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ABSTRACT
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I derive asymptotic distributions and propose feasible procedures to construct confidence intervals and

test statistics. Procedures that are asymptotically valid under the null of encompassing (e.g., Davidson
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that the proposed procedures can work well in samples of size typically available, though the divergence

between actual and nominal confidence interval coverage sometimes is large.
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It is now a truism that with sufficient data, any economic model simple enough to be -

analytically tractable will be rejected statistically. It is nonetheless of interest to quantify the relative

explanatory powers of two or mote models, even if none of the models under consideration is literally

true. This will give a sense of profitable directions for fumre model development.

Quantifying relative explanatory power can be difficult when models are nonnested, especially

so when none of the models under consideration is correctly specified. A large literature has developed

tests that compare in-sample fits of nonnested models. Cox's pioneering work proposed comparing

likelihoods (Cox 1961, 1962), as did Mizon and Richard (1986). Related work, on possibly

misspecifled models, is in Kitamura (1997). Regression based tests, involving the regression of a

realization on one or more fitted values, were developed by Davidson and MacKinnon (1981). White

(1994) provided a unified framework for discussing likelihood and regression-based tests, while

McAleer (1995) documented the extensive use of such tests in empirical work. Finally, out-of-sample

regression tests were proposed by Chong and Hendry (1986), Ericsson (1992) and West and

McCracken (1998).

This paper develops asymptotic theory for regression-based encompassing tests that allow for

all models under consideration to be misspecified, general classes of estimators and comparisons of

put-of- as well as in- sample fits. The key result is delineation of the asymptotic variance-covariance

matrix of the least squares estimator of the encompassing regression. For inference, the recommended

procedure is to adjust the usual least squares variance-covariance matrix using sample analogues of the

relevant asymptotic quantities—what I call the "V-ørocedure."

Section 2 of the paper uses a simple, stylized example to illustrate that construction of

confidence intervals and test statistics under the incorrect null of encompassing can lead to wildly

inaccurate asymptotic inference. Section 3 derives asymptotic results for least squares models, with

general asymptotic results relegated to the Appendix. Section 4 presents Monte Carlo evidence.

Section 5 concludes. An Additional Appendix available on request presents simulation and numerical

results omitted from the paper to save space.
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2. Overview

The test that I consider is one in which the realization of a variable to be explained is regressed

on competing in-sample fitted values or out-of-sample predictions. In out-of-sample applications, this

regression is sometimes used to evaluate or combine forecasts, without reference to the word

"encompassing" (see Clemens (1989), Diebold (1998) and especially Diebold (1989)). I nonetheless

refer simply to "encompassing" tests throughout.

Suppose for simplicity that there are only two models, model I and model 2. Write the

encompassing regression as

(2.1) y1 = + + residual.

Here, y is a scalar variable explained by models I and 2, y is the fitted value (or predicted value) from

model i. yi and y2, are constructed from estimates of finite dimensional parameter vectors Pi and (2.

For example, if model I is yFXit'i+Vi and j3 is the least squares estimate, then y1X1'31. Model I

encompasses model 2 if ;=l, a2—O, in this case, model 2 is not helpful in explaining y, conditional on

model I, and model I gives an unbiased prediction of y. The symmetric condition (a10, x21) applies

when model 2 encompasses model 1. In (2.1), a constant term, which will often be included in

application, has been omitted for clarity and simplicity.

Because y and y2 depend on estimated parameters, the usual least squares estimate of the

variance-covariance matrix of the estimated a's typically is not valid. (An exception to this rule is

presented below.) Procedures that produce asymptotically valid in-sample tests and confidence

intervals under a null of encompassing have been proposed and discussed in Davidson and MacKinnon

(1981) and others.

My concern is inference about a1 and a2 when a null of encompassing cannot reasonably be

presumed to hold. Doubt that either model is encompassing is often suggested by out of sample

comparisons, or at least the initial rounds of out of sample comparisons. Such regressions often seem

to suggest that none of the models are adequate. For example, in a recent study of weekly German

interest rates, Ferreira (l999,p38) uses a set of in-sample encompassing tests to conclude that "no
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model ... dominates." More generally, the literature on forecast combination has repeatedly

documented a failure of any single model to dominate all others (e.g., Clemens (1989)).

Of course the fundamental implication is that one needs to turn to some third (or (n+1)5r)

model.1 As a step along the way, one would like to know whether either of the two models has a lot of

information about y. One might want to test whether one of the a11s is zero, while not maintaining that

the other a1 is unity. More generally, confidence intervals around the point estimate of the as will be

revealing about how well the models explain yr.

A natural first question is whether confidence intervals constructed from conventional least

squares standard errors, or from the standard errors proposed in the papers cited above, will tend to be

reasonably accurate, or at least have a bias that can be characterized a priori so that rough and ready

adjustment can be made. To get a feel for the answer to this question, I computed asymptotic standard

errors for a simple, stylized example that affords easy calculation. This example is also used as one of

the two data generating processes in the simulations.

Suppose that the data generating process is

(2.2) y = x10 + x2(1-O) + ur,

o � 0�1, where all variables are scalars and

p0
(2.3) 1 0 ).

0

Model 1 is y = x1j31+v11, model 2 is Yr = x2ffiz+v2r (In the simulations, constant terms were included in

the regressions that estimated 1 and (2 as well as in the encompassing regression (2.1). They are

omitted here because these terms do not affect asymptotic distributions.) Here, x1j31 is the least squares

projection of Yr onto xlr,
-

(2.4) PixY1Exiyr = 0 + (1-0)g, vir Eyt -

with analogous definitions for 1320Q+(1-0) and v2r. If 0=1, model 1 encompasses model 2, and, in
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(2.1), a2 converges in probability to zero. As well, the usual least squares standard error on a2 is

asymptotically valid, despite the dependence of the regressors on estimated p's: a very special result that

holds only for a2 but not;, and then only because model 1 has a scalar regressor.2 Symmetrically, if

0=0, model 2 encompasses model 1, a1 converges in probability to zero and the usual least squares

standard error on a1 is asymptotically valid. If 0*0,1, neither model encompasses the other,

(2.5) ; - 0/p1 = 0/[0+(1-0)eI, - (1-0)/p2 = (I-0)/[OQ+(1-0)],

and neither least squares standard error is asymptotically valid.

