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1. Introduction

“The principal task of the social sciences lies in the explanation of social
phenomena, not the behavior of single individuals. In isolated cases the social
phenomena may derive directly, through summation, from the behavior of
individuals, but more often this is not so. Consequently, the focus must be on the
social system whose behavior is to be explained. This may be as small as a dyad
or as large as a society or even a world system, but the essential requirement is
that the explanatory focus be on the system as a unit, not on the individuals or
other components which make it up.” (pg. 2)

“(A)n internal analysis based on actions and orientations of units at a lower level
can be regarded as more fundamental, constituting more nearly a theory of system
behavior, than an explanation which remains at the system level...although an
explanation which explains the behavior of a social system by the actions and
orientations of some entities between the system level and the individual level
may be adequate for the purpose at hand, a more fundamental explanation based
upon the actions and orientations of individuals is generally more satisfactory.”

(pg- 4)

James Coleman (1990)

The role of interactions in economic outcomes has become an important
area of research over the last decade. By interactions-based models, we refer to a
class of economic environments in which the payoff function of a given agent takes
as direct arguments the choices of other agents. The goal of such an analysis is to
provide an explanation of group behavior which emerges from the

interdependences across individuals.

In some respects, interactions-based models would appear to be nothing
but a variant of game-theoretic formulations of decisionmaking; see Blume (1997)

and Young (1998) for an excellent syntheses of a number of game-theoretic models
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from the interactions perspective and Morris (1998) for a game-theoretic analysis
of interaction structures. Further, Jones (1984), Cooper and John (1988) and
Milgrom and Roberts (1990), there has been a great deal of work explicitly
focusing on how one type of interaction effects, complementarities, can lead to
multiple equilibria and other interesting aggregate phenomena, including
breakdowns of the law of large numbers (Jovanovic (1985)). Indeed, following
Bryant (1985), macroeconomic models of complementarities have become a
standard research tool. Similarly, analyses such as Bernheim (1994) have shown
how conformity effects can produce customs, fads and highly different subcultures

within a given population.

Similarly, social sciences other than economics have a much longer
tradition of looking for interaction effects. Omne particularly important example is
the Coleman Report of 1966 (Coleman, et al, 1966), which argued that school
performance of the disadvantaged was much more amenable to improvement
through manipulation of peer group influence than by increased per student
expenditures. While the Coleman Report itself has not withstood subsequent
scrutiny, its impact on both social science research and public policy was and is
immense (see Heckman and Neal (1996) for discussion.) See Blalock (1984) for
additional discussion of sociological approaches. Another example is linguistics,
where the role of interactions in influencing dialect choice has been well

understood for decades (cf. Labov (1972a,b)).

What distinguishes the new research on interactions-based models is the
explicit attention given to formulating how each individual’s behavior is a
function of the characteristics or behavior of others and then studying what
aggregate properties emerge in the population. This approach typically, though
not always, is done in the form of first specifying a conditional probability
measure which describes each individual’s behavior as a function of the rest of the
population and then determining what joint probability measures are compatible
with these conditional measures. This particular approach means that

interactions-based approaches have typically been deeply reliant on the use of the

2



probability theory which underlies statistical mechanics methods in physics.
(Mathematicians generally refer to statistical mechanics models as interacting
particle systems. These models also fall into the broader class of probability
models known as random fields.) The value of this approach is that it permits
one to specify individual and social aspects of behavior simultaneously, and
thereby address aggregate behavior in a way consistent with the sort of

methodological individualism advocated by Coleman.

Interactions-based models have been applied to a wide range of contexts
both within economics and within social science more generally. A sense of this
range can be given through an admittedly incomplete survey of applications; see

Durlauf (1997), Kirman (1997), and Rosser (1999) for additional overviews.

1. Neighborhoods and inequality

Much of the recent literature on persistent income inequality has focused
on the role of neighborhood influences on socioeconomic outcomes. Theoretical
models such as Bénabou (1993,1996a,b), Cooper (1998), Durlauf (1996a,b) share a
common assumption that individual human capital acquisition depends on the
behaviors and/or characteristics of community members. These influences may
range from peer group effects, in which the costs to one person from investing
effort in education are decreasing in the effort levels of others (Bénabou (1993)),
to role model effects, in which the aspirations of a student are affected by the
observed education/occupation outcomes among adults in his community
(Streufert (1991)), to labor market connections (Granovetter (1995), Montgomery
(1991,1992)), in which the probability with which one makes a successful job
match depends on the information possessed by members of one’s social network.
Similar types of spillovers were used much earlier in Loury (1977) to provide a
theory of racial income differences. Examples of studies which have adduced
empirical evidence of neighborhood effects include Crane (1991), Case and Katz
(1991), Haveman and Wolfe (1995). Within the psychology literature, there is
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rich evidence on the importance of peer group effects, as illustrated, for example,
in Brown (1990) and Brown, Clasen, and Eicher (1986). Finally, recent work by
Casella and Rauch (1997,1998) shows how ethnic social networks can influence
patterns of international trade through similar mechanisms with attendant

implications for ethnic patterns of inequality.

2. Spatial agglomeration

The role of interactions effects in determining location decisions has been
analyzed in many contexts. Schelling’s (1971) work on racial segregation,
illustrates how weak preferences by individuals for neighbors of similar ethnicity
can lead to complete segregation. This work is possibly the first interactions-
based model to be studied in the social sciences; see Granovetter and Soong (1988)
for a number of extensions and generalizations of this original framework. Arthur
(1987) has shown how sequential locational decisions, combined with locational
spillover effects, can produce agglomerations of economic activity such as the
Silicon Valley. Similar models, with a richer microeconomic structure, have been
subsequently analyzed by Krugman (1996). In related work, Kelly (1995) has

illustrated the evolution of geographically defined trade networks.

3. Technology choice

The adoption of particular technological standards is a well-studied case
both by economic historians and economic theorists. Standard references on
technology adoption and network externalities include Farrell and Saloner (1985)
and Katz and Shapiro (1986). David’s (1985) discussion of how the QWERTY
keyboard became the standard for typewriters is one of the best known examples.
Arthur (1989), using mathematical models which fall within the class of tools
which are conventionally used in interactions based models, showed how when
adoption decisions are made sequentially path dependence in technology choice

4



f
i
|
|
|
%
E
|
|

may occur, which allows inferior technologies to become locked-in. An and Kiefer
(1995) show how similar results can occur through local interactions. Goolsbee
and Klenow (1998) have provided evidence of the role of interaction effects in

home computer adoption.

4. Preferences

A number of authors have used interactions-based approaches to study
interdependent preferences. Follmer (1974), in what appears to be the first
explicit use of statistical mechanics methods in economics, studied an economy in
which the probability that a given individual has one of two utility functions
depends on the utility function of his neighbors. His work demonstrated how
interactions can lead to breakdowns of the law of large numbers in large
economies. Conlisk (1976) showed how to develop Markov chain models in which
the distributions of behaviors at ¢ — 1 determined transition probabilities at ¢ and
thereby are capable of producing fads in demand; Granovetter and Soong (1986)
develop similar results using different methods. Bell (1995) analyzed a model in
which preferences depend on the observed consumption of neighbors. Her work
showed how supply effects, in which higher consumption of a commodity by
others raises the price of a good for an individual, can be combined with
conformity effects, in which higher consumption by others shifts the preferences of
an individual toward that commodity, to produce interesting aggregate price
dynamics. Darrough, Pollak, and Wales (1983), Alessie and Kapetyn (1991),
Kapetyn, van de Geer, van de Stadt and Wansbeek (1997), and Binder and
Pesaran (1998b) provide empirical evidence of interaction effects in consumer
expenditures using a variety of modelling approaches; Andreoni and Scholz (1998)

illustrate similar effects in the context of charitable contributions.

In a complementary line of work, recent authors have considered the
implications of concern over relative social position on behavior, an idea whose

antecedent is Duesenberry (1949) and which is explored along many dimensions in
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Frank (1985). Recent important contributions include Cole, Mailath, and
Postlewaite (1992) who show how relative status concerns can provide a theory of
growth and Clark and Oswald (1996) who show how such concerns affect the
relationship between income and well-being, and Clark and Oswald (1998) who
characterize the relationship between relative status concerns and emulative
behavior. Postlewaite (1997) provides an overview of the relationship between the

incorporation of relative status in utility and economic theory.

5. Behavior of political parties

Interactions-based methods have recently proven useful in the study of
political parties. In a series of papers, Kollman, Miller, and Page (1992,1997a,b)
have examined the ways in which political parties evolve in response to voter
preferences when there are multiple issues of concern. Their modelling typically
considers how a political party will adjust its platform in response to the
preferences of voters and a consideration of the behavior of the opposing party.
This work has illustrated how the convergence of party platforms to a stable
configuration depends sensitively on the distribution of voter preferences as well as

the degree of foresight of the parties themselves.

6. Social pathologies

There exists evidence that a number of types of behavior which society
regards as undesirable (pathological) are sustained by interaction effects. One
example of this is cigarette smoking. A number of studies (Bauman and Fisher
(1986), Krosnick and Judd (1982), Jones (1994)) have directly documented a role
for friend and peer group behavior in predicting individual smoking probabilities.
Further, well documented differences in smoking rates between black and white

teenagers and between men and women within those groupings are highly
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suggestive of interactions effects. Examples which are closer to the traditional
concerns of economists include crime, labor market participation, out-of-wedlock
births, and school attendance. Recent theoretical models of interactions and
social pathologies include Akerlof and Yellen (1994), Brock and Durlauf (1995),
Nechyba (1996), Lindbeck, Nyberg and Weibull (1999), Sah (1991) and Verbrugge
(1999). Statistical evidence of these effects has been found in studies such as
Crane (1990), Glaeser, Sacerdote, and Scheinkman (1996), Sampson,
Raudenbusch, and Earls (1997) and Sucoff and Upchurch (1998); although see
Gottfredson and Hirschi (1990) and Sampson and Laub (1993) for skepticism
concerning the role of peer group effects with respect to the case of juvenile
delinquency.  Ethnographic evidence of such interactions may be found in
Anderson (1990) and Duneier and Molotch (1999). Finally, Akerlof and Kranton
(1998) develop a framework for understanding the psychological bases which lead
to memberships in particular reference groups with attendant behavioral

implications.

7. Information cascades

A number of authors have considered the implications of information
aggregation and behavior when agents possess idiosyncratic knowledge and are
attempting to learn more by observing the behavior of others. Banerjee (1992)
and Bikhchandani, Hirshleifer, and Welsh (1992) have shown how such behavior
can lead to informational cascades and conformity in group behavior. Caplin and
Leahy (1994) show how this idea can lead to phenomena such as bank runs;

Romer (1993) develops similar results in the context of asset price movements.

8. Evolution of science

Since Kuhn’s (1970) analysis of scientific paradigms and the nature of

scientific revolutions, philosophers of science have grappled with the question of
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how (and in some cases whether) a community of scientists whose members are
subject to conformity effects and whose objectives include non-epistemic factors
such as professional status as well as epistemic factors such as better predictability
succeeds in shedding scientifically inferior theories for superior ones. Recent work,
best exemplified by Kitcher (1993) has explicitly modelled scientific communities
as collections of interdependent researchers. This work has led authors such as
Dasgupta and David (1994), David (1998), Oomes (1998) and especially Brock and
Durlauf (1998) to consider formal interactions models of scientific theory choice.
Using interactions-based methods, Brock and Durlauf were able to provide
conditions under which scientific evidence will outweigh non-epistemic
motivations and thereby provide a model of scientific progress which takes into

account critiques of various social constructivists.

This chapter is designed to describe a range of methods to study
interactions effects. While the interactions-based models are now fairly well
developed from the perspective of theory (see Blume and Durlauf (1998a) for
discussion), the econometrics literature is still in its infancy. Most of the existing
econometric work has focused on the identification issues which arise for
interactions-based models. The pioneering work in this regard is Manski
(1993a,b,1995,1997); see as well recent surveys by Moffitt (1998) and Duncan and
Raudenbusch (1998). Even here, there is substantial work which remains to be
done in terms of the analysis of nonlinear as opposed to linear models. A major
purpose of this chapter will be to explore identification as well as estimation in

the context of structural models of interactions.

In order to facilitate this overview, we will focus on a particular class of
interactions-based models, namely binary choice models with interactions. This
framework has been exploited by a number of authors, including Blume (1993,
1995), Brock (1993), Brock and Hommes (1998), Durlauf (1993,1997), and Glaeser,
Sacerdote, and Scheinkman (1996). The specific framework we employ is adopted

primarily from Brock and Durlauf (1995). Its important advantage, from our
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perspective, 1s that for this class of models a tight link exists between the
theoretical formulation of various socioeconomic environments and the

econometric analysis of those formulations.!

2. Binary choice with social interactions

t. general framework

In this section, we present a baseline model of interactions. The model is
capable, for particular restrictions on its parameters, of encompassing many of the
theoretical treatments of social interactions which have been developed. An
additional purpose of this approach is to show how these models can be analyzed
using natural extensions of standard economic reasoning. Finally, as initially
recognized by Blume (1993) and Brock (1993), the model is mathematically
equivalent to logistic models of discrete choice. This equivalence will allow us to
analyze theoretical and econometric aspects of interactions in a common

framework.

We consider a population of I individuals each of which faces a binary
choice. These choices are denoted by an indicator variable w; which has support
{—1,1}. Each individual makes a choice in order to maximize a payoff function
V. In the standard binary choice formulation of economics, this payoff function is
of course assumed to depend on the characteristics of the individual in question.
These characteristics, in turn, are assumed to be divided into an observable (to
the modeller) vector Z, and a pair of unobservable (to the modeller, but
observable to agent i) random shocks, €,(1) and €,(—1). The observable vector

!We will not discuss the branch of the interactions literature which uses
computer simulation methods to study various environments. Epstein and Axtell
(1996) represent the most ambitious and wide ranging effort yet undertaken in

this regard. See also Axtell, Axelrod, Epstein, and Cohen (1996) for an analysis of
how to assess simulations of this type.
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can include elements such as family background, role model or peer group
characteristics, and past behavior. The shocks €,(1) and ¢, —1) are distinct as
various types of unobservable idiosyncrasies are only relevant for one of the
choices. For example for the binary choice of whether to remain enrolled or
dropout of school, (1) might refer to a shock which measures unobserved
academic ability and so is only relevant if the person stays in school.

Algebraically, the individual choices represent the solutions to
m‘mwi €{-1, 1}V(wi,,€i,ei(wi)) (1)

The standard approach to characterizing the behavior of the population of
choices, an approach which renders the model econometrically estimable, is to
make some assumption concerning the distribution of the €,(w;)’s. One common
assumption is that the unobservables are independent and extreme value
distributed both within and across individuals. This will imply that for a given
individual, the difference between the unobservable components is logistically
distributed,

ple =) -€(1) S 2) =i oy fi20 2)

We use u(-) to denote probability measures throughout. The subscript ¢ here and
elsewhere will be used to capture dependence on Z; so that, for example,
B = B(Z,)-

The interactions-based approach to binary choice, at least qualitatively, is
based upon studying this same model once explicit attention has been given to the

influence of the expected behavior of others on each individual’s choice.

Algebraically, each choice is described by
mawwi €{-1, 1}V(ngi,ﬂf(% - i)’ ei(wi)) (3)
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where w_ ;= (wq,...w; _ ,w; 4 1,---wy) denotes the vector of choices other than
that of ¢ and pf(w _;) denotes that individual’s beliefs concerning the choices of
other agents. The nature of these beliefs, whether they are rational, etc., will be
specified below. However, we will assume that beliefs are independent of the

realization of any of the €;(w,)’s.

At this level of generality, there is of course little that can be said about
the properties of the population as a whole. Hence, we make two parametric
assumptions which will elucidate both basic ideas and will encompass (as special
cases) a number of models which have appeared in the literature. First, we

assume that the payoff function V' can be additively decomposed into three terms.
V(wpZoti(w — i)ei(w;) = u(wiZ,) + S(w; Zioi(w _ 1) + €(w;) (4)

Here u(w;,Z;) represents deterministic private utility, S(w Z:,15(w _ ;) represents

VR

deterministic social utility, and e(w,) represents random private utility. The two
private utility components are standard in the econometric formulations of
discrete choice. - The essential difference between recent theoretical work and
previous approaches to studying binary choices is the introduction of social utility

considerations.

Second, we assume that this social utility term embodies a generalized

quadratic conformity effect, i.e.

J. .
S(wpZimi(w_i) = —E; Yy —5 (w;-w;)? (5)
J#1
Ji,j

The term —5~ represents the interaction weight which relates i’s choice to j’s

choice and is typically assumed to be nonnegative in theoretical models, although
there is no need to do so. We also treat the Ji, ;j Parameters as fixed; see
Toannides (1990,1997a), Kirman (1983), and Kirman, Oddou, and Weber (1986)
for analyses where such parameters are stochastic using techniques from random

graph theory. One can allow the J i j’s to depend on the characteristics of agent j
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as well as agent 7, so that J; ;= J(Z;Z,)

RoRj
These assumptions are sufficient to characterize the distribution of
aggregate choices as a function of the distribution of various microeconomic
characteristics. As a preliminary, we make two algebraic manipulations. Observe
first that we can, without loss of generality, replace the private deterministic

utility function of each individual with a linear function,
u(wpZ;) = hjw; + k; (6)
where h; = h(Z;) and k; = k(Z,) are chosen so that
btk = u(1,2) 7
and
—hitk;=u-1,2) (8)

This linearization is permissible since the new function coincides with the original
utility function on the support of the individual choices. Hence, it does not

readily generalize when more than two choices are available.

Second, we expand the social utility term (5), using w? = w? =1, in that

S( l’ﬂl ~—1 ) = Z J l) (9)

J#i
which makes clear the role of pairwise interactions between each individual choice
and the expected choices of others. Notice that the J ij 1s equal to the cross-

partial derivative of the social utility function, in that

g V(@ Ze ) _ 9S(wy Zns )

0T T OwdE W) | OwdEw,) (10)
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which means that the function measures the strategic complementarity between
individual choices and the expected choices of others. See Cooper and John
(1988) for a general analysis of complementarities which provides many insights
which will reappear in our framework. Unlike the standard formulation of
complementarities, our interactions are driven by expectations of the behavior of

others, rather than by their actual behavior.

