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I. Introduction

Health economists need little convincing that many of the outcomes with which they are
concerned are awkward to analyze empirically; see Jones (1999} for an excellent overview. The
circumstances that concemn us in this analysis are those involving data like those typically
encountered on health care expenditures, length of stay, utilization of health care services,
consumption of unhealthy commodities, and others. Such data are typically characterized by: (a)
nonnegative measurements of the outcomes; (b) a nontrivial fraction of zero outcomes in the
population (and sample); and (c) a positively-skewed empirical distribution of the nonzero
realizations. Econometric strategies for the analysis of such data have been discussed
extensively (Duan, Manning, et al, 1983; Jones, 1999; Manning, 1998; Mullahy, 1998).

This paper provides some simulation-based evidence on the finite-sample behavior of
two sets of estimators designed to look at the effect of a set of covariates x on the expected
outcome, E(y), under a range of data problems encountered in every day practice. We work
largely within the two classes of estimators: generalized linear models (GLM), and those derived
from least-squares estimators for the In(y), a subset of which can simply be viewed as
differentially weighted nonlinear least-squares estimators. We consider the first- and second-
order behavior of these candidate estimators under alternative assumptions on the data generating
processes.

We are also investigating the performance of two variants of the traditional OLS model
for the In(y). Although technically, models for In(y) get at the expectation of the log, rather than
at the log of the expectation, they are interesting for two reasons. First, OLS for In(y) is by far
the most prevalently used (and most prevalently mis-used) model for looking at such data.
Second, it is possible to go from the E(In(y)) to the In(E(y)) by retransformation (Duan, 1983;
Manning, 1998). While these two classes of models — the GLLM and OLS-based — overlap for
some data structures, neither is a proper subset of the other.

The results indicate that there are important tradeoffs in terms of precision and bias. The
OLS based methods can be biased in the face of heteroscedasticity if not appropriately
retransformed. The GLM models can yield very imprecise estimates if the error term 1s heavy
tailed on the log scale. Even if the estimators considered are consistent, there can be major gains

in precision from selecting a more appropriate estimator. We develop a method for determining



which estimation method to choose for any application, using tests that are relatively easy to
tmplement. We illustrate the approach with data on doctor visits from the National Health
Interview Survey.

The plan for the paper is as follows. Section II describes the general modeling
approaches that we consider. Section III presents our simulation framework. Section IV
summarizes the results of the simulations as well as of an empirical example that focuses on the

outcome of annual physician visits. Section V concludes.

II. Modeling Framework

In what follows, we adopt the perspective that the purpose of the analysis is to say
something about how the expected outcome, E(y), responds to shifts in a set of covariates x.'*
Whether E(y) will always be the most interesting feature of the joint distribution ¢(y,x) to
analyze 1s, of course, a situation-specific issue, but the dominance of conditional-mean modeling
in health econometrics renders what we suggest below of central practical importance. While
many aspects of the following discussion apply for the more general case of nonnegative vy, the
discussion here is confined to the strictly-positive-y case to streamline the analysis. As a result,
issues related to truncation/censoring or the “zeros” aspects of data (or "part one of a two-part
model") are 1gnored here, but will be addressed in future work.

Our modeling framework includes two classes of estimators: Generalized Linear Models
(GLM) with a logarithmic link function, and least squares for models with logged dependent
variables. These specific GLM models estimate the In(E(y[x)) directly, while the least squares
estimates E(In(y[x)), which can at least in principle be converted to E(y[x) by a suitable
retransformation. As we have stressed elsewhere (Manning, 1998; and Mullahy, 1998), it is

essential to distinguish these related but distinct models.

We use the E(.) and var(.) notation as shorthand for E(.|x) and var(.ix) throughout. Essentially
all moments considered here are conditional-on-x moments.

* This rules out situations where the analyst is interested in some latent variable construct.