Here and in the simulations I consider both in-sample and out of sample fits. Suppose first that

the regression (2.1) uses in-sample fits: one estimates 3 and f2 by least squares using data from I to T,

sets y1x1131, y2=x2j32, and then estimates; and a2 by least squares using data from I to T. For

various values of the parameters e 0 and a, I computed the asymptotic values of two estimators of the

standard error on a2 (results for a1 are symmetric): (a)the conventional least squares estimate ( square

root of [a x (2,2) element of the inverse of the plim of second moment matrix of regressors]), and

(b)one computed in accordance with the theory presented in the next section. I used the ratio of the

two to compute asymptotic coverage of nominal 95 percent confidence intervals constructed using the

conventional estimator. If the conventional estimator is consistent, the asymptotic coverage will be 95

percent If the conventional estimator yields an estimate that is smaller (larger) than the valid one,

asymptotic coverage will be smaller (larger) than 95 percent. For example if the asymptotic

conventional estimate is about one half of the valid value, the coverage will be about 65 percent,

because 1.96) standard errors covers about 65 percent of a normal distribution.

Table I presents some results. As just stated, when 0=1, so that model t encompasses model 2,

the two asymptotic values are the same: hence the "95.0' in column (5) of line 1. (Columns (6) through

(10) will be explained below.) Suppose instead that 0*1. Begin with O.5, so that the two models are

equally good at explaining y. It may be shown analytically that compared to the appropriate value, use

of conventional standard errors yields confidence intervals that are too small for when a is small, too

large for when a is large.3
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Thus, asymptotic use of the usual least squares estimate will sometimes result in spuriously

narrow confidence intervals and tests that reject too frequently (small aJ, sometimes result in

spuriously wide con fidence intervals and tests that reject too infrequently (large a. Very small values

of c are consistent with models of aggregate time series, in which R2s tend to be high; large values of

are consistent with models of asset returns, in which R2's tend to be low.

That this bias may be quantitatively large is suggested by the figures in column (5) in lines

(2)-U) in Table 1. The cloo 0' in line (2) is a rounded figure, meaning that the coverage is �99.95: the

conventional standard error is much bigger (2.57 times bigger, to be exact [not reported in the table)

than the valid one. The "64.7th line (3) illustrates that coverage can also be far less than 95 percent.

Not all specifications have such large distortions, and in some cases, least squares confidence intervals

are about right (e.g., line (4)). But clearly use of OLS standard errors can lead to large distortions in

either direction.

Lines (8) to (10) indicate that this holds as well when Observe that by the symmetry in

the DGP, results for inference about cc2 for given 0 apply as well for inference about cc1 for (1-0).

Hence, line (8a) tells us about inference about cc2 for 0.8 (i.e., when model I does most of the

explaining about y) while line (8b) can be interpreted as telling us about inference about a1 in the same

regression. For this data generating process one can see in line (8) that confidence intervals constructed

from the conventional standard error on a2 are too small, those on cc1 too large. Subsequent lines show

that sometimes both confidence intervals can be too large, sometimes both can be too small.

Turn now to an out-of-sample environment. I assume one step ahead forecasts for notational

simplicity. As above, let T be the total amount of data available. The first observations are used to

construct y1 and y2; the last fobservations are then used to estimate (2.1). (Other ways of dividing a

data set into regression and prediction portions are discussed in the Appendix, as are multiple step

ahead forecasts.) Schematically, then the sample is divided as:

(2.6) I I I

I R R+PT
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I assume that realizations of tight hand side variables are used in making the prediction. (Illustration,

with the AR(1) model y1 1y1+v, estimated by OLS: §1=(L 1)1(E=1y1y), yiy1i,

t=R+1 R+P.)

A key parameter in the asymptotic distribution, and therefore in the simulations as well, is the

limiting ratio of the size of the prediction sample to the regression sample. Call this parameter in:

(2.7) it lim P,R— R' it<co.

It may be shown analytically that the ratio of conventional to valid standard errors is always less than 1.

Evidently, when the usual least squares estimate is used, one will obtain a spuriously narrow confidence

interval, for both cc and 2' at least with large samples.

The extent of the understatement is increasing in it. As it—0, there is no understatement; the

understatement is arbitrarily large for arbitrarily large it. The natural sample analogue for it is of course

In empirical work, a range of values is found, some small (e.g., j .2 in Ericsson and Marquez

(1993)), some moderate (e.g., j . in Cooper (1972)), some, especially in financial applications, large

(e.g., the range of values of is from about 5 to 18 in Engle et al. (1990)). Columns (6) to (10) in

Table I show that even if one avoids the high end of this range, conventional standard errors can lead

to seriously misleading inference.

3. Asymptotic theory

This section presents asymptotic results when two least squares models are compared. The

Appendix spells out technical conditions relevant in this and more general environments, including

ones in which the estimation technique is GMM or maximum likelihood.4

Write the two models as

(3.1) y = X1'I+v1, y X2'P2+v2, 1(EX1X1)' (EX1j), p2EX2X2)1 (EX21y.
(lxkO(kiXl) (1 xkQc,Xl)

Let us allow a constant in the encompassing regression, with obvious specialization if the constantis

omitted. If f3 and were known, the encompassing regression would be
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(3.2) y = ga+u1, u E y-ga, &(LXit'Pi)C2P';
(3X1) (1*1) (3X1)

Let kk1+k2. For simplicity I assume that the (2k+1)X1 vector (ur, X1u, X2u, Xjt'vjr, X21'v23' is

serially uncorrelared. This assumption consistent with many applications. An exception is in out of

sample comparisons of multistep forecasts: see the Appendix for treatment f this case. In contrast to,

e.g., Davidson and MacKinnon (1981), I allow for the possibility that the projection of Yr onto & puts

nonzero values on fitted values from both models.