The probability that individual i makes choice w; is equal to the
probability that the utility of the choice exceeds that of — W;,

wwi | Zs 15w _y) =
M(V(wiagi’ﬂs(%—i)?ei(wi)) > V( Wy Zznu'z( ) ei( "wi))) =
w; + Z ‘]z N et} z + € ( )

ZJ”H )+ e —w) (11)

Letting “ ~” denote “is proportional to,” the logistic specification of the random

utility terms means that this probability has the feature that

( |N17 NE(%—i)) ~
6xp(ﬂi 1+ Z /Bz‘]z ]szz )) (12)

Since the random utility terms are independent across individuals, it must be the

case that the joint set of choices obeys

( |Zl, 17#1( ),---a/ﬁ(%—l)) = 1}#(%‘ | Zi #f(,‘e—i)) ~

He:ch B;hw; + Z BiJ; jwiEi(w )) (13)
J#
13



Equation (13) provides a general form for the joint probability measure of
individual choices. It has the general form of a Gibbs measure, which is not
coincidental. An important theorem in the statistical mechanics literature, due to
Averintsev (1970) and Spitzer (1971a), states that models of stochastic
interactions of the type which have been outlined will generically possess

probability measures with Gibbs representations.

To close the model, it is necessary to specify how expectations are
determined. A natural special case of this model occurs when the agents all

possess rational expectations, i.e.

The expectation operator on the right hand side is the mathematical expectation
given by the equilibrium probability measure (13), when these same mathematical
expectations are also the subjective expectations of each of the individual agents.
This means that the expected values of each of the choices is constrained by a set
of self-consistency conditions. In particular, the expected value of each of the

individual choices for any set of beliefs will equal

E(w;) = tanh(B;h +Zﬂzz]z ) (15)

and so rational expectations require that we replace the subjective expectations

with their mathematical counterparts, i.e.
E(w;) = tanh(B;h +Zﬂllj (16)

These equations represent a continuous mapping of [—1,1]{ to [-1,1)7.
Therefore, it is immediate from Brouwer’s fixed point theorem that there is at

least one fixed point solution, which implies Theorem 1.
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Theorem 1. Existence of self-consistent equilibrium

There exists at least one set of self-consistent expectations consistent with the

binary choice model with interactions as specified by egs. (2), (4) and (5).

By choosing particular specifications for the distribution of Z; one can
generate many of the models of binary choices with interactions which have
appeared in the literature. Perhaps more important, these particular
specifications illustrate the interesting aggregate properties of environments with

interdependent decisionmaking.

We now consider some particular J ; j structures in order to develop more
precise properties of the population’s probabilistic behavior. Page (1997) provides
a valuable analysis of the role of different interaction structures in generating

different aggregate properties which supplements this discussion.

1. global interactions

One version of the binary choice model assumes that interactions across
individuals are global, in the sense that each individual assigns an identical weight
to the expected choice of every other member of the population. Since a person
always conforms to his own behavior, this is equivalent in terms of predicted
behavior to assuming that an individual assigns a common weight to all persons
including himself (Brock and Durlauf (1995)) and so we assume this for

expositional purposes. Formally, given ¢

v j. (17)



Notice that we normalize the global interaction term J; by the population size I
for analytical convenience. This specification seems especially plausible when
individual groups are determined by large aggregates such as ethnicity, religion, or

region.

Global interactions imply that an individual’s choice is, outside of
individual-specific characteristics, only influenced by his expectation of the
average choice in the population, since (17) implies that the social utility term

may be rewritten (after taking the square) as
S(wy Zpmi(w _ i) = Jy(wEy(@p) —1) (18)

where E,(©;) denotes the subjective expectation of agent i of the population

average Wy. The joint probability measure for this case equals
w121 Z (@ 1)onfle - 1)) ~ Texp(Bihuw; + BT w;By(@p))  (19)

As for the general case, self-consistency requires that each individual’s
subjective belief concerning the average choice equals the mathematical

expectation of the average choice,

Ej(©r) =E@;|Z1, L2t _1)s05(w_1) Vi (20)

which combined with the expected value of each choice, eq. (15), means that for
the global interactions model, any m is a self-consistent solution for the expected

average choice level if it solves

m= [tanh(B(Z)N(Z)+ B(2)(Z)m)dF (21)

where dF, denotes the empirical probability distribution of the observable
individual characteristics. When each individual possesses identical observable

16



characteristics, h;, B; and J, are constant across the population, which implies

that this integral reduces to the equation

m = tanh(Bh + BJm). (22)

This equation is easily analyzed and illustrates how multiple equilibria can emerge
in interactions-based systems. Following the analysis in Brock and Durlauf

(1995), these multiple equilibria can be described by Theorem 2.
Theorem 2. Number of equilibria in the binary choice model with interactions

.. If BJ > 1 and h =0, there exist three different values of m which solve eq. (22).

One of these roots is positive, one root is zero, and one root is negative.

w. If BJ >1 and h # 0, there exists a threshold H, (which depends on 8 and J)
such that

a. for | Bh| < H, there exist three solutions m to eq. (22), one of which

has the same sign as h, and the others possessing the opposite sign.

b. for |Bh| > H, there exists a unique solution m to eq. (22) with the

same sign as h.

This theorem can be extended to the more general specification
m = / tanh(Bh(Z) + BIm)dF , (23)

which differs from eq. (21) in that here 3 and J are assumed to be constant across

17



individuals. ~ The case of heterogeneous h/’s is of particular interest when

considering the econometric implementation of the model.

In order to generalize our theorem, we define the function R(-) by
R(m) = / tanh(Bh(Z) + BJm)dF (24)

so that the integral can be treated as a function of m. Suppose that dF, is
symmetrically distributed with mean 0 and variance s and that h(Z) is
symmetric about the origin. This implies that R(0)=0 given

tanh( —z) = — tanh(z) and the assumed symmetry in h and dF, . Next, define

r(m) = / tank’(Bh(Z) + BIm)dF 5 (25)
Observe that
R(0) = BJ / tank'(Bh(Z))dF ; = BJr(0) > 0. (26)

This means that for sufficiently small 8J, fJr(0) <1 but if 3J > 7"(0)_1 then
R'(0) > 1 and hence at least two new equilibria exist besides m = 0. On the other

hand, note that for any pair m; and m,
| R(my) — R(myg) | < BJ | my —my| (27)

using (23), the mean value theorem, and the facts that the tanh function is
bounded between —1 and 1 and dF, is a probability measure. If 8J < 1, then
this is a contraction mapping and there exists only one solution to eq. (23) in this
case. Hence the m =0 solution bifurcates into at least three solutions as BJ
increases beyond 1. Notice that unlike the case of homogeneous h’s, we have not
ruled out the possibility that more than three equilibria exist. We summarize this

as a corollary.
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Corollary 1. Number of equilibria in binary choice model with global interactions

and individual heterogeneity
If h(Z ) is distributed symmetrically about the origin, then
i. If BJ <1, then the self-consistent equilibrium in eq. (23) is unique.

u. If BJ > 1, then there exist at least three self-consistent solutions to eq. (23).

12:2. local interactions

Local interactions models typically assume that each agent interacts
directly with only a finite number of others in the population. For each i, the set
of j’s with whom he has interactions is referred to as his neighborhood and is
denoted by n,. While residential neighborhoods have been a longstanding focus of
the interactions literature, the models we analyze have much broader

applicability.

In a local interactions model, the notion of neighborhood-level interactions

is captured by a restriction on the interaction weights J, j of the general form

Of course, the global interactions model can be treated as a special case of a
neighborhoods model, one where all other members of the population are members

of each #’s neighborhood.

Depending on the application, the index 7 has been interpreted differently.
For example, in Follmer (1974) or Glaeser, Sacerdote, and Scheinkman (1995),
|i—j| measures the distance between individuals, whereas it is treated as an
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index of technological similarity as in Durlauf (1993). This allows one to
construct a neighborhood for agent ¢ by taking all agents within some fixed
distance from :. (The distance can vary with direction.) This latter assumption
is the source of the term “local.” For purposes of analysis of finite systems, it is
typical to locate actors on a torus so that distance can be defined symmetrically
for all agents. (A two dimensional torus is formed out of a kxk lattice by
connecting the east/west and north/south boundaries so as to ensure that each
element of the resulting system has four nearest neighbors.) For agents located on

a torus, one can rewrite social utility as

S(wnZinilw_) = —E; Y ,J;”' (wi-w))? (29)
with associated individual probability measure
p(wil Zi wi(w—3)) ~
exp(Bihiw;+ D BiJ; jwiBi(w;)). (30)

JETL

and joint probability measure

w1 21 Z kil - 1)vonile - 1) = iw; | Z; w5 ) ~
Hexp (Bihw; + > BJ; ,wiBi(w;)) (31)
jEN,;

A special case of the local interactions model occurs when local interactions
are homogeneous, which means 1) all neighborhoods have the same size which we
denote N and 2) within a neighborhood, all interaction weights are equal to a

common J. In this special case, social utility will equal

S(wi Zintile— ) = T Y By (32)
] € ’I’L
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where N denotes the number of members of a neighborhood. Under rational
expectations it is immediate that one joint probability measure for agents’ choices

1s
plw ) ~ exp(Bh Y w; + BNJ ; w; B(w)) (33)
i
where
E(w) = tanh(Bh + BNJE(w)) = E(w,) V. (34)
which implies the following theorem.
Theorem 3. Relationship between global and local interactions models

Any equilibrium expected individual and average choice level m for the global
interactions model is also an equilibrium expected individual and average choice

in a homogeneous local interactions model.

This result might initially appear odd, given the explicit local interaction
structure of preferences. In fact, the equivalence is not surprising. When all
expectations are identical, and the sample mean is required to equal the
population mean, then agents are all implicitly connected to one another through
the expectations formation process. To be clear, the local interactions model can

exhibit equilibria which are different from that of the global case.

Focus on the case where each individual is required to possess identical
E(w;)’s is not required by the logic of the local interactions model. There has
been little work on the existence and characterization of asymmetric equilibrium
E(w;)’s, i.e. equilibria where the expected values differ across agents. Examples of

asymmetric equilibria of this type may be found in Blume and Durlauf (1998b).
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A trivial example can be produced by taking two environments which exhibit
global interactions and multiple equilibria and defining them as a common

population.

Finally, it is worth noting that when interactions between decisions are all
intertemporal, then the assumption of extreme-valued random utility increments
can be dropped. The equilibrium properties of the dynamic models in this section
can be recomputed under alternative probability densities such as probit which
are popular in the discrete choice work. In fact, under the mean field analysis of
global interactions, alternative specifications incorporate probit or other densities
as well. In both cases, the large scale properties of models under alternative error

distributions are largely unknown.

w. relationship to statistical mechanics

The models we have thus far outlined bear a close relationship to models in
statistical mechanics. A standard question in statistical mechanics concerns how
a magnet can exist in nature. A magnet is defined as a piece of iron in which a
majority of the atoms are either spinning up or down. Since there is no physical
reason why atoms should be more likely to spin up or down when considered in
isolation, the existence of a natural magnet, which requires literally billions of
atoms to be polarized towards one type of spin, would seem extraordinary unlikely
by the law of large numbers. As a result, statistical mechanics models are based
on the primitive idea that the probability that one atom has a given spin is an
increasing function of the number of atoms with the same spin within the atom’s
neighborhood. For the Ising model of ferromagnetism, the assumption is that

atoms are arrayed on a 2 — (or higher) dimensional integer lattice, so that

p(w; | spins of all other atoms in material) =

22



p(w;| wj such that [1—j| =1) ~ exp(BJw; Y w;) (35)

li—j| =1
For the Curie — Weiss model, the physical interaction structure is assumed to be
such that each atom’s spin is probabilistically dependent on the average spin in

the system, so that
p(w; | spins of all other atoms in material) ~ exp(fJw,@ ) (36)

Hence our models of binary choice with social interactions are mathematically

quite similar to physical models of magnetism.

An important difference, however, does exist. While our socioeconomic
model embeds pairwise interactions via the products of individual choices w; with
the expected choices of others, the physical models are based upon conditional
probabilities which depend on the products of the realized individuals choices for
all pairs of individuals. Interestingly, the physics literature has also dealt with
expectations-based interactions. It turns out that models with interactions across
realizations are extremely difficult to analyze, so physicists have developed what
is referred to a “mean-field approximation” to various ferromagnetism models. A
mean field approximation amounts to replacing certain terms in an original model
with their mathematical expectation. Hence, the mean field approximation for
the conditional probability of the spin of a given atom for the Curie-Weiss model

ww;) ~ exp(BJw;E(wr)) (37)

which is of the same form as eq. (12) when agents possess identical Z,’s and
JZ-, i =%. Of course, what is an approximate model in a physical context is an
exact model in the socioeconomic context we have been analyzing, at least given
our behavior primitives. This difference occurs because our behavior assumption

is that individuals interact through their expectation’s of one another’s behavior,
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rather than through realizations.

This last remark relates to a more general consideration in the use of
statistical mechanics methods by social scientists. A basic conceptual difference
exists between social and physical environments which contain interactions.
Physical (and many) mathematical models of interactions typically take as
primitives the conditional probabilities linking elements of a system, i.e
p(wy|w _1)si(wy|w_). Analysis of the model considers the existence and (if
so) properties of whatever joint probability measures are consistent with the
conditional ones. In socioeconomic contexts, it is more natural to take
preferences, beliefs, and technologies as primitives and from them determine what
conditional probability relationships will hold. Hence, statistical mechanics and
related models cannot be employed in socioeconomic contexts without
determining what socioeconomic primitives will lead to a particular conditional
probability representation. Further, the purposefulness of the objects of analysis
in social science contexts also means that issues of the endogeneity of
neighborhoods and the potential for the existence of institutions which coordinate
collective action will naturally arise. These issues have no analog in physical
contexts and are suggestive of the limitations in importing methods from physics

into socioeconomic studies.

v. social planning problem

Our analysis thus far has assumed that individual decisions are not
coordinated. An alternative approach is to examine how decisions would be made
when coordinated by a social planner. Beyond its use in developing welfare
comparisons and other contrast with the noncooperative case, the social planner’s
solution may have empirical content in some contexts. As described by Coleman
(1988,1990 chapter 12), the evolution of social capital, defined to include aspects
of social structure which facilitate coordination across individuals and which may
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be embedded either in personal mores or organizations such as churches or
schools, implies that in many types of social situations, coordinated behavior can

emerge.

In order to do this, it is necessary to be more precise in the formulation of
the underlying game played by members of the population. As before, we
consider a population of I individuals each with payoff function
V(wpZiki(w _ ;)s€;(w;)).  The random functions €, -) are assumed to be observed
by the members of the population, so that each agent : knows the realizations of
€5 ) V j#1i. We further assume that the distribution of these random
components is described by eq. (2). Hence in terms of timing, nature draws the
random functions ¢,( - ) and reveals them to the entire population. Second, players

play the game G defined by
G = {V(wpZisti(w _ i)€i(wy)), e = 1.1} (38)

where pf(w _,) denotes their beliefs about the behavior of other agents and is

conditioned on nature’s draw of the random functions.

With respect to this environment, an obvious benchmark is a perfect
foresight Nash equilibrium. By this, we mean that each player knows the ¢ -)
functions for every agent and forms beliefs about the resultant choices in the
population pf(w _ ;) which are confirmed in equilibrium. If each player is playing a

pure strategy, this means that p$(w_,) =w_, so that a perfect foresight pure

1
strategy equilibrium is a set of choices w such that for all :

w; = a?“gmaav,7 c { _ 1,1}V('7’Z,i7%—- i7fz’(’7))- (39)

For the analogous mixed strategy equilibrium, let 7, = (7rz-, _1,7; 1) denote the

row vector of probability weights assigned by agent i to the two choices. Then

Il; = (71...7y) denotes a perfect foresight Nash equilibrium if each 7, is consistent

with
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lr/i = argma:c%,
~Y

WA — 11

7,1V (L2 0 p€i(1) +7i -1 V(= 1,258 _pei( —1)))
such that Vi, -1V 2 0 and Vi —1t+7%1=1 (40)

where E, means that agent : plays the mixture % against the mixtures played by
the other agents, I _; = (T1,T; _ 1,Ti 4 1--&r)- Mixture 5, means that :
chooses 1 with probability Vi1 and chooses —1 with probability v, _;. Itisa
standard result that a mixed Nash equilibrium of this type will always exist,

although a pure strategy Nash equilibrium may not.

Alternatively, a limited information Nash equilibrium can be characterized
when agents make choices without knowledge of the €, -) functions for agent’s
other than themselves. In terms of timing, one can think of agents forming beliefs
p$(w _ ;) before any ¢ - )’s are realized, nature then drawing the €,(-)’s, revealing

¢;(-) to agent 7, and each ¢ then choosing w;. For this case,

w; =argmaz, o ¢ 1 3V Zirilg - i)e(), (41)

when pi(w_;)=puw_;1Z; V j) Vi, so that each agents belief’s are consistent

with the model. This is the equilibrium concept we have employed above.

In contrast to these noncooperative environments, we may characterize a
social planner’s perfect foresight problem as choosing w in order to maximize

total utility in the population, i.e.
I €
maty .ZlV(wi,gi,ﬂi(%_ i)’fi(wi)) (42)
1=

From (42), one can in principle compute quantities such as the expected average

payoff under a social planner and contrast it with their counterparts under the
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two noncooperative environments.

In order to perform such a comparison, however, analytical tractability
becomes a problem. To see this, notice that for our global interactions model, the

social planner’s problem becomes

I
mazy ,leiwi—%(wi—w,)?+ei(wi)) (43)

7=

I

Unfortunately, > €;,(w;) is not independent and extreme value distributed over
the 27 possiblze:configurations of w even though the individual €;(w;)’s are
distributed that way. One way around this problem is, following Brock and
Durlauf (1995), to replace this original social planner’s problem with an

approximate problem

I
J =2

mazy, 'Zl(hiwi_f(wi_wI) +ef(wy)) (44)

1=

I

where Y €;(w;) is itself extreme value distributed. One can require that the
variance of the errors in the approximate social planner’s problem to equal those
in the original problem in order to achieve some calibration between the two

problems.

This approximate social planner’s problem can be analyzed by replacing
E,(®@;) with &y in eq. (19). The probability measure characterizing the joint

choice of w equals
~s

I I

ezp(B(Y by +4(3° w)))
) = =1 T I - (4)
e:z:p(ﬂ(z hil/,"l'%(.z Vi)2))
u1€{~1,1} VIE{—l,l} =1 i=1

In order to analyze this probability measure, which is known in the

statistical mechanics literature as the Curie-Weiss model, it is necessary to
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eliminate the (i wz-)2 terms in eq. (45). This calculation is complicated and may
be found in tﬂe:Mathematical Appendix; further analysis appears in Brock (1993).
A result currently exists only for the case h; = h and only for the large economy
limit; however, Amaro de Matos and Perez (1991) suggests that for the large
economy limit generalization to heterogeneous h.’s is possible. The appendix

verifies Theorem 4.