A. GLM Modeling
In the version of the generalized linear model (GLM) framework (McCullagh and Nelder,
1989) used here, the central structure of the model is an exponential conditional mean (ECM) or

log-link relationship:

In(E(y)) = xp (1a)

or

E(y) = exp(xp) = n(x;p). (1b)

In GLM modeling, one specifies a mean and variance function for the observed raw scale
variable y, conditional on x. Three stochastic families are studied here, the key attributes of
which involve their respective conditional mean-variance relationships. These relationships can

be described using the general structure
Var (y) = 62 v(x). (2)

Rather than write Var (y(x)), we will use v(x) directly. The first case is the homoscedastic or
"classical” nonlinear regression model with v{(x)=1; that is, the variance of y {conditional on x) is

unrelated to x. The second case has a Poisson-like structure with v(x)= K ((x), where k, > 0;

|

that is the variance is proportional to the mean, which is itself a function of x. The third has a

gamma structure with v(x)=1<2 (;,L(x)2 }, where Ky > 0; that 1s, the standard deviation is

proportional to the mean. Within this class of power-proportional variance functions, it is useful

to think more generally of the variance function v(x) being:

v(x) = K (p(xp)* (3)

where A must be finite and non-negative. In the case A = 0, we get the usual nonlinear least-
squares estimator. In the case A = 1, we get the Poisson-like class. In the case A = 2, we get the

gamma, the homoscedastic log normal, the Weibull, and the chi square, with the suitable



specification of a distribution.” In the case A = 3, we get the inverse Gaussian (or Wald)
distribution. Throughout this paper, we are assuming a log link for the expectation of y given x,
= exp(xp).

Estimation of the conditional mean parameters § given such structural assumptions
proceeds using what economists think of as GMM estimation but what is more generally spoken
of by statisticians as GLM modeling using quasi-likelihoods or generalized estimating equations
(GEE). Regardless of how interpreted, the key features of such estimation approaches are the

moment or quasi-score equations

op(x:;P) _
0= Zil—g[;——w(xi) l><(yi—|u(x1»;[3)), (4)

whose solutions f’) are the estimators of interest. The v(x) are assumed to be functions of p =

exp(x B ), not of individual covariates in x more generally.

B. OLS-Based Models
By far the more prevalent modeling approach is to use ordinary least-squares or a variant

with In(y) as the dependent variable. In this case, the assumed regression model is

’ Note that the "gamma-class”" (A=2) models are in some respects a natural "baseline”
specification. That is, if the model is taken to be

y=exp(xp) x u

and if u 1s taken to be homoskedastic, then it is indeed natural to suggest that Var[y|x] is
proportional to E[y|x]-squared. Thus, just as the homoskedastic linear model

y=xpB+u

generates a "natural" constant-variance perspective in the linear context, the exponential mean
model generates a "natural” "gamma-class-variance” perspective in the log-linear context.



In(y)=xb+¢ (5)

where it is assumed that E(x'e) = 0. The error term need not be i.i.d. If the error term is

normally distributed N(O,cz), then E(y) = exp(x&+ 0.50'2). If € is not normally distributed,
but it is homoscedastic, then E(y)= sxexp(x08), where s = E(exp(s)).4 In either case, the

expectation of y is proportional to the exponential of the log scale prediction from the OLS or
LS-based estimator.
However, if the error term is heteroscedastic in x — i.e. E(exp( €)) 1s some function f(x) -

then E(y) = f(x)xexp (x0), or, equivalently,

In(E(y)) = x6 + In(f(x)) (6)

and in the log normal case,

IN(E(Y)) = X8 + 0.562(x) (7

where the last variance term is the error variance on the log scale.
In general, the presence of heteroscedasticity on the log scale for an 1.S-based models
implies that the exponentiated log scale prediction [s(exp(x))] provides a biased estimate of

the E(y|x), and is biased in a way that depends on x; the s here is the (homoscedastic) smearing



factor. This bias can be eliminated by including an estimate of the variance function, v(x), if the

error is log normal, or more generally, of E(exp(g)|x).

III. Methods

To evaluate the performance of the two alternative classes of estimators for log models,
we rely on a Monte Carlo simulation of how each estimator behaves under a range of data
circumstances that are common in health economics and health services research studies. There
are five data situations that we consider: (1 ) skewness in the dependent variable; (2) heavy-
tailed distributions (even after use of log transformations to reduce skewness); (3) pdf’s that are
monotonically declining rather than bell-shaped; (4) data with nonlinear responses but additive
errors;and, (5) log error terms that are heteroscedastic. We do not deal with either truncation or
censoring.