In practice and of course are not known. Write the corresponding least squares estimates

as f31 and 2• Stack these into OcX 1) vectors (11',2T and 3e(31,f32)'. Write the fitted values as

y=X1p1 and y2X232. Observe that

(3.3) T-) = BR'ET h
(kxk) = [(T-'EixirXit')-1 (T_1ZlX2rX2r1)h] (kxl)

Define Shh eEhh', B1 EX1X11, B2 E(EXX2', B = diag(B1,B2) = plimB.
(kxk) (k1 xk1) (k1xk2) (kxk)

The (kXk) asymptotic variance-covariance matrix of v"T(-f3) is then

(3.4) V = BShhB', B'=B.

The sample counterpart to g is g = (l,X'1,X2(32)'. The least squares estimator of is

(3.5) =

Substituting (3.2) into (3.5) and then using straightforward algebra yields

(3.6) VT@-a) = P'LTg)1 { (1/1=1gjjJ + [I E1gj-g] + [ E1-gJuJ }

Now, g-g = (0, X1'(p1-f31), X2'(p2-). Under conditions in the Appendix,

(3.7) T'E1X1'u — 0, T'L1X2'u - 0, v'TQ31-1)O(1), VTQ32-2)=O(1).
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Prom this it directly follows that the last term in braces on the right of (3.6) converges in probabilityto

zero. As for the middle term,

I

(3.8) = -T = [VT-p)], = T1T=l[llX] (-1X1 -a2X2),

a1EX1' a2EX2'
F —' FE- a431EX1X1 a2P1EX1X2'

Upon combining (3.3), (3.4), (3.7) and (3.8), and using T'L=1gg - Egg, we have

(3.9) /T@x-cr) = (Egg)1[ '/zl_1gu + PBCV"2T1h I + o,(I).

Define the (3>3) matrix SfEgg'u and the 3xk matrix Sffi=Egth('ur Then

(3.10) VT@-) 'A N(0,V),

V = Eg 1S11(Eg1g)1 + (Eg1g)'(FBSffi' + SB'F)('Egg7' + (Eg1g)'(FVF)(Egg)1.

The first term is the asymptotic variance of (gg lV2E=1gu, and is uncertainty that would be

present even if and 2 were known. The last term is the asymptotic variance of (EggF[v'T(f3-f3)],

and is attributable to uncertainty about and P2. The middle term is the covariance between the two.

For out of sample tests, the parallel result is

(3.11) v'P(a-) A N(0,V), V = +

The out of sample asymptotic variance is simpler because there is zero asymptotic covariance between

random variables that would be present even if 13 and (2 were known and random variables attributable

to estimation of 1 and

To further interpret (3.10) and (3.11), let V0 denote the variance-covariance matrix that would

be appropriate if the 13's were known rather than estimated, V0 = (Eg')1S11{Egg')1. Then (3.10) and
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(3.11) can be written V = VOLtadthtiona1 terms due to.estimation of 13.6We saw in column (5) of

Table I that in general the additional set of terms in (3.10) can raise or lower the diagonal elements of

the in-sample asymptotic variance-covariance matrix. We also saw in Table I that for out of sample

tests, the usual OLS standard errors understate the correct asymptotic ones; this is directly seen in

(3.11), since is positive semidefmite.

For inference, the obvious sample analogues can be used to estimate the additional terms in

(3.10) and (3.11). The diagonal elements of the resulting estimate of V can then be used to construct

con fidence intervals in the usual way. I call this the "V-procedure" since it involves direct computation

of the relevant variance-covariance matrix, in. contrast to regression based procedures often used under

the null of encompassing.

4. Monte Carlo Evidence

This section uses accuracy of confidence interval coverage to get a feel for the accuracy of the

asymptotic approximation developed in the previous section. Subsection 4.1 describes the data

generating processes, subsection 4.2 estimation and construction of the variance-covariance matrix,

subsection 4.3 basic results, subsection 4.4 additional results.

4.1 Data generation

Two data generating processes are used. One, called "DGP A", is described in section 2 (see

equations (2.2) and (2.3)). The experiments involved 36 parameter sets, where 36 = (3 values of ) X (3

values of 0) X (4 values of aJ:

(4.1) g.3, .6, .9; 0.5, .8,1.0; a.01, .1, 1, 10.

These values were chosen for two reasons. First, they imply data whose serial- and cross-correlation

properties are similar to those in Godfrey (1998) and Godfrey and Pesaran (1983) (though those

authors used multivariate rather than bivariate models). Second, this range reflects certain prominent

characteristics of financial and aggregate data: for financial data, competing models have low (the

predictors are not very well correlated with one another) and the encompassing regression has high a



10

(low R2 in prediction of yJ; for aggregate data, competing models have high and the encompassing

regression has low o. (Of course, certain other prominent characteristics, such as serial correlation or

conditional heteroskedasticity, are not captured by this process. Since these complications probably

degrade the quality of the asymptotic approximation for given sample size, the results here may be

unduly supportive.)

The second data generating process, called "DGP B", involved comparison of models linear in

the level and in the log of an explanatory variable. The motivation was twofold. First, encompassing

tests are used in practice to discriminate between log and semilog specifications (e.g., Stumborg (1999)).

Second, simulation evidence on encompassing tests indicates that the tests sometimes perform poorly

when non-normal data are used (e.g, Godfrey (1998)). So evaluation of the V-procedure for a

non-symmetric (specifically, lognormal) variable seemed advisable.