Theorem 4. Expected average choice under social planner for binary choice model

with interactions

Let m* denote the root of m* = tanh(Bh 4+ fJm*) with the same sign as h. If eq.
(39) characterizes the joint distribution of individual choices as determined by a

social planner, then

limp_, E(@;) =m*. (46)

One aspect of this theorem is intuitive, in that a planner would choose that
average choice level in which the interaction effects and the private deterministic
utility comparisons work together. What is perhaps surprising is that the social
planner’s equilibrium is sustainable as an equilibrium in the limited information
noncooperative environment. However, this result is somewhat special to the
functional form originally assumed for individual deterministic social utility. If
the original social utility term had been Jw/E(®;), then the noncooperative
equilibrium average choice level would be the same as for the case we have
studied, but the analogous social planner’s problem would choose that root of
m* = tanh(Bh + 26Jm*) with the same sign as h (Brock and Durlauf (1995)),
which would mean it is not supportable in the limited information noncooperative

environment.

28



vt. linear-in-means model

Much of the empirical work on interaction effects has assumed that the
behavior variable w,; has continuous support and depends linearly on various
individual and neighborhood effects. These assumptions permit a researcher to
use ordinary least squares methods, which will be discussed below. While these
empirical papers generally do not consider what decision problems generate their
econometric specifications, it is straightforward to do so. For a trivial example,

suppose that an individual solves

MaT,). € (- o0,00) ~ %(wz - w?)Q (47)

where w; is a reference behavior level to which individual ¢ prefers to conform.
When this reference behavior level equals h; + JE, (D) +¢;, it is immediate that

[

(48)

This is the type of equation studied by Manski (1993), Moffitt (1998), Duncan and
Raudenbusch (1998), among others.

2. Identification: Basic i1ssues

In this section, we describe the identification of interactions-based models
in cross-sections.  Identification is a concern in these cases because of the
likelihood that group versus individual determinants of individual behavior are
likely to be correlated. Hauser (1970) provides an early and clever analysis of how
these correlations can, if not properly accounted for, lead to spurious inferences.
We recommend this paper as an example of how powerful intuitive reasoning (as

well as good common sense) can complement and foreshadow formal analysis.
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Manski (1993a,b,1997) has pioneered the study of the identification of
interaction effects, and we will follow his treatment closely. In his work, Manski,

distinguishes between three explanations for correlated behavior within groups:

“endogenous effects, wherein the propensity of an individual to behave in some
way varies with the behaviour of the group...ezogenous (conteztual) effects,
wherein the propensity of an individual to behave in some way varies with the
exogenous characteristics of a group...correlated effects, wherein individuals in the
same group tend to behave similarly because they have similar individual
characteristics or face similar institutional environments” (Manski (1993a), pg.

532)

The treatment of identification problems in terms of the ability to distinguish
these different effects in data seems to us very useful and so we employ it

throughout.

For purposes of discussing identification and other econometric aspects of
interaction-based models, we begin with a baseline set of data assumptions which
will apply both to the binary choice model and to the linear-in-means model. We
assume that the econometrician has available a set of observations on [
individuals. We assume that each individual is drawn randomly from a set of
neighborhoods.  Within each neighborhood, all interactions are global. For
notational purposes, we denote individuals as ¢ and the neighborhood (which
means the set of other individuals who influence ¢ through interactions) as n(z).
We assume that our original Z; vector can be partitioned into an r-length vector
of individual-specific observables X, and an s-length vector of exogenously
determined neighborhood observables )'\I/Tl(i) associated with each individual in the
sample. This will allow us to replace the private utility component h; in our
theoretical discussion with a linear specification

hi=k+ X +dY ) (49)
Notice that this specification means that none of the individual-specific

observables X, or neighborhood observables Xn(i) contains a constant term. We
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will maintain this assumption throughout. Within a neighborhood, all
interactions are assumed to be global and symmetric, so that there is a single

parameter J which indexes interactions.

Recall that mg(i) is agent i’s subjective expectation of the average choice in
neighborhood n(z). In the subsequent discussion, it will be useful to distinguish
between men(i) and Mo(i)s the mathematical expectation of the average choice in a
neighborhood under self-consistency. (We will specify the information sets under
which self-consistency is calculated below.) The reason for this is that we will
have need to distinguish between the data in a statistical exercise and the

mathematical solution to a model. Of course, m¢

nGi) = Mn(i) is part of our

maintained assumption in the analysis, so there is no loss of generality in doing
this. For purposes of discussion of identification, we are therefore either implicitly
assuming that the neighborhoods are arbitrarily large, so that the neighborhood
sample average can be used in place of the expected value or that accurate survey
data are available. We finally assume that the errors are independent across
individuals and that p(e;(w;) —€,( —w;)| %i,xn(i),mg(i)) = p(e;(w;) —;( —w;)) for
the binary choice model, and E(e”%i,xn(i),mz(i)) =0 for the linear-in-means

model.

Our strategy of using individual level data has an important advantage: to
the extent that the parameters of the individual model are identified, one can
infer whether or not multiple equilibria exist with respect to population
aggregates. This can be done without consideration of an equilibrium selection
rule because population aggregates are always treated as independent variables in
the analysis. Hence we can circumvent some of the problems described in

Jovanovic (1989).
1. binary choice

For the binary choice model, we consider the identification based on a
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naive estimator of the parameters of the model. By naive, we refer to the case
where a logistic regression is computed which does not impose the relationships
between neighborhood means. In this case, the conditional likelihood function for
the set of individual choices will have a standard logistic form. Using our
theoretical model of global interactions (and exploiting symmetry of the logistic

density function), the likelihood is

I+w; 1 -w;

Hp(w; =11 XY (i),mf;(i)) 2 p(wy=—1 | XX n(i),mfl(i)) 2 ~

?

1+ w;
[(exp(Bk +Be' X ABd'Y, iy +BImEq) 2

~o

rezp( = Bk — B X = Y iy — BImy ) 2) (50)

As is standard for logistic models, the complete set of model parameters is not
identified as k, c¢’, d' and J are each multiplied by 8. We therefore proceed under

the normalization 8 = 1.

The reason that identification is a concern in a model like this is the
presence of the term m;(i) in the likelihood function. Since this terms embodies a
rationality condition, it is a function of other variables in the likelihood function.

Specifically, we assume that

My = Mgy = [ tanh(k+¢X +d'Y )+ Ty )dF x| o O
Here F'y Y _denotes the conditional distribution of X in neighborhood n(z)
given the ngiré%{)orhood characteristics ¥ n(i) What this means is that each agent
is assumed to form the conditional probabilities of the individual characteristics in

a neighborhood given the aggregates which determine his or her payoffs. Since one
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can always add elements of )::n( i) with zero coefficients to the payoff equation for

agents, this is without loss of generality.

Rather than prove identification for the particular case where the
theoretical model is logistic (see McFadden (1974) and Amemiya (1993, chapter 9)
for proofs for this case) we prove identification for an arbitrary known distribution
function for the random payoff terms. Specifically, we assume that the
conditional probability of individual ¢’s choice can be written as

ple(w;) —e( —w;) < 7| %(-,Yn(i),mfl( .)) =F(z|k+cX;+ d'Xn(i) + Jmfl(i)) (52)

1~ 1
where F is a known probability distribution function that is continuous and

strictly increasing in z.

We consider identification based on a naive estimator of the parameters of
the model. By naive, we refer to the situation where parameter estimates for the
model are computed which do not impose the rational expectations condition
between neighborhood means and neighborhood characteristics, but rather uses
these variables as regressors. Hence, we assume that mfl(z-) is known to the

researcher: see discussion below for the case when m¢,., is not observable.
’ n(i)

To formally characterize identification, we employ the following notation.
Define supp(X,Y ,m®) as the joint support of the distribution of (.}gz,}:n(z),mz(z))
Intuitively, the definition of identification we employ says that a model is
identified if there do not exist two distinct sets of parameter values each of which
produces (for all subsets of X and Y which occur with positive probability)

identical probabilities for individual choices and which are also self-consistent.

Definition. Global identification in the binary choice model with interactions and

self-consistent expectations

The binary choice model is globally identified if for all parameter pairs (k,c,d,J)
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and (k,c,d ,J)

ktc'Xit+d Yo+ Im; =k +¢X,+dY

~n(i

n(i y+Jmi (53)

(i)
and

M) = Moy i) =

/widF(wi |k+c'X + dlyn(z) + Jm"(’))ngg l Zn(z) N

~

/widF(wi |k +¢X + El}«:n(i) + ‘7mn(i))dFL( | Xn(i) (54)

v (X Yn(z)’"”f;(z)) € Supp(_?g,}: ’me) imply that (kacada‘]) = (E , € 78 "7)

S~

In order to establish conditions under which identification can hold we
follow the argument in Manski (1988), Proposition 5, and state the following
Proposition, whose proof appears in the Mathematical Appendix. The
assumptions we make are clearly sufficient rather than necessary; weakening the
assumptions is left to future work. In interpreting the assumptions, note that
Assumption ¢ is the one used by Manski to identify this model when there are no
endogenous effects, i.e. if J is known a priori to be 0. The assumption, of course
does nothing more than ensure that the individual and contextual regressors are
not linearly dependent. The additional assumptions are employed to account for
the fact that m n(i) is a nonlinear function of the contextual effects.

Theorem 5. Sufficient conditions for identification to hold in the binary choice

model with interactions and self-consistent beliefs

Assume
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i supp(_ggi,xn(i)) is not contained in a proper linear subspace of R" 1%,
. supp(xn(i)) is not contained in a proper linear subspace of R®.

ut. No element of X or Xn(i) is constant.

w. There exists at least one neighborhood nj such that conditional on X"O’ X, is

not contained in a proper linear subspace of R".
v. None of the regressors in }:n( j) Possesses bounded support.

. Mo 4) is not constant across all neighborhoods n.

Then, (k,c,d,J) is identified relative to any distinct alternative (k ,¢,d ,J ).

12. linear-in-means model

Identification in the binary choice model with interactions can be
contrasted with the case of the analogous linear-in-means model,

The unique self-consistent solution M) for the linear-in-means model is easily
seen, by applying an expectations operator to both sides of the individual

behavioral equation, to be

k+E(X; | Xy + 4L

Mn(i) = T—J (56)

where E(X | Xn(i)) denotes the expected value of the individual controls given the
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neighborhood characteristics. Hence, following the argument in Manski (1993),
one can construct a reduced form expression for individual choices,
k

J J

~n

~n(1

In this equation, we have 2r 4+ s+ 1 regressors and r + s+ 2 parameters. The
possibility for identification in this model therefore will depend on which, if any,
of the regressors in the reduced form are linearly independent (i.e. their variance
covariance matrix is of full rank). For example if E(X,|Y n(i)) is linearly
dependent on Xn(i)’ then it is obvious that the model parameters are not
identified. More generally, it is necessary for identification that the dimension of
the linear space spanned by the regressors is at least equal to the number of
structural parameters, i.e. 7 + s+ 2; otherwise, one cannot map the reduced form
coefficients back to the structural parameters. Hence, one can state the following

theorem.

Theorem 6. Necessary conditions for identification in the linear-in-means model

with interactions and self-consistent beliefs

In the linear-in-means model it is necessary for identification of the model’s

parameters that

t. The dimension of the linear space spanned by elements of (1,X,Y n(l)) 18
r+s+1.

. The dimension of the linear space spanned by the elements of
(1, .}V(l,}:n(z), (X [Yn(l )) is at least r + s+ 2.

Notice that the conditions of this theorem, while analogous to those in the

theorem for identification in the binary choice model, are now necessary and not
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sufficient. This is because sufficient conditions will depend on the model
parameters. For example, if ¢ =0, then the fact that E(X, | Xn(i)) is linearly
independent of the regressors X, and Y n(s) will not eliminate collinearity of Mo 4)
and Zn(i) in the structural equation (55) and hence will leave only s+ 1 regression
coefficients in the reduced form available to identify k, J and d, which is not

enough.

This theorem is an extension of Manski’s (1993) result on the
nonidentifiability of contextual versus endogenous effects. Manski’s analysis
assumes that there is a one-to-one correspondence between the individual control
variables X, and the neighborhood control variables Y n(i) ° that for any
individual-level variable that influences behavior, the neighborhood average of
that variable also influences behavior. For example, if one controls for individual
education, one also controls for average neighborhood education. In this case,
E(%ilxn(i)) :}:n(i)' Hence, M) is linearly dependent on Zn(i) and so the
model is not identified. Notice as well that the Theorem requires that
E(X;| Xn(i)) is a nonlinear function of Xn(z-); this is analogous to the condition for
identification of some interaction effect in Manski (1993), Proposition 1 and
Corollary.  (Manski’s results have to do with the identifi.cation of either an
endogenous or contextual effect in the presence of individual effects, but does not

allow for identification between these two effects, whereas our result gives

conditions under which the two group effects can be distinguished.)

Why is there this difference between the binary choice and the linear-in-
means frameworks? The answer is that the binary choice framework imposes a
nonlinear relationship between the group characteristics and the group behaviors
whereas the linear-in-means model (of course) does the opposite. Intuitively,
suppose that one moves an individual from one neighborhood to another and
observes the differences in his behavior. If the characteristics and behaviors of the
neighborhoods always move in proportion as one moves across neighborhoods,
then clearly one could not determine the respective roles of the characteristics as

opposed to the behavior of the group in determining individual outcomes. This
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can never happen in the logistic binary choice case given that the expected
average choice must be bounded between —1 and 1. So, for example, as one
moves across a sequence of arbitrarily richer communities, the percentage of high

school graduates cannot always increase proportionately with income.

One can develop analogous identification conditions for alternative
information assumptions in the linear-in-means model. For example, suppose that
X n(i)’ the sample average of the individual characteristics in neighborhood n(z), is

known to all members of the neighborhood. In this case,

kt+cXomt+d

Mn(i) = 1—J

Nn(z)

(38)

This equation makes clear that if the elements of Z( n(i) lie in the linear space
spanned by Xn(i)’ then the linear-in-means model will not be identified. Hence,

we have the following corollary.

Corollary 3. Necessary conditions for identification in the linear in means model
when Zn(i) and X n(i) are observable

If Zn(i) and )’:( n(i) are observable, then a necessary condition for identification in
the linear-in-means model is that the dimension of the linear space spanned by
(l’gi’Zn(i)’Zn(i)) is at least r + s+ 2.

Operationally, this corollary means that for the full information case, one needs
one individual variable whose neighborhood level average is not an element of the

individual behavioral equation. This average can then be used to instrument

12. instruments for unobservable expectations
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The identification condition for the linear-in-means model suggests a set of
instruments which may be used when m:z(i) 1s not observable, is measured with
error, etc. Specifically, replacing mfl(i) with the projection of @y iy the sample

average of behaviors in neighborhood n(:) onto H(Zn(i),E(;}g”Yn(i))), where
H(a,b) denotes the Hilbert space generated by the elements of vectors a and b,

will not affect our identification results so long as
dim(H(Zn(i),E(_}gi|):n(i)))®H(}:n(i)))>O, where for Hilbert spaces I and G

such that G C I, IS G denotes the Hilbert space generated by those elements of
I that are orthogonal to all elements of G. An analogous procedure will apply

when _Z( n(i) is observable to individuals.

Of course, this assumes that the researcher has prior knowledge of what
individual-level variables affect behavior when their neighborhood averages do not;
otherwise, it would be the case that H(E(X, | Zn(i))) - H(Zn(i)) and so may be
susceptible to Sim’s (1980) classic critique of “incredible” identifying restrictions;
see Freedman (1991) for a similar critique of the sorts of regressions we describe
here.  The point remains, however, that identification in the linear-in-means
model depends on the same classical conditions as does identification in general

simultaneous equations models, as initially recognized by Moffitt (1998).

At the same time, we would argue that the issue of omitted variables is far
from insuperable. Both the social psychology and sociology literatures have
focused a great deal of attention as to which types of individual and group control
variables are most appropriate for inclusion in individual level regressions through
the determination of which variables seem to be proximate versus ultimate causes
of individual behavior; indeed it is this distinction which is the basis of path
analysis (Blau and Duncan (1967)); see Sampson and Laub (1995) for what we
consider a persuasive example of such a study. In general, we find it likely that
these literatures will be able to identify examples of individual variables whose
group average analogs are not proximate causes of behavior, and hence are

available as instruments. While these literatures are often not driven by formal
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statistical modelling and further subjected to Sims/Freedman-type critiques (e.g.
Freedman (1991)) when formal techniques are employed, this hardly means that
these literatures are incapable of providing useful insights. In this respect, we find
arguments to the effect that because an empirical relationship has been
established without justification for auxiliary assumptions such as linearity,
exogeneity of certain variables, etc., one can ignore it, to be far overstated. In our
view, empirical work establishes greater or lesser degrees of plausibility for
different claims about the world and therefore the value of any study should not
be reduced to a dichotomy between full acceptance or total rejection of its
conclusions. Hence the determination of the plausibility of any exclusion
restriction is a matter of degree and dependent on its specific context, including
the extent to which it has been studied.

. identification of individual versus neighborhood contextual effects

We now consider in more detail what is involved for identification of some
type of neighborhood effects. What we mean is the following. Suppose that one
wishes to determine whether any type of neighborhood effect exists, without
distinguishing between endogenous and contextual effects, hence the only
regressors in the model are a constant, X, and Y n(i)’ Operationally, we define
this as determining whether, for a statistical model which only includes contextual
effects as controls, the parameters on these contextual effects are identified.2 A
Corollary of the general identification Theorems 5 and 6 highlights the two
conditions necessary to distinguish individual versus neighborhood contextual
effects. A related result may be found in Manski (1993), corollary, pg. 535.

Corollary 4. Identification of individual versus neighborhood effects in the binary

*When ¥ E(X, |7 € n(z)) the corollary can be interpreted as applying
to identification E)t) a group effect for the reduced form of the linear-in-means
model.
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choice model and linear-in-means model with global interactions

In either the binary choice or the linear-in-means models with global interactions,
a necessary condition for the identification of some neighborhood effect is that
the dimension of the linear space spanned by the elements of (1’%il~/n(i)) is of

higher dimension than the linear space spanned by the elements of (1,X;).