We also provide a set of tests for determining which estimator is appropriate for a given
data set, using easy to implement tests. We illustrate the approach using data on doctor visits

from the National Health Interview Survey.

A. Alternative Data Generating Structures

As we noted earlier, one of the major motivations for using a logarithmic transformation
of the dependent variable is a concern over the severe skewness in health care utilization and
expenditures. By transforming the dependent variable, the goal is to be able to use ordinary least
squares estimators without having to worry about the sensitivity of the results to skewness.

Some applications have more skewed dependent variables than others. For example, the
inpatient days are more skewed than the number of inpatient stays, among those with any
hospitalizations. Inpatient expenditures tend to be more skewed (and kurtotic) than inpatient

days.

* Duan (1983) shows that one can substitute the estimated residual for € to get a consistent

estimate of the smearing factor s.



To determine the effect of the level of skewness on the estimated outcome, we examine
two classes of data generating mechanisms: (1) log normal distributions with increasing log scale
error variances; and (2) gamma distributions with decreasing shape functions. In the case of the
log normal, the raw scale mean, variance, skewness, and kurtosis are all increasing functions of
the variance on the log scale. If the log scale error € is normally distributed with mean 0 and

variance v, then the raw scale skewness (S) for this data generating mechanism 1s:
Spagw=(w + 2} ((w- 1) 0'5) (8)

where w = exp (v). Using a N(0,v) deviate, we let the log scale variance range from 0.5 to 2.0 in
steps of 0.5. Thus, the skewness of exp (¢€) varied from 2.94 to 23.7, compared to zero for a
normal deviate.

Specifically, we assume that the true model is:
In(y) = S, + fix +¢ 9

where x 1s uniform (0,1), € is N(O,v) with variance v= 0.5, 1.0, 1.5, 0r 2.0, and E (x'€) = 0. 8,
equals 1.0. The value for the intercept f3, is selected so that E (y) = 1.

Note that for this data generating mechanism, the expectation of y is:

E(y)ze(ﬂo+ﬁ]x+0.5w (10)

The slope of E(y) with respect to x equals B exp( S, + f,x +0.5v).

Some studies deal with dependent measures and error terms that are heavier tailed (on the
log scale) than even the log normal. For example, the residual for Edward Norton et al.’s study
of (log) length of stay for Medicaid psychiatric inpatient care has a log scale kurtosis of 3.5,
compared to a value of 3 for a normal (or in that case log normal). David Meltzer’s hospitalist
study has a kurtosis of 3 for log length of stay, but over 6 for log costs.

We gencrate two alternative data generating mechanisms with ¢ being heavy-tailed

(kurtosis > 3). In the first, € is drawn from a mixture of normals, each with mean zero. p percent



of the population have a log scale variance of 1, and (1-p) have a higher variance. In the first
case, the higher variance is 3.3, yielding a log scale error term with a kurtosis of 4.0. In the
second case, the higher variance is 4.6, giving a log scale error term with a kurtosis of 5.0. For
the normal distribution, the kurtosis is 3.0.

We also consitder models based on the gamma distribution. The gamma has a pdf that
can be either monotonically declining throughout the range or bell-shaped, but skewed right.

The pdf for the gamma variable y is:

[exp(=y /)]

_ (e
f(y) = (y/b) B0

(1)

where b is the scale parameter and c s the shape parameter; some parameterizations use a = 1/b.

The scale parameter b equals exp ( S, + 5, x), where f#, =1, and S, is selected so that the E(y) =

1. The shape parameter c is 0.5, 1.0, or 4.0. The first and second values of the shape parameter
yield monotonically declining pdf’s, conditional on x, while the last is bell shaped but skewed
right. The first is a chi square with one degree of freedom if b equals 1. The second is an
exponential variate. As the shape ¢ increases to infinity, the distribution approaches a normal.

Thus the skewness S on the raw scale is a declining function of ¢, S = 2 ¢ *

if we ignore the
covariates.
The next class of data generating mechanisms is the one with an additive error term that

corresponds to the nonlinear least-squares model:
y=eP 4 ¢ (12)

where € is a normal deviate with mean zero and standard deviation 0.3. In principle, the NLS
estimator should be ideal for this data generating mechanism.