DGP B was

(4.2) y = 0; + (1-0)in(x + , n(x,u' lid N(O,( °)).

The two competing models are

(4.3a) y = + + v1

(4.3b) y = + 12In(xJ + E X2'i32+v2.

The experiments with this DGP involved 20 parameter sets, (5 values of 0) X (4 values of oJ:

(4.4) 0 = 0, .2, .5, .8. 1.0; ar.01, .1, 1, 10.

There is no variation in because the correlation between the two regressors is not a free parameter; in

all specifications considered, corr(x,ln(x) = .76. In addition, the results for; and 2 are no longer

symmetric, so results for both are presented. Finally, to save space, I report results only for a=0.1,

reporting complete results in the Additional Appendix.

For each DGP and parameter set, I generated 5000 samples of size 500. Only the first T100
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or first T250 were used in the in-sample experiments. For the out-of-sample work, there were 6 -

different sets of regression and prediction sample si2es: R100, P50; R100, P100; R100, P200;

R250, P50; R250, P125; Rr250, Pr250. I report only results for R100. Results for R250

were similar and are reported in the Additional Appendix. I also conducted some out of sample

simulations using what the Appendix calls the "recursive" scheme; I report these in the Additional

Appendix but not here since results are similar to those reported in the tables below.

4.2 Estimation

For the in-sample test, I used each of these two samples çrioo and T250) as follows.

(Obtain and 12 by least squares regressions of y on X1and X2, t1,..,T. (2)Estimate; and 2 in a

least squares regression of y1 on a constant, X1'1 and X232. (The transpose " is needed even for

DGP A, since constant terms were included in all regressions: for DGP A, XjE(l,x1)'.) (3)Compute two

different variance-covariance matrices. The first is the usual heteroskedasticity consistent covariance

matrix for least squares. The second is an estimate of V defined in (3.10), constructed as described

below. (4)(a)DGP A: Use the estimated variance-covariance matrices to construct 95% confidence

intervals around cx2. Report the percentage of confidence intervals that actually include

;_(1_0)/[0e+(1-0)I. (b)DGP B: Use the estimated variance-covariance matrices to construct 95%

confidence intervals around cz and Report the percentage of confidence intervals that actually

include the population values of a and &,which happen to be a = 0/ {0 + [(1-0)'Je/(e2-e)]}. a =

(1-0)/[(Ov'e) + (1-0)1. (For both DGPs, the Additional Appendix reports results for 90% confidence

intervals, which were similar.)

Inference was done with heteroskedasticity consistent covariance matrices, even though there is

no heteroskedasticity in the disturbance in the encompassing regression u. To spell out the details,

some notation has to be defined. In the encompassing regression y =

ao+X11Pi)+2Q(2'132)+residua1, define the vector of right hand side variables, least squares coefficient

estimates and scalar residual as:

(4.5) g (1,X1'P1,X2'', a(a0,1,',uy-g'.
(3Xi) (3Xl) (lxi)
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Also define

(4.6) h = P(lvl,X2v2, = —(1X1; a2X),
(4X1) (4X1)

In (4.7), v and ;2t are least squares residuals and h is the sample cross product of right hand side

variables and residuals in the regressions used to estimate and f2.

For in-sample confidence intervals, define the (2X2) matrices B1=cT"ET1X1X1)4,

B2=CP'E_1X2X2)* The sample analogues of the population quantities that figure into V were

estimated as follows: Egg: TE1g'; S1: r'E1gg'u; Sth: F: r'E1{gu/ap)];

B: diag(B1,B2); V: BCP1ZT1hh1)B. For out of sample confidence intervals, B and were estimated

using data from I to R Egg', S11, F and Sifi were estimated with data running from R+I to R+P.

For certain experiments I also report confidence intervals constructed from the usual

heteroskedasticity consistent least squares estimator. This was constructed as:

.4 A .4.4 A A A

(4.8) VOLS: (I'4E=1g')1( T1E 1ggu) çP1E1gy.

When the null of encompassing holds, inference using V0 is asymptotically valid, and is consistent

'with Davidson and MacKinnon (1981).

4.3 Simulation results

Results for DGP A are reported in Table 2. In-sample results are presented in columns (4) and

(5). For T100, a couple of parameterizarions lead to results that are troubling, for example the

coverage rate of 92.0 reported in line (2), column (4). This is consistent with the still worse results

reported for sizes of T40 and T60 by Godfrey (1998). But for Th250 all but one of the reported

results are between 94 and 96. The out of sample tests reported in lines (6) through (8) are similar. All

involve regression sample size R100, and all have some parameterizations with poor coverage. Out

of sample results for R250 (reported in the Additional Appendix) are comparable to in sample results
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for T250. But even for R100, on balance the figures are tolerably close to 95.

The V-procedure does not fare as well in the second experiment. Representative results are

given in Table 3. Separate results are given for a and a2 because the results are no longer symmetric.

In Panel B, columns (3)-(7), the figures for a2 in range from 89.0 to 94.5, somewhat less satisfying than

previously. The news about a1 in Panel A, columns (3)-(7), is still worse, with figures as low as 76.0

(line (5), 0=0.5).

It may be little consolation, but inference using the conventional heteroskedasticity consistent

least squares covariance matrix was even more awry. Begin with DGP A, for which the V-procedure

worked well. Panel A in Table 4 has representative results. Many of the figures are far from 95. For

example, we see in line (2) that for Tr250, the least squares confidence interval has coverage of 63.8

percent; in Table 2, the comparable figure using the V-procedure is 94.3. Upon comparing Tables I

and 4A, we see that figures such as 63.8 reflect the asymptotic theory. This theory does quite a good

job of predicting which intervals will be too short and which will be too long: for both in- and

out-of-sample exercises, the asymptotic theory and simulations match perfectly on whether coverage is

less than or greater than 95 percent, and this holds for all the specifications in Table 4 and not just the

subset reported in Table 4A.

