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It is now a truism that with sufficient data, any economic model simple enough to be
anﬂyﬁcaﬂf tractable will be rejected statistically. It is nonetheless of interest to quantify the relative
explanatoty powers of two or more models, even if none of the models under consideration is literally
true. This will give a sense of profitable directions for future model development.

Quantifying relative explanatory power can be difficult when models are nonnested, especially
so when none of the models under consideration is correctly specified. A large literature has developed
tests that compare in-sample fits of nonnested models. Cox's pioneering work proposed comparing
likelihoods (Cox 1961, 1962), as did Mizon and Richard (1986). Related work, on possibly
misspecified models, is in Kitamura (1997). Regression based tests, involving the regression of 2
realization on one or more ﬁfted values, were developed by Davidson and MacKinnon (1981). White
(1994) provided a unified framework for discussing likelihood and regtession-based tests, while
McAleer (1995) documented the extensive use c;f such fests in empirical work. Finally, out-of-sample
regression tests were proposed by Chong and Hendry (1986), Ericsson (1992) and West and
McCracken (1998).

This paper develops asymptotic theory for regression-based encompassing tests that allow for
all models under consideration to be misspecified, general classes of estimators and comparisons of
out-of- as well as in- sample fits. The key result is delineation of the asymptotic variance-covariance
matrix of the least squares estimator of the encompassing regression. For inference, the reccommended
procedure is to adjust the usual least squares variance-covariance matrix using sample analogues of the
relevant asymptotic quantides—what I call the “V-procedure.”

Section 2 of the paper uses a simple, stylized example to illustrate that construction of
confidence intervals and test statistics under the incorrect null of encompassing can lead to wildly
inaccurate asymptotic inference. Section 3 derives asymptotic results for least squares models, with
general asymptotic results relegated to the Appendix. Section 4 presents Monte Carlo evidence.
Section 5 concludes. An Additional Appendix available on request presents simulation and numerical

results omitted from the paper to save space.




2. Overview

The test that I consider is one in which the realization of a variable to be explained is regressed
on competing in-sample fitted values or out-of-sample predictions. In out-of-sample applications, this
regression is sometimes used to evaluate or combine forecasts, without reference to the word
“cncompassiﬂg” (see Clemens (1989), Diebold (1998) and especially Diebold (1989)). I nonetheless
refer simply to “encompassing” tests throughout.

Suppose for simplicity that there are only two models, model 1 and model 2. Write the

encompassing regression as
(1) .= ayyy, + ¥y + residual

Here, y, is a scalar variable explained by models 1 and 2, ;5: is the fitted value (or predicted value) from
model i. }h and ;fz: are constructed from estimates of finite dimensional parameter vectors f§; and f3,.
For example, if model 1 is y=X,/'B;+v,, and ,[;, is the least squares estimate, then ;1z:X1:'§1- Model 1
encompasses model 2 if o,=1, 0,=0; in this case, model 2 is not helpful in explaining y,, conditional on
model 1, and model 1 gives an unbiased prediction of y,. The symmetric condition (o, =0, ,=1) applies
when model 2 éncompasses model 1. In (2.1), a constant term, which will often be included in
application, has been omitted for clarity and simplicity.

Because ;rh and ;zz, depend on estimated parameters, the usual least squares estimate of the
vatiance-covariance matrix of the estimated o's typically is not valid. (An exception to this rule is '
presented below.) Procedures that produce asymptotically valid in-sample tests and confidence
intervals under a null of encompassing have been proposed and discussed in Davidson and MacKinnon
(1981) and others.

My concern is inference about a, and «, when a null of encompassing cannot reasonably be
presumed to hold. Doubt that either model is encompassing is often suggested by out of sample
comparisons, or at least the initial rounds of out of sample comparisons. Such regressions often seem
to suggest that none of the models are adequate. For example, in a recent study of weekly German

interest rates, Ferreira (1999,p38) uses 2 set of in-sample encompassing tests to conclude that “no
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model ... dominates.” More generally, the literature on forecast combination has repeatedly
documented a failure of any single model to dominate all others (e.g., Clemens (1989)).

Of course the fundamental implication is that one needs to turn to some third (or (n+1)%)
model.! As a step along the way, one would like to know whether either of the two models has a lot of
information about y, One might want to test whether one of the «'s is zero, while not maintaining that
the other «; is unity. More generally, confidence intervals around the point estimate of the o's will be
revealing about how well the models explain y,.

A natural first question is whether confidence intervals constructed from conventional least
squares standard errors, or from the standard errors proposed in the papers cited above, will tend to be
teasonably accurate, or at least have a bias that can be characterized a priori so that rough and ready
adjustment can be made. To get a feel for the answer to this question, I computed asymptotic standard
errors for a simple, stylized example that affords easy calculation. This example is also used as one of
the two data generating procésses in the simulations.

Suppose that the data generating process is
22 y=x8+ %)+,

0<0s1, where all variables are scalars and

1 p 0O
(23) (FoXpuw) ~NQO |p 1 0])
0 0 o

Model 1 is y, = x,8;+vy, model 2 is y, = x,8,+v,. (In the simulations, constant terms were included in
the regressions that estimated B, and 8, as well as in the encompassing regression (2.1). They are
omitted here because these terms do not affect asymptotic distributions.) Here, x,8, is the least squares

projection of y, onto %y,

24  P=EL) Exy, =0+ (1-8g v, =¥.- Xy

with analogous definitions for B,=68¢+(1-6) and v,. If 6=1, model 1 encompasses model 2, and, in




4

2.1), ;2 converges in probability to zero. As well, the usual least squares standard error on ;2 is
aéymptotically valid, despite the dependence of the regressors on estimated B’s: a very special result that
holds only for ;2 but not ;1, and then only because model 1 has a scalar regressor.” Symmetrically, if
6=0, model 2 encompasses model 1, ;1 converges in probability to zero and the usual least squares

standard error on ;z is asymptotically valid. If 6#0,1, neither model encompasses the other,
25) oy =, 6/8 = 6/[6+(1-B)l, a; =, (1-6)/B, = (1-0)/ [Be+(1-6)],

and neither least squares standard error is asymptotically valid.

