K) by Assumption 1, while the second term is integrable (for every K)
by Lemma 4, and both terms have integrals which converge to the integrals of their
limits, so we may use the Dominated Convergence Theorem and be finished.

Finally, we show that Term I converges to zero. We will actually work with the

negative of Term I.

rg (i?INB, fK) —Ta (ZSPEB, fK) (84)
_ p//K S (6 () — b)” fxc (b b) dbdGic (5;0)
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~ / / @) bPEB )= 0:) fuc (b~ b) dbdGc (b:6)

L (6 )7 )
x fic (b—b) dbdGi (b; 6)

' 2 (z;fNB (z),) _ bi)
_<02 ) o 00 )2

=g (b0) +sxc o e (6:0) +ox

x fx (b—b) dbdGy (b; 6)

1< FINB (7)) _p
pK;//Zﬁbl (B:) - &) N
§ (03 m, (bi;0> L, (bi;e) )

= — 0. =
Mg (bi;9>—|—sK My (b 9>—|—SK
x fx (b—b) dbdGyg (b; 6)

B m¢ b 9 e m%(l;z,@)
pKZ//( +sK Uam¢(3i;9>+sK>

fo( )dbdGK (b; 9)

{ / / (B2 (b:) = b:)" fic (b~ b) dbdGiy (v 9)}1/2
X { e (Jz)?K 75;3&)2 }

x fx (b—b) dbdG (b; 6)

2

2

B m¢ b 9 . m%(l;l,é)
pKZ//< +$K agm¢(gi;é)+s;<>

x fx (b—b) dbdGyc (b 9)

A-55



= {% i/ / (B2 (8:) — 1) fic (b b) dbdGc (v 9)}1/2

1/2

. 2
X Zz 1 ff( qu,(b(l;)i—)s;( - 6?m¢(b£lg)’?ﬁ<>
x fx (b—b) dbdGi (b; 0)

miy b2,9> e mQ)([;z,é) i
_pKZ//( m¢ bl,e —I—SK 06m¢(8i;é>+31(

x fic (b—b) dbdGi (b; 6)

X

where the third equality comes from the fact that a® — b = 2a(a—b) — (a — b)?,
the first inequality is an application of Holder’s inequality, and the second inequality
comes from the Cauchy-Schwartz inequality. The final expression above shows that

we need only demonstrate

€m, b1,9 +si ~ R .
R 2 /] 2M fi (b—b) dbdGic (b; 6) (85)

€my (51- ;9) +sK

since

%é [ (e () ~b,) fic (b~ b) dbdGc (b;6) (86)
= rg (BINviK)

— ra (ISNB,gzﬁK)

from the facts that Term IT and Term III converge to zero as shown above.
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Now,

m/, (b;; 0 m/ Ai;é ? . .
pKZ//( b (0:9) _ 52 ¢(b ) ) fic (b~ b) dbdGic (b;6) (87)

m¢ bl,e +8K n (bi;9> + Sk

1 R 2 miy (bg@) :
< gk o () oo
miy 62,9 my (Bi;e) ’ - . -
oS /(W o Mw) i (b 8) dbiGi 10
miy bz,H B miy (I;i;9> ’ - . -
< //<m¢ (1) +8K - (Z;i;9>+5K> fic (b—1b) dbdGic (b; 6)
< Cl
- KSK
( <w> >2<m¢<a;9)m¢<a;9) :
meg bl, +sk m¢(51;9)+81< > o 7 .
m¢(bi;9>+81<
< G
- Ks%
< z(f;ze) ) (CzHG 9\!)
m i +sK SK 7 7 .
+dp— Z// o <C2||9—9||>2 fic (b= b) dbdGic (b;6)
C
= KSI%(
+4pK184 ll—l—sup{m(/)(are ]//KH@ 6| 7 (b b) dbaGic (1)
C Cs

< + =
- Ks% Ks;

— 0

where the first inequality exploits the fact that (a +b)®> < 242 + 2b? and uses the

trick of adding and subtracting o —(% the second inequality comes from The-
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orem 1 and the fact that (m’¢ (l;l, 9))2 is bounded (using the properties of normal
convolutions), the third inequality uses the fact that (% — §)2 = (% (%) + %)2 <
2 (%)2 (%)2 +2 (%)2, the fourth inequality uses the Lipschitz continuity (uniform
in ¢ and #) of m’ and m, which is implied by the Lipschitz assumption made on
g (b;0), the fifth inequality follows by rearrangement, and the sixth inequality uses
the facts that (m’¢ (x; 9)) ’ is uniformly bounded, as above, and that, by Assumption 5,
K H@ — OHZ has uniformly bounded expectation along the sequence. The convergence
of the final terms follows from Assumption 7 and display (37).

Please note that the score used in b"Z8 implicitly depends upon &z, a dependence
which is suppressed above. Since o2 is bounded above and below by Assumption 1,
and 6? is v/ K-consistent by Theorem 1, this does not affect our results.

Now we prove part (ii) of the theorem:

We proceed to show that rg (l;N B gz5> is the “asymptotic minimax Bayes risk” in

the sense that

lim inf {sup ra (5, fK)} = rg (I;NB, (/5) (88)

K—oo § fx
where the supremum is taken over the set of likelihoods satisfying the assumptions of

the theorem. This is actually straightforward. First,

K—oo § I

lim inf inf {sup ra (5, fK>} > ra (BNB, qb) (89)
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follows from sup;, ra (5, fK) > rg (l;, gzﬁ) Vb, VK, so that VK,

i%f {s}g{p ra (i), fK)} > irgf {T‘G (i), qb)} (90)
= Tqg (ZA)NB, qb) .
Further,
i%f {S}i{p ra (5, fK>} < S}i{p ra (I;INB, fK> (91)
so that
lim sup inf {sup ra (l;, fK)} < lim sup suprg (ISINB, fK) (92)
K—oo b fx K—oo fi
= Tqg (ZA)NB, qb) .

The last equality is obviously the key to the entire result. It holds because each of
the bounding constants in the proof that Terms II and IIT converge to zero in part
(i) depends on the primitive bounding constants in the assumptions. Thus, as long
as these primitive bounding constants are fixed, the bounds in the proof of part (i)
hold uniformly for fx satisfying the assumptions, and the final equality above follows.
Q.E.D.

Proof of Theorem 4:

Let bISEB = p, — ag%@%%; this is the infeasible simple empirical Bayes

estimator based on the true average marginal myg. Now write

o (V557 i) — e (7 ) (99)
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- rg (l;NSEB7 fK) g ([;ISEB7 fK) (Term 1)
tra (lA?ISEB, fK) —Ta (ZSNB, ¢K> (Term II)

We will show that both Term I and Term II go to zero. Recall that r¢ (i)N B ¢K) <

oo from Lemma 4. First, let us deal with the easier term, Term II:

ra (077, fi) —ra (07, ¢ ) (94)
- ) / / %i (577 (b;) — b1)2 fx (b—b) dbdGi (b)

_ p//%i (B (b:) — b1>2q§K (b—b) dbdGi (b)
= 30 [ [0 (b))~ ) o (b ) dhac )

The second equality comes from the fact that both oY% and b/SEE depend only on
b; and not on l;,i, while the third equality follows from the fact that the functional
form of both b¥B and bISEB is the same for each i.

From the bounds in Lemma 3, and the definition of b/5Z8 we see that the first

integrand in the final line converges to the second pointwise. Thus, if we can produce a

A-60



dominating function for the first integrand, we may apply the Dominated Convergence

Theorem and be finished. But

(6157 (2) — v)’ Fic (= — w) (95)

- <(a:—y) —aiWK—(@>2fK (z —y)

mg () + Sk
M ()

< 2@-y) fx(@—y) + 20, (W

2
) fx (z—y)
The first term in this bound is evidently integrable by Assumption 1. The second
term is integrable by Lemma 4, so we have shown that Term II converges to zero.
Before dealing with the more challenging Term I, it is worth noting that we will
never encounter a “division by zero” problem, because of three facts: 1) the limit
density my (z) is positive everywhere (since it is a convolution of a normal density
with the prior); 2) the approximation error given by Lemma 3 is less than sk by
construction (for large enough K, see Assumption 7); 3) the denominator of bISEB jg
thus always greater than my, since we take mg (z) > my () — sk (for large enough
K) and add sy to both sides of the inequality, so that we never encounter difficulties.
Now we shall demonstrate that Term I converges to zero. Our proof is in the spirit
of Bickel et al. (1993, p. 405 ff) and van der Vaart (1988, p. 169 ff), but we extend

their approaches to handle cross-sectional dependence of the b; and to deal with a

nonconstant sequence of likelihoods.
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Note that, from (2.8) and (2.9) of the body of this paper, we can write l;x (z) =
[ (l;l ; IA),l-), where the function [ (+,-) does not depend on i. This representation, and
a similar one for [ , are adopted here. Although 62 depends on the full data, rather
than only 13, this dependence is suppressed for notational convenience; the treatment

below does, however, account for the fact that 62 is a function of the full data (see

display (100)). Now,

ra ([;ISEB7 fK) —ra (i)NSEB7 fK) (96)

- %Z} P / / :(;;gSEB (b:) —bz.)2_ (65 () —biﬂ fic (b—1b) dbdGi (b)

=l _ 2 (l;, bi — o2 meliigbsz> <6?i bi; l;_z> —o? mjig?g}{)
x fic (b—1b) dbdGy (b)
1 K i ) mhe (i)l> ? . .
_ _E;p / / <agz (Bisb-) —oi— ) - SK) fi (b—) dbdGig (b)
L X I 2 M (i)’>
+K;p//2(bl b; aEmK(l) +SK)X

I
|
==
[~
)
—
—
/
Q»
m N
=
~~
oo
“|®.1>
N~
|
Q
™ o
|
=~
A
S
N——
N———
)
~
=
~~
S
|
S
—
QL
S
QU
)
=
=



In the above, the first and second equalities are by definition; the third is a con-
sequence of the fact that a> — b* = 2a (a — b) — (a — b)?; the fourth equality simply
breaks out the two terms of the integrand; the first inequality is an application of
Holder’s inequality, and the second is an application of the Cauchy-Schwartz inequal-
ity.