Panel B in Table 4 indicates that conventional procedures also fared quite poorly for DGP B,

even more poorly than did the V-procedure. For example, in the specification that the V-procedure

performed worst (0=0.5), with in-sample coverage of 89.9 percent for T100, least squares coverage

was 79.3 (see panel B, line (3), column (4)). The corresponding asymptotic figures in panel C indicate

that poor coverage is to be expected for least squares—indeed, for big enough samples the 79.3 figure

will fall to 74.2 (panel C, line (3), column (4)).

4.4 Additional Simulation Results

To get a sense for rapidly increases in sample size lead to improvements in the accuracy of the

asymptotic approximation, I picked the worst performing specification from Tables 2 and 3, 0=0.5,

DGP B, and experimented with in-sample inferene with larger sample sizes. The results for T1000,

2500 and 10,000 are given in panel A of TableS, with results for T100 and T250 repeated for
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convenience. Naturally, the asymptotic approximation works better with larger samples. For example,

for T2500, inference about a2, using either the proposed or the usual least squares inference, works

pretty much in accord with the asymptotic theory. (For least squares this follows since the figure of

75.8 for T2500 is quite near the asymptotic figure of 74.2 reported in panel C of Table 4.) But while

inference about a is better captured by the approximation for larger T, even for T10,000 there are

notable discrepancies, for the V-procedure (actual = 88.9, asymptotic = 95.0) or least squares (actual =

38.9, asymptotic = 29.8 [not reported in a table]).

I therefore briefly consider bootstrapping the V-procedure. I constructed confidence intervals

from symmetric two tailed t-tests, with 500bootstrap repetitions per sample, again with 5000 saipples.

Each bootstrap repetition involved resampling to generate new estimates of the 3's as well as of the a's.

Details on the procedure are given in the Additional Appendix.

I report representative results in panels B and C of Table 5. The figures for the V-procedure

and for least squares repeat those given in Tables 2-4, for convenience. The 0=1 lines in panels B and

C indicate that all three procedures (bootstrap of V-procedure, V-procedure, least squares) work

roughly comparably under the null of encompassing, with bootstrapping having an edge. For example,

for DGP B, T100 panel C indicates that bootstrapping happened to be spot on, with actual coverage

of 95.0 percent; the coverage of the other procedures ranged from 92.3 to 93.5. For 0=0.5, least

squares inference is asymptotically invalid. Upon comparing the bootstrap and the regular versions of

the V-procedure, we see that the bootstrapped version performs better, markedly so for DGP B. We

see in panel C, line 1 that bootstrap coverage when 0=0.5 is around 84 percent. That is far from the

ideal of 95 percent but still is a distinct improvement over the figures of 76.0 and 77.2 for the

V-procedure.

5. Conclusions

Regression-based tests for encompassing were proposed and evaluated. The tests allow for the

possibility that nne of the models under consideration encompass the others. Simulations indicate

that V-procedure can work well, though there sometimes are notable distortions. Even when there are



15

notable distortions, the V-procedure usually works better than does a conventional procedure that is

asymptotically valid only when the null of encompassing holds. A priority for future research is

developing refmed procedures that provide a more accurate guide to performance in small samples.

Limited simulation evidence suggests that bootstrapping may deliver such procedures.

Appendix

I begin by extending the environment described in the text in three ways, and then present

formal conditions that lead to a general result that includes equations (3.10) and (3.11) as special cases.

First, out of sample tests are sometimes executed allowing multiperiod predictions. Let us therefore

allow for a prediction horizon r�1 periods ahead (the text assumed t1). If the null of encompassing

holds, u1 - MA(t-1). Let the total sample size be TR+P±t-1.

Second, in out-of-sample studies, let us allow two more ways of splitting a sample into

regression and prediction portions. The rolling scheme uses the last "R" observations to estimate the

two models. It first uses data from I to R to estimate the models and predict yR+,-l , then uses data

from 2 to R+1 to estimate the models and predict y1 and fmally uses data from P to R+P-1 to

estimate the models and predict yP+R+l• The recursive scheme uses a growing sample size to estimate

the two models, first using data from I to R, then from ito R+1 and finally from I to R+P-1. As a

matter of terminology, the division described in the text is called the fixed scheme.

Third, let us allow encompassing tests that involve more than two models. Write the (n+1)X1

vector of right hand side variables as g(I,y1

To state formal assumptions, it will be helpful to denote the population parameter vector,

obtained by stacking the parameters from each of the n models, as rather than (3. Additional

notation: u.4(3) is the (lXk) matrix 8u(P)/8(3; g((3) is the (nXk) matrix ag(p')/a(3; for any matrix A =

let IA I a maxLi a The assumptions in West (1996) and West and McCracken (l998,p822) are

sufficient for my purpose:

Assumption (: (a)(i)In some neighborhood N around ,and with probability 1, uQ3) and g((3) are
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measurable and twice continuously differentiable; (h)Eui33)g1() = 0; (ffi)Eu(flu1(P) = 0;

(iv)Eu1(g1() = 0; (v)Eg(g1(' has rank n+1.

(b)(i)The estimate § satisfies 33* = B(t)H(t), where B(t) is (kXq) and H(t) is (qXl), with (a)B(t) -' B,

B a matrix of rank k; (ii)H(t)T-1E1h1Q3') (in sample), H(t)=R1E1h5() (fixed),

H(t)t1E1h(pD (recursive), or, H(t)R'L ER+lhSG3t) (rolling) for a (qXl) orthogonality condition

h5(); (iii)Eh,(f3)z:0; (iv)in the neighborhood N of assumption 1, h1 is measurable and continuously

differentiable.

(c)In the neighborhood N of Assumption 1, there is a constant Dccc such that for alit, sup tN

I 8u1()/83f3' Cm1 for a measurable m for which EmCD. The same holds when u1 is replaced by an

arbitrary element of g1.