Here and in the simulatons I consider both in-sample and out of sample fits. Suppose first that
the regression (2.1) uses in-sample fits: one estimates §, and B, by least squares using data from 1 to T,
sets ;,Fx,:é.l, §2t=x2:éz, and then estimates o and a, by least squares using data from 1 to T. For
various values of the parameters p, 8 and o7, I computed the asymptotic values of two estimators of the
standard error on «, (results for «, are symmetric): (a)the conventional least squares estimate (= square
root of {o* X (2,2) element of the inverse of the plim of second moment matrix of regressors]), and
(b)one computed in accordance with the theory presented in the next section. I used the ratio of the
two to compute asymptotic coverage of nominal 95 percent confidence intervals constructed using the
conventional estimator. If the conventional estimator is consistent, the asymptotic coverage will be 95
percent. If the conventional estimator yields an estimate that is smaller (larger) than the valid one,
asymptotic coverage will be smaller (larger) than 95 percent. For example if the asymptotic
conventional estimate is about one half of the valid value, the coverage will be about 65 percent,
because *(.5%1.96) standard errors covers about 65 percent of a normal distribution.

Table 1 presents some results. As just stafcd, when =1, so that model 1 encompasses model 2,
the two asymptotic values are the same: hence the “95.0" in column (5) of line 1. (Columns (6) through
(10) will be explained below.) Suppose instead that 8#1. Begin with §=.5, so that the two models are
equally good at explaining y,. It may be shown analytically that compared to the appropxiate value, use
of conventional sta—ndard errors yields confidence intervals that are too small for when o is small, too

large for when of is large?
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Thus, asymptotic use of the usual least squares estimate will sometimes result in spuribusly
narrow confidence intervals and tests that reject too frequently (small o2}, sometimes result in
spuriously wide confidence intervals and tests that reject too infrequendy (large o2).  Very small values
of &2 are consistent with models of aggregate time series, in which Rs tend to be high; large values of
o are consistent with models of asset returns, in which R”s tend to be low.

That this bias may be quanttatively large is suggested by the figures in column (5} in lines
(2)-(7) in Table 1. The “100.0" in line (2) is a rounded figure, meaning that the coverage is 299.95: the
conventional standard error is much bigger (2.57 times bigger, to be exact [not reported in thc table])
than the valid one. The “64.7"in line (3) illustrates that coverage can also be far less than 95 percent.
Not all specifications have such large distortions, and in some cases, least squates confidence intervals
are about right (e.g., line (4)). But clearly use of OLS standard errors can lead to large distortons in
either direction.

Lines (8) to (10) indicate that this holds as well when 6#.5. Observe that by the symmetry in
the DGP, results for inference about «, for given 0 apply as well for inference about &, for (1-8).
Hence, line (8a) tells us about inference about o, for 6=.8 (i.e., when model 1 does most of the
explaining about y) while line (8b) can be interpreted as telling us about inference about «; in the same
regression. For this data generating process one can see in line (8) that confidence intervals constructed
from the convendonal standard error on ;2 are too small, those on ;1 too large. Subsequent lines show
that sometimes both confidence iﬁtervals can be too large, somedmes both can be too small.

Turn now to an out-of-sample environment. I assume one step ahead forecasts for notational
simplicity. As above, let T be the total amount of data available. The first R observaﬁons are used to
construct ,}\7,[ and ;26 the last P observadons are then used to estimate (2.1). (Other ways of dividing a
data set into regression and predicﬁon portions are discussed in the Appendix, as are muldple step
ahead forecasts.) Schemadcally, then the sample is divided as:

26 | - |
1 R R+P=T
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1 assume that realizations of right hand side variables are used in making the prediction. (Illustration,
with the AR(1) model y=p,y,,+v,, esimated by OLS: Elz(f.‘le RO AN ;h::Yt-IBl:
t=R+1,.. .R+P) |

A key parameter in the asymptotic distribution, and therefore in the simulations as well, is the

limiting ratio of the size of the prediction sample to the regression sample. Call this parameter 7

2.7y m=lm PR_U.,%, n<oo,

It may be shown analytically that the ratio of conventional to valid standard errors is always less than 1.
Evidently, when the usual least squares estimate is used, one will obtain a spu:nlousllyr narrow confidence
interval, for both o, and w,, at least with large samples.

The extent of the understatement is increasing in 7. As n—0, there is no understatement; thé
understatement is arbitrarily large for arbitrarily large n. The natural sample analogue for = is of course
%. In empirical work, a range of values is found, some small (e.g., % ~ 2 in Ericsson and Marquez
(1993)), some moderate (e.g., % = .4 in Cooper (1972)), some, especially in financial applications, large
(e.g., the range of values of PR is from about 5 to 18 in Engle et al. (1990)). Columns (6) to (10) in

‘Table 1 show that even if one avoids the high end of this range, conventional standard etrors can lead

to seriously misleading inference.

3. Asymptotic theory

This section presents asymptotic results when two least squares models are compared. The
Appendix spells out technical conditions relevant in this and more general environments, including
ones in which the estimaton technique is GMM or maximum likelihood.*

Wiite the two models as
B y= X Prtvie 7 XyBotva, 8, =EX, X)) EXy3), b= EXXo Y EXpy)-

{1k ), ¥ 1) 1%k} (l*1)
Let us allow a constant in the encompassing regression, with obvious specialization if the constant is '

omitted. If B, and 8, were known, the encompassing regression would be




=

(3.2 Y:=gt'a+u?3al)5 (Eg@gtﬁ“'(Eg:YJ,(}l)E veglo, g=(LX B Xy B - -

@x1)

Let k=k;+k, For simplicity I assume that the (2k+1)X1 vector (u,, X, /u, Xy'u, X;,'vy, Xy 'vp)' is
serially uncorrelated. This assumption consistent with many applications. An exception is in out of
sample comparisons of multistep forecasts: see the Appendix for treatment of this case. In contrast to,
e.g., Davidson and MacKinnon (1981), I allow for the possibility that the projection of y, onto g, puts
nonzero values on fitted values from both models.