From the final bound given above, we see that if we can show that

2

X o il (b . .
%;p / / (ar?l (bisb_s) — o2 () ) fic (b—b) dbdGc (b) (97)
0

mK ([;2> + Sk

—

then we will have demonstrated that Term I converges to zero, because
1 K . 9 mII( (ZA)Z> ? ~ ~
E;p// b — b — 02— fic (b—b) dbdGyc (b)  (98)

Mg (l;,) + Sk
= rg (Z;ISEB7 fK)
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g (ZA)NB, ¢K)

from the fact that Term II converges to zero, and, as noted above, rg (i)N B ¢K) < 00.

Using (a4 0)* < 24 + 2%, and adding and subtracting o2l (l;l ; B,i), we have

sy () Y
?;p// (Ugl (bi;b,l) —ang (i)l) n 3K> X (99)

fx (b—b) dbdGi (b)

~

< Zp// —0?) 2 (bb-i) fic (b—b) dbdG (b)  (Term A)

()
(z (bisbs) — o X (Term B)
fx (13 - b) dbdG (b)

which separates the problem of nonparametric score estimation from the problem of

estimating the residual variance. Now, Term A satisfies

Zp// 6% —o?) I (bb_,) fic (b—b) dbdGic (1) (100)

< 2‘;{52 / / (62— 0*)" fi (b—b) dbdGix (1)
— 2 / / (62— )" fi (b b) dbacix (b)
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where the first inequality comes from the truncation of our estimator [ of the score,
and the second inequality comes from Theorem 1. The convergence of the final bound

to zero is by construction: by display (37), %% — 0. Thus, Term A converges to

Z€ero.
Now consider Term B. Define D; = {l; b < /2 s ‘l (bl, b_ ) < qK},
and let Ep, [(1)] = ficp, () mx (5) db (so that the area of integration is restricted,

but in a way which may differ for each 7). Now,

(Z(Bi;é (> ) fi (b—b) dbdGyc (b)  (101)

IN

ot K oo e (b ’ .
2P—KEZ/ (mK ( ) ) MiK (bz) X (Term Bi)

i=17/7° Z;z) + Sk
(Pr(f(i)i;i)_i> >CIK|ZA)Z')+PT(A >\/1A228 ))di)z
L 2P0 iED i (bisbos) - mic (b) 2 (Term Bii)
K = v Mg (l;z) + Sk

where the first equality is by the Tonelli-Fubini Theorem, the second is by defini-
tion, and the inequality follows from the truncation of the estimated score function

according to the definition of D;.
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Consider Term Bi first.
200t K. o M (ih) i e
7;/00 (mK @) N 3K> mik (bz) X

Pr (‘i(i)ﬂi)_zﬂ > QK | ZA)Z) + di)
Pr (‘IA)@‘ > \/f—;slogK | IA)Z> Z

et (i (b) N

- K ;/_oo (mK (g}) n 5K> Mk (bz)

><Pr<\b\> 123810gK|b>

+2PU§§:
K = *OO K Az’ + SK

VAN
=
w
XN
N Q
]
A

VAN
=
®
I
-, Q
]
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The equality is trivial; the first inequality follows from the boundedness of (7 (x))”

(by Lemma 3(c) and the boundedness of (m;5 (az)>2), the second inequality follows

~

bi

6'2
> /155 log K, then

by Pr(A) < Pr(B) + Pr(C) whenever A C (BUC) (if

either |b;| > / 24'5% log K or 6% < 302, or both), and the third inequality follows from

Chebyshev’s inequality and the variance bound of Theorem 1 (along with a2 > 0). Of
the terms in the final expression, we see immediately that the first term converges to
zero by Assumption 7 and the second converges to zero by the uniform integrability
of its integrand, which was shown in the course of the proof that Term II converges
to zero, and by dx — oo. The third term converges to zero by Lemmas 4 and 6(c).
Thus, Term Bi converges to zero.

Finally, turn to Term Bii. Consider the i term of the average which makes up
Term Bii. We define EZ*[(-)] to be féeDm{&2>2ag} () mx (8) db and Egm [() | ZA)Z}
to be [i.p, (1) mx (IA)_Z | l;z) db_; (so that both the probability measure and the area

< (1(5) 1) <2 ()

. 2
of integration depend on b;). Since (% — g)
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2 (%)2 ‘We have:

. e (b ’
(z (bisbi) — — (@)Q SK) ] (103a)

COTV mII( (b> 2
+ _dKEDid (b b)—mK O SK) bi] mix (bi) db
< 2C (qf(+sK2 Pr (62 > 207

/i 2
+2 e Egmd (m’frl(b z?)) T_T:I; (&)) [}] Mik (b ) db
K \Y K
< 2 (qf( + s}f) %

2 dg m}( ([A)Z> 2
T / ( 7 ) X (Term Biia)

Sk J—dx \ My (bz) + Sk

Ep, | (e (bs) = e (5:)) 1] e (bs)
+é _ddz Ep, [(m;K (81) — M (&))2 |ZA)Z} mik (&) db;. (Term Biib)

where the first inequality follows from splitting the area of integration and 2a?+2b* >
(a + b)* (and from the definition of dg), the second inequality is due to the truncation
of our score estimator and the boundedness of (7 (z))* (by Lemma 3(c) and the
((42) + =) <

2 (9)2 (u)Q + 2 <ﬂ>2 to the third term in the previous line. The final inequalit
b d d p - q y

boundedness of (m;5 (x)) 2), and applying the fact that (% — 5) 2

A-68



is by Theorem 1 (for the first term) and is clear for the other two terms. The first
term of the final line converges to zero (uniformly in i) due to Assumption 7, so we
consider only the remaining two terms.

Term Biia satisfies

2 [ i (0) X (104)
S%( —dk mg (i)l> + Sk
Ep, [(mK (@) — MK (@))2 |Bz:| MK (&) di)i

2 1
—C (—+h§<+K‘13/4810g2K + 2K =1/ Fhlog K + K_1/210g2K>

mie () i
o] K \0i ~ ~

by Lemma 6(a), since omitting the restriction to b € D; can only make the expectation

IN

larger. Also, Term Biib satisfies

% B, [ (it (8) = i (8))” b € D] e (B) b

2 1

< 50— + R+ K75/ %®log? K + 2K =%/ %nilog K + K~/ *log’ K
Sk hic (K —1)

by Lemma 6(b), by the same logic. Thus we have that

Term Bii (105)
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vk + 1 gt

+ 2K 13/ %plog K + K~/ 2log? K

My

< o oo () (i) db
~ S%{ _ o0 mK<5i>+5K K 7 )

.

_|_

+ 2K =5/ %plog K + K~/ *log’ K

by display (37) and Lemma 4 (which applies upon averaging), and we are finished
with the proof that r¢ (l;NSEB, fK) —ra (l;NB, ¢K) — 0.

(ii) The proof of part (ii) exactly parallels the proof of Theorem 3, part (ii), with
WISEB replacing b'VB. Q.E.D.

Proof of Theorem 5:

(i) First, we show that permuting b_; has no effect on the value of b, (13) when
beB. Suppose we define P_; to be some permutation which leaves the index ¢
fixed but may permute the other indices in an arbitrary way. We will use the same
notation for P_; and for its restriction to I;_i, since context should always make our

meaning clear. Then, for any i =1,..., K,

bi(Pb) = (Pd) (b) (106)

0
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where the first line follows directly from 5<Pl;) =P (l~) (13)) for any permutation

P (the definition of equivariance) and the second line is by the definition of P_;.

Since this is true for any such permutation P_;, we see that bi (8) depends only on

the values, not on the ordering, of the coordinates b_;. Thus, letting G K,—i be the

empirical ¢.d.f. of the (realized values) b_;, we may write

foranyi=1,..., K.

Further, we have, for any i =1,... K,

b (6)

~

62' (617827 .. '76i—178i7bi+17 L

~

l~)1 (i)z, 82, .

51 (Bz ) GK,fi)

7bi—17b17bi+17 o

(107)

bxc) (108)

where the first line is simply a rewriting for clarity, the second line follows by consider-

ing the permutation which transposes the indices i and 1 and applying the definition

of equivariance, and the final equality is due to the fact shown in equation (107),

setting + = 1 and noting that the equation shows that the argument treated specially

is the one in the first coordinate position, which, here, is b;.