(d)Let w (i)For some d>1, sup EIIwtII&<co,where 11.11

denotes Eudidean norm. (ii)w1 is strong mixing, with mixing coefficients of size -3d/(d-1). (iii)w1 is

fourth order stationary. (iv)E E[g1(f3')g()'u(f3)u((3')} is positive defmite.

(e)For out-of-sample tests, R,P -, oo as T-.cc, and lim T- P/R = it, for recursive, for

rolling and fixed.

A word on the assumptions. Assumption (a) essentially says that u is orthogonal to the

predictors from all the models. For example, in the linear models of section 3, u =

(a/a)[1-a1pc1'1)-2(x21'p,J] = (-1X1; -a2X21t), so Eu1((3)u1(=0 means EuX0. As well, the rank

condition on Eg1(gjf3')' rules out nested models such as y1X111+v1 vs. yX11[31+Z8+v1 with

population 80.

On Assumption b: The underlying assumption is that the est&nate from the i'th model can be

written = B1(t)H(t) for B(t) and H1(t) illustrated below. B(t) is a block-diagonal matrix with

diagonal blocks B(t); H(t) is obtained by stacking H1(t), ..., H(t). As is evident from the definitions of

H(t), the "t" index is not necessary for H(t) for in-sample applications (i.e., for given sample size T,

H(1)...H(T)), nor for out of sample applications using the fixed scheme; the same applies tofi1(t)

and consequently ftt. I use the index nonetheless because it is necessary for the recursive and rolling
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schemes. See West and McCracken (1998) for examples.

For maximum likelihood, h1 is the score, evaluated at the population parameter vector 3, and

For GMM, h1 is the set of moment conditions used to identify (e.g., the Kronecker product of

the vector of predetermined variables and the vector of structural disturbances, if the estimator is

3SLS), and q�k. B1(t) is a (Içxqj matrix of rank k that selects a linear combination of orthogonality

conditions. For maximum likelihood, B(t) is the inverse of the Hessian, evaluated on the line between

P and for GMM in overidentilied systems, B1(t) depends on the weighting matrix used (see Hansen

(1982)). B is the large sample counterpart of B(t). See section 3 for concrete ifiustration for least

squares models.

Assumptions (c)-(e) are technical conditions whose main practical import is to rule out models

with unit autoregressive roots.

Define ç( [(n+1) Xl], FE[gQ3u1(')] [(n+ 1)Xk], =

[(n+1)X(n+1)], S, = ET f(f3)h()' [(n+1)Xcij, Sbh = E7=Eh,(3')h1((3 [qxq]. In out-of-sample

evaluation oft step ahead forecasts, e MA(t-1); in most applications, f (and h are serially

uncorrelated, so that S = Ef(p)f(p'', = Ef(Phr(' and Shh = Eh(Ph(l3D': see the least squares

example in section 3. Also define the scalars X, and Ahh as follows. For in-sample tests, k1, Xhh=1.

For out-of-sample tests: recursive, Xthl-7t1n(1+7t), Xhh2[1-7tln(1+7t)]; fixed: XO, Xhh7t; rolling,

it�1, Ahhlt -j-; rolling, it>1, Xfh=l••, Xhh—I-3.

Theorem: Under Assumption (*), VT(a-a) (in-sample) and VP(-a) (out-of-sample) are asymptotically

normal with variance-covariance matrix

V = (Egg,)Sf(Eg71 + (Egg)'[X'FBSffi' + SffiB'F') + XFVF'Eg71.

Proof: The proof is similar to that of the proof of Theorem 4.1 in West and McCracken (1998).

V may be estimated using the usual techniques to account for serial correlation, including

heterdskedasticity and autocorrelation consistent covariance matrices.
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Footnotes

1. A systematic attempt to find an encompassing model may ultimately result in a model that is the
end product of extensive data mining. It is beyond the scope of this paper to consider this

possibility.

2. Davidson and MacKinnon (1981) show that when a=1 and ct20, the usual least squares standard
error on the estimate of a2 is asymptotically valid when one estimates y- =a2&�-i + X1'a +
residual. Here, the parameter vector "a" is not of direct interest; X1 is included solely in the interest
of producing a valid standard error on the estimate of cc2. But if X1x1 is a scalar and Itis linear in
x1, this standard error is identical to that on the estimate of u2 in (2.1).

3. A precise statement is that when 0.S, the ratio of the conventional to valid standard errors is
monotonically increasing in a, approaching a value strictly less than 1 as c-0, a value strictly greater
than I as —

4. One key condition is stationarity. Restrictions on unit roots are sharper here than in the usual
encompassing literature. In particular, in the standard literature, a judicious transformation allows
one to use conventional inference on an encompassing test in which the variable being forecast is
1(1) (Fair and Shiller (1990)). This transformation is valid only under the null of encompassing,
however. It does not appear, however, that there is an analogous transformation if neither model is

encompassing.

5. Recall that I am at the moment assuming that the out of sample encompassing regression is
estimated using observations R+1 through T, while 3 and j2 are estimated using observations 1
through R. These samples are non-overlapping. Even in out of sample exercises, when
overlapping samples are used for estimation and the encompassing regression, there is a nonzero
asymptotic covariance between the two sets of random variables. See the Appendix.

6. While it is not obvious (at least to me), if model I encompasses model 2 (i.e., 01, cc00, a31,
cc2—0), and X1 and X2 each consist of a constant term and a scalars, the additional terms do not
affect the asymptotic variance of &2: the (3,3) element of (Eg,g1')1 [(FBS,' + SIB!FI) +
FVF](Egg')1, and of (Egg1 [7tFVF](Egg1)', is zero. This result is reflected in line (1) in Table 1.
(N.B.: even under this special set of circumstances, the additional terms do affect the asymptotic
variance of &.)