In practice B, and §, of course are not known. Write the corresponding least squares estimates
as E, and E’z' Stack these into (kx1) vectors B=(B,,8,)" and BE(Bl',EZ')'. Write the fitted values as
;rh:Xh'B] and ;2t=X2t'BZ. Observe that

~ ~ . e lox, X 07 0 XV
. \/ 2 =B 1y T_ - [(T t=1-1e>1t J :[ ' .
(3 3) T(B ﬁ) (T- Zt*1hL)’ (k?k) 0 (T-]ELIXZtXZt‘)_I ’ ht XZI:VZ[

(kx1)

Define S, =Ehh,, B, =EX,X,)", B, =EX,X,)', B =diag(®,B,) = plimB.
(kxk) (kyxk,) (Jyxky) N
The (kXxk) asymptotic variance-covariance matrix of vT(B-B) is then

(3.4) V,=BS,B, B=B.
The sample counterpart to g, is g, = (1,X;/B1,X5'B,)". The least squares estimator of « is

(35) o= (E'{=1gtgt')‘12T=lgth'

Substituting (3.2) into (3.5) and then using straightforward algebra yields

(3.6) VT = (C'Ega)’ { (TSl gu) + TS g @) + [T T Eg)vd )

Now, g-g, = (0, X,/ (B1-B0), X,/ (€x-B2) Under conditions in the Appendix,

B0 TZLXNu ~, 0, T'E Xy'u, =, 0, YT(Ri-B=0p(1), VT(E,-B)=Oy(D).
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From this it directly follows that the last term in braces on the right of (3.6) converges in probability to

zero. As for the middle term,

1
(3.8 T"Ilg(g-g)e=-T"Ilg'(gg) = FIVTE-PL F =TS0, | f,'X,, | (X)) 0:%,),
BZ‘XZt

o, EX, ' a,BEX, '
F-,F=- o,B,'EX; X" a,p,EX, X,
o8, BEX, X" 0,p,"EX, X,

Upon combining (3.3), (34), (3.7) and (3.8), and using T'T_,gg ~ Egg/, we have
(39)  VT(a-a) = Egg)"[ (T*E1gu) + FBIET ) ] + 0,(1).
Define the (3%3) matrix S,=Egg,'u’ and the 3Xk matrix S =Egh/'u,. Then

(3.10) VT(x-a) ~, N(O,V),

V = (Bgg)'SeBeg)! + Egg) ' FBSy + SpBF)Egg)’ + Egg) ' FVF)(Egg)"

The first term is the asymptotic variance of (Egg) (T™Z1_,gu), and is uncertainty that would be
present even if 8, and B, were known. The last term is the asymptotic vatiance of (Egg) 'FIVT(B-B),
and is attributable to uncertainty about §; and B,. The middle term is the covariance between the two.

For out of sample tests, the parallel result 1s

(3.11) VP(a-x) ~, NOV), V = (Egg) 'S«Egg)" + (Egg) FV,F)(Egg)".

The out of sample asymptotic variance is simpler because there is zero asymptotic covariance between
random variables that would be present even if f, and §, were known and random variables attributable
to estimation of B, and B,

To further interpret (3.10) and (3.11), let Vs denote the variance-covariance matrix that would

be appropriate if the B's were known rather than estimated, Vg 5 = (Egg)'Se(Fgg)". Then (3.10) and
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(3.11) can be written V = Vi s+additional terms due to estimation of §.5 We saw in column (5) of
Table 1 that in general the additional set of terms in (3.10) can raise or lower the diagonal elements of
the in-sample asymptotic variance-covariance matrix. We also saw in Table 1 that for out of sample
tests, the usual OLS standard errors understate the correct asymptotic ones; this is directly seen in
(3.11), since (Eg,g) ' (nFV F)(Egg,)" is positive semidefinite.

For inference, the obvious sample analogues can be used to estimate the additional terms in
(3-10) and (3.11). The diagonal elements of the resulting estimate of V can then be used to construct
confidence intervals in the usual way. I call this the “V-procedure” since it involves direct computation
of the relevant variance-covarance matrix, in contrast to regression based procedures often used under

the null of encompassing.

4. Monte Carlo Evidence

This section uses accuracy of confidence interval coverage to get a feel for the accuracy éf the
asymptotic approximation developed in the previous section. Subsection 4.1 describes the data
generating prdcesses, subsection 4.2 estimation and construction of the variance-covariance matrix,
subsection 4.3 basic results, subsection 4.4 additional results.
4.1 Data generation

Two data generating processes are used. One, called “DGP A”, is described in section 2 (see
equations (2.2) and (2.3)). The experiments involved 36 parameter sets, where 36 = (3 values of g} X (3

values of 8) X (4 values of o2):
@1) 0=3,.6,.9,0=5, .8 10;6>=01,.1,1,10.

These values were chosen for two reasons. Fitst, they imply data whose serial- and cross-correlaton
properties are similar to those in Godfrey (1998) and Godfrey and Pesaran (1983) (though those
authors used multivariate rather than bivariate models). Second, this range reflects certain prominent
characterstics of financial and aggregate data: for financial data, competing models have low g (the

predictors are not very well correlated with one another) and the encompassing regression has high ol
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(low R? in predicton of y)); for aggregate data, competing models have high g and the encompassing
regression has low o. (Of course, certain other prominent characteristics, such as serial correlation or
conditional heteroskedasticity, are not captured by this process. Since these complications probably
degrade the quality of the asymptotic approximation for given sample size, the results here may be
unduly supportive.)

The second data generating process, called “DGP B”, involved comparison of models linear in
the level and in the log of an explanatory variable. The motivation was twofold. First, encompassing
tests are used in practice to discriminate between log and semilog specifications (e.g., Stumborg (1999)).
Second, simulation evidence on encompassing tests indicates that the tests sometimes perform poorly
when non-normal data are used (e.g., Godfrey (1998)). So evaluation of the V-procedure for 2
non-symmetric (specifically, lognormal) variable seemed advisable.