Now consider the i component of the risk function when be B,

R; (b, b; (bK)

= E|(5.(5) - n) 1)

(109)

= B|(bi (b Guemi) =) 19]
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where the first equality is by definition (with the conditioning on b stated for clarity),
and the second equality is due to the fact that I;l (1;) = 131 (IA)@ ; G K,,l-) as shown above.
Note that b; and G k,—i are independent since, under ¢, b; and b_; are independent,
and G K,—i is a function of E_i. Moreover, the only part of b which 132 depends on is
b;, and the only part of b that G k,—i depends on is G K,—i, the empirical c.d.f. of the
elements of b_; (observe that the fact that the 13j are i.i.d. is crucial in making this

hold). Using these facts and the above, we may write
- 2 -
R (b, b ¢x) = E[( (b Gui) = b)) |bi,GK7_Z}. (110)

But this has the same functional form, as a function of b; and G K,—i, for every
1 = 1,..., K, since the estimator is, for each ¢, the same function of b; and G’K’,i.

Therefore we have that

Ri(b, B 1) = [(5 (5 Greri) =) 150G (111)

1
L)
~~
&
N

where G is the empirical c.d.f. of the b; (the last line is trivial) and we suppress the

dependence on the estimator and the likelihood. This yields, for beB ,
- 1 XK -
R(b, b o) = ppe >R (b, b 6x) (112)

L bi; G
= PE;Q(M K)
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= P/ GK dGK()

= p/_oo E |:(Z~)1 md GK md(z)) - Z) | ZyéK,—i:| déK (Z)

where z is simply a variable of integration, and the last line follows by definition, where
IA)md(z) is just the coordinate of the least-squares coefficient vector corresponding to the
coordinate of b whose value z takes on. Now, it is clear that the form of the estimator
b, above is restricted in the way in which it may depend on b. Since removing the

restriction and seeking the best decision rule in an unrestricted way can only lower

the risk, we have
~ o0 A~ 2 ~ ~
inf R (b, b >‘f{/E{b*b— ,Gz}dG } 113
iR (.5 ox) 2 wip [ B0 (0) = 2) |Gk dOx )y (13)
and by standard Bayesian calculation, we obtain that the vector of coordinates
70 (l;l - z) dGx (2)

- - 114
%0 ¢ (b — 2) dGi (2) (114)

W8 (5, Gi) =
is the solution to the problem

arg inf {p/oo E [(b* (13) — z)2 | z,C?Kyi] dGx (z)} (115)

b*(b) —00
so that we have

~

inf R (b, b ¢) > R(b, OV o) = g, (07, 0). (116)

beB
An important point to observe is that pVB (l;, G K) is not an estimator: it is infeasible,
since it depends on information (that is, the empirical c.d.f. of the b;) which is not

part of the data.
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(i) We prove that ‘R (b, pNSEB. fK) - R (b, bNB gbK)‘ — 0, then simply set
fx = ¢ and observe that our result is uniform in ||bll, < M. Let b/S2P
A(’;—L this is the infeasible simple empirical Bayes estimator based on the
€ mK

average marginal
1 &
K= /

(with respect to the empirical c. d. f. of the true b;). Likewise, we have the modified

definitions
1 K
@) = Lol
1 K
mik () = E;fm(x—b])

With these definitions, and imposing ||b||, < M uniformly along the K sequence,
we note that Lemmas 1 through 6 hold uniformly along the K sequence. This is a
critical conclusion, and is used throughout the following. The reason we may make
this observation is that the only feature of the prior used in the lemmas is that the
variance is bounded, and our assumption that ||b||, < M implies that the (empirical)

variance of the b; is uniformly bounded along the K sequence.

Now write
R (b, BV i) — R (b, BEL; o) (117)
= R(b, BN fic) — R (b, B"7P; f) (Term 1)
+R (b, b7 fic) = R (b, bE%; o) (Term II)
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We will show that both Term I and Term II go to zero. Note that
suprHQSMlimsupKHooR(b, l;gf; qbK) < oo (for any M < oo, where ||b|]* =
% S K b?) from reasoning exactly similar to that of Lemma 4. First, let us deal

with the easier term, Term II:
R (b, 9" fic) = R (b, B2 oxc)| (118)

pJ % Zf; (i)fSEB (81) — bz’)2 fx (i) — b) db

—pf £ (087, (b) ~b) b (b b) db

LK o (08575 (5) = 0) fc (b — b, db,
- % Yo (i)gf,l ([;2> - bi)Z ¢ ([;z — bi) db;
< o3 [ ) ) - (22 (b))’
i=1
1 & SISEB (3, 2
"’P? Z/ (bi (bz) - bi)
=1

x \firc (b = b;) = ¢ (b: — ;)| dbs
(bt (b) 087 (0)°

+2(088 (b))~ b)) |@(bi— i) db
x (0 (bi) = 622, (b))

iK KaseB (3 _ o \? —1/4 >
- ; l N (85575 (b,) — b)) CK "/ *log Kb,
[ () )

pK@':l |bi[>2xc i ' Z

x (furc (b= b5) + ¢ (b — bi) ) dbs

IN
=
=
™
—~—

A-75



< e S [ (5 () -
+2p;i</<b“ (b) -0 0 G- n)ai )"
)
)

b)) & (b — bi) dbs

</<bISEB< ) bNB (b) 2¢ h ) >1/2

2

K
Z/ (bISEB< ) b)) CK 1 *log Kby
> (52 () =n)

R
ot
K

x (furc (b = bi) + & (b — bi) ) dbs

IN

pkfzjj"bﬂﬁw ~ 882 (5.)) 6 (b~ b.) dby

1/2
+2p< Z/ (627 (b b—bi)d&»)
1/2
( Z/ bISEB bNB@(,;i)) 925(?)2—52) d132>
+pKZ/ CadC )‘bi)ZCK*”“lOngIS@-

sz/bewﬂ@_wz
(fiK (bi - b@') + ¢ (bi - b1>) db;




+pKZ/ )  CK~/ log Kb,

—2ZK

Z/_ ( ng() . ) C’K’l/‘llongl;Z»
+ Sk

X (fiK (i?z — bi) +¢ (ZA?Z - bz)) db,

The second equality comes from the fact that both l;gf ; and l;f SEB depend only
on b; and not on l;,i, the first inequality is trivial, the second inequality follows from
a?—b* = (a — b)*+2b (a — b) applied to the integrand of the first term of the preceding
expression, splitting up the area of integration of the second term of the preceding

expression, and noting that

firc (b = b;) — ¢ (b = by)

< fix (ZA?Z - bi) + ¢ (i% - bi):
the third inequality follows from applying the triangle inequality and then Holder’s
inequality to the first term of the preceding display, the fourth inequality follows
from applying the Cauchy-Schwartz inequality to the second term of the preceding
display, the fifth inequality follows from rewriting the first two terms of the preceding
display and using (a + b)2 < 2a® + 2b? on the last two terms of the preceding display,
and the last expression converges to zero by the Dominated Convergence Theorem

through Lemma 4 (for the first two terms), and zx = s;* (for the remaining terms)
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along with Chebyshev’s inequality and the observation that <#§b+>s;(>2 < Osi?
for sufficiently large K by Lemma 3(e), the boundedness of m};, and the nonnegativity
of my.

Now we shall demonstrate that Term I converges to zero. Our proof is in the spirit
of Bickel et al. (1993, p. 405 ff) and van der Vaart (1988, p. 169 ff), but we extend
their approaches to handle cross-sectional dependence of the b; and to deal with a
nonconstant sequence of likelihoods.

Note that, from (2.8) and (2.9) of the body of this paper, we can write l;x (z) =
[ (l;l ; 1;,1-), where the function [ (+,-) does not depend on i. This representation, and
a similar representation for [ , are adopted here. Although &? depends on the full
data, rather than only l;, this dependence is suppressed for notational convenience;

the treatment below does, however, account for the fact that &z is a function of the

full data (see display (123)). Now,

R (b, 6555 fic) = R (b, 5¥57P; fi) (119)
- R [l )0 - @ ) -] e -0
| b A2 m%(i’l) >2_
_ iip/ <bl b; Ung bi>+5K fK (i)—b) di)
K = o9p /n 2
= (bl—bl—azl (bi;b,l))
LS - b — i) ¢
K= 9 (5. — b — g2 () 527 (105 — g2 (b)
L < ! ’ O-EmK bi +3K> (0-5 ( v _1) O-EmK(i’i>+5K>




1 X e e (b .
— _E;p/ <a§z (bz;b_i)—a — (Zf><+ SK) fi (b—b) db
+%ip/2 by — b — o 7}((@) X

(AN
|
=
(]~
e
\
RS
Q>
oM N
>
—
oo
“|®'>
N
|
Q
m
|
~ ~
=2
N
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—
=
—
=
|
S
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QL
=

VAN
|
x| =
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e
—
P VN
oo
=
—
oo
“‘0.”
o .
|
Q
o
S
=
—
=
Nl
+
v
=
L
Ay
=
—
o
|
>
~
QL
>

i=1
42 iip/ b — b — o2 mic (b) fic (b—1b) db Zx
K= ' ' "k (81) + sk “
LK we (b))’ :
E;p/ (ael (bisbos) o RO SK) fic (b—1b) db

In the above, the first and second equalities are by definition; the third is a con-
sequence of the fact that a> — b*> = 2a (a — b) — (a — b)*; the fourth equality simply
breaks out the two terms of the integrand; the first inequality is an application of
Holder’s inequality, and the second is an application of the Cauchy-Schwartz inequal-

ity.