Finally, it is not uncommon to encounter heteroscedasticity in the error term of a linear
specification for In(y). In this case, estimates based on OLS on the log scale can provide a
biased assessment of the impact of the covariate x on E(y); see Manning (1998) for a discussion.
In this case, the constant variance v in Equation 3, is replaced by some log scale variance

function v(x). The expectation of y on the raw scale becomes:
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E(y)=e(ﬂ0 + fx+0.5v(x)) (13)

if the underlying error term € is N(0, v(x)). The slope of the expectation of y is now:

CE(Y) _ V()
ax y (i +05 ox

) (14)

To construct the heteroscedastic log normal data, the error term € is the product of a
N(0,1) variable and either (1 + x) or its square root. The latter has error variance that is linear in
x (v = (1+x)), while the former is quadratic in x (v =1+ 2x + x* ). Again, B,=1, and S, 1s
selected so that E(y) = 1.

Table 1 summarizes the data generating mechanisms that we consider.

B. Alternative Estimators

We employ five different estimators for each of these data generating processes. The
first two are from the least squares class. The first relies on ordinary least-squares (OLS)
regression of In(y) on x and an intercept, and uses a homoscedastic smearing factor to
retransform the results to obtain E(y|x) . The second also relies on ordinary least-squares
regression of In(y) on x and an intercept, but uses a heteroscedastic retransformation; see below,
The other three models are variants of generalized linear models (GLM) for y with a log-link
function (McCullagh and Nelder, 1989). In the first GLM case, the error term 1s additive on the
raw scale and has a variance that does not depend on E(y) or x. This is basically the nonlinear
least-squares estimator proposed by Mullahy (1998). The second GLM estimator assumes that
the raw scale variance is proportional to the E(y), which is a Poisson-like assumption without the
discrete nature of the dependent measure. The third GLM approach assumes has a raw scale
standard deviation is proportional to E(y), which is a gamma-like assumption similar to Blough

et al. (1999). In all three GLM models,

E(y) = e Bo + %) (15)
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Because the OLS estimates are for the E(In(y)), we retransform the log scale estimates to
obtain raw scale estimates of E(y). For all of the OLS-based estimators (except for the
heteroscedastic retransformation cases), we use Duan’s (1983) smearing estimator to obtain an
estimate of E(y). The smearing estimator is the average of the exponentiated residuals from the
In(y) regression.5 If the log scale errors are not heteroscedastic in some function of x or of E(y),
then the smearing estimate provides a consistent estimate of E[exp(g)]. If the error € is truly
normal, then the smearing estimate is less precise than using exp(0.5v), where v is a consistent
estimate of the log scale residual variance.

We also generate predictions based on heteroscedastic retransformation

v=E(E) =&, + S,x + J,x° (16)

if the variance is (1+x), then we omitted the x squared term from a regression of squared
residuals on x and x squared. For all of the GLM generated data, we assume that the variance
function is linear in X.

All of the equations are estimated in STATA 5.0, using either the standard regression

command (“reg”) or the appropriate GLM command:

glm y x, family(xxx) link(log)
where xxx is either Gaussian, Poisson, or g,amm.a.6
C. Design and Evaluation.

Each model is evaluated on 1000 random samples, with each having a sample size of

10,000. Except for the two heteroscedastic cases, all models are evaluated in each replicate of a

> We did not use the normal theory retransformation from equation 7 because it would be

inconsistent for several of our data generating mechanisms. Except for the heteroscedastic log
normal cases, the smearing estimate should provide a consistent retransformation.

In practice, we recommend the use of Stata's "xtgee" or “rglm” command instead of "glm,"
because the first two accommodate robust covariance matrix estimation while the last does not.
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data generating mechanism. This allows us to reduce the Monte Carlo simulation variance, by
holding the specific draws of the underlying random numbers constant when comparing

alternative estimators. The primary estimates of interest are:

(1) The mean, standard error, and 95 percent confidence interval of the estimate of the
slope B, of In(E(y)) with respect to x. The mean provides evidence on the

consistency of the estimator, while the standard error and 95 percent confidence
interval indicate the precision of the estimate.