DGP B was |

(42 3=+ Oln(s) + v, (a@), v ~ NGO ]

The two competing models are

(4.32) y,=Bo + Bux + vy = X Bty

(4.3b) y.= Byt Braln(x) + vy = Xp/Botvae
The experiments with this DGP involved 20 parameter sets, (5 values of 6) X (4 values of o):

44) 6=0,2.5, 8 10;62=.01,.1,1,10.

There is no variation in p because the correlaton between the two regressors is not a free parameter; in
all specifications considered, corr(x,ln(x)) = .76. In addition, the results for o, and a, are no longer
symmetric, so results for both are presented. Finally, to save space, I report results only for 02=0.1,
reporting complete results in the Additional Appendix.

For each DGP and parameter set, I gencrated 5000 samples of size 500. Only the first T=100
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or first T=250 were used in the in-sample experiments. For the out-of-sample work, there were 6 .
different sets of regression and prediction sample sizes: R=100, P=50; R=100, P=100; R=100, P=200;
R=250, P=50; R=250, P=125; R=250, P=250. T report only results for R=100. Results for R=250
were similar and are reported in the Additional Appendix. 1 also conducted some out of sample
simulations using what the Appendix calls the “recursive” scht;,me; I report these in the Additional
Appendix but not here since results are similar to those reported in the tables below.
4.2 Estimation

For the in-sample test, I used each of these two samples (T=100 and T=250) as follows.
(1YObtain /[;1 and Bz by least squares regressions of y, on X,, and X,, t=1,..,T. (2)Estimate o) and o, in a

£ihr o

least squares regression of y, on a constant, X“’é] and le'ﬁz. (The transpose “"” is needed even for
DGP A, since constant terms were included in all regressions: for DGP A, X, =(1,x,}".) (3)Compute two
different variance-covariance matrices. The first is the usual heteroskedasticity consistent covariance
matrix for least squares. The second is an estimate of V defined in (3.10), constructed as described
below. (4)(a)DGP A: Use the estimated variance-covariance matrices to construct 95% confidence
intervals around ;2. Report the percentage of confidence intervals that actually include
«,=(1-6)/[Bp+(1-8)}. (b)DGP B: Use the estimated variance-covariance matrices to construct 95%
confidence intervals around &1 and ;2. Reportt the percentage of confidence intervals that actually
include the population values of , and «,, which happen to be «; = 8/{8 + [(1-0)Ve/(c*-)]}, a; =
(1-6)/[(6ve) + (1-8)]. (For both DGPs, the Additional Appendix reports results for 90% confidence
intervals, which were similar.)

Inference was done with heteroskedasticity consistent covariance matrices, even though there is
no heteroskedasticity in the disturbance in the encompassing regression u,. To spell out the details,
some notation has to be defined. In the encompassing regression y, =

oyt (X By Hou(X,, Bo)+residual, define the vector of right hand side variables, least squares coefficient

estimates and scalar restdual as:

A AN AN

(45) gt = (1)Xl[‘BISX2t'BZ)'! aE(mOsahaz)': ut:Y:'gt“x-

Bx1) @x1) ax1y
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Also define

Fal ‘/\ ‘/\ . aﬂt _ ~ , ~ .
(46) hl: = (Xlt vlt:XZt VZI) H % - '(':(IXIK aZXZt) ]

a1y @)

In (4.7), :’u and :’m are least squares residuals and ﬁt is the sample cross product of right hand side
variables and residuals in the regressions used to estimate §3; and §3,.

For in-sample confidence intervals, define the (2X2) matrices }%12('1‘ X XN,
I/?\:ZZ('I‘ 15T, X,X,Y". The sample analogues of the population quantities that figure into V were
estimated as follows: Egg" Tl}f‘lé:g\t'; Se T‘Zleé‘%t'af; S T‘Efﬂ(‘%ta,)fat‘; F: T‘zle[gt(aﬁt/ B;
B: diag(ﬁl,ﬁz); Vi ﬁ(I‘ 1>:I=1ﬁ£;)-‘ﬁ. For out of sample confidence intervals, B and V; were estimated
using data from 1 to R; Egg/, Sy, F and Sy, were estimated with data running from R+1 to R+P.

For certain experiments I also report confidence intervals constructed from the usual

heteroskedasticity consistent least squares estimator. This was constructed as:
48 Vos (T'Zigg) (T Tingg (T Liogel) ™

When the null of encompassing holds, inference using V5 is asymptotically valid, and is consistent
with Davidson and MacKinnon {1981).
4.3 Simulation results

Results for DGP A are reported in Table 2. In-sample results are presented in columns (4) and
(5). For T=100, a couple of parameterizations lead to results that are troubling, for example the
coverage rate of 92.0 reported in line (2), column (4). This is consistent with the still worse results
reported for sizes of T=40 and T=60 by Godfrey (1998). But for T=250 all but one of the reported
results are between 94 and 96. The out of sample tests reported in lines (6) through (8) are similar. All
involve regression sample size R=100, and all have some parameterizations with poor coverage. Out

of sample results for R=250 (reported in the Additional Appendix) are comparable to in sample results
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for T=250. But even for R=100, on balance the figures are tolerably close to 95.

The V-procedure does not fare as well in the second experiment. Representative results are
given in Table 3. Separate results are given for «, and «, because the results are no longer symmetric.
In Panel B, columns (3)-(7), the figures for a, in range from 89.0 to 94.5, somewhat less satisfying than
previously. The news about «, in Panel A, columns (3)-(7), is still worse, with figures as low as 76.0
(line (5), 6=0.5).