From the final bound given above, we see that if we can show that

1 K Y 9 ﬁl’K (ZA)Z) ?
?Zp/ ol (bi;b_i) -0
0

> o) 1 SK) fi (b—=b)db  (120)

then we will have demonstrated that Term I converges to zero, because

i K . mhe (l;z) ’ - R
K;p/ (bz b= ot ) SK) fic (b—b) db (121)
R

(b, I;ISEB; fK)

< oo uniformly along the K, T' sequence

from the fact that Term II = R (b, BISEB; fK) - R (b, l;gf; qbK) converges to zero,

and, as noted above, supj< imsup_, R (b, I;gB

L (bK) < 0.
Using (a +b)* < 2a? + 202, and adding and subtracting o2l (IA)z

~

; b_i), we have
2
e b;
% 1p/ (5—31 (bibos) o - ng;)(j - ) x (122)
3 K i K
fx (é—b) db
< %i p / (62 - 03)252 (bizb-s) fx (b—1b) db (Term A)
e O NAY
+ i gp/ (l (bi,bﬂ) o 131) n 3K> X (Term B)
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which separates the problem of nonparametric score estimation from the problem of

estimating the residual variance. Now, Term A satisfies

255 0 [ (62— o (Bbo) fu (b b) db 13
E;p/("e_"e> (bisb-s) S (b—1) (123)
< 2??%?}/(&3—03)%( (b ) db

where the first inequality comes from the truncation of our estimator [ of the score,
and the second inequality comes from Theorem 1. The convergence of the final bound
to zero is by construction: by display (37), 2;} — 0. Thus, Term A converges to

Zero.

Now consider Term B. Define D; = {l; : ZA)Z

< \/%%logK and ‘f(l;l,?)_z)

and let Ep, [(")] = [iep, () fx (l; - b) db (so that the area of integration is restricted,

S QK}a

but in a way which may differ for each 7). Now,

2 fp / (i(i)i;z}_i)— i (%) )fK (b— ) db (124)

2p0.4 K/
- e E
K X
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; /OO ( mAK (bl) ) fix (Z;l - bi) X (Term Bi)

(ZA (l;l, IA),l) — miK <bl) ) | b] (Term Bii)

mK (b2> + Sk

where the first equality is by definition, and the inequality follows from the truncation
of the estimated score function according to the definition of D;.

Consider Term Bi first.

2po

L& e (b))
FEL () e

Pr (‘i(f)l,l},l)‘ > gk | I;l',b) + i
Pr (\b\ >\/Z log K | zS,»,b> Z

Cogpot e [ me(b) T o
= K ;/oo (mK () + 8K> firc (bi = br)
x Pr (‘Bi‘>\/ﬁz810g[(|b b) db;

2p0t K oo M (&) i -
2. (mK 0+ SK) fuse (b = i) x

Pr(\i(a-z} )\ > qic | bi, b) db;

ERpS (‘i)i‘>\lﬁ810gK|b>

?{gi/ (%>2fm (x — b;) dz

z|>di ( ) + SK

IN

+ sup Pr(‘l(b b_ )‘>qK|ISi,b)

|b |<dK
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IN

IN

2p0t K /dK mh () ?
X = i b;)d
K ; —dx \g () + Sk Jirc (@ ) de
. g
29t & Pr(bi > ﬁlogK)
Ksi & 22 1 2
—|—Pr<05>§ag)
2p0.4 K

T () e

i=1

(
+ sup Pr (‘f(i)z,l;_>

i,|51|§d1<

2000 &K pix [ iwhe(x)
XTZ}/dK (m) firc (@ = bi) da
1

= Jlel>dic (
+ ?up Pr (‘Z< 1) 71> > 4K | I;wb>
i,|bi | <dk
2008 & pax [ g (z) \?
K ;/—d[( <mK(I) + s fZK(:U—bz>d$

The equality is trivial; the first inequality follows from the boundedness of (7 (x))”
(by Lemma 3(c) and the boundedness of (m’¢ (ZE))Q), the second inequality follows by
Pr(A) < Pr(B)+Pr (C) whenever A C (BN (), and the third inequality follows from
Chebyshev’s inequality and the variance bound of Theorem 1 (along with o2 > 0). Of
the terms in the final expression, we see immediately that the first term converges to
zero by Assumption 7 and the second converges to zero by the uniform integrability
of its integrand, which was shown in the course of the proof that Term II converges

to zero, and by dx — oo. The third term converges to zero by Lemmas 4 and 6(c).
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Thus, Term Bi converges to zero.

Finally, turn to Term Bii. Consider the i term of the average which makes up
Term Bii. We define EZ [(-) | b] to be fggDm{&gﬂag} () fx (ZA) | b) db and Eg" [() | b, b}
to be ficp, () fx (IA)_Z | b, b) db_; (so that both the probability measure and the area
of integration depend on b;). Since (% - §)2 = (% (%) + %)2 <2 (%)2 (%)2 +

2 <u>2 We have:

NP e (bi ?
(z (bisbi) — — (b)(j SK) b] (126a)

Ep,

K
+ e EDi d (l (bi,b_i) — — B@) n 8K> |b,~,b] firx (bi — bi> db;
< 2C (qi + 5;°) Pr (0’? > 20?)

o A AN 2
(mK (bz> — Mik (@)) |ZA)1, b] fixe ([;Z — bi> db;

miK (i)z) + Sk

1 (3 o () 2
<mﬂf (b@>A M (b@)> 1b;, b] fix (ZA% — bi) db,
m;

IA
[\
=
NI\D
=+
o
=
N

5 2
2 d m) bl
+— - K( ) X (Term Biia)
_ .

Ep, | (e (bs) = 1usc (5)) 16 b] fc (B = bs) b

+é _CZ; Ep, {(m;K (&) — Mg (&))2 b, b} fix (i)@ - b¢> db;. (Term Biib)
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where the first inequality follows from splitting the area of integration and 2a?+2b* >
(a + b)* (and from the definition of dg), the second inequality is due to the truncation
of our score estimator and the boundedness of () ())* (by Lemma 3(c) and the
((42) + =) <

2 (9)2 (u)Q + 2 <ﬂ>2 to the third term in the previous line. The final inequalit
b d d p - q y

boundedness of (m;5 (x)) 2), and applying the fact that (% — 5) .

is by Theorem 1 (for the first term) and is clear for the other two terms. The first
term of the final line converges to zero (uniformly in i) due to Assumption 7, so we
consider only the remaining two terms.

Term Biia satisfies

Ev, | (e (b) = s (b)) o] fic (B = bi) b

IN

hg (K —1)
) Y
’ /_oo <mK (1}2) + SK> e <bi a bi) db;

by Lemma 6(a), since omitting the restriction to b € D; can only make the expectation

larger, and conditioning on any b such that [|b]|> < M < co will not change the results

of that lemma, as can be easily verified. Also, Term Biib satisfies

% _d;; Ep, [(méK (5:) — mic (b)) 16, b € D, b} fic (b — b, s

2 1

< = - -
< s%f(h%(K—n
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2 1
—C (—+h§<+K_13/4810g2K + 2K "B/ %, log K + K_1/210g2K>

+h§<—|—K*5/4810g2K + 2K %/ %hlog K + K1/410g2K>



by Lemma 6(b), by the same logic. Thus we have that

Term Bii (128)
etk B K log! K
+ 2K 13/ %plogK + K~/ 2log? K
4pct
< € 00 mK(bz)
< 1% () o =)
+ ey Tk K T P logt K
+ 2K =5/ %plog K + K~/ *1log? K
— 0

by display (37) and Lemma 4 (after averaging), and we are finished with the proof
that R (b, pNSEB, fK) — (b by gst)
Now, to complete the proof that limg ..o Supyy. < ar ‘R (b, HNSEB. ¢K> —-R (b by B, qﬁK)‘ =
0, we simply note that we never used any property of the vector b other than a bound
on the empirical variance of the b,. Over the set {b : ||b, < M} this bound is
uniform, so our results hold uniformly over this set. Thus, we simply substitute ¢,
in for fx in the result derived above.