While the corollary is trivial, in that it is nothing more than the statement
that in order to identify some sort of neighborhood effect some combination of the
expected neighborhood effects must be linearly independent of the individual
controls, it does have some economic content. Suppose that individuals are sorted
into neighborhoods on the basis of an individual characteristic and that the
neighborhood average of this same characteristic is what constitutes the relevant
contextual effect. = What this means 1s that there exists a neighborhood
assignment rule £(-) which relates individual characteristics to neighborhood
characteristics such that nonidentification requires that (assuming that the set of
neighborhood characteristics and the set of individual characteristics are each
internally linearly independent) there exists some linear combination of individual
characteristics which is equal to some linear combination of neighborhood

characteristics, t.e. there exist weights o and v such that

p+a' X =Y (59)
But if this is so, then if individual observations are chosen randomly from the
neighborhood, then it must be the case that individuals are perfectly segregated
across neighborhoods with respect to the composite individual characteristic
k+a'X,. This is an extremely strong condition on the neighborhood sorting rule,
ruling out any noise in the sorting process, and is in our judgment implausible.
Hence our interpretation of the identification corollary is that empirical

researchers should feel confident that individual versus neighborhood effects can
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be at least in principle distinguished. To be clear however, this does not mean
that data sets drawn from highly segregated communities are not a problem;
rather the same reasoning we have applied suggests how segregation can lead to

large standard errors for the estimated parameters of the model.

v. nonlinear-in-means model

The differences between the binary choice and linear-in-means models
suggest that nonlinearity has a fundamental effect on the identification problem.
McManus (1992) provides a number of general results which indicate that lack of
identification is a nongeneric phenomenon in nonlinear contexts; these contexts do
not include self-consistency conditions of the type which created the identification
problem in the linear-in-means model. (A property is generic to a topological
space of objects if it holds for an open, dense subset of the space.) McManus’
analysis relies on some results from differential topology, which are beyond the

scope of this chapter.

Nevertheless, it is possible to demonstrate a basic role for nonlinearity in
identifying the parameters of interactions-based models by examining deviations
from the linear-in-means model we have studied. Suppose that the individual
behavioral equation is

wl'——k+cl"¥z+d/)_(

~n(1

Here, the contextual effects X n(i) € averages of the individual controls X, so we
know that this model is not identified by Theorem 6. In the spirit of McManus
(1992), we wish to make precise the idea that for the class of models, when the
model is not linear in mfl(i) but rather is linear in a function of mg(i), lack of

identification is pathological.

To do this, let g(m) be a C? function such that g is nonlinear in m and let
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G(mZ(i)) = mZ(i) + fg(mf,(i)) (61)

represent a class of functions which are perturbations around the linear function

mz(i). We consider the nonlinear-in-means model

Associated with this equation is a conditional mean function H

For this model, self-consistency of mfl(i) requires

Our goal is to determine whether the model with { =0 is special in terms of
nonidentifiability of the parameters in (60). In doing so, we will assume that
when there are multiple solutions to this equation, there is a selection rule which

selects a particular solution Ma(i) SO that the observed M) = m(z(n(i)).

In analyzing this equation, we will work with a notion of local
identification. The model eqs. (61)-(64) define a “structure” for each particular
parameter vector A = (k,c,d,J). We focus here on identification at the level of
the conditional mean function (63). Following Rothenberg (1971) or McManus
(1992), we say a parameter point Ay is locally identified if it fulfills the following
definition. In our context, this condition is equivalent to requiring that the

gradient vector of (63) with respect to A has full rank.

Definition. Local identification in the nonlinear-in-means model with interactions

and self-consistent beliefs
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For the model described by egs. (61)-(64), the parameter vector Ay is locally
identified if there exists an open neighborhood N, of Aj such that no other
parameter vector in N, gives the same conditional mean in eq. (63) and such

that the self-consistency condition eq. (64) holds as well.

The concept of local identifiability has value as argued in Rothenberg (1971) pg.
578 as

“It 1s natural to consider the concept of local identification. This occurs when
there may be a number of observationally equivalent structures but they are
isolated from each another.”

Rothenberg (1971) demonstrates that there is a close connection between
local identification and the full rank assumption of particular derivative matrices
of a likelihood function. In our context, this means that one must show that the
gradient of the conditional mean function with respect to A is of full rank. In
addition, we need to account for the self-consistency condition in the sense that
the full rank condition must hold when the gradient is evaluated at a solution )
to the self-consistency condition. The following Theorem is verified in the

Mathematical Appendix.

Theorem 7. Local identifiability for models in a neighborhood of the linear-in-

means model
Assume
i SUPP(X,,(,')) is not contained in a proper linear subspace of R".

1. There exists at least one neighborhood ny such that conditional on X, 0 X, is

not contained in a proper linear subspace of R".
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i, J # 1.

w. The population data {‘Xn(i)’ X mn(i)} is such that there is an open set O

such that m(X n(i)) is differentiable on O and nonconstant on O. Further, there

are two distinct values in J O(, )call p t%lem) X, and X,, such that
< < g(m g(m
my =m(X ;) # mg=m(X,) and dml # 2

dm

Then there exists an open neighborhood N of £ =0, such that V £ € N — {0}, the
model defined by egs. (61) — (64) is locally identified.

What is important about this theorem is that it highlights the importance
of linearity in generating nonidentification. For a permutation of the linear in
means model in the direction of any nonlinear function g, identification will hold.
As nonlinearity seems to be a very standard feature of models with interactions,
this result provides a relatively optimistic perspective on the identification

problem, at least for the case of correctly specified models.

We believe that it should be relatively straightforward to extend the
approach of McManus to show that identification is a generic property of
nonlinear models with self-consistency constraints and are pursuing this in

subsequent work.

vt. implications of self-selection for identification

Our discussion thus far has assumed that the rules by which individuals are
sorted into groups has no implications for empirical analysis. Such an assumption
implies that the group formation rule is independent of the determinants of
individual choices and is thus unnatural in many contexts. Given the preferences

we have assumed, one would expect individuals, when possible, to endogenously
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sort themselves, accounting for the effects of neighborhood characteristics and
expected neighborhood behavior on payoff functions. Hence, there is the potential
for self-selection bias. For decisions such as nonmarital births or dropping out of
school, standard estimation methods may produce biased estimates due to the
correlation of the €;(w;)’s with the determinants of sorting. To be clear, we do not
explicitly account for equilibrium group formation, but rather approximate its

effects through consideration of selection.

This issue has yet to be addressed in an extended fashion in the
interactions literature. With reference to identification, what appears important
is that self-selection may actually facilitate identification. Intuitively, self-
selection can induce precisely the sort of nonlinearities or exclusion restrictions

which generates identification in the earlier discussion.

To see this, we develop an example. Suppose that the econometric version
of the linear-in-means model, eq. (55), describes the behavioral rule for all
individuals in a population, but that we only observe those outcomes for
individuals who have been sorted into neighborhoods in the sample. This can be
justified by positing the existence of a reservation neighborhood for each
individual. We assume that this means that there is a latent variable z; which
measures a family’s evaluation of the neighborhood and such that a family is
observed in neighborhood n(¢) if and only if z; >0. In turn, this latent variable

can be written as
z;=7R;+n; (65)
where R; is a vector of determinants of i’s neighborhood evaluation. Finally,

assume that the errors ¢, and 7, are zero mean, jointly normal with the

variance/covariance matrix
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and where E(g; | ‘Zgi’Xn(i)’mfz(i)’Ei) = E(n, | f)\gi’;\{n(i)’mfz(i)’@i) =0.
This is precisely the model which is considered in Heckman (1979).

Following his argument, since
E(e;] 2> 0) = poedi(VR;) (67)

where, letting ¢(-) and ®( - ) respectively denote the standard normal density and
distribution,
¢(V'R;)
MY'R;) = =525, (68)
~O(YRy)
a regression in which the model disturbance is orthogonal to the various regressors

is
w;=k+c'X,;+ d'Xn(i) + sz(i) + poA(Y'R,) + (- (69)

What is important for our purposes is that the structure of this equation can

facilitate identification. There are two distinct ways in which this can occur.

First, consider the case where each individual control is matched one-to-
one with a contextual effect so that E(X| Xn(i)) = Z:n(i)' Assume as well that
none of the variables in R, are functionally dependent on mfl(l-), so that we may
assume that the reduced form for mfl( i) depends on R, As discussed above, if
po. =0, so there is no selection correction, this is Manski’s (1993)
nonidentification example. = However, in the presence of self-selection, the

expected average choice within a neighborhood is, under self-consistency
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Moty = 7oy + (e + V) HTFEOGR) [i€n@)  (70)

so that a reduced form for individual behavior may be written as

ko 4oX, +—2 (Je'+ )Y+

1-J 1-J ~n(i
, J L
oMY R) + TESEN(YR) |4 € nli)) + ;. (71)

In this reduced form regression, nonidentification when po,=0 T{follows
immediately from observing that there are 2r+1 parameters and only 2r
regressors. However, when there is a selection correction, two new regressors are
introduced, A(Y'R;) and E(A(y'R,) | ¢ € n;), but only one new parameter, po.. This
allows for identification so long as A(7'R;) and E(A(y'R;) |« € n;) are not perfectly
collinear, which requires that there is within-neighborhood variation in A(y'R;).
Notice that the nonlinearity of A(-) ensures that the appearance of regressors in
R, which appear in either X, or Zn ; does not imply nonidentification due to

multicollinearity of the correction term with the other variables in the model.

This route to identification through selection correction is an example of
the general identification condition stated in Theorem 6. In order to achieve
identification, one needs an individual control whose neighborhood average is not
a contextual effect. This is precisely what occurs when A(v'R;) is introduced into
the linear-in-means model, since E(A(y'R;) |7 € n;) is not an element of the model

even when selection is controlled for.

Second, identification may be achieved if M) is a component of R..
Suppose that the expected average choice level is the only element in R, The
selection-corrected linear-in-means model is now

wl=k+clgz+dly

Nn(i

)+ sz(i) + paf)\('ymn(i)) + ;- (72)
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The parameters in this regression will now be identified so long as the joint
support of X, and Xn(i) does not lie in a proper linear subspace of R” ¥ since the
nonlinearity of the selection correction ensures that there is no linear dependence
between mfl ; and the individual and neighborhood controls. Notice that this is
the same reason for identification derived for the binary choice model; in both

cases, the nonlinear dependence of m;( ;) on X, and Xn(i) produces identification.

Of course, identifiability of model parameters does not say anything about
the precision of the estimates facilitated by selection corrections. Intuitively, one
will need substantial cross-neighborhood variation in mfl( i) if the nonlinear
dependence of the correction on this term is the basis for identification. Similarly,
substantial variation in R; will be needed if elements of this vector are highly
correlated with combinations of X; and Xn(i)’ in order for the nonlinearity of the
correction to avoid multicollinearity. Notice in this case, the presence of
regressors in R; which do not appear in X, or Xn(i) will likely prove valuable in

practice.

To be clear, this discussion hardly exhausts the implications of selection
corrections for identification. One issue concerns the relationship between the
selection and behavior equations. There is no behavioral justification for the
selection equation we have employed whereas ideally the selection equation will
reflect individual optimization over a set of neighborhood choices and account for
subsequent behavior which will occur in the neighborhood. Further, the analysis
needs to be extended to cases where the joint normality of the selection and
behavior disturbances is relaxed. Examples of nonparametric approaches to
selection correction include Ahn and Powell (1993). What this example
nevertheless demonstrates is that self-selection can, when accounted for, work to

aid in identification, and hence clearly warrants further research.

vii. implications of multiple equilibria for identification
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Finally, we observe that contrary to much of the conventional wisdom, the
presence of multiple steady states can provide identification in and of itself, a
possibility suggested in Manski (1993) pg. 539. To see this, suppose that all
neighborhoods are composed of individuals with identical characteristics, so that
Yn(i) =7. Suppose that the J is greater than 1 and that dy is small enough
relative to J that there are multiple steady states in a neighborhood. Finally,
suppose that a fraction r of neighborhoods exhibit expected average choices
consistent with the largest solution to m = tanh(dy + Jm), and a fraction 1 —r
exhibit average choices consistent with the smallest solution. In this case the
determinant of the covariance matrix of Yn(i) and M) 1s §2var(mn(i)) which is

nonzero unless § is zero. This would imply that in a regression of the form
wi=k+dY, )+ Imy; +e; (73)

J will be identified (although k and d of course will not be). The intuitive point
is that variation in the realized equilibria across observations for a model with
multiple equilibria can provide the leverage required to identify model

parameters.

vizi. dynamic models and rational expectations

Wallis (1980) provides an analysis of identification in classical rational
expectations models that is closely related to the analysis of identification in the
linear-in-means model.  Suppose that the linear-in-means model is modified so
that it now describes behavior at points in time, i.e.

wip =X 1+ ALy HImy e (74)

n(i
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Let w; denote the column vector of choices at ¢, X; and Y; denote matrices whose
columns are the X i,t,s and Y n(i) .8 respectively, and C and D denote
conformable matrices whose rows are always ¢’ and d’ respectively. Then a panel

of observations on individuals can be written as
w;=CX;+ DY+ Jm§+¢. (75)

When D =0 and J is not a scalar, but rather a conformable matrix, one has the
vector linear — in — means model version of the Wallis (1980) structural equation
(2.1). These differences between the linear-in-means model and Wallis’ model
create new problems for identification. The identification problems which we
have described in the linear-in-means model occur precisely because of the need to
identify D. The identification problem is particularly acute when the ¥ matrix

consists of neighborhood averages of X, as we have already seen.

Observing the connection between the linear-in-means model and (75)
suggests that fruitful connections exist between the literature we survey here and
the classical rational expectations econometric work of Hansen and Sargent (1991)
and Wallis (1980), among many others, as well as more recent work that extends
that tradition to social interactions (Binder and Pesaran (1997)) and to spatial

rational expectations econometrics (Fingleton (1999)).

As eqgs. (74) and (75) make clear, the linear-in-means model is interpretable
as a version of the Wallis model where w; is scalar. The identification problem
which occurs when M) CaD be expressed as a linear combination of ¥ n(i)’s will
occur in Wallis’ model when Xn(i) =EBE(X;| X:n(i)) for the various columns of Y.
This connection between the problem of identification in the linear-in-means
model which describes interactions in “space” with the problem of identification in
linear rational expectations models in “time” suggests integrative future research

along these lines should exist.

There are in fact many dimensions along which one can explore links
between interactions-based models and rational expectations models. Hansen and
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Sargent (1991), pg. 2 remark that

“Work on rational expectations econometrics has divided into two complementary
but differing lines. The first line aims more or less completely to characterize the
restrictions that a model imposes on a vector stochastic process of observables,
and to use those restrictions to guide efficient estimation. This line is a direct
descendant of the full system approach to estimating simultaneous equation
models...

The second line of work is the application of method of moments estimators to
estimating the parameters that appear in the Euler equations associated with
dynamic optimization problems...”

Our discussion thus far has contrasted the linear-in-means model of social
interactions with what Hansen and Sargent call the “first line” which is treated by
Wallis in a framework particularly suited to comparison. In spatial optimization
problems one could also develop a “second” line that parallels the Euler equation-

based, methods of moments approach.

A key feature of dynamic rational expectations models is the potential for
intertemporal interaction effects to influence identifiability. For example, suppose
that individuals are affected by lagged group characteristics and lagged expected

average behavior, so that

w =X+ dlxn(z‘),t— 1+ ng(i),t— 1€ (76)
(We omit the constant k for expositional reasons.) In the case where all
individual characteristics correspond one to one with neighborhood contextual

effects (which is the Manski case of no identification in the linear-in-means

model), this equation can be reexpressed as
Moyt = € Ln(iy,t TELn@) 01 M) 1 -1 (77)

or
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mn(i),tz(l-—lJL) Yot (3 JL)dYn(z)t—l (78)

where L denotes a lag operator. (We have assumed |J| <1 so that the operator

1 — JL is invertible.) Substituting this expression into (76),

Wit =
, ) 1
it dL gy 1 VING=7D) gy, e -1+ G704 i), e -2 H i =

X+ (T + )Y, HEIDU ot (T9)

n(i),t—1

where the last line in the equation follows from (ﬁ)mt =z, + (ﬁ)xt—l.
Now, assume that the moment matrix generated by the elements of
()N(i,t’Xn(i),t— I’Zn(i),t——Q,...) has full rank, so that the coefficient on each of the
variables on the right hand side of (79) is identified. Then the coefficients of the
underlying structural model are also identified. To see this, observe first that c is
of identified by the coefficients on the regressors X; ;. J is identified because the
coefficients on any corresponding elements of Y n(i),t — k and Y Nn() g1 With
k > 1 proportional to J. Once ¢ and J are identified, so is d from the coefficients

on any set of regressors Y . Intuitively, the timing of the interactions
y g n(i),t — g

breaks the strict collinearity of the contextual and endogenous effects.?

Finally, as an example of how the substantive economics in a dynamic
model can influence identification, we consider a dynamic model of production
;‘ complementarities of the type studied by Binder and Pesaran (1997). In this
model, the capital decisions of a set of profit maximizing firms is studied. Each

firm possesses a technology such that

may be identified. Our verification of this conjecture suggests that the reason is
not that the data are out of “temporal equilibrium” as Manski suggests, but
rather that the collinearity of expected group outcomes and contextual effects is
affected by dynamics in the interactions.
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Q; =T, K3y (80)

where T'; , measures the level of firm 7’s technology and K , measures its capital
stock. The rental price of capital for each firm is R;. The level of technology of

firm 7 1s assumed to follow
Ti,t =
Aezp(c'log(X; ;) + d'E(logX; 4| i € n(2)) + JE(logK; ;|1 €n(i)) +¢; ;) (81)

In this formulation, for any w, logw is the vector whose i’th element is logw,.
The shock ¢; ; is taken to be independent and identically distributed across both

firms and time.

Firms are assumed to maximize the expectation of the present discounted
value of their current and future profits. Each firm observes its own shock € ¢ at
the time it chooses Kz‘,t but does not observe the shocks of other firms. Given our
assumption that the technology shocks are independent across time, the
discounted sum of profits breaks down into a sum of independent profit terms.
Profit maximization with respect to the choice of firm-specific capital leads to the

first-order condition
(1—a)logK; ;=
log(aA) + c'log(X; ;) + d'E(logX; ;| i € n(2)) + JE(logK; ;| € n(7))

—logR;+€; 4 (82)

Suppose that we have data for a cross-section of firms at fixed ¢. In this
case, (82) is an example of the linear-in-means model for which identification fails,

since the group analog of each individual control appears in the structural
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equation; specifically, we have r individual controls log(X,; ;) and r group level
controls E(log?\{i,t |2 € n(2)), and the composite constant term log(a) —logR;, so
by Theorem 6, the model is not identified.*

Alternative routes to identification emerge when one allows for a richer
dynamic structure to technology. Productivity spillovers generated by one firm
onto another plausibly depend only on the current level of that firm’s technology,
not the particular path by which the firm arrived at that technology. On the
other hand, the ability of any firm : to benefit from another firm’s technology
plausibly will depend on its own level of technology in the previous period as well

as its characteristics today.