Tt may be little consolation, but inference using the conventional heteroskedasticity consistent
least squates covariance matrix was even mote awry. Begin with DGP A, for which the V-procedure
WOIkC(i weil. Panel A in Table 4 has representative results. Many of the figures are far from 95. For
example, we see in line (2) that for T=250, the least squares confidence interval has coverz‘age of 63.8
petcent; in Table 2, the comparable figure using the V-procedure is 94.3. Upon comparing Tables 1
and 4A, we see that figures such as 63.8 reflect the asymptotic theory. This theory does quite a good
job of predicting which intervals will be too short and which will be too long: for both in- and
out-of-sainple exercises, the asymptotic theory and simulations match perfectly on whether coverage is
less than or greater than 95 percent, and this holds for all the specifications in Table 1 and not just the
subset reported in Table 4A.

Panel B in Table 4 indicates that conventional procedures also fared quite poorly for DGP B,
even more poortly than did the V-procedure. For example, in the specification that the V-procedure
performed worst (0=0.5), with in-sample coverage of 89.9 percent for T=100, least squares coverage
was 79.3 (see panel B, line (3), column (4)). The corresponding asymptotic figures in panel C indicate
that poor coverage is to be expected for least‘squares—mdeed, for big enough samples the 79.3 figure
will fall to 74.2 (panel C, line (3), column (4)).

4.4 Additional Simulation Results

To get a sense for rapidly increases in sample size lead to improvements in the accuracy of the
asymptotic approximation, I picked the worst performing specification from Tables 2 and 3, §=0.5,
DGP B, and experimented with in-sample inference with larger sample sizes. The results for T=1000,

2500 and 10,000 are given in panel A of Table 5, with tesults for T=100 and T=250 repeated for
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convenience. Naturally, the asymptotic approximation works better with larger samples. For example,
for T=2500, inference about o, using either the proposed or the usual least squares inference, works
pretty much in accord with the asymptotic theory. (For least squares this follows since the figure of
75.8 for T=2500 is quite near the asymptotic figure of 74.2 reported in panel C of Table 4.) But while
inference about «, is better captured by the approximation for larger T, even for T=10,000 there are
notable discrepancies, for the V-procedure (actual = 88.9, asymptotic = 95.0) or least squares (actual =
38.9, asymptotic = 29.8 [not reported in a table]).

I therefore briefly consider bootstrapping the V-procedure. I constructed confidence intervals
from symmetric two tailed t-tests, with 500 bootstrap repetitions per sample, again with 5000 samples.
Each bootstrap repetition involved resampling to generate new estirnates of the §'s as well as of the o's.
Details on the procedure are given in the Additional Appendix. _

I report representative results in panels B and C of Table 5. The figures for the V-procedure
and for least squares repeat those given in Tables 2-4, for convenience. The 6=1 lines in panels B and
C indicate that all three procedures (bootstrap of V-procedure, V-procedure, least squates) work
roughly comparably under the null of encompassing, with bootstrapping having an edge. For example,
for DGP B, T=100 panel C indicates that bootstrapping happened to be spot on, with actual coverage
of 95.0 percent; the coverage of the other procedures ranged from 92.3 to 93.5. For 6=0.5, least
squates inference is asymptotically invalid. Upon comparing the bootstrap and the regular versions of
the V-procedure, we see that the bootstrapped version performs better, markedly so for DGP B. We
see in panel C, line 1 that bootstrap coverage when 6=0.5 is around 84 percent. That is far from the
ideal of 95 percent but still is a distinct improvement over the figures of 76.0 and 77.2 for the

V-procedure.

5. Conclusions
Regression-based tests for encompassing were proposed and evaluated. The tests allow for the
possibility that none of the models under consideration encompass the others. Simulations indicate

that V-procedure can work well, though there sometimes are notable distortions. Even when there ate
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notable distordons, the V-procedure usually works better than does a conventional procedure that is
asymptotically valid only when the null of encompassing holds. A priority for future research is
developing refined procedures that provide a more accurate guide to performance in small samples.

Limited simulation evidence suggests that bootstrapping may deliver such procedures. '

Appendix

I begin by extending the environment described in the text in three ways, and then present
formal conditions that lead to a general result that includes equations (3.10) and (3.11) as special cases.
First, out of sample tests are sometimes executed allowing multiperiod predictions. Let us therefore
allow for a prediction horizon 121 periods ahead (the text assumed t1=1). If the null of encompassing
holds, u, ~ MA(1-1). Let the total sample size be T=R+P+1-1.

Second, in out-of-sample studies, let us allow two more ways of splitting a sample into
regression and prediction portions. The rolling scheme uses the last “R” observations to estimate the
two models. It first uses data from 1 to R to estimate the models and predict yg.., , then uses data
from 2 to R+1 to estimate the models and predict yg,., ... and finally uses dara from P to R+P-1 to
estimate the models and predict yp,g..;. The recursive SChCI;IC uses a growing sample size to estimate
the two models, first using data from 1 to R, then from 1 to R+1, ..., and finally from 1 to R+P-1. Asa
matter of terminology, the division described in the text is called the fixed scheme,

Third, let us allow encompassing tests that involve more than two modclé. Write the (n+1)x1
vector of right hand side variables as EF (1,;,[,...,/}:,,3‘.

To state formal assumptions, it will be helpful to denote the population parameter vector,
obtained by stacking the parameters from each of the n models, as B" rather than B. Additional
notation: u(f) is the (1 X‘k) matrix u(B")/9B; ge(B) is the (1K) matrix Og,(B")/0; for any matrix A =
[2], let [A| = max;;|a;|. The assumptions in West (1996) and West and McCracken (1998,p822) are

sufficient for my purpose:

Assumption (*): (a)(i)In some neighborhood N around 3', and with probability 1, u,(8) and g(f) are
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measurable and twice continuously differendable; ({)Eu()g, (") = 0; (i) Eu B uy(B) = 0;
(v)Eu(B)ge(®) = 0; (v)Eg(®)a(B) has rank n+1.
(b)(i) The estimate B, satisfies §-8° = BEOH(), where B(t) is (kxq) and H(t) is (qX1), with @B() -, B,
B a matrix of rank k; (H@®=T"ET_h(B) (in sample), H{t)=R'Z_ h,(B") (fixed),
H@)=t"Z_ h,(B) (recursive), or, H{)=R'Zi_ z,:h(B) (rolling) for a (qx 1) orthogonality condition
h,(B); (i) Eh,(8)=0; (iv)in the neighborhood N of assumption 1, h, is measurable and continuously
differentiable.
(c)In the neighborhood N of Assumption 1, there is a constant ID<<e such that for all t, sup gy
| u(B)/9BIP'| < m, for a measurable m, for which Em{<D. The same holds when u, is replaced by an
arbitrary element of g,.
(dLet w, = (ug(B),vec(ga(B) 0,880 h(B)). GFor some d>1, sup , E|w]* <e, whete |.|
denotes Euclidean norm. (ij)w, is strong mixing, with mixing coefficients of size -3d/(d-1). (iijw, is
fourth order stationary. (iv)Z5_E[g{B)g. (B u(B)u (8] is positive definite.
(e)For out-of-sample tests, R,P + o as T~e, and lim .. P/R = =, ()0sn< for recursive, (i)0<n<ee for

rolling and fixed.

A word on the assumptions. Assumption (a) essentially says that u, is orthogonal to the
predictors from all the models. For example, in the linear models of section 3, u =
0/ 3B [y-ats Xy By-0aXo B = (o0, XKy,! 2,50, 50 Eu(Bug(B)=0 means EuX,'=0. As well, the rank
condition on Eg(3)g(p)' rules out nested models such as y=X, B,+v, vs. y=X, B, +Z3+v, with
populatton 3=0.

On Assumption b: The underlying assumption is that the estimate from the i'th model can be
wiritten Eit'ﬁi = ﬁi(t)H-l(t) for l%-l(t) and H(t) tllustrated below. ﬁ(t) is a block-diagonal matrix with
diagonal blocks ﬁi(t); H(t) is obtained by stacking H,(t), ..., H,(t). As is evident from the definitions of
H(o), the “¢” index is not necessary for H(t) for in-sample applications (i.e., for given sample size T,

H(1)=...=H(T)), no for out of sample applications using the fixed scheme; the same applies to By(f)

”~
and consequently B, I use the index nonetheless because it is necessary for the recursive and rolling
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schemes. See West and McCracken (1998) for examples.

For maximum likelihood, b, is the scére, evaluated at the population parameter vector 3, and
g=k;. For GMM, h; is the set of moment conditions used to identify §; {c.g., the Kronecker product of
the vector of predetermined variables and the vector of structural disturbances, if the estimator is
3SLS), and g2k, I%i(t) is a (k;Xq;) matrix of rank k, that selects a linear combination of orthogonality
conditions. For maximum likelthood, Igi(t) is the inverse of the Hessian, evaluated on the line between
B, and Ei; for GMM in overidentified systems, I’?\ai(t) depends on the weighting matrix used (see Hansen
(1982)). B is the large sample counterpart of fi(t). See section 3 for concrete illustration for least
squares models.

- Assumptions (c)-(e) are technical conditions whose main practical import is to rule out models
with unit autoregressive roots.

Define £,(8)=g.(8)u(8) [(a+1)x1], F=E[gB)ug(8] [(*+1)XK], Sy = =3 ELB)L (B
[(n+1)x(a+1)], S = Z5- ELBD,B) [(0+1)Xq], Sy, = ZT_.Eh(BHh (") [q%q]- In out-of-sample
evaluation of t step ahead forecasts, f; ~ MA(z-1); in most applications, f, (and h)) are serially
uncorrelated, so that S; = EE(R(B), Sa = ELE M) and S, = Eh(B)h(B")" see the least squares -
example in section 3. Also define the scalars Ag, and A, as follows. For in-sample tests, Ag=1, A,=1.
For out—of-.sample tests: recursive, Ag=1-7"'In{1+m), A, =2[1-n"In{1+n)]; fixed: A, =0, Ay =7; rolling,

1<l kng, Ap=T _%[‘2, rolling, >1, Ag=1- _1;_{, lhh=1'3ln-

Theorem: Under Assumption (¥), v’ T(;-a) (in-sample) and VP(x-) (out-of-sample) are asymptotically
normal with vatiance-covatiance matrix

V= (Bga) 'Su(Egg)” + (Bga) PafBSy' + SaBTF) + A FVeF](Bgg) ™
Proof: The proof is similar to that of the proof of Theorem 4.1 in West and McCracken (1998).

V may be estimated using the usual techniques to account for serial correlation, including

heteroskedastcity and autocorrelation consistent covariance matrices.
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Footnotes

1. A systematic attempt to find an encompassing model may ultimately result in a model that is the
end product of extensive data mining. Itis beyond the scope of this paper to consider this
possibility.

2. Davidson and MacKinnon (1981) show that when o;=1 and «,=0, the usual least squares standard
error on the estimate of «, is asymptotically valid when one estimates ¥-¥;, = otx(f-¥10 + Xy'2 +
residual. Here, the parameter vector “a” is not of direct interest; X, is included solely in the interest
of producing a valid standard error on the estimate of a,. But if X, =x,, is a scalar and y, is linear in
x,,, this standard error is identical to that on the estimate of «, in (2.1).

3. A precise statement is that when 0=.5, the ratio of the conventional to valid standard errors is
monotonically increasing in o7, approaching a value strictly less than 1 as o3-0, a value strictly greater
than 1as o7 ~ =,

4. One key condition is stationarity. Restrictions on unit roots are sharper here than in the usual
encompassing literature. In particular, in the standard literature, a judicious transformation allows
one to use conventional inference on an encompassing test in which the variable being forecast is
I(1) (Fair and Shiller (1990)). This transformation is valid only under the null of encompassing,
however. It does not appear, however, that there is an analogous transformation if neither model is
encompassing.

5. Recall that I am at the moment assuming that the out of sample encompassing regression is
estimated using observadons R+1 through T, while §, and B, are estimated using observadons 1
through R. These samples are non-overlapping. Even in out of sample exercises, when
overlapping samples are used for estimation and the encompassing regression, there is 2 nonzero
asymptotic covariance between the two sets of random variables. See the Appendix.