Further, we observe that

lim sup sup {R (b, HVSEB. qbK) _zi,ng; {R (b, b; ¢K>}} (129)

K—oobll, < M
INSEB. _ NB.
= lim sup sup R<b, ’ ’ ¢K) R< b « ¢K)

FTE A R (b, 035 ) — infip {R (b, B o))
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< limlgggo ”bHsZué)M {R (b, [;NSEB; ¢K) - R (b, i)gf; ¢K)}
R M{R<b’ Vs o)~ mE{R (0,5 ¢K)}}
< lim sup sup ‘R (b, i)NSEB; ¢K) - R(b, i)ng ¢K)‘

K—oo [b]], < M

+ lim sup sup {R (b, Bgf; (bK) — inf {R (b, b; ¢K>}}

K—o0 ||blly < M beB

< lim sup sup {R (b, ng; ¢K) — inf {R (b, b; ¢K)}}

K=o [bll, < M beBs

< 0

where the second line follows from adding and subtracting R (b, i)gf o} K), the third
line follows from the fact that lim supy_, . sup, {hx () + gk ()} < limsupg_, . sup, {hg (z)}+
lim supy_, - sup, {gx ()}, the fourth line follows from noting that |z| > z, the fifth
line follows from lim o0 SUP|y), < ar ‘R (b, pNSEB. ¢K) - R (b, i)gf; gbK)‘ =0, and
the final line follows from R (b, by ¢K) < infyp {R (b, b; ¢K)}VK and Vb, as
shown in part (i) of this proof.
To bound the limsup of the sup of the absolute value, we must also consider the

liminf of the inf. To do so, observe that b¥SEB is an equivariant estimator, so that

R (b, B¥SEB; ) > infyp {R (b, b; ¢ )} VK and Vb. Note that this domination

of bBVSEB may be by a different equivariant estimator at each b. This immediately
yields
. . . INSEB. R 7.
—lim_inf_ Hlezngf M{R(b, VIS ) g{}z(b, b; qu)}} < 0. (130)
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which, together with our result above on the limsupy_, SUP)jp)|, < M> implies that

lim sup sup

K—00||blly, < M beB

R (0 9552 )~ nf {R b, 5 o)) (131)

—liminfx_ o ianbH2 <M {R (b, BNSEB; qbK) —inf; 4 {R (b, B; ¢K) }} )

lim supy_, o SUp|p|, < M {R (b, BNSEB; ¢K> — infj g {R (b7 5; ¢K> }}
< max{0,0}

< max

< 0

where the first inequality follows from the fact that |z| = max{z, —z} and the fact
that we can interchange the maximum operation with the sup and limsup operations.
The second inequality is by the bounds demonstrated above, and the final inequality
is trivial. Now, since the limsup and sup operations are being performed on a
nonnegative sequence, the result must be nonnegative. But by nonnegativity of the
sequence again, the liminf of the sup must be nonnegative. ~Thus we obtain the

desired conclusion:

lim sup sup
K—oo lblly, < M

R( 955 o) it (R0 5 o)} =0 (32)

beB
implies

lim sup

K—oo [bll, < M beB

R (0 95525 )~ nf (R (0, 55 o)} 0.

(iii) The proof of part (iii) follows from:

lim ¢ sup {sup‘R( pVSEB. fK) —R( , bNB, qbK)‘}} =0 (133)

K—o0 {nb <M
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which is due to a procedure identical to that used in part (ii) Theorem 3, noting
simply that the results there are uniform in the prior over a set of priors with the
same variance bound. This uniformity is due to the fact that the only feature of the
prior that is used is the variance of the prior or, in this frequentist case, the empirical
variance of the b;. Then we apply reasoning identical to that of the final portion of

part (ii) above to conclude that

lim sup sup

K=o pl,<M fx beB

R (b, 595, f) — it {R (b, b M}‘ —0 (3

as desired.

Q.E.D.

Proof of Theorem 6: As in the proof of Theorem 5, we note that, if we restrict
||bll, < M uniformly along the K sequence, we have that Lemmas 1 through 6 hold
uniformly along the K sequence. But if Lemma 4 holds uniformly along the K
sequence, then we get that, if Gx = G, Vb s.t. ||b]|, < M uniformly along the K
sequence,

I [R5 5525 64) 1o (57.0)] =0 135

because

R (b, 657 ¢) (136)

= o [T (08 () ) G )
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2

= p/oo /oo (1;1—037% <Bl) _bl) ¢<B1—b1) dGx (by)

so if there is an uniformly integrable (with respect to dG (b)) VK and dG (b)) dom-

~ m!, (b1 2 ~ ~
inating function of b; for [ <b1 — a?—‘f% — b1> 10) (b1 - bl) dby, then we have the
™me
desired result by weak convergence (see, e. g., Billingsley (1968)). Now,
. 2 - 2
A om!, (b1) > 2 A
<b1 — O'E;Z(E—l) — b1> S 2 (bl - b1> + 20'E <;Z(E—1) y SO that
~ m! (b 2 ~ ~
o [2 <b1 — b1)2 + 20t (%) ] ) (b1 — bl) db, is a dominating function.  This

function is uniformly integrable w. r. t. dGg (b)) YK and dG (by) by, for the first
term, the fact that 02 < oo, and, for the second term, Lemma 4. Note that to apply
Lemma 4, we must recognize that the second term doesn’t depend on by, so that we
may integrate with respect to dGy (b)) or dG (by) first, obtaining [ (—Tn%dlsl,
which is uniformly bounded along the K sequence by Lemma 4 and the observation
at the beginning of this proof, i. e., that Lemma 4 holds uniformly along the K

sequence because [|b]|, < M uniformly along the K sequence.

Q. E. D.
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1 Appendix B: Berry-Esseen Theorems for Densities and Their Deriva-
tives

This appendix provides Berry-Esseen-type theorems for densities and derivatives of
densities for univariate and bivariate random variables. These theorems are referred
to below as local limit results.

The presentation proceeds in two steps. First, the local limit results are proven
assuming that a Berry-Esseen theorem (for c.d.f.’s) and a smoothness condition hold.
Because Berry-Esseen theorems hold under a variety of primitive conditions, this pro-
vides general conditions under which the local limit results hold. Second, it is shown
that a (multivariate) Berry-Esseen theorem does in fact hold for averages of strongly
mixing random variables satisfying certain moment and mixing-rate conditions. This
theorem is an adaptation of Tikhomirov’s (1980) univariate result.

All theorems, lemmas, and equation numbers herein refer to this appendix only;

this appendix is self-contained.

2 Local Limit Result

Let ny,m,, ... be a sequence of m-dimensional random variables with mean zero and fi-

!/
nite second moments. Without loss of generality, let lim,, o, E [(ﬂ S 772.> <\/% D 772.) ] =

I,,. Let J, denote the distribution function of \/% > mn,; and let & denote the m-



variate standard normal distribution function. The local limit results will be proven
under the following two conditions.

Condition A: The random variables 7,7, ... have conditional characteristic
functions 1,1, ... (so that 1), is the characteristic function of the distribution of 7,

conditional on 7;, 1 < j < i) with the property that
dJa > 0, Cy < oo, My < oo s.t (].)

sup [¢; (1)] < Mo [t|™™ VIt| > Co.

Condition A is weaker than requiring, for instance, that the conditional densities of
the 1, be uniformly bounded, or even that any of them be bounded, though it does
rule out discreteness.

Condition B: A Berry-Esseen theorem holds for n,,7,, ..., that is,

38>0, p<oo, M <oo st. sup |J,(2) —®(2)] < Min Plog”(n) (2)

zER™

Typical Berry-Esseen theorems specify a particular constant M; and have § = % and
=0 (c. f. Feller (1971), F. Gotze (1991), Hall and Heyde (1980)). However, the
local limit results here do not rely on these specific values, and so are proven for the

more general statement 2.

Lemma 1 (Cramér 1937) Suppose t,(,x € ®™. If 1 (t) is a characteristic func-
tion such that | (t)] < v < 1 forall [t| > M, then we have for |t| < M

> It

POl < 1-0-v? Sk (3)
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Proof of Lemma 1: A terse proof for m = 1 is to be found on page 26 of Cramér
(1937). However, it is given in an expanded form here for the reader’s convenience.
Recall first that for scalars A and B, cos A < 2 + 1 cos(2A) (since 1 cos (2A) —

cos (A) + 2 = Lcos? (A) — cos(A) + 3 = 3 (cos (A4) — 1)> > 0) and sin (A — B) =

sin (A) cos (B) — sin (B) cos (A).

I ” I T NG () dJ () (4)
/ / [sin (#'¢) cos (t'x) — sin (t'x) cos (t'¢)] +
[cos (¢ (¢ — x))] dJ (¢) dJ (x)
J2% [ sin (#'¢) cos (t'x) dJ (C) dJ (x) —
J25 [ sin (¥'x) cos () dJ (C) dJ (x)
b T e (€ )T (©dd ()
_ /jo/jocos(’(C—X))dJ(C)dJ(X)
/ / cos (2t (¢ = x)) dJ (¢) dJ (x)

<

1 o
e

> sin (2t'C) cos (2t'x) dJ (¢) dJ (x) —
+

oo sin (2t'y) cos (2t'¢) dJ (¢) dJ (x)

|
o
_I_
AN

J7o% I cos (2t (¢ = X)) dJ' (€) dJ ()

+ 3lw P

=1 w

where the first equality holds because the square of a complex number’s modulus

equals its product (in complex multiplication) with its complex conjugate, the sec-
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ond equality holds by the trigonometric identity recalled above, the third is merely
a rearrangement, and the fourth follows from the fact that the two integrals in the
imaginary part are equal, so their difference is zero (we may simply relabel the vari-
ables). The inequality comes from the trigonometric inequality noted above, and

the last two equalities are simply the first four “in reverse.” Thus, we have that for

1 e |4 M)
1
WP < 1-50-v)’ (5)
and we may repeat this argument to show that for |t| € {%, 2%1) (for any integer
q=1)
2 1\* 2 2 [t
pOF <1-(3) 0-» < 1-0-v)’ 15 (6)
so that, in the same region,
2
o) < 1- -0 L ")
- 8M?

as can be seen by squaring the righthand side of the inequality immediately above
and comparing it to the rightmost quantity of the inequality in the previous display.
Now, ¢ is arbitrary, so the desired conclusion must hold for |t| € (0,M). But we

know that ¢ (0) = 1, so we are finished. Q.E.D.