{2) The mean squared error (MSE) of the model on the original estimation sample. The
MSE indicates how well the estimate minimized the original residual error on the
raw scale.

(3) The absolute prediction error (APE) of the estimate of B,, where the APE is the
absolute value of the estimate of £, minus its true value.” A more precise estimator

should be closer to the true value.

If a model has low MSE and high APE, then there is strong evidence that that estimator
has overfitted the estimation sample. The 95 percent confidence intervals are based on the 0.025
and 0.975th percentiles of the estimates, rather than using the normal theory estimate. Not all of
the estimated values of the #’s are normally distributed, or whose distribution 1s well
approximated by a normal. Estimators are compared on APE and MSE by comparing the
number of times that estimator A had a lower APE (or lower MSE) than estimator B.  With n
replicates with random draws, the proportion p where A is lower than B should be 0.5 under the

null that the two estimators are equally good, and the variance of p is p(1-p)/ (n).

D. Diagnostics for Variance Functions (Park Tests)

The results below will provide a compelling demonstration of the importance in terms of

" For this study, we know the true values of the parameters. But in most applications, the

analyst does not know the true population parameters to use in constructing the APE. Another
alternative is to use a split-sample, cross-validation approach. If overfitting occurs, the estimator
will perform better on the estimation sample than on the validation sample. See Duan et al.
(1983) for an example comparing alternative estimators for health expenditures.
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precision of specifying a (conditional) variance function that captures the true conditional
variance in the data. In this section, we propose a simple strategy for selecting such a
specification, one that should be of considerable use in practice.

As above, we focus on the GLM class of variance functions where:

var(y) = a[E(y)]?”. (17)

because this specification captures most of the alternative estimators that we are interested in. In
a generalized method-of-moments environment, this variance function specification would imply

a set of moment conditions proportional to
m(y;.x;8.0.4) = [ (¥; - exp(x;B))? - cexp(hx;B) ] (18)

such that E[m(.)]=0 under the assumption of correct specification of the conditional mean and
conditional variance (e.g. Wooldridge, 1991).

This moment structure (with a consistent initial estimate of () is similar to one of the
carly tests for heteroscedasticity. In the Park test (Park, 1966), the log of the estimated residual
squared (on the scale of the analysis) is regressed on some factor z thought to cause
heteroscedasticity in the error on the scale of the analysis. Here, we propose to use the residuals
and predictions on the raw (untransformed) scale for y to estimate and test a very specific form
of heteroscedasticity — one where the raw scale variance is a power function of the raw scale

mean function. The OLS version of equation 17 is:
In((y, = 9)") = A, + A, In(F) + v (19)

where S’i -—-exp(xiB) in the GLM specifications, and exp( xiB+O.502(x)) in the log normal

specifications. The coefficient A, on the log of the raw scale prediction will tell us which GEM
model to employ if the GLM option is chosen.
While the purpose of the Park's original approach was to test for heteroscedasticity for a

specific variable, we choose instead to exploit and interpret this approach as a guide to
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specifying the A parameter for purposes of weighted NLS or GLM estimation. Specifically, to
the extent that the Park test estimate of A captures the true variance function, we can be build a
downstream GLM regression strategy for the choice of particular GLM models (NLS, Poisson,

Gamma, etc.) whose variance (inverse weighting) function is specified to be [exp( xif})]) "

One concern with this approach is that we are focusing on the raw scale behavior of
conditional means and variances in applications where skewness in the dependent measure y
often leads to log transformation to obtain more robust results. Under these circumstances, how
informative are these particular Park tests? To assess the utility of such a strategy, we return to
the simulation designs described above and estimate the A parameter for a subset of the data
structures where vy is skewed to the right: log normal, with log scale variance = 1; gamma, with
shape=1; the 90/10 mixture of log normals with the kurtosis of 5 for the log error term g; and
heteroscedastic log normal, with log scale standard deviation = 1+x. Note that in the first two
data generating specifications, the conditional variance is proportional to the square of the
conditional mean (A=2). In the third specification (the heavy tailed distribution from a mixture
of log normals), the proportionality assumption is valid but it operates across different variance
structures in the data. In the last data specification (heteroscedastic log normal), the

proportionality specification is no longer strictly appropriate.