6. While it is not obvious (at least to me), if model 1 encompasses model 2 (i.e., 0=1, «;=0, a,=1,
«,=0), and X, and X,, each consist of a constant term and a scalars, the additional terms do not
affect the asymptotic variance of a,: the (3,3) element of (Egg,) '[(FBS,' + SgB'F) +

FV,F](Egg.)’, and of (Egg) ' ["FV Fl(Egg) ", is zero. This result is reflected in line (1) in Table 1.
(N.B.: even under this special set of circumstances, the additional terms do affect the asymptotic
vatiance of a,.)

7. To illustrate with DGP A, when 6=1: in the spirit of Davidson and MacKinnon’s J-test, one could
estimate y,=ay+8x,,+0,(X,, By +residual, and test Hy:8=0. This test is identical to the results I report
for least squares inference about o, in y, =gty (Xy, By) +o,(X,/ By +residual, with X =(1,x,)". This is
not quite the J-test, and inclusion of the constant term may degrade finite sample performance.
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Table 1

Asymptotic Coverage of Nominal 95 Percent Confidence Intervals for «,, DGP A, Least Squares VCV

» @ 60 & ®) © O @6 O a9
|  Coverage of Nominal 95% LS Conf. Int. on o, |
|In-sample | Out-of-sample |
8 2, ol R | | ==2 =n=5 =n=1 =2 =5 |
(1) 1.0 any any n.a. 95.0 95.0 95.0 95.0 95.0 95.0
(2) 0.5 0.3 10.00 0.04 100.0 93.7 91.7 88.5 82.4 68.8B
(3) 0.5 0.6 0.01 0.79 64.7 B5.0 73.2 60.8 47.5 32.2
(4) 0.5 0.6 0.10 0.71 96.6 93.5 91.1 87.3 80.4 65.8
(5) 0.5 0.6 1.00 0.36 99.5 94.3 93.3 51.6 g8.1 79.0
(6} 0.5 0.6 10.00 0.06 99.6 94 .4 93.5 92.0 £9.0 80.7
{7} 0.5 0.9 1.00 0.46 56.6 94 .9 S4.7 S54.4 93.7 91.7
(Ba)0.8 0.3 0.10 0.84 B9.6 92.0 87.4 B0.5 70.1 52.8
(8b)0.2 0.22 99.9 92.5 88.6 B2.6 73.1 56.3
(5a)0.8 0.6 1.00 0.45 98.1 94.8 94.6 94.1 93.2 90.4
(9b) 0.2 0.25 99.8 93.8 92.1 BS.1 83.5 70.6
(10a)0.8 0.9 1.00 0.49 95.8 95.0 94 .9 94 .9 94 .8 54 .4
(10p)0.2 0.43 97.0 94 .7 94 .3 93.5 S2.0 B7.4
Notes:
1 p 0
1. The DGP is y, = x,,0 + %,(1-0) + u,, (X,,Xp,u)' ~id N@O,|p 1 ¢ |). If model 1 encompasses model
00 ol

2,0=1; if model 2 encompasses model 1, 8=0. The investigator regresses y.on X, =(1,x,)' and then
regresses v, on X, =(1,x,)", obtaining coefﬁuent estimates {3, and B, R}is the population R? of the
regression of y, on X, The final least squares regression run is the one analyzed in this table, y, =

agto (X, [31)+a2(X2( 'By) + residual. Here, o, ~, 6/[6+(1-6)¢] = o, o = = (1-0)/[Bp+(1-6)] = a,.

Results are invariant to omission of a constant tetm in any of these regressmns

2. For the indicated values of 6, ¢ and o, columns (5)-(10) present the asymptotic coverage of nominal
95 percent confidence intervals computed using the usual least squares standard error on «,. A value of
95.0 means that the usual least squares estimator of the standard error is consistent, a value less
(greater) than 95 that this estimator yields asymptotic standard errors that are too large (small). Least
squares inference can be invalid because the regressors depend on estimated f's.

3. Column (5) presents results when the same sample is used is used for obtaining the fitted values X B
and the estimated ¢'s. Column (6)-(10) present results when an out-of-sample regression is used to
estimate «; and «,. The parametet “n” is the limiting ratio of the size of the out-of-sample regression
(P) to the size of the samples used to estimate §; and B, (R).

4. Results for ;1 and given 8 are identical to those for a; and 1-0. For example, asymptotic in-sample
coverage for «; when 8=0.8, 0=0.3 and ¢7=.10 is 99.9, because this is the figure in columa (5) of line
(8b).




Table 2

Actual Coverage of Nominal 95 Percent Confidence Intervals for a,, DGP A, V-Procedure

Hm @ 6 @ 0O © O @
| Coverage of 95% Confidence Interval on a, |
| In-sample |  Out-of-sample, R=100 |
-6 e o, | T=100 T=250| P/R=5 P/R=1 P/R=2 |
(1)1.0 0.6 1.00 94.2  95.4 94.7 96.5  96.9
{2)0.5 0.3 10.00 91.7 94.0 95.3 93.9 92.1
(3)0.5 0.6 0.01 93.7 94.3 93.7 94.0 94.0
(4)0.5 0.6 6.190 93.6 94 .2 93.4 94.5 94 .4
(5)0.5 0.6 1.00 93.7 95.0 93.6 94.8 94.9
(6)0.5 0.6 10.090 95.7 96.2 96.1 95.7 94.3
(7)0.% 0.9 1.00 94.5 94 .8 52.6 94.8 95.2
(8a)0.8 0.3 0.10 95.7  95.7 94.0  95.7  94.2
(8b)0.2 0.3 0.10 91.4  94.1 93.3 94.5 94.4
(sa)0.8 0.6 1.00 94.5 95.1 93.8 95.4 95.5
(9b)o.2 0.6 1.00 94.2 95.3 93.4 94.8 95.0
(10a)0.8 0.9 1.00 94 .4 95.0 92.6 94.9 95.0
(10b)0.2 0.9 1.00 94.5 94.8 92.3 93.9 93.9
Notes:

1. The data generating process is described in Table 1. In columns (4) and (5), T is the sample size. In
columns (6)-(8), R=100 is the size of the sample used to obtain the least squares estimates B, and §,
(defined in note 1 to Table 1), while P is the size of the sample used to obtain the least squares
estimates txl and oc2 (again defined in note 1 to Table 1). All results are based on 5000 repetitions.