Theorem 2 (Univariate Local Limit Theorem) Suppose that Conditions A and

B hold, and let m = 1. Then ¥ d € N, 3 B(d) < oo and ng(d) < oo such that,
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Vn > ng (d),

sup ‘jr(zd) (2) — ¢(d) (Z)‘ < B(d) n—B /24 llog (n)]* / 24+1

ZER o

where j9 is the d" derivative, d = 0,1,2,..., of the density of % (this
density will be shown to exist for sufficiently large n as part of the proof), and &Y s

the d™ derivative of the standard normal density.

Proof of Theorem 2: We will proceed by induction on the order d of the derivative
to be taken. First we will prove that the result holds for d = 0. Note that if the first
derivative of j, is uniformly bounded for all n greater than some given ng, then 7,
will clearly satisfy a Lipschitz condition uniformly beyond ng, that is, we will have
SUP,weR SUPy>n, |Jn (2) = Jn (w)| < By |z — w| for some By < oo. Clearly, ¢ satisfies
such a smoothness condition (all its derivatives exist and are bounded). Let B; < oo

be the Lipschitz constant for ¢. Now, if the Lipschitz constant holds for j,,

z+r
Sup.eg |jn (2) — ¢ (2)] < 31612 jn(z)_w‘ + (8)
sz | [ o [ ot do] +
z+r
sup Qﬁ (Z) — M‘
zER T
< ilellg |]n (Z) —Jn (Cf)| +
sz | [ o= [ oo do] +
sup |¢ (z) — ¢ (cs)|
zER
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IN

Bolz—Cf| +
1
;sup|Jn(z+r)—Jn(z)—<I>(z+r)+<I>(z)| +
z€R
By |z — ¢y
2
< 2(Bo+ Bi)r + —supl|Jy () — (2)]
T zeR

2M, .
< (Bo+Bi)r + Wlog (n)

< 2[2'/2(By+ B)' 2 M} 2 P 2 logh /2 (n)

where ¢, ¢y € [z, 2+ r| by the mean value theorem. The second term in the fifth in-
equality uses Condition B, and the final inequality follows by setting r = %n_ﬁ /2logh/ 2 (n),
which is certainly permitted, since r is arbitrary.
Thus the lemma is proven with B (0) = 2 [21/2 (Bo + Bl)l/QMll/Q} if we can
show that the Lipschitz condition holds.
This is where Cramér’s (1937) lemma is useful: consider general d € N. By the
Fourier inversion theorem,

e < [ |t|d{ﬁ

i=1

[

o (7)o ©)
e () e Lo () o
o [T () [

Now choose § = max {(2M0)1/ “, C’o}, where the parameters refer to Condition A.

IN

Then, by Condition A, Vt > 6, sup, |¢; (t)] < % = v. We can now apply Cramér’s
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lemma to obtain sup;, |¢, (t)] < 1—(1— l/)2 i |t| < 6. Thus, we have,

NG +2 n
sup ‘](d) ‘ < sup | (1 —(1-v)? 8(?271) dt + (10)

n>mno n>ng J —8\/n
00 MO m
nm H —L— | dt
v [ () @+
5/ M, m
A N

VD
< sup 1t|* exp (—CtQ) dt +
n>ng J —6/n
N
2 sup Vn—mMénnam/Z/ |t|dfam dt
n>ng —00
VD
< s tlexp (—Ct?) dt +
< sup [ xp (—Ct*)
2 sup M)/ @1 n-l(d+2) [ alp(d+2) / 2 / > 1t~ dt
5

n>ng

where the second inequality follows by setting C' = %ﬁand observing that exp (—Ct?) =
sup,, ( — %2>n, the third inequality follows by choosing m = [‘”ﬂ where [-] is the
least greater (or equal) integer function. The desired Lipschitz condition is now veri-
fied. We have only to set d = 0 to prove the existence and boundedness of the density
itself for sufficiently large n in an identical fashion.

We have now proven the d = 0 case. To prove higher-d cases, we now simply

substitute j@ for j, and ¢'? for ¢ in (8) and, following the steps in (8), we obtain
In J g

sup 79 (z) — ¢ (2)| (11)

zER

< <Bo<d>+31<d>>r+3sup\a<“ ()~ 6 (2)]

T zep
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where the Lipschitz condition holds as a consequence of (10). It is readily verified
that the bound in the statement of the theorem satisfies the recursion (11), and since

we have shown the bound for d = 0, we are finished. Q. E. D.

Theorem 3 (Bivariate Local Limit Theorem) Suppose that Conditions A and
B hold with m = 2. Let j© (z,w) denote the density of \/gz;";l n;, and let ¢ (z,w)
denote the bivariate standard normal density. Then ¥V d € N, 3 B(d) < oo such

that

sup ‘](d) ) ¢(d) (z,w)‘ < B (d) n—ﬂ/ (3><2d) [log (n)]u/ (3><2d)

zeER,weR
where 9 is the d'* derivative, d = 0,1,2,..., of j (z,w) with respect to z (this
density will be shown to exist for sufficiently large n as part of the proof) and HP

the d™ derivative of ¢ (z,w) with respect to z.

Proof of Theorem 3: We will proceed by induction on the order d of the derivative
to be taken. First we will prove that the result holds for d = 0. Note that if the first
derivative of 7, with respect to z is uniformly bounded for all n greater than some given

ng, then j, will clearly satisfy a Lipschitz condition in z uniformly beyond ng, that is,

z U
we will have Sup; w,u,ver SUP, >, [Jn (2, W) — Jn (u, )| < Bo — and

w (Y

for some By < oo. Now, if such a uniform Lipschitz condition holds, we can easily

show that, since ¢ clearly satisfies such a smoothness condition (all its derivatives
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exist and are bounded),

IN

IN

SUPz weR |]n (Z7 w) - ¢ (Z7 w)' (12)
T 5 (u, v) dudv
sup | (2. w) — T e 12( )
z,wE?R r
wr w+7'
sup — / / (u,v dudv—/ / (u,v) dudv
z,weR 2
U b (u, v) dudv
sup ¢(z,w) . fz fw 2( )
Z,WER r

sup |jn <Z7 UJ) - jn (cfv df)| +
z,weR

1 z+r  pwtr z+r  pw4r
sup — / / Jn (u,v) dudv —/ / ¢ (u,v) dudv
z,weR T z w z w

sup |¢ (Z, UJ) —¢ <C¢7 d¢)|

z,weR

z Cr 2
By — + 3 sup |0 (2, w) — @ (2, w)| +

w df zZ,WER

z C¢
B; —

w d¢

2M,

(B() + Bl) r + 2B lOg“ (n)

[(41/3_|_41/6> (Bo+Bl)2/3M11/3] n A/ 3ogh/3 (n)

where ¢y, ¢y € [z,z+r] and df,d, € [w,w+r] by the mean value theorem. The

second term in the fourth inequality uses Condition B, and the final inequality follows

by setting r = 3 B‘éf}g n=#/ 3log“/ 3 (n), which is certainly permitted, since r is

arbitrary.

B-9



Thus the lemma is proven with B (0) = {(41 /3 441/ 6) (Bo + By)* /3 M}/ 3} if we

can show that the Lipschitz condition holds.

This is where Cramér’s (1937) lemma is useful: consider general d € N. By the

Fourier inversion theorem,

i (z,w)| < / / It {ﬁl ¢l<\/_>‘}dt1dt2 (13)
i t i1 t
e L () oo e e {0 ()
[t] < 6y/n}, and, by choosing 6 = max{(?Mo)l/a,Co}, we will

IN

where Bs m = {t :
have v = 7 such that sup; |¢; (t)] < vV |t| > 6. But then Cramér’s lemma proves
that we have sup, |9, (t)] < 1—(1— l/)2 L [t| < 6. Thus, we have
sup ‘j )‘ (14)
n>ng
2 n
t
< sup it (1 (12 é” dt +
n>ng B&ﬁ 86
M m
n—m d 0
sup v / dt
0 fo 0 ()
< sup It]” exp (—C |t] )dt +
n>ng J Bs /m
sup MS“V”’mn“m/Q/ |t 8|7 dt
n>ng N2—Bs m
< sup It|" exp (—C |t|2> dt +
n>ng J Bs /m
sup M@+ /@l n-T(d+a) / ol (d+4) / 2 / | t1|d| tlf(d+4) dt
n>n0 %2 vn
< sup |t1| exp( C|t|2) dt +
n>ng
sup Mo[(d+4) / o] n=[(d+4) / o], (d+4) / 2 / It dt
n>ng R2—Bs /m
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2
< sup | ltlexp (-Clt?)dt +
Sup Mof(d+4)/ ol n—[(d+4) / @], (d+4) / 2 / 3 drdo
n>ng %2_35\/5
< My + sup M@/ el (@) /o1y @)/ 29, / =3y
n>ng 6

< M; <

where the second inequality follows by setting C' = 318;6'32 and noting that exp (—C |t|2) =
sup,, (1 — ﬁl——s’;%ﬂf)”, and the third inequality follows by setting m = [%W, where
[-] is the least integer greater function. The fourth inequality is due to the fact that
[t = ((10 --- 0)t)*> < |t|* by the Cauchy-Schwartz inequality, so that [t1]| < |¢],
and the fifth inequality follows upon a change of variables into polar coordinates. So
the d derivative of j, w. r. t. z is bounded. An identical proof in which |¢,] is
substituted for |¢;| shows that the d** derivative of j,, w. r. t. w is bounded. To-
gether, these two bounds produce the Lipschitz condition. We have only to set d = 0
in the proof above to prove the existence and boundedness of the density itself for
sufficiently large n.