7. To illustrate with DGP A, when 0=1: in the spirit of Davidson and MacKinnon's J-test, one could
estimate residual, and test H0:60. This test is identical to the results I report
for least squares inference about cc in ya0+a1(X1 j+2(C2+residual, with X1(1,x1)'. This is
not quite theJ-test, and inclusion of the constant term may degrade finite sample performance.
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Table I

Asymptotic Coverage of Nominal 95 Percent Confidence Intervals for cz2, DGP A, Least Squares VCV

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
I Coverage of Nominal 95% LS ConE mt. on cr2

I In-sample I Out-of-sample I

0 R I I
n=.2 t=.5 it=1 it=2 =5

(1) 1.0 any any n.a. 95.0 95.0 95.0 95.0 95.0 95.0

(2) 0.5 0.3 10.00 0.04 100.0 93.7 91.7 88.5 82.4 68.8

(3) 0.5 0.6 0.01 0.79 64.7 85.0 73.2 60.8 47.5 32.2
(4) 0.5 0.6 0.10 0.71 96.6 93.5 91.1 87.3 80.4 65.8
(5) 0.5 0.6 1.00 0.36 99.5 94.3 93.3 91.6 88.1 79.0
(6) 0.5 0.6 10.00 0.06 99.6 94.4 93.5 92.0 89.0 80.7

(7) 0.5 0.9 1.00 0.46 96.6 94.9 94.7 94.4 93.7 91.7

(8a)0.8 0.3 0.10 0.84 89.6 92.0 87.4 80.5 70.1 52.8
(8b)0.2 0.22 99.9 92.5 88.6 82.6 73.1 56.3

(9a)0.8 0.6 1.00 0.45 98.1 94.8 94.6 94.1 93.2 90.4
(9b)0.2 0.25 99.8 93.8 92.1 89.1 83.5 70.6

(lOa)0.8 0.9 1.00 0.49 95.8 95.0 94.9 94.9 94.8 94.4
(lOb)0.2 0.43 97.0 94.7 94.3 93.5 92.0 87.4

Notes: 'p0
1. The DGP is y = x1O + x2(1-0) + u, (x,,x21,u)' iid N(0, p 1 o ). If model 1 encompasses model

0 0

2,0=1; if model 2 encompasses model 1,0=0. The investigator regresses y on X1 E(1,x,f and then
regresses y1 on X2E(1,x2)', obtaining coefficient estimates and 132. R is the population R2 of the
regression of y on Xir The final least squares regression run is the one analyzed in thistable, y =
a+1(X1' P1Ya20C2 12) + residual. Here, ; 0/[0+(1-0)] E ;, a2 -, = (1-0)/[Og+(1-0)} a2.
Results are invariant to omission of a constant term in any of these regressions.

2. For the indicated values of 0, and a, columns (5)-(10) present the asymptotic coverage of nominal
95 percent confidence intervals computed using the usual least squares standard error oil a2. A value of
95.0 means that the usual least squares estimator of the standard error is consistent, a value less
(greater) than 95 that this estimator yields asymptotic standard errors that are too large (small). Least
squares inference can be invalid because the regressors depend on estimated [3's.

3. Column (5) presents results when the same sample is used is used for obtaining the fittedvalues X [3
and the estimated a1s. Column (6)-(10) present results when an out-of-sample regression is used to
estimate; and a2. The parameter "it" is the limiting ratio of the size of the out-of-sample regression
(P) to the size of the samples used to estimate (3 and (2 (R).

4. Results for; and given 0 are identical to those for a2 and 1-0. For example, asymptotic in-sample

coverage for & when 00.8, p0.3 and a.10 is 99.9, because this is the figure in column (5) of line

(8b).



Table 2

Actual Coverage of Nominal 95 Percent Confidence Intervals, for a2, DGP A, V-Procedure

(1) (2) (3) (4) (5)

I Tn-sample
IT00 T2501

(6) (7) (8)

Out-of-sample, R100
P/R=.5 P/R=1 P/R=2

(1)1.0 0.6 1.00 94.2 95.4 94.7 96.5 96.9

(7)0.5 0.9 1.00 94.5 94.8 92.6 94.8 95.2

(8a)0.8 0.3 0.10
(Bb)0.2 0.3 0.10

95.7 95.7
91.4 94.1

94.0 95.7 94.2
93.3 94.5 94.4

(9a)0.8 0.6 1.00
(9b)0.2 0.6 1.00

94.5 95.1
94.2 95.3

93.8 95.4 95.5
93.4 94.8 95.0

(lOa)0.8 0.9 1.00
(lOb)0.2 0.9 1.00

Notes:

94.4 95.0
94.5 94.8

92.6 94.9 95.0
92.3 93.9 93.9

1. The data generating process is described in Table 1. Tn columns (4) and (5), T is the sam1e size. In
columns (6)-(8), R=100 is the size of the sample used to obtain the least squares estimates §1and P2

(defined in note 1 to Table 1), while P is the size of the sample used to obtain the least squares
estimates; and a2 (again defined in note 1 to Table 1). All results are based on 5000 repetitions.

2. The V-procedure uses sample analogues to estimate the quantities in asymptotic variance covariance
matrices presented in equations (3.10) and (3.11), and then uses the diagonal elements of these matrices
to construct confidence intervals in the usual way. See section 4.2 for details. This procedure will yield
asymptotic coverage rates of 95.0.