Formally, these assumptions on the dynamics of spillovers can be expressed

in an equation for the logarithm of firm ¢’s technology level such as
Ti=
Tgt_ lAe:cp(c’log(X +d E(long (|7 € n(2))+JE(logK; t|z € n(i ))—i—ez ¢) (83)

The first order conditions for profit maximization now imply, after taking log’s,

that the capital level for each firm obeys
(1—a)logK,; ;=
BlogT; 1+ log(aA) + c'log(f)\g’i, o+
d'E(logX; ;|1 € n(2)) + JE(logK; ;| i € n(i)) —logR; +¢; 4. (84)

What matters from the perspective of identification is that we now have an

additional regressor logTz-,t_l, whose group average does not appear in the

4Notice that we do not assume in this particular case that the averages of
the individual characteristics logX, |t are known by members of a neighborhood.
This has no effect on the analysis.

33



equation. Hence for this model, we have r + 1 individual effects, whereas we still
have only r contextual effects. Hence, it will be possible to identify ¢, d, J. Of

course, if this variable i1s not observable, it will itself have to be instrumented.

This example is only meant to be illustrative. Once one leaves the log
linear framework, recent work such as Pakes (1999) that treats nonlinearities
seriously in firm dynamics would be needed for the formulation of the stochastic
processes characterizing firm behavior. Extending this kind of analysis to focus on
measuring spillovers between firms seems to us to be a worthwhile area for future
research. While production spillovers are the driving force behind the new growth
theory, it is remarkable how little firm evidence of such spillovers actually exists.
A primary reason for this is the weakness of the econometric methods which have
been employed to obtain such evidence; Durlauf and Quah (1999) discuss many of
the problems which exist with efforts to identify production externalities using
cross-country growth data. Our belief is that the use of individual level data
which follows interactions in the way we have described will yield much clearer

inferences.

4. Further topics 1n identification

1. panel data

The extension of identification results from cross-sections to panels is
important for several reasons. First, panels will provide an opportunity for
dealing with model misspecification which is not present in cross-sections.
Hoffman and Plotnick (1996) is the only case we are aware of in which this
argument is applied in an interactions context. Second, panels allow for
intertemporal interactions which facilitate a richer notion of belief formation than

we have used.
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a. fixed effects

To see how panel data can provide a way of dealing with misspecification,

we start with the linear-in-means case. The panel analog to eq. (55) is
wip=k+X;  +dY oG T Imn et e (85)

In addition to introducing time subscripts on all variables, an unobservable fixed

effect term a; is now included.

In order to produce consistent estimates of ¢, d, and J, we follow the

suggestion of Chamberlain (1984) and difference this equation with respect to t,

Awi’t = C’A’)\J{i’t + d,A}r:n(i,t),t + JAmiz(i,t),t + Aei, t (86)

Identification may now be treated in a fashion exactly analogous to that in
Section 3, once first differences replace the levels used in the identification
conditions. Notice that it is important to be careful about the assumption that
regressors are orthogonal to errors in the differenced equation

E(Ae; 1 [AX; A  n(i 1), 8™, 8),0) = 0

since Ae; ; will not be white noise.
)

One implication of the panel data case with fixed effects 1s that variation
in Amz(i 1)t is useful in facilitating identification. In turn, this suggests that in

environments which are slowly moving, J may be difficult to estimate precisely.

Analogous reasoning may be applied to the binary choice case. Suppose

that the individual payoff function is now
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V(w; Zi oh5, 1(@ 5, 156, 1(w; 1)) (87)

where we again introduce time subscripts and a fixed effect a;. We generalize our
earlier development of the individual choice problem by assuming that the

differential payoff between the two choices equals
Xt tdYni 0,0t I, 0,0 T el —e (=1 + o (88)

So that the probability measure for w; ¢ obeys

exp(B'X; (+BAY i gy + BImp 4y 4+ @) (89)

This equation is in a form which is estimable given methods derived in
Honoré and Kyriazidou (1998). That paper also shows how one can adapt
Manski’s (1975,1985) maximum score estimator so as to allow estimation of the
model’s parameters without assuming a logistic distribution for differences in the
random utility terms. With respect to the logistic case, Honoré and Kyriazidou
(1998) show, extending an original insight of Chamberlain (1993), that if one has
two consecutive observations on agent z, and if lagged wi,t’s do not appear in the
regressor matrix, then the conditional probability that either wijg_1=—1or
w; ¢ =1 given w; ;_1+w; ;=0 is independent of ;. This is the analogy to the
differencing out of the fixed effect in the linear-in-means case. = Honoré and
Kyriazidou further show that if lagged w; ,’s do appear in the regressor matrix, it
is possible to modify their procedures and achieve identification so long as four
consecutive observations on each agent are available. With respect to their
conditions for identification, they appear to be consistent with the interactions-

models we have been analyzing, once one allows for differenced rather than levels
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data.

This discussion has of course assumed that there is no self-selection into
groups. Kyriazidou (1997a,b) provides conditions under which identification can
occur for this case; extension of her methods to interactions-based environments

would seem quite valuable.

b. learning

An alternative use of panel data lies in the ability to model the
expectations process as generated by learning. A simple way of doing this is to
assume that the beliefs of an individual concerning the average choice in the
population equals the realized average last period, so that social utility, for

example, may be written as

Slw. . X Tij 2
(Wi pXi i 1—1) = —é' 5 (Wi —wj 1) (90)
, =i

At this level, the dynamic interactions can be interpreted either as reflecting a

primitive assumption either about individual preferences or concerning the way in
which individuals form expectations of the contemporaneous behavior of others.
This will not be so for more sophisticated learning models with interaction effects.
Such models have been studied by Besley and Case (1994), Case (1995) and
Munshi and Myaux (1998). In complementary work, Binder and Pesaran (1998a)
provide an interesting analysis in which social interactions can be analyzed in a

dynamic model with rational expectations.

72. duration data
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For contexts such as out-of-wedlock births or first sexual activity, it seems
natural to consider interactions as they affect the probability of transition from
one state to another; see Brewster (1994a,b) and Sucoff and Upchurch (1998) for
empirical studies using this perspective. For such models, it is necessary to
reformulate the nature of the interactions as they are manifested in a self-
consistency condition analogous to eq. (16) in order to exploit the tools which
have been developed to study duration data; these tools are well surveyed in Cox
and Oakes (1984), Heckman and Singer (1984a, 1985) and Lancaster (1990). To
keep matters concrete, we will use the timing of out-of-wedlock births as an

example.

Following standard notation (e.g. Amemiya (1985) Section 11.2 or
Heckman and Singer (1985a)), we let T denote the duration from ¢ =0 that an
unmarried woman remains childless. The probability that this duration is less
than any ¢, u(T < t), is denoted as F(t). For any interval §t, the probability that

a childless woman at ¢t becomes pregnant by ¢ + 6t is

pit <T <t+6,T>1)

p(t<T <t+6t|T>t)= TS . (91)

From this condition probability, two standard functions of interest can be defined.
First, the hazard function A(¢) is defined as

o ut<T<t+6tT>t)  F(t)
Alt) = limsioyg §tu(T > 1) “1I-F(t)

(92)

Second, the survivor function S(t) is defined as 1 — F(¢). If A(t) = A, so that the

hazard is independent of time, then the survivor function is
S(t) = eap( - A8, (93)

which is the standard exponential form employed in many applications.

In order to make clear the basic identification issues we start with a
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baseline case. We assume that the time scale of the duration of interest is short
relative to the time scale over which data are collected, so that all duration
“spells” are completed. Formally, this assumption means that there is no “right
censoring” of the data. This will not be appropriate for out-of-wedlock birth data,
since of course not all unmarried females experience the event; nevertheless, the
assumption is useful for exposition. Let ¢, denote the time of first birth for
individual 7. If this timing is associated with probability density f(-), then the
joint density for the I times is IIf(¢;). This joint probability will be determined
by the individual hazards A;. z

As before, we assume that the hazard for each individual under analysis

depends on individual characteristics X, neighborhood characteristics Xn(i) and

e

the expected value of either the within-neighborhood duration or the median

an expected neighborhood behavioral measure mz( i) In this context, m ) may be

group duration. We therefore assume that for each individual

A= ’\(Xi’Yn(iymf;(i)) . (94)

NN

so that the associated density for the duration is
P XiXon(iymn(y) = MEiXn(iymng)erp( = NZpXpgpma@)t) - (95)
The expected duration for individual ¢, conditional on these controls is
E(t| Xo X nymags) = MEi Xy~ (96)

and the median of the duration is given by the solution t* to F(t*) :% which
implies that

DOf—

= 1= F(t*) = eap( = N XX piiymei)t) (97)
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which implies that ¢* solves

Equations (97) and (98) allow us to define self-consistent solutions for this

model. Self-consistency with respect to expected duration times requires that

M) = M) = / ME i iy ™ 4F x (99)

where as before F'y is the probability distribution of characteristics within
neighborhood n(z). Similarly, self-consistency with respect to the neighborhood

median requires that
— _ Y -1 F
M) = Mgy = 1092 / A iy Mm@y~ d X (100)

These two expressions only differ by a constant of proportionality. Notice that we
have assumed that each individual references on her entire neighborhood. It is
possible to consider cases where the reference group is smaller, so that for
example, one only references on individuals with similar individual characteristics.
As we have already seen in the discussion of other models, the “width” of each

individual’s reference group plays a key role in identification.

We first consider identification in the parametric case under the
assumption that the expected value of the duration time within a group is the
relevant endogenous interaction. Following treatments such as Amemiya (1985)
section 11.2.3, we assume that the hazard function for individual ¢ is exponential,
so that

We assume that X, contains a constant term (Amemiya (1985) eq. 11.2.26). The
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associated likelihood function for the data will therefore be

L =Tlexp(c'X;+d'Y ()—}-Jm ))emp(——exp(cX +d'Y ()+Jmn(z)) ;)-(102)

n(i
For this model, choosing parameter estimates for ¢, d, and J to maximize (102)
without imposing eq. (99) corresponds to the naive estimator we have described in

the binary choice and linear-in-means cases.

Following the analysis in Amemiya (1985), identification in population
requires that the expected value of the Hessian matrix of logL is nonsingular at
the self-consistent solution (99). Letting b= (c,d’,J)" and M, = (Nz,,\/;l(l),me(i))’,
the expected value of the Hessian equals

8%logL

EC a5

| M;) = —E(D_texp(b' M) M ;M| M;). (103)
1

Further, since E(t; | M;) = A~ L it is further the case that

1

Zt exp(b'M )M M | ZMZ%; (104)
which means, dividirig both sides by I, that identification asymptotically depends
on the linear independence of the controls which constitute M. This is the same
condition which appeared in both the binary choice and linear-in-means.
However, if M) is the within-group mean, then by eq. (99) M) is a nonlinear

function of Zn(i) and F X

A nonlinear relationship of this type is the key condition for global
identification in the binary choice model. Extensions of the analysis for binary
choice may be made to the exponential hazard model as well as other parametric
cases such as the Weibull, log normal and log-logistic distributions and can further
be done for cases such as right censoring or for Cox’s partial likelihood approach.
A formal characterization of the conditions for identification in these various cases

is left for future work. In particular, we believe that analogous conditions for local
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identification to those found in Theorem 7 can be developed for the current case.

uz. Nonparametric approaches

a. treatment effects

Our discussion of identification has assumed that a researcher possesses
prior information concerning the form of the model under study, so that
estimation occurs with respect to a finite set of parameters. In our context, this
information has taken the form of both the functional form for individual behavior
and, where selection into neighborhoods is an issue, the rules for neighborhood
self-selection. Dissatisfaction with the assumption of such strong prior
information has led to a vast literature on semi- and non-parametric approaches to
estimation. In the context of interactions-based models, one can think of a
nonparametric approach to estimation in the context of identifying a role for
neighborhood characteristics on individual behavior while making relatively weak
assumptions on the functional forms describing individual behavior. In turn, one
can think of this question as analogous to the nonparametric identification of
treatment effects, where group influences are the “treatment” whose effect we

wish to uncover.

In this section, we develop approaches to both point and interval
identification of interaction effects under substantially weaker modelling
assumptions than we have employed thus far. First, following Heckman (1997),
we show how the assumption that neighborhood interaction effects act as a
“shifted outcome effect” combined with an exclusion restriction on the
determinants of neighborhood membership, can lead to identification of an
interaction effect. Second, following Manski (1995) and Manski and Pepper

(1998), we show how one may relax this exclusion restriction and nevertheless
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obtain an upper bound on the interaction effect.

To make our analysis concrete, suppose that, following the work of
Steinberg (1996) we are interested in determining whether a peer group of
“brains” (denoted as group 1) versus a peer group of “nonbrains” (denoted as
group 0) affects individual student performance. Observations are available from
G different schools, each of which contains students who are members of each
such group. The variable 5i, p tracks the group of individual ¢ in school g. The
goal of the exercise 1s to determine the effect of membership in group 1 versus

group 0 on a continuous outcome variable, w; , .. Notice that we index according

%9,
to both school and group. Membership in gthe brains groups is therefore our
“treatment” and so we wish to measure the treatment effect. We let X i denote
those observable individual variables which directly determine Wi g€ and Ei,g
denote those observable variables which determine whether ¢ is a member of group
1. We refer to the average behaviors in the two groups as m, o and my 1 with
mg = (mg g;mg 1) We have included g in the subscripts so that each observation

refers to both an individual and the school which he attends.

For a given individual ¢, we assume that Wi g€ obeys
1

“ig,6 = ¢(£i,g’7¥i,g>,@i,g’mg) + Ci,g(fi,g) (105)
for some function ¢( -, -, -, - ) where
E(ei,g(gi,g) |§i,g’2\§i,g’£i,g7wg) =0. (106)

The identification question therefore refers to what can be learned about

Aj g =Wi g1~ Wj g Following Heckman (1997), one is typically interested in
E(Ai,g l %2, gvgi,ymg) - ¢(1’r)v(i,g’Ei,g’mg) - ¢(O’7¥i,g’lji,g’m9) (107)

where the equality follows immediately from (105) and (106). This is the
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expected value of the treatment for an individual with characteristics X, i and
R; p in school g and represents the object which we wish to estimate. A distinct
quantity of interest is E(4; | Xz o8 g€ g =1) which Heckman (1997) refers
to as the effect of the “treatment on the treated for persons with characteristics”
X i and Rv Notice that the selection problem holds because there is
information about €; 4(0) and ¢; ,(1) when the treatment, i.e. group membership,

is a choice variable.

In order to identify E(A, |X2 B g’Ng) one proceeds as follows. First,

assume that the effect of group membersh1p is additive, so that

Wi g1~ Wi 0,0 = k(X 1) (108)
for some function &( -, - ) which means that
(X gig) = B(Bi g1 X; o Bi g1mg)- (109)

Eq. (108) is often referred to as a shifted outcome assumption. Notice that this is
a minor generalization of Heckman (1997), although not Heckman and Robb
(1985), in that we allow the k’s to vary with respect X g and 1,4, which is

natural if one thinks the treatment effect varies across individuals.

Next, consider what is estimable from the data. The group means m, are
of course observable. Further, one can estimate the conditional expectations of
behavior for individual given their group memberships, i. e.

E(w =0) (110)

ia 9’0 | ‘K'L, g’Ei,g’m-‘?’{i, g

and

B(w (111)

i,0,11 i o 8Bi i g=1)
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The identification of an endogenous interaction effect can be thought of as
requiring that one can move from these conditional expectations to
E(wi,g,(] I Xz , g1, g’mg) and E( “i 9,1 IXZ , g~ PR
to be somewhat more careful about the process of group formation. We therefore

mg). To do this, it is necessary

assume that individuals join groups at least partially on the basis of the expected
behavior in the groups, and that these expected behaviors are rational. This is

nothing more than the self-consistency idea we have used throughout.

We mnow can consider the estimation of k(X : mg) Letting
w(&;, g | X, g Ry gm mg) denote the conditional probability of group membership, it

is immedlate that

E(wi,g,o | %i,g’ﬁi,g’m!}) =

E(wi,g,0| X; oBi ggrbing =06 g =01X; Ry gmg) +
E(w; g,01X; pBi peli g =D& g =11X; B; omg) (112)

and

E(w; g11%; pBi gtg) =

E(wi,g,l l ‘Xi,g’@i,g’mwé.i,g = 0)”(61,9 =0 | r)\J(’i,g”}V{ivg’mg) +
E(wi7g,1 | %i’g,gi’g’mgagi’g = 1)[1( =1 | XZ g Nl,Q’Ng) (113)
The right hand terms E(w

E(w

expectations of behavior for individuals were they members of groups which they

“i, 9,0 | X 1, g Ez g’~g7€i,g =1) and

i1 | %i,g’ﬁi,gﬁr@g’&i,g =0) are not observed since they refer to conditional

did not select into. Hence identification will only occur if some additional

assumption overcomes this.
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One such assumption is an exclusion restriction with respect to the
variables which affect selection into groups versus variables which affect behavior
once one is a member of a given the group. Formally, we need the following. For
every set of pairs %i,g’gi, and X. R

~1, g~ g
E(wi,g,O | '?gi,gvlmzi,ymg) == E(wi,g,o | %i,g’%,g’mg) (114)
and
E(wi 6,11 X5 o8, gg) = Elwi g 11, B o) (115)

What this means is that there is a variable which affects selection but not

expected behavior for each individual once that person is a group member.

Following Heckman (1997) and Manski (1995) p. 144, the shifted outcome
restriction (108) and the exclusion restriction described by eqgs. (114) and (1153)

can be combined to conclude that
E(w; 411 Qgi,g,E,’,g,Tﬂg,ﬁi,g =Du(€; ,=1| %i,g@i,g’mg) +
B(wi,g,01 X4 B, poki,g = 0mlls g =01 X, 0By g +
k(X pmeills g = 01X, B, gmg) =

E(w g =11X; R pmg)+

9,1 | %i’g,]ﬂ"q)mg)él”g = 1)/1( 1, g0, g‘)Ng
E(wi,g,0 1 X;, B, gorbisg = Onléy g =01 X; . B5 ) +
KX, pmolilé; g =01X; HB: pmg)- (116)

Other than k(X g,mg), each of the terms in this expression can be estimated
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nonparametrically, and so k(X ; ,mg) is identified.
Theorem 8. Nonparametric identification of endogenous interaction effect

In the presence of self-consistent expectations, shifted outcomes of the form eq.
(108), and an exclusion restriction of the form egs. (114) and (115), the interaction
effect is identified.

Two features of this result are worth noting. First, under Theorem 8, one
can estimate E(k(X. m,)|m,) and test for the average interaction effect in a
Nz,g ~Y9 Ng

population. Further, if one is willing to assume that

k()N(i,g,Q}g) :Jg(mg,l—mg,o) (117)
then the interaction parameter J, for each school may be identified. In principle,
cross-school variation in Jg could be employed to study the determinants of the

strength of interactions.