IV. Results: Simulations and Empirical Example
Table 2 provides some sample statistics for the dependent measure y on the raw scale
across the various data generating mechanisms. As indicated earlier, the intercepts have been set

so that the E(y) 1s 1.

A. Skewness.

Given that the severe skewness in health utilization is often a major rationale for using a log
approach, we begin with skewness. The skewness in y on the raw scale increases in the variance
v for the log normal models. Table 3 provides the results on the consistency and precision in the

estimates 3, , the slope of In(E(y)) with respect to x, for each of the alternative estimators for the

log normal data generating processes. In the absence of heteroscedasticity in x in the error €, the



15

OLS model with homoscedastic retramsformation,8 the NLS, Poisson, and Gamma models all

produce consistent estimates of the slope j3,.

Thus, if consistency were the only concern, and if there is no evidence of
heteroscedasticity, then each of the models considered here is admissible.

However, if there is also a concern about precision, then the most precise estimates can
be obtained by OLS, with the gamma, Poisson, and NLS versions of the GLM model trailing in
that order from lower to higher variance. The differences in precision among the estimators
increase as the log scale variance increases. At a variance of 0.5 on the log scale, the gamma
standard error is roughly 13 percent larger, and it would take a sample size 28 [0.28 = (1.1337 -
1)] percent larger to give the same precision as OLS with homoscedastic retransformation. At a
variance of 2.0 on the log scale, the gamma standard error is roughly 74 percent larger, and it
would take a sample size three times as large to give the same precision as OLS with
homoscedastic retransformation. The NLS would require a sample almost four times as large as
the OLS sample to have the same level of precision.

Thus, the efficiency losses (relative to the OLS-based estimator) from using GLM methods

can be substantial and increasing in the variance on the log scale.

B. Heavy Tailed Data.

The presence of a heavy-tailed error distribution on the log scale does not cause consistency
problems for these estimators, but it does generate much more imprecise estimates for the three
GLM models; see Table 4. In the absence of heavy tails, the standard errors for the gamma
estimates of the slope are 13 percent larger than for the OLS estimate. For the mixture of
normals case, the standard errors are about 3.5 times larger for the gamma model and 4.6 times
larger for the NLS estimator if the kurtosis is 4. They are over seven times larger for the gamma

and over 130 times larger for the NLS if the kurtosis is 53.°

® We used Duan’s (1983) smearing estimator.

? The poor performance of the NLS in terms of the standard error of the estimate of B, is heavily
influenced by the estimate from one random sample. However, if we were to use a more robust
estimate of dispersion, the inter-quartile range, we would still find the NLS to be the least precise
estimator. The difference among the estimators would be less dramatic, but qualitatively similar.
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Thus, the efficiency losses of GLM models (relative to the OLS-based estimator) are

substantial and increasing in kurtosis of the log scale error.

C. Alternative Shapes to PDFs

To test the sensitivity of the results to differences in the shape parameter of the pdf, we use
altenative gamma models, with shapes of 0.5, 1.0, and 4.0. These correspond to two
monotonically declining, and one (skewed) bell-shaped pdf. As Table 5 indicates, all of the

estimators yield consistent estimates of 3,. Not surprisingly, the gamma regression models yield

the most precise estimates and OLS on In(y) yields the least precise estimates. The Poisson-like
GLM and NLS estimators are in between, but closer to the precision available from the gamma
regression model than to that from the OLS-based model. The size of the discrepancy in
precision is greatest for ¢ = (.5, and the least for a shape ¢ = 4.0; the former has a monotonically
declining pdf (conditional on x), while the latter has a skewed bell shape. It would take a
sample size 2.5 times as large for OLS to generate the same precision as the gamma model if the
shape ¢ = 0.5, but only 14 percent larger if the shape ¢ = 4.0.

Thus, the efficiency losses (relative to the gamma-based estimator) from using OLS based
estimators can be substantial, but decreasing in the shape parameter c¢. The losses are greater if

the pdf is monotonically declining, than if it is a skewed bell shape.