3. Results for; are symmetric to those for a2, as explained in the notes to Table 1.

I Coverage of 95% Confidence Interval on a2

(2)0.5 0.3 10.00 91.7 94.0

(3)0.5 0.6 0.01 93.7 94.3 93.7
(4)0.5 0.6 0.10 93.6 94.2 93.4
(5)0.5 0.6 1.00 93.7 95.0 93.6
(6)0.5 0.6 10.00 95.7 96.2 96.1

95.3 93.9 92.1

94 . 0

94 . 5
94 . 8

95.7

94.0
94.4
94.9
94.3



Table 3

Coverage of Nominal 95 Percent Confidence Intervals for and a2, DGP B, V-Procedure

(1) (2) (3) (4) (5) (6) (7)

I Coverage of 95% Confidence Interval on a2

I In-sample I Out-of-sample, R100
0 1T100 T=250 P/R=.5 P/R=1 P/R=2

(1) 1.0 0.10 93.5 94.8 86.4 88.9 90.4
(2) 0.8 0.10 85.6 86.6 82.5 82.6 81.8
(3) 0.5 0.10 76.0 77.2 83.4 84.0 83.9
(4) 0.2 0.10 77.5 78.0 76.4 71.9 67.2
(5) 0.0 0.10 88.9 90.5 87.2 89.0 90.7

(1) 1.0 0.10 93.3 94.2 91.8 94.1 94.5
(2) 0.8 0.10 90.7 92.6 90.6 91.2 92.1
(3) 0.5 0.10 89.9 91.7 91.2 92.5 92.7
(4) 0.2 0.10 90.4 92.3 91.2 92.0 92.1
(5) 0.0 0.10 89.0 89.7 91.6 93.3 94.0

Notes:

1. The DGP is y = x0 + (x(l-0) + u, @n(x,u3 fld N(0,[1 °2))' o0.1. If model I

encompasses model 2,0=1; if model 2 encompasses model 1,0=0. The investigator first regresses Yr
on X1E(1,x' and then on X2E(1,1n(xj),obtaining 2X1 coefficient vectors 1and 2• The final least
squares regression run is the one whose results are analyzed in this table, Yr = a+a1(K1' 1)+ a2(X2 )
+ residual. Here,; -, 0/{0+[(1-0)Ve/(e2-e)}} ; a2 -, (1-0)/[(OVe)+(1-0)] a2.

2 See notes to Table 2.



Table 4

Coverage of Nominal 95 Percent Confidence Intervals for a2, Least SquaresVCV

(1) (2) (3) (4) (5) (6) (7) (8)
I Coverage of 95% Confidence Interval on a2
I In-sample Out-of-sample, R100

0 p 1T100 T250 P/R=.5 P/R1 P/R2

(A)Actual coverage, (1) 1.0 0.6 1.00 94.0 94.6 92.1 94.3 94.8
DGP A (2) 0.5 0.6 0.01 63.0 63.8 70.1 59.3 46.9

(3) 0.5 0.6 0.10 95.6 96.3 87.9 85.4 80.6
(4) 0.5 0.6 1.00 99.1 99.3 90.2 90.3 87.5
(5) 0.5 0.6 10.00 99.4 99.6 90.5 90.9 88.2

(B) Actual coverage, (1) 1.0 n.a. 0.10 92.3 93.6 90.3 92.6 93.4
DGP B (2) 0.8 n.a. 0.10 86.5 87.7 87.1 86.2 82.4

(3) 0.5 n.a. 0.10 79.3 77.9 82.0 76.0 66.5
(4) 0.2 n.a. 0.10 85.8 86.2 84.4 80.4 72.6
(5) 0.0 n.a. 0.10 96.9 98.0 88.4 87.7 83.6

(C) Asymptotic (1) 1.0 n.a. 0.10 95.0 95.0 95.0 95.0 95.0

coverage, (2) 0.8 n.a. 0.10 87.8 87.8 90.8 86.6 79.2
DGP B (3) 0.5 n.a. 0.10 74.2 74.2 81.7 71.8 59.1

(4) 0.2 n.a. 0.10 84.6 84.6 86.2 78.6 67.5
(5) 0.0 n.a. 0.10 99.0 99.0 92.5 90.0 85.2

Notes:

1. The data generating processes ares described in Tables I and 2.

2. In panels A and B, confidence intervals were constructed from the usual heteroskedasticity
consistent least squares variance-covariance matrix. For panel A, this will give asymptotic coverage
rates given in Table 1, lines (1), (3), (4), (5) and (6).



Table 5

Additional Simulation Results on 95 Per Cent Confidence Interval Coverage, In-Sample Tests

A. DGP B, Actual Coverage, Large Sample Sizes

T=100 T= 250 T=1000
I

T=2500 T=10,000
0 V OLS V OLSIV OJSI\T OLSIV OLS

(1) a1 0.5 76.0 61.2 77.2 54.0 81.3 47.1 85.0 43.0 88.4 38.9
(2) a2 0.5 89.9 79.3 91.7 77.9 93.2 76.4 94.2 75.8 94.4 74.9

B. DGPA, Actual Coverage for a2

T=100
I

T=250
o BS-V V OLS

I
BS-V V OLS

1.0 94.8 94.2 94.0 95.3 95.4 94.6
0.5 94.9 93.7 99.1 95.2 95.0 99.3

C. DGP B, Actual Coverage for a and a2

T=100
I

T=250
o BS-V V OLS

I
BS\T V OLS

(1) 1.0 95.0 93.5 92.9 95.4 94.8 95.5
0.5 84.0 76.0 61.2 83.6 77.2 54.0

1.0 94.9 93.3 92.3 94.7 94.2 93.6
0.5 92.9 89.9 79.3 93.4 91.7 77.9

Notes:

I ."BS-V" denotes confidence intervals constructed by bootstrapping the V-procedure, via symmetric
two-tailed t-statistics; "V" denotes the procedure proposed in this paper; "OLS" denotes confidence
intervals constructed from a heteroskedasticity consistent least squares covariance matrix. The results
for "1/" and "OLS" are repeated from Tables 2, 3 and 4.

2. See notes to Tables I and 3 for descriptions of the data generating processes. In panel B, q0.6 and
a1.0; in panels A and C, o0.1. All results are based on 5000 repetitions. For BS, there were 500
bootstrap repetitions for each of the 5000 samples.