Second, while Theorem 8 makes some progress in terms of relaxing the
parametric assumptions of the interactions model, it is still strong in terms of the

underlying behavioral assumptions. As stated by Heckman (1997),

“Any valid application of the method of instrumental variables for estimating
these treatment effects in the case where the response to treatment varies among
persons requires a behavioral assumption about how persons make their decisions
about program participation. This issue cannot be settled by a statistical
analysis.” (pg. 449)

In our context, the treatment is the membership in group 1 rather than group 0
and the instrument is characterized by eqgs. (114) and (115).

One approach to weakening the exclusion restriction on instruments is due

to Manski and Pepper (1998). Following their analysis, we replace our previous

69



|
:
r
1
]
!
|
]
i

assumptions with inequality restrictions. First, we replace our assumption of a

shifted outcome variable, eq. (108) with

<KX, my). (118)

wiag’luwi’ga 1,9 "~y

This assumption means that the effect of shifting a person with individual

characteristics X, J from group 0 to group 1 is bounded from above by

k(X ; gmg) Second, we assume that a monotonic increase in the selection

varlables R, g never decreases the expected outcome for an individual within a
b

given group. Formally, if R’ g2 R; g’ then

E(w <E(w =0,1 (119)

/!
i,9,€ | %i,gaﬁi,g,mg) i,9,€ ’ *,.)gi7ga}i,i’g7mg)7 £
This assumption relaxes egs. (114) and (115) in that a monotonic increase from
R, g to R; g may have an effect on the conditional expectation of w, 7.6 but this
effect’s sign must not be negative.

Under these assumptions, we have

E(wi,g,l | 252-,9, Ei,g’m’g’éi,g = l)M(fi’g =1] %i’g,ﬁi,g,mg) +

E(wi, 9,0 | ‘r)gi,g’!\/{i,g’mg’éi,g = 0)/‘( =0] Xz g~ g7~g) +
k(‘r)\gz g’ Ng)”( =0 | Xz g 1AYT, g’Ng) <
E(wi,g,l | ,)\,(i,g7 },y',g,mgagi,g = 1)“( =1 I ")\(:Z gv,\; g)Ng) +

o

E(wi 6,01 X5 o, g1g:8i, g = 0ulEi g = 01 X; o BG mg) +
k(%i,g’mg)/‘(fi,g =0 l ;)\,( I,\z,z N_q) (120)
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We may now consider the quantity, Q(X ; g’Ei, g,m_q) defined as

Q(%Z’ g,’@’ia g’mg) -

E(wi g,11 X; oBi oot g = D€ g =11 X; o gtg) +

E(wl,g’o | %Z,g7gl,g7mg7§1,g = O)H( = 0 l )(2 . g Nl g’ g)

(121)

This term is an observable analog of the expected outcome of an individual with

observed characteristics X Rl g and mg. Inequality (118) implies that

QUX; B ymg) + KX, monles o= 01%; B )

2 g7, gy i, g9
QX; i 73g) + X, gl , =01,
which may be rewritten as
QX B y8g) — QX; i gimg) 2

k(‘xl 7mg)(ﬂ(€i,g = OlXZ Nz,g’Ng) lu’(fz',g = 0|‘¥Z a,\,i,gvmg))
g 9’ )

So long as

and

(122)

(123)

(124)

(125)



one can construct an upper bound on k(X ; g,mg). Formulating the bound using
the fact that

wlli g =11%; pBi gmg) — (& g =11 X; B pg)
we have Theorem 9.
Theorem 9. Construction of upper bound on the endogenous interaction effect
Assume that egs. (118), (119), (124), and (125) hold. Then

k(‘)N(z g’mg) <

Q(-Z,(,' g’lﬂ g”l?g) - Q(%i,g’&’g’mg) (126)
p’( =1 | X’L g’wz g’~9) 'u(‘fl,g =1 | 2\'(ia.q,"\/i’g”wg)

A weakness of this result is that when it comes to interaction effects, it is
probably more interesting to obtain a lower bound, since the presence of such
effects are controversial. Notice, however, that the Manski and Pepper approach
does suggest a way of constructing such a lower bound. In order to do so, one
would need to find a variable which possesses the features that an increase
(decrease) in its level would 1) both increase (decrease) the probability of selection
into group 1 and 2) decrease (increase) the expected outcome for an individual
conditional on the variable. Introspection suggest that it may be difficult to find

such a variable, although there may be contexts where it holds.

In contrast, the assumption that one can find a variable in which both
effects move in the same direction seems relatively plausible. For example,

Manski and Pepper consider the question of how to bound the effect of the returns
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to schooling, using SAT as an instrument. It seems natural in this case to assume
both that higher SAT’s make additional schooling more likely and higher SAT’s

do not reduce the benefit of additional schooling if chosen.

The self-consistency conditions
Mg~ /E(”i,g,f 16X B mg)dFx g g €=0,1 (127)

(where following our previous convention, dF X.R.g denotes the joint distribution
of X and R in school g), play an essential role in determining the quality of the
bound in (126). To see this, consider the extreme case where all individuals
g and R,  then the bound is

within a school g have identical values of X ; R; 5

undefined, since the numerator and denominator of (125) will each equal 0.
Alternatively, suppose that the distribution functions of individual characteristics
are identical across schools, so dF?S R, = dF:X, R If the solutions to the self-
consistency conditions (127) are unique, then this implies expected average
outcomes must also be identical, i.e. m, = - If k()N(i,g,mg) = k(my), so that
the bound does not depend on individual characteristics, then one can use cross-
school information in that k(m,) must be bounded by the inf of the upper bounds
computed for each school in isolation. This type of argumentation seems a

valuable area for future research.

At a minimum, this discussion illustrates two points. First, semi- and non-
parametric approaches to inference can be adapted to achieve either point or
interval identification of interaction effects. Second, the conditions required for
identification require careful consideration of the underlying socioeconomic

theories under analysis in order to identify appropriate instruments.

b. duration data
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Identification can also be considered for nonparametric approaches to
duration data. As compellingly demonstrated by Heckman and Singer (1984b),
errors in the assumed form of the hazard function and in the “mixing
distribution” (by which they mean the distribution of unobservables) can lead to
wildly misleading estimates. These problems of course are also relevant when
interaction effects may be present. As far as we know, the extension of the
methods studied by Heckman and Singer and subsequent authors to models with
interactions has yet to be studied and it is beyond the scope of this paper to do so.
However, we do sketch a slight extension to one approach to nonparametric
identification in duration models, due to Elbers and Ridder (1982), in order to
illustrate how such argumentation can in principle proceed; the reader is advised
to see Heckman and Singer (1984c) for an evaluation of alternative conditions for

nonparametric identification in this context.

Following Elbers and Ridder, suppose that the hazard function may be

written as
M, (128)

Relative to our original treatment of hazards, this incorporates two additional
terms: a(t) which allows for duration dependence, and v; which allows for
unobserved heterogeneity. The v,’s are assumed to be drawn from a common
distribution F',(-) with associated density f,(-). Elbers and Ridder show that
subject to appropriate regularity conditions, if F(¢|M,) is nondefective (which
means that all spells are completed), then it is possible to identify a(-), A(-), and
fu(+). They do this as follows.

Define the conditional survivor function for individual : as

~1

S(t, o) = eop [ Lalr)h(M vidr) = cop(ADRMJv)  (129)

where A(t) = / ;a(r)dr and the conditional survivor function
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/S’ (t,M;v)dF, = /exp(TV)dFV (130)

where 7= A(t)h(M,;). The last term in (130) indicates how the conditional
survivor function is the LaPlace transform of dF,. The analyst is assumed to
observe a family of nondefective distribution functions G(t,M;)=1—-S5(t,M;)
from which he wishes to recover a(-), hA(-), and f,(-). Elbers and Ridder assume
that 1) v is nonnegative with mean 1, 2) M, lies in an open set in the k-
dimensional reals for some k, and 3) k() is defined on this open set and is non-

negative, differentiable, and nonconstant on the set.

Working through the proof that these conditions allow for identification,
reveals the following. First, if one differentiates G(,M;) with respect to ¢, h(M)
may be recovered regardless of whether a self-consistency condition like eq. (99)
holds when Mo i) is a component of M, Second, Elbers and Ridder exploit the
LaPlace transform relationship to obtain a differential equation by assuming,
without loss of generality, that M, is one-dimensional. This argument requires

differentiability and nonconstancy of h(M;).

In order to generalize this step to allow for endogenous interactions with a
self-consistency condition such as eq. (99), the reference group for each individual
¢ must be broad enough to allow differentiability with respect to a nontrivial
subvector of M,. Specifically, one needs to be able to vary X, and Zn(z—) without
M) varying. For example, suppose that within each neighborhood, all X,’s are

n(t
identical. In this case, the self-consistent average choice level is

Generically, eq. (131) will have only a finite number of self-consistent solutions (if
such solutions exist). Therefore, in this case, (X Yn(z)) cannot be varied
independently of m n(i) and 1t is not obvious how to adapt the Elbers and Ridder
(1982) proof (pg. 405) to this case. Hence for the case of arbitrarily fine-grained
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reference groups, identification is currently problematic.

In contrast, suppose that individuals reference on a coarse group G. In this

case the self-consistency condition is

Mp@G) = _/XE(t | X’Xn(i)’mn(i))dFX = H(mn(z)) (132)

where dFy is the distribution of X’s within n(z). In this case, it is possible to
locate a nontrivial set of sufficient conditions on dG(t,?V(i,Xn(i),mn(i)) such that

the hazard function is differentiable with respect to (‘ngzn(i)) on the self-

consistent solutions defined by eq. (132). This appears to be sufficient to extend

Elbers and Ridder’s identification argument to the case of interactions.

5. Sampling properties

In this section, we develop some asymptotics for the parameter estimates
for interactions-based models and consider the effects on such estimates of omitted
variables. The sampling properties for data generated by interactions-based
models are no different from that associated with standard discrete choice and
linear regression models. The critical property which one needs to verify is that
the behavioral data obey the standard limits theorem necessary for asymptotics
when there is sufficient dependence across observations to induce multiple
equilibria. Similarly, the effects of omitted variables mirror results found in other

contexts. We therefore focus on the binary choice case.

t. laws of large numbers

Despite the dependence introduced by interactions, the data generated by
the noncooperative version of the binary choice model with interactions generates
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a law of large numbers. Brock and Durlauf (1995) showed this for the special case
where h,=h V 1; it is straightforward (cf. Ash (1972) pg. 234) to extend this

result to non-identically distributed choices.

Theorem 10. Law of large numbers for realized average choice levels in

noncooperative version of the binary choice model with interactions

Suppose that a population of agents holds a common belief that the expected
value of the average population choice is m*, where m* is a solution to eq. (22).
Then a weak law of large numbers will apply as I becomes arbitrarily large such
that

lim W=y, m*. (133)

12. naive estimator

The “naive” estimator whose identification properties we have analyzed
does not introduce any new econometric issues with respect to asymptotic
normality. Theorem 11 is standard; necessary conditions for it are given, for
example, in McFadden (1984), p. 1399. The specific conditions we cite are found
in Amemiya (1985) pg. 270.°

Theorem 11. Consistency and asymptotic normality of naive estimates in the

binary choice model with global interactions

AV AN

Let b= (k,c,d,J) and M, = (1,X! Y’n(i),m;(i))f If the binary choice model with

In Amemiya (1985), it is also assumed that the M, elements are uniformly
bounded when asymptotic normahty is proved, “which contradicts our
identification assumption that the Y, ’s are unbounded. However, as Amemiya
points out, the boundedness assumptlogl can be dispensed with.



interactions is globally identified, and if

i. b lies in an open, bounded subset of R t5+2,

i. imp_  I™1>" M;M!is a finite nonsingular matrix.
iel

wi. The empirical distribution function of M, converges to a distribution function.

Then, the maximum likelihood estimates Z;I of the binary choice model with

global interactions are consistent and asymptotically normal with limiting

behavior
M5, — )=, N (0,9~ 1) (134)

where
5= tim ol < 30— M)y (135)

7 (1+ezxp(d'M;))

(3 is of course the suitably normalized information matrix of the likelihood

function and is consistently estimable for this model.)

1z. asymptotics for data generated by social planner

Models which incorporate realized contemporaneous interactions between
individuals introduce several mathematical complexities relative to standard
econometric models. As noted before, this occurs because of the quadratic terms
which appear in the likelihood. The following theorem is proved in the
Mathematical Appendix; unlike Theorem 10 it does not apply to the case of
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heterogeneous h;’s, although results in Amaro de Matos and Perez (1991) suggest

this can be done.

Theorem 12. Large economy limit for realized average choice levels in social

planner’s version of the binary choice model with interactions

Suppose that the vector of choices in a population is determined by a social
planner with preferences consistent with eq. (44). The sample mean of these

choices will converge weakly such that
lim @wp=, m* (136)

where m* is the solution to m* = tanh(Bh + BJm™*) with the same sign as h.

Unfortunately, maximum likelihood estimation has yet to be developed for
data generated by a social planner problem of the type we have studied. While
techniques developed in Amaro de Matos and Perez (1991), Brock (1993), and
Ellis (1985) all suggest that the development of these asymptotics is feasible, the
argument seems sufficiently complicated that we are not comfortable making a
conjecture on the asymptotic distribution of the estimator. In the Mathematical
Appendix, we provide some initial discussion of these issues to illustrate how such

a theory could be developed.

iv. unobserved variables

Perhaps the most serious criticism made of efforts to identify interaction
effects is the difficulty in identifying interaction effects in the presence of

unobserved individual or group characteristics. This is true because the main
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groupings for which interactions are conjectured to exist, neighborhoods, schools,
firms, etc., the neighborhoods are endogenously determined. Presumably,
neighborhood contextual and endogenous characteristics influence individual
choices as to neighborhood membership. Hence, it seems very likely that omitted
variables which influence individual behavior once that person is a member of a
neighborhood will also be correlated with the various group effects which are
captured in a statistical model. This point is distinct from the self-selection issues

which are discussed above.

In particular, we are interested in determining how omitted variables will
affect inferences concerning J. We do this following a maximum likelihood
approach due to Cameron and Heckman (1998). This approach is straightforward

to describe in sample, rather than population terms which is why we place it here.

In our framework, assume that the binary choices w, are coded 0,1 and are

generated by the probability model

plw; =11 X; X, Y. m:;(i)):

1, 0’~l O’N’L u’~l u?
~

Fe(k+coX; ot do¥; o+ cus oy +dul; o +Imp ;) (137)

where subscripts o and u refer to observed and unobserved variables respectively.

Let @I = (k,clo,d,O,J), Zd, = (]. X, ‘YrZ Om;(l)) and 771 = C'IU‘X’L.,U, + d’,ll,},-:z, . This

NZ o'~ y u
means the true probability structure can be rewritten as

~1, O’NZ O’NZ u’Nl u’

plw; =11X, X.. Y. m;(i)) =F (0'Z;+ ) (138)

which produces a likelihood function of the form

L=1"'3"(wlogF(&'Z; + ;) +(1—w)log(l—F{(©'Z;+1n;)) (139)
:
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The derivatives of the likelihood function (139) may be written as

Lo=1""'Y"Z{(w;— F{&'Z;+n,)) (140)
2
Logg= —I7'Y fO'Z;+ )22 (141)
1
Lo, = —I71'Y fO'Z;+m0)Zm; (142)
1

where 7 =0 is the case where there are no unobservables and 7 =1 is the case

where there are unobservables. The maximum likelihood estimate of ® must obey
Le(0(r),7) =0 (143)

where we have written the likelihood as a function of the unknown parameters ©

and have allowed the estimate of © to depend on 7. Further,

Lo, o(6(r), 192 + Lg (6(r),7) =0 (144)
which implies that
49 = — Lo (6(7),7) ~1Lg, (O(7),7). (145)

Integrating both sides of this expression produces

0(0)-0(1) = [ Lg o(0(r);7) "L, (O(r),7)dr (146)

This difference describes the effect of misspecification since, as noted above, 7 =0
corresponds to the case of no unobservables whereas 7 =1 corresponds to the case

with unobservables as we have formulated them.

In general, one cannot determine the sign of ©(0) —O(1); this is not
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surprising since it is known in contexts such as measurement error that
unambiguous statements about directions of bias cannot be made. However, as
recognized by Bretagnolle and Huber-Carol (1988), one can determine the sign of
this bias in special cases. For example, if the elements of L@,@ are all negative
and that the elements of LO, ; are all positive, then the coefficients in the

misspecified model are all biased upwards.

Using the formula (146), one can compute the bias associated with the
parameter J. For the case where the vector X, is replaced with a scalar z; the

(2)

vector Zn is replaced with a scalar Yn(s)> One can compute

J(0)—J(1) =

/(1] (Lg &4, 1T~ 1Y FO'Z; + np)m)dr +

1 — - /
[ (@5 8)a oI 1 S O Z;+ m)zin)dr +

: /;(Lééhﬁ(-’_lZfe(@'gﬁTﬂi)yn(i)ni)dT‘F

/;(Lé, o)a,aI I F0Z;+ ;) Mi)1:) AT (147)

where (Lé,é))i,j is the 7,5'th element of L(;’é and we impose self-consistency of
beliefs, (i.e. substituting M) for m;(i)). The term (Lé,%a)4,4 is positive whereas
the other inverse elements of these integrals are of ambiguous sign. This is only
sense in which one might say there is a presumption that estimates of interaction

effects are biased towards finding them because of omitted variables.

Cameron and Heckman (1998) show how the Heckman and Singer (1984b)
nonparametric likelihood estimator can be used to estimate the distribution of the
unobserved 7,’s and thereby compute unbiased estimates of the parameters of the
observables. = They make a compelling argument that the production of

“heterogeneity-corrected estimates” is essential in conducting assessments of
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policy experiments. We are currently pursuing the development of this idea to
produce estimates of interaction effects which are robust to omitted individual

and group characteristics.

6. Statistical analysis with grouped data

In this section, we explore some of the approaches to identifying
interactions which have been developed for aggregated data. Our discussion so far
has assumed that individual level observations are available to the researcher. In
contexts such as economic growth or crime rates, it is often the case that only
group-level data is available. As a result, there has been a distinct literature

which deals with uncovering interactions from aggregated data series.

1. differences in cross-group behavior

One approach to the identification of interactions from group level data is
due to Glaeser, Sacerdote and Scheinkman (1996) and extended in Glaeser and
Scheinkman (1998). The basic insight of this work focuses on the implications of
interactions for the distribution of cross-group differences in choices. Consider a
collection of groups, N;..Np, each of which has n members. In each of the
groups, individuals face a binary choice. If the individuals within each group are
identical, and their choices are independent of one another, then sample means of
choices within each group will scale according to the law of large numbers.
Supposing that the probability of choosing 1 is p, then the variance of the sample
average for each of the two groups is n™~ 1p(l —p). This means that the cross-
group variance converges weakly to zero at rate n~!.  Observations that the
cross-group variance scales at a slower rate, i.e. that the cross-group differences in

average choice vary too much to be consistent with the sample variance under the
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null hypothesis of independent and identically distributed choices, is taken as

evidence of social interactions.