We have now proven the d = 0 case. To prove higher-d cases, we now simply
substitute 5 for j, and &Y for ¢ in (12), and, only slightly modifying the steps in

(12), we obtain

supswen [ (z,0) = 6 (z,w)| (15)
ZFr 5 (d) d
< sup ]T(Ld) (27 U)) . fz In (’LL, UJ) u +
zZ,wER r
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1 zZ+r zZ+r
sup — / 79D (u, w) du—/ D (u,w) du‘ +
zweR T 1/z z
z+r 4 (d)
Sup ¢ (27 w) _ fz ¢ (u7 w) du
zZ,WER T
2 (d— -
< (Bo(d)+ Bi(d)r + = sup [ (2,0) = 67 (2,w)]
zZ,we

Note that the second term of the upper bound is, as a function of r, only an inverse,
rather than an inverse squared, because we have taken only a first partial derivative,
rather than a cross or second partial. It is readily verified that the bound in the
statement of the theorem satisfies the recursion (15), and since we have shown the

bound for d = 0, we are finished. Q. E. D.

3 Multivariate Berry-Esseen Theorem Under Strong Mixing

We now provide a multivariate Berry-Esseen theorem that applies to sequences {7},
of random variables in ™ which satisfy a strong mixing condition and a moment

condition.

Definition 1 A sequence of random variables 1y,n,,... will be said to be strongly

mizing with coefficients « (n) if

am) = s |P(AB)- P(4)P(B) (16)

k,ACFF,BEF,

where FP is the o-algebra generated by nj, j €{a,a+1,...b}.

a
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Condition C. Let ny,7,, ... be a sequence of R"-valued random variables with
En)] = 0, sup, E {|771»|4+7] < oo for some v > 0, and a(n) < Mze™P" for some
M; < oo and some (3 > 0.

Theorem 4 provides a m-variate Berry-Esseen theorem which holds under Condi-
tion C. The results of this theorem satisfy Condition B. Thus the local limit results
given above hold under, in particular, Conditions A and C.

This section concludes with the statement of this theorem, which is minor modi-

fication of a result of Tikhomirov (1980).

Theorem 4 Suppose Condition C'is satisfied. Then there is a constant Cy depending

only on m, 3,~, M3 such that

sup |J, (2) — ® (2)] < Cyn %logn (17)
zeR™
where J, (2) = Pr(Sp1<z1,502 < 29,...,8m < zm), with S, = H'S" o,

where H, = Cholesky {E {(Z?:l n;) (-8, 77@')/” (the Cholesky factor of the given

expectation,).

Proof: Consider Tikhomirov’s (1980) Theorem 4. Although this is a univariate
result, we see that minor modifications make it applicable to 8. Namely, the ODE
that Tikhomirov derives for the characteristic function becomes a system of ODEs,

and the solution, naturally, becomes a multivariate characteristic function. However,
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the structure of his proof remains exactly the same; his lemmas transfer naturally to

the multivariate case.
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Appendix C: Description of Time Series Data Used in the Empirical Analysis

This appendix lists the time series used to construct the forecasts discussed in section 4.
The format is: series number; series mnemonic; data span used; transformation code; and brief
series description. The transformation codes are: 1 = no transformation; 2 = first difference; 4 =
logarithm; 5 = first difference of logarithms; 6 = second difference of logarithms. An asterisk after
the date denotes a series that was included in the unbalanced panel but not the balanced panel,
either because of missing data or because of gross outliers which were treated as missing data. The
series were either taken directly from the DRI-McGraw Hill Basic Economics database, in which
case the original mnemonics are used, or they were produced by authors' calculations based on data
from that database, in which case the authors calculations and original DRI/McGraw series
mnemonics are provided. The following abbreviations appear in the data definitions. SA =
seasonally adjusted; NSA = not seasonally adjusted; SAAR = seasonadlly adjusted at an annual rate;
FRB = Federa Reserve Board; AC = Authors calculations

Real output and income

ip 1959:01-1998:12 5 industrial production: total index (1992=100,sa)

ipp 1959:01-1998:12 5 industrial production: products, total (1992=100,sq)

ipf 1959:01-1998:12 5 industrial production: final products (1992=100,s3)

ipc 1959:01-1998:12 5 industrial production: consumer goods (1992=100,sa)

ipcd 1959:01-1998:12 5 industrial production: durable consumer goods (1992=100,sa)
ipcn 1959:01-1998:12 5 industrial production: nondurable condsumer goods (1992=100,sa)
ipe 1959:01-1998:12 5 industrial production: business equipment (1992=100,s3)

ipi 1959:01-1998:12 5 industrial production: intermediate products (1992=100,sa)

ipm 1959:01-1998:12 5 industrial production: materials (1992=100,sa)

ipmd  1959:01-1998:12 5 industrial production: durable goods materials (1992=100,sa)
ipmnd 1959:01-1998:12 5 industrial production: nondurable goods materials (1992=100,sa)
ipmfg  1959:01-1998:12 5 industrial production: manufacturing (1992=100,sa)

ipd 1959:01-1998:12 5 industrial production: durable manufacturing (1992=100,sa)

ipn 1959:01-1998:12 5 industrial production: nondurable manufacturing (1992=100,sa)
ipmin  1959:01-1998:12 5 industrial production: mining (1992=100,sa)

iput 1959:01-1998:12 5 industrial production: utilities (1992-=100,sa)

ipxmca 1959:01-1998:12 1 capacity util rate: manufacturing,total (% of capacity,sa)(frb)

pmi 1959:01-1998:12 1 purchasing managers index (sa)

pmp  1959:01-1998:12 1 NAPM production index (percent)

gmyxpg 1959:01-1998:125

Employment and hours

personal income less transfer payments (chained) (#51) (bil 92%,saar)

[hel 1959:01-1998:12 5 index of help-wanted advertising in newspapers (1967=100;sa)
lhelx  1959:01-1998:12 4 employment: ratio; help-wanted ads:no. unemployed clf

lhem  1959:01-1998:12 5 civilian labor force: employed, total (thous.,sa)

lhnag 1959:01-1998:12 5 civilian labor force: employed, nonagric.industries (thous.,sa)
[hur 1959:01-1998:12 1 unemployment rate: all workers, 16 years & over (%,s3)
[hu680 1959:01-1998:12 1 unemploy.by duration: average(mean)duration in weeks (sa)
lhu5  1959:01-1998:12 1 unemploy.by duration: persons unempl.less than 5 wks (thous.,sa)
lhul4 1959:01-1998:12 1 unemploy.by duration: persons unempl.5 to 14 wks (thous.,sa)
lhul5 1959:01-1998:12 1 unemploy.by duration: persons unempl.15 wks + (thous.,sa)
lhu26  1959:01-1998:12 1 unemploy.by duration: persons unempl.15 to 26 wks (thous.,sa)
Ipnag  1959:01-1998:12 5 employees on nonag. payrolls: total (thous.,sa)

Ip 1959:01-1998:12 5 employees on nonag payrolls: total, private (thous,sa)

Ipad 1959:01-1998:12 5 employees on nonag. payrolls: goods-producing (thous.,sa)
Ipcc 1959:01-1998:12 5 employees on nonag. payrolls: contract construction (thous.,sa)
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[pem
Iped
Ipen
Ipsp
Ipt

[ pfr
Ips
Ipgov
[phrm

1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 1

[pmosa 1959:01-1998:12 1
pmemp 1959:01-1998:12 1

employees on nonag. payrolls: manufacturing (thous.,sa)
employees on nonag. payrolls: durable goods (thous.,sa)
employees on nonag. payrolls: nondurable goods (thous.,sa)
employees on nonag. payrolls: service-producing (thous.,sa)
employees on nonag. payrolls: wholesale & retail trade (thous.,sa)
employees on nonag. payrolls: finance,insur.& real estate (thous.,sa
employees on nonag. payrolls: services (thous.,sa)

employees on nonag. payrolls: government (thous.,sa)

avg. weekly hrs. of production wkrs.: manufacturing (sa)

avg. weekly hrs. of prod. wkrs.: mfg.,overtime hrs. (sa)

NAPM employment index (percent)

Real retail, manufacturing and trade sales

msmtq
msmq
msdq
msnq
wtq
wtdq
wtng
rtq
rtng

Consumption
gmcq
gmedq
gmenqg
gmesq

1959:01-1998:125
1959:01-1998:125
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5