2. The V-procedure uses sample analogues to estimate the quantities in asymptotic variance covariance
matrices presented in equations (3.10) and (3.11), and then uses the diagonal clements of these matrices
to construct confidence intervals in the usual way. See section 4.2 for details. This procedure will yield
asymptotic coverage rates of 95.0.

3, Results for «, are symmetric to those for a,, as explained in the notes to Table 1.
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Notes:

1. The DGP is y, = x8 + In(x)(1-6) + u,, (n(x)u)' ~ iid N(O,[ C?ZJ ), 62=0.1. If model 1

Table 3

Coverage of Nominal 95 Percent Confidence Intervals for «, and o, DGP B, V-Procedure

M
2
3)
)
©)

0]

1.0
0.8
0.5
0.2
0.0

1.0
0.8
0.5
0.2
0.0

()

2

Gy

0.10
0.10
0.10
0.10
0.10

0.10
0.10
0.10

0.10.

0.10

(3)

|  Coverage of 95% Confidence Interval on o,

Q)

'} In-sample

| T=100

93.5
85.0
76.0
77.5
88.9

93.3
90.7
89.9
90.4
89.0

T=250

94.8
806.6
77.2

78.0°

90.5

94.2
92.6
91.7
92.3
89.7

()

| Out-of-sample, R=100
| P/R=5 P/R=1P/R=2

86.4
82.5
83.4
76.4
87.2

91.8
90.6
91.2
91.2
91.6

t
0

©)

88.9
82.6
84.0
71.9
§9.0

94.1
91.2
92.5
92.0
93.3

@

90.4
81.8
83.9
67.2
90.7

94.5
92.1
927
92.1
94.0

encompasses model 2, 0=1; if model 2 encompasses model 1, 8=0. The investigator first regresses y,
on X;,=(1,x)" and then on X, =(1,In(x))',obtaining 2X1 coefficient vectors f,and B,. The final least
squares regression run is the one whose results are analyzed in this table, y, = agtoy (X, )+ (X, Bo)
+ residual.  Here, o, —, 0/ {8+[(1-8)Ve/(c®€)]} = a,, a, =, (1-6)/[(BVe)+(1-6)] = .

2 See notes to Table 2.




Table 4

Coverage of Nominal 95 Percent Confidence Intervals for o,, Least SquaresVCV

@ @ 6 @ O © O ©
| Coverage of 95% Confidence Interval on o, |
| In-sample | Out-of-sample, R=100 |
6 o o |T=100 T=250] P/R=.5 P/R=1P/R=2 |

(A)Actual coverage, (1) 1.0 0.6 1.00 94.0 94.6 921 943 948
DGP A (2) 0.5 0.6 0.01 63.0 0638 70.1  59.3 469
(3) 0.5 06 0.10 95.6 963 879 854 806
(4 05 0.6 1.00 99.1 993 902 903 875
(5 0.5 0.6 10.00 99.4 996 90.5 909 882
(B) Actual coverage, (1) 1.0 na.  0.10 923 936 90.3 926 934
DGP B (2) 0.8 na. 0.10 86.5 87.7 871 862 824
(3)05 na. 010 793 779 82.0 760 665
402 na 0.10 85.8 86.2 844 804 7206
(5)0.0 na  0.10 969 98.0 88.4 877 836
(C) Asymptotic 1) 1.0 na 010 950 95.0 950 950 950
coverage, (2) 0.8 na.  0.10 87.8 878 908 86.6 792
DGP B (3)05 na 010 742 742 817 718 591
#02 na 010 84.6 846 86.2 786 67.5
(5)0.0 na  0.10 99.0 99.0 925 90.0 852
Notes:

1. The data generating processes ares described in Tables 1 and 2.

2. In panels A and B, confidence intervals were constructed from the usual heteroskedasticity
consistent least squares variance-covariance matrix. For panel A, this will give asymptotic coverage
rates given in Table 1, lines (1), (3), (4), (5} and (6).




Table 5
Additional Simulation Results on 95 Per Cent Confidence Interval Coverage, In-Sample Tests
A. DGP B, Actual Coverage, Large Sample Sizes

T=100 | T=250 | T=1000 | T=2500 | T=10,000
6 V OLS |V OIS|V OLS [V OLS |V OLS

Ve, 05 76.0 61.2 77.2 540 813 471 850 43.0 88.4 38.9
(2o, 0.5 89.9 79.3 NT 779 932 764 942 758 94.4 74.9

B. DGI* A, Acmal Coverage for o,

T=100 J T=250
6 BS-V V OLS | BS-V V OLS
1.0 948 942 94.0 953 954 946
0.5 949 937 991 952 950 993

C. DGP B, Actual Coverage for «, and «,

T=100 | T=250
6 BS-V V  OLS | BS-V V  OLS
D)ty 1.0 950 935 929 954 948 955
0.5 840 760 61.2 83.6 772 540
2t 1.0 - 949 933 923 947 942 936
0.5 929 899 793 934 917 779

Notes:

1.“BS-V” denotes confidence intervals consttucted by bootstrapping the V-procedure, via symmettic
two-tailed t-statistics; “V”” denotes the procedure proposed in this paper; “OLS” denotes confidence
intervals constructed from a heteroskedasticity consistent least squares covariance matrix. The results
for “V” and “OLS” are repeated from Tables 2, 3 and 4.

2. See notes to Tables 1 and 3 for descriptions of the data generating processes. In panel B, 0=0.6 and
a>=1.0; in panels A and C, 0>=0.1. All results are based on 5000 repetitions. For BS, there were 500
bootstrap repetitions for each of the 5000 samples.