Glaeser, Sacerdote, and Scheinkman (1996) apply their analysis to the
study of cross-city crime rates. They find that even after controlling for city-
specific socioeconomic variables, there are cross-city differences in crime rates
which are far greater than would be consistent with individuals making
independent choices within cities and conclude that this evidence is strongly

supportive of an interactions approach.

1. spatial patterns

Topa (1997) has attempted to identify and measure interactions through
the use of spatial data. The basic idea of this work is to take seriously the idea
that geographic proximity is a proxy for social proximity. Topa does this by
considering the relationship between unemployment rates in census tracts in
Chicago. Since census tracts typically vary in size between 2,000 to 8,000
residents, these units would seem to be good proxies for neighborhoods. Topa
further assumes that the social distance between any two adjacent tracts is 1, the
social distance between a tract and another tract that can be reached by travelling
through a single other tract is 2, etc. Using these assumptions, he formulates the

determinants of unemployment in a given tract n at time ¢, Wy, t as
L_J,n’t = Ip(c,zn,t-l_JIQ n,D,t+€i,t) (148)

where Zn,t denotes census tract averages of a set of individual characteristics,
@Dt is a vector of average unemployment rates for tracts at social distances
1,2,...D away from tract n and (-) is a nonlinear function generated by the
stochastic model (a contact process) used to motivate the econometrics. Topa

estimates this model using indirect inference methods and finds evidence of
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interaction effects in the sense of a statistically significant J vector.

Conley and Topa (1999) extend this analysis by attempting to identify
what role different measures of distance play in explaining these spatial
correlations. In particular, they construct measures of neighborhood distance
based on 1) physical distance, 2) travel time, 3), ethnicity and 4) occupation.
Their results suggest that physical and occupational distance explain residual
correlations across unemployment rates within census tracts once intra-tract
characteristics have been controlled for.  Akerlof (1997) demonstrates the
theoretical importance of integrating social distance into economic analysis and
provides a range of interesting potential applications; the Conley and Topa work

should help produce empirical measures of various types of social distance.

122. ecological inference

In the political science literature, there have been some efforts to identify
group effects under the rubric of what is known as the ecological inference
problem. In the basic version of this problem, a researcher possesses data on the
number of whites and African Americans in each of a set of I neighborhoods, as
well as the number of votes received by a white and an African American
candidate in the same neighborhoods. The researcher’s goal is to determine the
relationship between racial composition of a neighborhood and the distribution of
votes by race. Since the researcher is attempting to infer individual behavior from

aggregate statistics, the inference is referred to as “ecological.”

Ecological inference has generated a literature which has recently begun to
grow (Goodman (1953), Freedman, Klein, Sacks, Smythe, and Everett (1991),
King (1997), Freedman, Klein, Ostman, Roberts (1998)). We follow the
exposition of the last paper. Letting r; denote the percentage of African

Americans in a neighborhood and v; as the percentage of votes accrued by an
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African American candidate, the standard ecological regression is
vi=pri+a(l—r)+¢ (149)

where p is the probability with which African Americans vote for an African
American candidate and ¢ is the probability with which whites vote for an African
American candidate. This equation is estimable by ordinary least squares.
Alternative approaches to ecological inference typically modify this equation. For
example, King (1997) proposes treating the racial voting propensities as

neighborhood-specific draws from a common distribution rather than as constants.

From the perspective of the sorts of data sets and models of interest to
economists, we suspect that ecological inference as it has been developed is of
limited interest. The formulation of the regressions fails to correspond in a
natural way to the aggregate of individual decisions into group behavioral
percentages in a way consistent with a choice-theoretic framework. Indeed, the
consistency of aggregated voting behavior with more than one behavioral model is
precisely the basis on which Freedman, Klein, Sacks, Smythe, and Everett (1991)
argued that evidence of differences in p and ¢ could not be interpreted in terms of
underlying differences in behavior between white and African American voters.
As far as we know, no one has yet shown that the statistical tools in the ecological
inference literature can complement other techniques for the recovery of
socioeconomic structure.  However, Cross and Manski (1999) suggest new
directions along these lines which may both clarify what structural mechanisms
can be revealed by aggregate data as well as show how ecological regression relates

to omitted variables problems in econometrics.

7. Evidence

In this section, we survey some of the evidence which has been adduced to
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detect the presence of and to measure the magnitude of interactions. We divide
the empirical literature into two parts. The first part assumes that the regression
of individual outcomes on individual and group level variables represents a
correctly specified model. In particular, the analysis assumes that there are no
omitted variables which will generate coefficient inconsistency. The second
approach accounts for the possibility of such omitted variables and explores ways
to correct for incomsistency either through choice of data sets or econometric

techniques.

1. analyses under assumption of correct specification

In this subsection we review some prominent empirical analyses of

interactions.

1. Neighborhood effects in youth and adult outcomes

Perhaps the most widely empirically studied area of interactions concerns
the effects on adults of the neighborhoods in which they grew up. The typical

analysis of this type computes a regression of the form
witp1=at X A oy e (150)

where, as before individual family characteristics and neighborhood characteristics
are denoted by X, and Xn(i),t respectively and E(e; 4 | ‘Ei,t?xn(i),t) =0.
Acceptance of the null hypothesis that d' =0 1is interpreted as acceptance of the
null that no interaction effects exist. Examples of this type of regression include
Brooks-Gunn, Duncan, Klebanov, and Sealand (1993), Corcoran, Gordon, Laren,
and Solon (1992), Rivkin (1997), and Zax and Rees (1998). These studies
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typically find some combinations of Xn(i),t which are statistically significant,
although there seems to be no consensus on which of these contextual effects are
most robust. A useful extension of this work would be an analysis which
explicitly attempted to identify robust neighborhood and individual controls,
using techniques such as Leamer’s (1983) extreme bounds analysis or Bayesian
model averaging of the type advocated by Raftery (1994) and Raftery, Madigan,
and Hoeting (1997). While these procedures do not give a definitive solution to
the problem of model uncertainty, they are nevertheless invaluable in clarifying
dimensions along which arbitrary model assumptions (in this case choice of

control variables) matters.

Several complementary strands exist to this class of empirical research. In
one approach, the importance of neighborhood-level interactions effects on
inequality is evaluated by assessing the effects on inequality measures of different
sorting rules. This idea is originally due to Kremer (1997); nonlinear alternatives
to Kremer’s original analysis have been explored by Ioannides (1997b). In a
second approach, the notion of neighborhoods has shifted from geographic
proximity to membership in an ethnic group. Evidence of ethnic group effects has
been found by Borjas (1992,1995) and Bertrand, Luttmer, and Mullainathan
(1998). Similarly, Cutler and Glaeser (1997) illustrates how segregation adversely
affects a number of socioeconomic outcomes for African Americans. A third
strategy has been employed by Ioannides (1999) who shows how house spatial
relations in price dynamics implicitly reveal neighborhood effects. In yet a fourth
approach, Solon, Page, and Duncan (1999) use within-neighborhood correlations to
overcome measurement problems associated with what neighborhood attributes
actually matter for interactions. They find that once various family background
variables are controlled for, within-neighborhood correlations in educational

attainment are low.

Finally, there is a distinct literature on the relationship between
interactions and efficient and/or equilibrium sorting. Becker (1973) and Sattinger
(1975) are standard references; see LeGros and Newman (1997) for the state-of-
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the-art. In addition, equilibrium sorting has been studied in many contexts using
Tiebout type arguments. Recent contributions include Epple and Romer (1991)
and Fernandez and Rogerson (1996) whose models are directly germane to the
study of inequality. In an important paper, Epple and Sieg (1999) show how to
econometrically implement models of this type. Our belief is that these types of
models should be further employed to provide complementary insights to the
main body of literature on interactions, as the strength of interaction effects
should presumably be at least partially revealed by the the neighborhood choices

of individuals.

2. analyses which are robust to unobserved correlated heterogeneity

From the perspective of empirical analysis, the main issue which has
concerned researchers is the problem of spurious identification of interaction
effects due to the likelihood of correlated unobservables existing among individuals

in endogenously- determined groups.

a. matching

One approach to dealing with the possible unobserved correlated
heterogeneity has attempted to identify environments which allow one to match
populations subjected to different influences in order to assess the effect of changes
in group membership. The most prominent type of matching study falls under
the rubric of “natural experiments.” By natural experiments, we refer to cases
where interaction effects are identified by studying cases where some individuals
that would normally be members of one group are moved to another through an
exogenous intervention of some type. Those who are moved may be thought of as
receiving a treatment, whereas those who remain may be thought of as a control

group. While intuitively appealing, there are in fact many subtleties in analyzing
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data of this type. Heckman and Smith (1995), Heckman (1996,1997), Heckman,
Ichimura, Smith and Todd, (1998), Heckman, Ichimura, and Todd (1998) provide
a wide ranging analysis of the salient issues. Hence an important future exercise
is the reconsideration of some of these empirical studies in light of these recent

econometric developments.

Among the most prominent examples of natural experiments of this type,

we would list:

1. Gautreaux Assisted Housing Program.

In 1966, the Chicago Housing Authority was sued for discrimination by
public housing residents on the grounds that both the location of public housing
sites and the allocation of slots in these sites intentionally placed minorities in
isolated inner city neighborhoods. In an agreement worked out between the
plaintiffs and defendants, known as the Gautreaux Assisted Housing Program,
housing subsidies and placement services were established for public housing
residents throughout Chicago. Rosenbaum (1995) and Yinger (1995) provide
reviews of the details of the Gautreaux program. For the purposes of studying
interactions, several points of these features are important. The number of
participants each year was fixed and so, due to oversubscription, actual
participants, after some screening, were randomly selected. Families who applied
for assistance were randomly given a single option of moving to another part of
Chicago or to moving to a suburb. (Families who declined the offered option were
placed back in the pool of eligible families from which recipients of aid were

drawn.)

A series of papers, Rosenbaum and Popkin (1991), Popkin, Rosenbaum,
and Meaden (1993), and Rosenbaum (1995), has analyzed the results of surveys of
Gautreaux program participants in order to identify the effects of the differences

between the wurban and suburban environments on various socioeconomic
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While they are an important source of information on interactions effects,
it is important to recognize that the Gautreaux data are not ideal for this purpose.
Applicants to the program were dropped who either had poor rent paying histories
or who failed a home inspection to determine whether they had mistreated their
public housing. This prescreening eliminated approximately 30% of the program’s
applicants (Rosenbaum (1995)).  Further, the survey efforts conducted by
Rosenbaum and coauthors exhibit some sample selection problems. In particular,
those families who moved to suburbs and then returned to Chicago could not be
identified. Hence, the evidence of neighborhood effects obtained from Gautreaux
is, while informative, not decisive. ~That being said, recent work such as
Rosenbaum, DeLuca, and Miller (1999), by linking Gautreaux interview data to

administrative data, should be able to partially address these concerns.

The Gautreaux program also illustrates the difficulty of identifying policy
effects as well as a limitation in the utility of the naive estimator in predicting the
effects of changes in interaction groups. Suppose that Gautreaux families are
described by a linear-in-means model of the type:

wi = d/;\//n(z) ‘I‘ Jm%(l) + Ei (151)

Suppose that one new family is moved from the inner city to a suburb. In this

case, the family’s presence in the new location will have no effect on either ):n(z.

€
Gautreaux families to reference on. In this case the knowledge of the parameters

oT My (and equivalently mn(i)) in the new location and there will be no other
d" and J (which can be consistently estimated) and the neighborhood variables
Yn(z.) and mz(i) in the old and new locations of residence will be sufficient to

~y

predict the effect on the family of the move.

However, suppose that the Gautreaux program is expanded to the extent
that clusters of families are moved from an inner city to the new neighborhood.

In this case, the appropriate model is
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wi = dXniiy Iy T Ao Xny, () T el Mme.e6) T (152

Here, G(:) denotes Gautreaux families in the neighborhood, so that for example,
mz(i), () denotes the mean behavior of Gautreaux families in a community.
Predictions of the effect of a move of a cluster of families must therefore
incorporate both the effects of the move on the mean for the neighborhood as a
whole as well as the possibility that the Gautreaux families will represent a
subgroup within the neighborhood which induces separate interactions. This
means that the move of a cluster may be subject to social multipliers of the type
we have described. At a minimum, the naive estimator is no longer useful for
policy and prediction analysis. The analog of the self-consistency equation (21)
must now be estimated along with the individual level equation (152) in order to

permit predictions of the outcomes of cluster moves.

2. Moving to Opportunity Demonstration

The Moving to Opportunity Demonstration is an ongoing experimental
demonstration being conducted by the Department of Housing and Urban
Development to evaluate the effects of moving low-income families out of high-
poverty neighborhoods; a detailed discussion of the program appears in Goering
(1996).  The demonstration randomly assigned a set of low income families
normally eligible for Section 8 housing assistance vouchers to one of three groups:
1) those eligible for housing vouchers which are only usable in census tracts with
less than 10% poverty, 2) those eligible for regular Section 8 vouchers with no
locational restrictions, and 3) a group whose assistance is only based on residence
in a public housing project. The demonstration is being conducted in 5
metropolitan areas: Baltimore, Boston, Chicago, Los Angeles, and New York
City. One motivation of the demonstration was a desire to address some of the

self-selection problems associated with data from the Gautreaux Program. That
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being said, it is unclear at this stage to what extent self-selection is better
controlled for here than in Gautreaux, given the voluntary nature of participation
in the MTO demonstrations.

Preliminary results on the various experiments are becoming available.
Ladd and Ludwig (1998) report evidence that those families in Baltimore that
moved out of low income census tracts achieved access to superior schools as
measured by a range of criteria. However, they find little evidence that the value
added of these schools for the children in these families is higher than the schools
used by families in the comparison and control groups. For the Boston
demonstration, Katz, Kling, and Liebman (1998) also find evidence that the MTO
program has been successful in generating relocation of families, this time defined
as movements out of low poverty neighborhoods. They also find that children in
both types of families eligible for vouchers exhibited substantially higher test

scores as well as lower incidences of behavioral problems.

3. Milwaukee School Voucher Program

In 1990, Wisconsin implemented the nation’s first public school voucher
program. In essence, this program made available school vouchers equal to the
average per pupil expenditure by public schools in Milwaukee. Applicants to the
program were required to fulfill several criteria. Oversubscription to the program
has meant that a random subset of eligible applicants have actually been able to
participate in the program. Eligibility for the program was restricted by two
criteria: 1) a family could not have an annual income which exceeded 1.75 times
the poverty line and 2) the student to receive the voucher could not have
previously been enrolled in a private school in the year prior to the use of the

voucher.

As the number of applicants greatly exceeded the number of available
vouchers, the randomness of the selection process meant that there existed two

groups of students, namely those who did or did not receive vouchers for private
93



schools, whose subsequent performance could be compared. Rouse (1998a,b) and
Witte (1997) have both studied this question. Interestingly, they have come to
quite different conclusions concerning the effects of private versus public schools
on education. Rouse concludes that there are some benefits to private schools in
this sample whereas Witte does not. These differences appear to stem from
different choices concerning the appropriate control group for analysis. Rouse uses
those students who applied but were not selected for the program whereas Witte
uses citywide average student outcomes. In terms of differencing out
characteristics of the control and treatment groups, Rouse’s approach seems

clearly correct.

While important with respect to the issue of school vouchers and public
policy, there are several grounds for supposing that the Milwaukee evidence has
limited implications in terms of adducing the importance of interactions. As both
Rouse and Witte are aware, since the majority of participants in the program
went to one of only three different schools, the generality of any of the results is
questionable.  Further, it is important to remember that interactions, as
conventionally understood, may not explain the differences either here or for
differences between public and Catholic schools, which are discussed below.
Differences in disciplinary standards or teacher expectations could potentially
explain differences with the public schools independent of any interactions effects
such as peer group influences. An interesting question for future research is
therefore the determination of whether observed school differences occur due to
interactions between students or due to alternative educational and disciplinary

standards.

4. Classroom tracking

A standard problem in school organization is whether students should be
tracked, i.e. segregated by ability and/or achievement across classes. A number of
classroom experiments have been conducted in which educational outcomes for
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students tracked by initial measures of ability of achievement are compared to

students who are randomly assigned to classrooms.

One such experiment occurred in Montreal and has been analyzed by
Henderson, Mieszkowski, and Sauvageau (1978). This paper analyzes data from
French speaking students in Montreal in which children who were segregated on
the basis of IQ tests administered in kindergarten and students who were
randomly assigned to classes were compared in terms of achievement in grades 1-
3. Henderson, Mieszkowski, and Sauvageau found significant effects from this
type of classroom tracking. Interestingly, while randomization raised overall
average performance, there was a clear diminution of the performance of students
with higher test scores under random assignments. Hence randomization involves

both redistribution as well as an increase in average achievement scores.

Unsurprisingly, ability grouping has also been studied quite extensively by
education researchers, and has been a source of considerable controversy within
the education literature. Slavin (1990) reviews a large number of tracking versus
random assignment experiments in high schools and concludes that for secondary
students “...between-class ability grouping plans have little or no effect
on...achievement...at least as measured by standardized tests.” (pg. 494)
However, even this survey conclusion has been disputed by other education
scholars as evidenced in the commentaries on that article. Our limited survey of
the education literature suggests that there is little decisive evidence on this
question, and that many of the studies are plagued by poor controls for individual
characteristics; further, much of this literature seems laden with political concerns
on the parts of researchers which make the assessment of the statistical analysis
problematic. These techniques may also facilitate the determination of which
neighborhood characteristics are relevant in generating interaction effects.
Weisberg, Reagan, and Yankow (1999) show that an analysis employing a broad
range of possible neighborhood controls can lead one to reject peer group and role
model effects in favor of broader socioeconomic characteristics as the determinant

of neighborhood effects.
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5. Siblings

Matching comparisons have also been employed to directly control for
unobserved family effects. Aaronson (1997,1998) proposes the use of sibling data
to difference out unobserved family characteristics. This is possible under the
assumption that the unobservable characteristics are constant within a family
across time. He then identifies sibling pairs from the National Longitudinal
Survey of Youth in which one sibling was exposed to a different neighborhood
than another. This allows him to estimate models of differences in sibling
outcomes which include differences in neighborhood characteristics.  This
estimation strategy is therefore equivalent to the standard one in panel data
studies of differencing out unobserved fixed effects. Plotnick and Hoffman (1996)
apply the same idea to a sample of sisters from the Panel Study of Income
Dynamics and consider both continuous and discrete outcomes. Exploiting
Chamberlain (1980) in order to eliminate unobserved fixed effects for binary
choices, they find little evidence of neighborhood effects with respect to either out
of wedlock births or any post-secondary education. This study finds no evidence

of neighborhood effects on a particular income measure.

b. instrumental variables

Rather than employ data sets where interaction effects can be identified
through the comparison of otherwise equivalent treatment and control groups,
there has been a parallel literature which has tried to use more conventional

econometric methods to deal with unobserved correlates.