1959:01-1998:12 5
1959:01-1998:125
1959:01-1998:125
1959:01-1998:12 5

gmcanq 1959:01-1998:12 5

Housing starts and sales

hsfr
hsne
hsmw
hssou
hswst
hsbr
hmob
hsbne
hsbmw
hsbsou
hsbwst

1959:01-1998:12 4
1959:01-1998:12 4
1959:01-1998:12 4
1959:01-1998:12 4
1959:01-1998:12 4
1959:01-1998:12 4
1959:01-1998:12 4
1959:01-1998:12 4
1959:01-1998:12 4
1959:01-1998:12 4
1959:01-1998:12 4

manufact. & trade: total (mil of chained 1992 dollars)(sa)

manufact. & trade:manufacturing;total (mil of chained 1992 dollars)(sa)
manufact. & trade:mfg; durable goods (mil of chained 1992 dollars)(sa)
manufact. & trade:mfg;nondurable goods (mil of chained 1992 dollars)(sa)
merchant wholesalers: total (mil of chained 1992 dollars)(sa)

merchant wholesalers.drble goods total (mil of chained 1992 dollars)(sa)
merchant wholesal ers:nondurable goods (mil of chained 1992 dollars)(sa)
retail trade: total (mil of chained 1992 dollars)(sa)

retail trade:nondurable goods (mil of 1992 dollars)(sa)

personal consumption expend (chained)-total (bil 92%,saar)
personal consumption expend (chained)-total durables (bil 92%,saar)
personal consumption expend (chained)-nondurables (bil 92$,saar)
persona consumption expend (chained)-services (bil 92%,saar)
personal cons expend (chained)-new cars (bil 923%,saar)

housing starts:nonfarm(1947-58);total farm& nonfarm(1959-)(thous.,sa
housing starts:northeast (thous.u.)s.a.

housing starts:midwest(thous.u.)s.a.

housing starts:south (thous.u.)s.a.

housing starts:west (thous.u.)s.a.

housing authorized: total new priv housing units (thous.,saar)
mobile homes: manufacturers' shipments (thous.of units,saar)
houses authorized by build. permits:northeast(thou.u.)s.a
houses authorized by build. permits:midwest(thou.u.)s.a
houses authorized by build. permits:south(thou.u.)s.a

houses authorized by build. permits:west(thou.u.)s.a

Real inventories and inventory-sales ratios

ivmtq
ivmfgq
ivmfdg
ivmfng
ivwrg

ivrrg
ivsrq
ivsrmq
ivsrwq
ivsrrq
pmnv

1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5

1959:01-1998:12 5
1959:01-1998:12 2
1959:01-1998:12 2
1959:01-1998:12 2
1959:01-1998:12 2
1959:01-1998:12 1

manufacturing & trade inventories:total (mil of chained 1992)(sa)
inventories, business, mfg (mil of chained 1992 dollars, sa)
inventories, business durables (mil of chained 1992 dollars, sa)
inventories, business, nondurables (mil of chained 1992 dollars, sa)
manufact. & trade inv: merchant wholesalers (mil of chained 1992
dollars)(sa)

manufacturing & trade inv:retail trade (mil of chained 1992 dollars)(sa)
ratio for mfg & trade: inventory/sales (chained 1992 dollars, sa)
ratio for mfg & trade:mfg;inventory/saes (87%)(s.a.)

ratio for mfg & trade:wholesd er;inventory/sales(87%)(s.a.)

ratio for mfg & trade:retail tradejinventory/sales(87%$)(s.a.)

napm inventories index (percent)
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Ordersand unfilled orders

pmno
pmdel
mocmq
mdoq
msondq
mo
mowu
mdo
mduwu
mno
mnou
mu
mdu
mnu
mpcon
mpconq

Stock prices
fsncom
fspcom
fspin
fspcap
fsput
fsdxp
fspxe

Exchange rates
exrus
exrGer
exrsw
exrjan
exrcan

Interest rates
fygts
fygt10
fyaaac
fybaac
fyfha
sfycp
sfygm3
sfygm6
sfygtl
sfygts
sfygt10
sfyaaac
sfybaac
sfyfha

Money and credit quantity aggregates

fml
fm2

fm3

1959:01-1998:12 1
1959:01-1998:12 1
1959:01-1998:125
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:125
1959:01-1998:12 5
1959:01-1998:125
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:125
1959:01-1998:125

1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 1
1959:01-1998:12 1

1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5
1959:01-1998:12 5

1959:01-1998:12 2
1959:01-1998:12 2
1959:01-1998:12 2
1959:01-1998:12 2
1959:01-1998:12 2
1959:01-1998:12 1
1959:01-1998:121
1959:01-1998:121
1959:01-1998:12 1
1959:01-1998:12 1
1959:01-1998:12 1
1959:01-1998:12 1
1959:01-1998:12 1
1959:01-1998:12 1

1959:01-1998:12 6
1959:01-1998:12 6

1959:01-1998:12 6

napm new orders index (percent)

napm vendor deliveriesindex (percent)

new orders (net)-consumer goods & materials, 1992 dollars (bci)
new orders, durable goods industries, 1992 dollars (bci)

new orders, nondefense capital goods, in 1992 dollars (bci)

mfg new orders: all manufacturing industries, total (mil$,sa)

mfg new orders: mfg industries with unfilled orders(mil$,sq)

mfg new orders: durable goods industries, total (mil$,sa)

mfg new orders:durable goods indust with unfilled orders(mil$,sa)
mfg new orders: nondurable goods industries, total (mil$,sa)

mfg new orders: nondurable gds ind.with unfilled orders(mil$,sa)
mfg unfilled orders: all manufacturing industries, total (mil$,sa)
mfg unfilled orders: durable goods industries, total (mil$,sa)

mfg unfilled orders: nondurable goods industries, total (mil$,sa)
contracts & orders for plant & equipment (bil$,sq)

contracts & orders for plant & equipment in 1992 dollars (bci)

NY SE common stock price index: composite (12/31/65=50)
S& P's common stock price index: composite (1941-43=10)

S& P's common stock price index: industrials (1941-43=10)

S& P's common stock price index: capital goods (1941-43=10)
S& P's common stock price index: utilities (1941-43=10)

S& P's composite common stock: dividend yield (% per annum)
S& P's composite common stock: price-earnings ratio (%,nsa)

United States effective exchange rate (merm)(index no.)
foreign exchange rate: Germany (deutsche mark per U.S.$)
foreign exchange rate: Switzerland (swiss franc per U.S.$)
foreign exchange rate: Japan (yen per U.S.9)

foreign exchange rate: Canada (canadian $ per U.S.$)

interest rate: U.S.treasury const maturities,5-yr.(% per ann,nsa)
interest rate: U.S.treasury const maturities,10-yr.(% per ann,nsa)
bond yield: moody's aaa corporate (% per annum)

bond yield: moody's baa corporate (% per annum)

secondary market yields on fha mortgages (% per annum)
spread fycp - fyff

spread fygm3 - fyff

spread fygm6 - fyff

spread fygtl - fyff

spread fygts - fyff

spread fygt10 - fyff

spread fyasac - fyff

spread fybaac - fyff

spread fyfha - fyff

money stock: m1(curr,trav.cks,dem dep,other ck'able dep)(bil$,sq)

money stock:m2(m21+o'nite rps,euro$,g/p& b/d mmmfs& sav& sm time

dep(bil$,nsa)

money stock: m3(m2+lg time dep,term rp's&inst only mmmfs)(bil$,sa)
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fm2dg 1959:01-1998:12 5 money supply-m2 in 1992 dollars (bci)

fmfba 1959:01-1998:12 6 monetary base, adj for reserve requirement changes(mil$,sa)

fmrra  1959:01-1998:12 6 depository inst reserves:total ,adj for reserve req chgs(mil$,sq)

fmrnbc  1959:01-1998:12 6 depository inst reserves:nonborrow+ext cr,adj res req cgs(mil$,sa)
Priceindexes

pmcp  1959:01-1998:12 1 napm commodity pricesindex (percent)

pwfsa 1959:01-1998:12 6 producer price index: finished goods (82=100,sa)

pwfcsa 1959:01-1998:12 6 producer price index:finished consumer goods (82=100,sa)

psm99q 1959:01-1998:12 6 index of sensitive materials prices (1990=100)(bci-99a)

punew 1959:01-1998:12 6 cpi-u: al items (82-84=100,s9)

pu83  1959:01-1998:12 6 cpi-u: apparel & upkeep (82-84=100,s3)

pug4  1959:01-1998:12 6 cpi-u: transportation (82-84=100,sa)

pu85  1959:01-1998:12 6 cpi-u: medical care (82-84=100,s9)

puc 1959:01-1998:12 6 cpi-u: commodities (82-84=100,sa)

pucd  1959:01-1998:12 6 cpi-u: durables (82-84=100,s3)

pus 1959:01-1998:12 6 cpi-u: services (82-84=100,s9)

puxf 1959:01-1998:12 6 cpi-u: al itemslessfood (82-84=100,sa)

puxhs 1959:01-1998:12 6 cpi-u: al items less shelter (82-84=100,sa)

puxm  1959:01-1998:12 6 cpi-u: al itemsless midical care (82-84=100,s3)

gmdc 1959:01-1998:12 6 pce,impl pr defl:pce (1987=100)

gmded 1959:01-1998:12 6 pce,impl pr defl:pce; durables (1987=100)

gmden  1959:01-1998:12 6 pce,impl pr defl:pce; nondurables (1987=100)

gmdes 1959:01-1998:12 6 pce,impl pr defl:pce; services (1987=100)
Average hourly earnings

lehcc  1959:01-1998:12 6 avg hr earnings of constr wkrs: construction ($,s9)

lehm  1959:01-1998:12 6 avg hr earnings of prod wkrs: manufacturing ($,s9)

Miscellaneous
hhsntn  1959:01-1998:12 1 u. of mich. index of consumer expectations(bcd-83)
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