1. Neighborhood socioeconomic influences
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Evans, Oates, and Schwab (1992) appears to be the first study of
neighborhood influences which formally accounts for the endogeneity of
neighborhood residence. The analysis is specifically concerned with identifying
the role of neighborhood characteristics on the probability of teen pregnancy.
Using a probit framework, this probability is assumed to depend on both a range
of individual characteristics as well as a variable which is the logarithm of the
percentage of other students in an individual’s high school who are categorized as
“disadvantaged” as defined under guidelines of the Elementary and Secondary
Education Act. In probit regressions which treat this measure as exogenous, this
measure of disadvantaged schoolmates is shown to statistically significantly

increase the probability of a teen pregnancy.

In order to deal with the possibility that the neighborhood characteristic
measure is correlated with an unobserved individual characteristic, as would occur
if parental quality is negatively associated with the neighborhood characteristic,
Evans, Oates, and Schwab propose four instrumental variables each of which is
measured at the level of the metropolitan area in which the secondary student
lives: 1) the unemployment rate, 2) median family income, 3) the poverty rate
and 4) the percentage of adults who are college graduates. The implicit
assumption in this analysis is that the metropolitan area of residence is exogenous
for families, although location within a metropolitan area is a choice variable.
Employing these instruments, the contextual effect found in the univariate
analysis disappears both in terms of magnitude and in terms of statistical

significance.

2. Catholic versus public schools

Starting with Coleman, Hoffer and Kilgore (1982), a number of authors
have studied the reasons why student performance in Catholic schools is on
average superior to that found in public equivalents. A critical issue in evaluating

the implications of this fact is determining whether the differences are due to self-
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selection with respect to school enrollment versus something about differences in

the school environment per se.

Evans and Schwab (1995) and Neal (1997) attempt to deal with the effect
of self-selection by identifying instrumental variables which correlate with
Catholic school choice but do not correlate with unobservable individual
characteristics which would lead to better school performance. Neal’s analysis
seems especially comprehensive. He proposes two instruments which plausibly
correlate with the decision to attend a Catholic school but not with unobserved
individual characteristics which would lead to superior academic performance
regardless of which school was attended: 1) the fraction of Catholic in county of
residence population, which should correlate with tuition costs since higher
percentages lead to greater Church subsidies to schools, and 2) the number of
Catholic secondary schools per square mile within county, which should correlate
negatively with transportation costs. The idea is tuition and transportation costs
are plausibly correlated with the determinants of Catholic school choice without
being correlated with an unobserved student quality variable. Neal finds that
there are substantial educational gains for urban minorities who attend Catholic

schools, but not for suburban students or whites in general.

9. Summary and conclusions

This chapter illustrates both the progress which has been made in utilizing
interactions to understand economic phenomena as well as the many areas in
which further research is required. In our judgment, there currently exists a good
understanding of static interactions-based models both in terms of theory and
econometrics. However, the empirical literature, while containing many insightful
approaches to uncovering interactions, has yet to exploit a full structural
estimation approach. Such a step i1s particularly important if one wishes to

identify the presence of multiple equilibria. Further, there exist a number of
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areas in terms of theory and econometric methodology which have yet to be fully
examined. Three examples come readily to mind. First, the analysis of dynamic
interaction models with endogenous neighborhood formation and their panel data
analogs is still in its infancy. This analysis, fortunately, should have useful
antecedents in the urban economics literature such as Miyao (1978). Second, the
theoretical models of interactions currently treat the sources of interactions as a
black box. In understanding phenomena such as social norms or culture, this is
clearly inadequate; see the interesting analysis of Emirbayer and Goodwin (1997)
for a discussion of the importance of properly accounting for the microfoundations
of norms and culture. Third, the econometric literature has almost exclusively
concentrated on global interactions, and so the analysis of identification and
estimation needs to be extended to alternative interaction structures. Therefore,
we are very confident that interactions-based models will continue to prove to be

a productive area of research for methodologists and empiricists alike.
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Mathematical Appendix
1. Properties of binary choices made under a social planner.
:. Basics

Recalling the discussion in section 2.v in the text we consider a population
of I individuals whose choices, as determined by a social planner, follow the

probability model

ulw) = ezp(B(3_ (w(wy Z) + S(wi Zow — )/ 21 (A.1)

[

) in the social utility terms of the

In this case, w _; is substituted for uf(w_;

1
noncooperative problems and Z; is a normalizing constant. For the case of

symmetric global interactions (J, .= %), employing the same transformations as

4]
done in the noncooperative case means that this probability may be rewritten as

ple) = exp(B( X hiw; + 51 (S w)D)/ 2 (A.2)

where the normalizing constant Z; is

I
op 83 bt U ) (A9

V]G{"l,l} VIE{—l,].}

This equation corresponds to eq. (45) in the text.

In order to analyze this model, we make use of the following identity
- o0 2
ezp(a®) = (2r) 1/2] exp( — %+ 21/2:m)d;7:. (A.4)

This identity can be verified immediately by dividing both sides of the expression
by e:cp(aQ) and recalling that the integral of the probability density of a normal
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(21/ 2a,l random variable over its support is 1. Using the change of variable

y= x(ﬂT)l/Q

, it must be the case that

pl) = ) [T eap(- W)nexp((ywh) Jdy/Zp  (A5)

where
2y = Gl [ _exp(~ LM (s + 1y (A6)
and
M(s) = exp(s) +exp(—s) (A.7)

Notice that

0o 2 oo
|7 con( - LmMy + hdy = [T eI Ay (A8)
where |
H(y) = 13 In(ezp(vy(1) + ezp(v,( — 1)) (A.9)
and
2
vi(wg) = Bhiw; +yw; — 57 (A.10)

Notice that if h; =k V ¢, then H j(y) does not depend on I.
It is shown rigorously by Amaro de Matos and Perez (1991) that as I=>00,

integrals of the form

[ _eon(TH ())dy (a11)
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“pack” all mass onto the global maximizing point
y* = argmaz,(H(y)) (A.12)
where

oo y2 y2
Hy)= [ _in(eap(Bh+y - 355) +cop( = Bh—y = 57))dF (k) (A.13)

and F'(h) is the cumulative distribution function of h. One therefore expects (and

can prove) that
y7 = argmazy(H (y)) =y* = argmazy(H(y)) (A.14)

Simple algebra reveals that the first order condition for the maximum of

H(BJm) over m is
m = / " tanh(Bh + BIm)dF (k) (A.15)

When h; =k V ¢, this equation also holds for the expected value of each individual
¢ and hence the sample average by symmetry, which gives us Theorem 4.

Finally, this result suggests that if we replace the integral over y in eq.
(A.5) with a Dirac delta function whose mass is at y*, we can obtain an

approximate probability for the system of the form

*2
ulw) = () Penn(~ LD eap(v* + Bh)w) /2 (AL6)

where Z; is a normalizing constant.
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1. Asymptotic moments: Proof of Theorem 11.

Let F(w;) denote the expectation of w; with respect to the probability
measure (A.2). In order to determine the behavior of sample averages as =00,
we again consider the case where h; =h V i. Notice that the argument of the

previous section implies that

limyo [~ _eap(IH,(y))G1(y)dy

fmimeofler) = — roo [ _exp(TH (3))dy (A.17)
where
Hi(y) = In(M(8h +3)) ~ 7 (a18)
and

We employ LaPlace’s method (Kac (1968) pg. 248 or Ellis (1985), pp. 38,
50-51) to obtain the limiting values of these integrals. As described above,
intuitively, all mass in these integrals gets packed onto the global maximizer y*.

We restate the following useful result which is proven in Murray (1984) pg.
34.

Approximation Theorem.
Let H(t) be a function on the interval (a,b) which takes a global maximum at a
point « in the interval and let H(t¢) be smooth enough to possess a second-order

Taylor expansion at point a with H”(a) <0. Let G(t) denote a continuous
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function. Then

/ ojooG(t)exp(IH (t))dt =

eap(IH(@))G(o) (g + 0T =) (A.20)

This formula states, in a precise way, the sense in which the mass of the integral

piles up at the maximizer a as I=-co. Using this formula, letting o = y,

| _eaplIH )G (w)dy
/wwe:vp(fﬂl(y))dy

exp(TH (o)) (o) )/ + 01 =)

exp(THy(0)) (pzly)/* + 0 =)

(A.21)

which is easily seen to converge to G(«) as I=-0c0. Hence we have

. N X h+y*) — — Bh—y*
limp, o B(w;) = G1(y") =m* = cep(f le)(ﬂheiz;(*) fh=y")

M'(Bh+y")

MGy = MBh+YT) = tanh(Bh + Bm7) (A.22)

where y* = 8Jm*.

The problem that m* solves appears mysterious at first glance. However,
there is an interesting connection between our solution to the behavior of a social
planner and the maximization of social surplus as analyzed in McFadden (1981).

Following McFadden, social surplus will equal ¥ (u(w;,X;) —%(wi ——u_)I)z). If all

agents have common characteristics X;, then fozllowing (A.2), the probability of
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the social surplus can be expressed as a function of G(w ) = Zhwi-!-%(z:wi)z
Then it can be shown (Brock (1993)) that ! '

ﬂ(limI:ooE(max% I~ IG(% ) =lim_ (I~ 1anI) =
y2
mazy, In(exp( — M_J)M(’Bh +y)) =

2
maz,y, In(exp( — (ﬂzjﬁrg) YM(Bh + BJm)) (A.23)

As would be expected, one maximizes a notion of social welfare in the large
economy limit in order to find the socially optimal states.

Now that the expected value for each choice has been analyzed, we can
consider laws of large numbers for data generated in this environment. First, we
consider the sample mean, @ = I_lz:wz-. Notice that the limiting behavior of
the sample mean in distribution (:>dj can be inferred from weak convergence
(=) since weak convergence necessarily implies convergence in distribution (see
Lukacs (1975) pg. 9 for a typical proof.) By Tchebychev’s inequality,

W17 -mt] 2 <V (A.24)
so it is sufficient to prove lim;_,  Var(@w; —m*) =0. To do this, it is sufficient to
show that [ "QZwiij#wm*Q. However, this can be verified (after
considerable algebrza) b]y computing [ _QZwiij directly and using LaPlace’s
method as employed in Murzray 7 above to verify that
I~ ZZwiijéwtanh(,@h +1*)2 = m*2. This proves Theorem 12.

l J

112. Maximum likelihood theory
Consider g = 1...G distinct neighborhoods with observations *Xi,g’ 1=1...1
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and By =17 lz_wi’ p available for each g. Define the likelihood function for the
data from these neighborhoods as I;Iu(c,gg) where w, = (wl,g"'wI,g)' When choices
are consistent with the solution to a social planners problem, the likelihood

function within each neighborhood will have the form

4

plseg) ~ ewp(32 07 K+ 725, ) (A.25)

which can be rewritten as

o0
) [ eop(~ S ean((e X, 4+ T7g)e

2w BJ 2 )dw

(A.26)

1,9 g

Define the parameter vector 6 = (c,J). One can consider the mean log

likelihood over all observations

&Zg:lnu(gg). (A.27)

For large I, and letting F(z) :lj_—xé;(—g-()—x—) the density of this likelihood will
approximately equal

1wt @ig ,
@Zg:jZ(( 5—)In(F(c'X; o +2Jup o)) +
1
1 B wi!.q !
(—5)In(F(—(c'X; g+ 2] up ) (A.28)
where
Bl g= argmaac(HI,g(p)) (A.29)
and
HI,g(H) =
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—’UT -}— Zln ezp(5 'X gt JIm) +ezxp( —%c',&-,g—‘]u)) (A.30)
Note that H 1, converges to

Hg(:u) =

2

J
~Eo 4 /ln(exp(%c'&fi,g +Jp) +eap(—3c'X; o — Jw)AF (X ) (A31)

so that under regularity conditions such as those described in Newey and
McFadden (1994) pg. 2121 it must be the case that

i1, =ty = argmaz(H (k) (A.32)

Notice that the naive estimator introduced in Section 3 inserts @, in place
of py , in the sample likelihood (A.28) above and selects 6 to maximize the
modified sample log likelihood function. This means that the naive estimator
does not allow the data to directly address the possibility of discontinuous
neighborhood responses because the standard maximum likelihood theory in
logistic models yields a strictly concave optimization problem. Hence the
optimization problem will be continuous in parameters such as the distribution
function of individual characteristics, F¢(X; /).

This suggests that one might wish to modify this log likelihood by adding a

penalty function of the form

g; — 1) (A.33)

A =0 will correspond to the naive estimator. Intuitively, as A increases the
penalty will push the parameter estimates towards those of the complete

estimator, i.e. one which accounts for the relationship between the neighborhood
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characteristics and neighborhood mean behavior.
2. Proof of Theorem 5.

For a given parameter set (k,c,d,J), assume by way of contradiction that

there exists an alternative (k ,¢ ,d ,J ) such that on supp(X,Y ,m®) we have

(k=F)+ (' —2)X;+ (@' =&)Y iy + (= T JmEyy = 0 (A.34)

~

and

8 X1 Y=

[P |F+0X +TY, 0+ Ty )dF x|y " (A.35)
~lan(t
Notice the Proposition is true if it is the case that J—J is zero.
Otherwise, X, and Xn(i) would lie in a proper linear subspace of Rt which
violates Assumption i.  Equation (A.34) implies that for elements of
supp(X,Y ,m®), conditional on Xn(i)

(=) X;= P(Zn(i)) (A.36)

where p(}:n(i)) = —(k—k)—(d _E’)Zn(i) —(J - j)mz(i). (A.36) must hold for
all neighborhoods, including nj as described in Assumption ¢v. of the Theorem.
This would mean that, conditional on X"O’ and given that X, cannot contain a
constant by Assumption u:., that X, is contained in a proper linear subspace of
R" and therefore violates the Assumption iv. of the Proposition. Hence, c is
identified.

Given identification of ¢, (A.34) now implies, if J # J, that mfl(i) is a

linear function of }r:n(i)’ unless (d' —d') and/or m;(z) is always equal to zero. The
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latter is ruled out by Assumption vi. Linear dependence of mfl(i) on X:n( i) when
(d'—d') #0 contradicts the combination of the requirement that support of
mfl(i) is [—1,1] with Assumption v., that the support of each component of Zn(i)
is unbounded, since Y n(i) 20 if it is unbounded, assume values with positive
probability that violate the bounds on mZ(i)' So, J is identified. If J is
identified and (d' —d’) # 0, then (A.34) requires that

(d' =@V iy = — (k= F) (A.37)

~

for all Y n(i) € supp(Y )). This implies, since by Assumption #i. ¥ n(s) does not

n(z
contain a constant, that supp(Y ()) is contained in a proper linear subspace of
R®, which contradicts condition 7. of the Theorem. Therefore, d’ =d’. This

immediately implies that k = k and the Theorem is verified.

3. Proof of Theorem 7.

As is done in the text, A denotes the parameter set (k,c,d,J) and the
conditional mean function is H =k+c'X; +an(l)+JG(m). To verify the

theorem, it is necessary to show that the components of the gradient vector

1n = 90 (a38

define a linearly independent collection of functions of X, and X () on

~n

SuPP(QSi,Xn(,-))- Differentiation implies the following, which we will use.

O — (1,X:.% (1 G(m) (A.39)
OH _ (1 4 ¢24m)) (A.40)
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Since J #1 and g is C?, the neighborhood N, can always be chosen so that an
implicit function ) (X A ) exists. Also, define the function
J(m,€) = J( )-

Rewrite the gradlent as

d 4H = (LE AT E iy~ X K niym + Ea(m) (A1)

1—J( )
If ¢ is close enough to zero, J(m,f) cannot equal 1 since J # 1 by Assumption .
This is a vector proportional to the form v = (1"’2(2\,{@72\,(7;( )) ”3(2571( ))704(2(11(1‘)))'
Notice that we have eliminated m since its implicit function solution makes it a
function of Z( n(i) In order to show linear independence, we must verify that

a1+ agua( X X (iy) + 2303(Xniy) + 444X y) = 0 (A.42)
implies that a; = a9 = ag=a4=0.

Since only vy depends on X, (A.42) can only hold if ay =0; otherwise
Assumption 7. would be violated. Further, if a4 =0, then Assumption i. is
violated. ThlS is true because v3(X n(z)) is proportional to Zn(i)' We can
therefore, without loss of generality assume a4 = —1.

The condition for linear independence can now be written as

(Nn(z),A ) +E&g(m (Nn(,)a €)) =aq + a32:(n(z-) (A.43)
We pair this with the self-consistency condition written as
(X iy Ast) =
b+ (4 ) Z o +I(Z iy A) +E0m(Z i AL).  (Add)
We will verify that (A.43) and (A.44) lead to a contradiction when —d‘% differs
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across any two m values, say m; and my. Since at least two such values must
exist by Assumption ., this will complete the proof.
On the open set O described by Assumption v., we can differentiate both

these equations with respect to X n(i) obtaining

dg(m(zn(i),f‘l,ﬁ))\dm(zn(i),A,S) _

(14+¢ T 5% 0 = ag (A.45)
and
dm(X iy A6) dg(m(X () 4:0))
d)_((().) (1—J(1+¢ dng) )) = (¢ +d) (A.46)
- dm(X i Ask) o
Equating = across these expressions yields
dg(m(Z(n 7 ,A,f)) dg(m(Zn 7 ,A,f))
(1= T (14 e oy e+ )1 46— ) = (A7)
or
dg(m(an(,-),A,é)

T ((c+d)+Jag) +((c+d)+Jag—a3) =0 (A.48)
Recall that ¢ and j—gl are scalars, whereas ¢, d, and ag are rx1 vectors. By
construction of g, we have the existence of two values of m, call them m; and m,
such that in the population data, —(%% differs across them. Applying this
component by component to (A.47), one can show that this implies that
(c+d)+Jag=0. By (A.48), this means that a3 =0. But from (A.49), this
would imply that
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But this would contradict the part of Assumption zv. that M) in the data is
nonconstant. Therefore, the model and assumptions described by the Theorem
require that the components of the gradient (A.38) are linearly independent when
£ #0. Notice that when ¢ =0, the gradient will not be of full rank, because

m(X n( ),A,O) is linear in X n(iy Hence the local nonidentification of the linear-in-

1
means model can be perturbed away by a C? ~small change from Jm to

Jm + £g(m), which completes the proof.
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