D. NLS-like Data Generating Mechanisms.

The GLM models provide consistent estimates of /5, when the data generating mechanism

has an additive error € on the raw scale. The homoscedastic retransformation of Log OLS model
provides a significantly biased estimate of the true value, but one that is not appreciably biased -
the bias is only on the order of four percent. The NLS estimate is the most precise of the
estimates of f,, while the Log OLS estimates are the least precise. The gain from using the NLS

estimator in this case is roughly equivalent to an increase of three-quarters in the sample size;

see Table 7 and Appendix Table 1.

E. Heteroscedasticity
As the discussion indicated, heteroscedasticity that depends on x can lead to biased estimates

of the impact of x on the E(y) if OLS is used on In(y) without an appropriate heteroscedastic
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retransformation. Table 6 indicates that GLM models capture consistently the effect of x on

In(E(y)) when the error variance is linear in x, with their estimated values of f, averaging 1.5,

the true value. The OLS model with homoscedastic retransformation provides an estimate that

is significantly less than the true value. In essence, it captures only the “deterministic” part /5, on
the log scale, not the full effect: £, + 0.5 0 v(x)/ O x.

However, by estimating v(x) from the OLS residuals on the log scale, the heteroscedastic
retransformation of the OLS In(y) model does provide a consistent estimate of the full effect of x
on In(E(y)). Of the consistent estimators, the heteroscedastic retransformation version is the
most precise, followed by the gamma, the Poisson, and NLS models, in that order. The gamma
model would require a sample 47 percent larger to give the same precision as the heteroscedastic
retransformation version of OLS, and the NLS would require a sample 250 percent larger.

When the error variance on the log scale is quadratic in X, the story is more complicated.
Unless a quadratic model is estimated for the GLM alternatives or in the variance function for

the heteroscedastic version of OLS, then the estimates of ¢In (E(y))/8x will be biased. If the

square of x is added to the list of regressors,lo then the GLM and the heteroscedastic
retransformation version of OLS are all consistent. However consistent the GLM methods are,
they do not provide a very powerful indication of the nonlinearity caused by this form of
heteroscedasticity. The 95 percent confidence interval for the quadratic term for the NLS 1s {-
1.99, +3.58], for the Poisson [-0.83, +2.12], and for the gamma [-0.41, +1.44] when the true

value is 0.5. Only the OLS with heteroscedastic retransformation is able to pick up a result that

is significantly different from zero; the 95 percent confidence interval is [0.002, 0.971.11 Asin

10 In the case of the OLS based model, the square of x is added as a regressor in the variance
function in equation 16, not to equation 9.

11 The absence of a significant quadratic effect in the GLM is not due to lack of precision for
quadratic terms in general for GLM models, but lack of precision when they are not the true
model. For example, we also examined a gamma model with In(E(y)) a quadratic function in x,
shape = 1, and the same coefficients for the linear and quadratic effects as implied by the
heteroscedastic model above. All three of the GLM models’ coefficients for the quadratic terms
have p values < 0.01, and are notably more precise than a quadratic OLS model for In(y). The
gamma regression model is the most precise of the alternatives under these specific
circumstances.
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the other heteroscedastic case, the homoscedastic retransformation version is appreciably biased,
because it omits the term +0.5 0 v(x)/ 2 x.

Thus, if consistency is the concern, the usual OLS-based model for In(y) is inconsistent
unless transformed by an appropriate heteroscedastic factor. All of the other estimators
considered are consistent.

To the extent that precision is a concern, the heteroscedastic retransformation of the OLS-
based results is the most precise alternative considered here.

For each of the data generating mechanisms that we have examined, we have estimated
both heteroscedastic and homoscedastic retransformation results for the OLS-based estimators.
Except for the cases that were truly heteroscedastic, the heteroscedastic version is usually less
precise than the homoscedastic version. Except for the cases that were truly heteroscedastic, the
both versions are consistent.

As each of these alternatives has suggested, there are substantial gains from selecting the
best estimator for a given data situation. Different data generating mechanisms lead to different
choices of estimators. Table 7 and Appendix Table 1 show that the precision gains from
selecting a more appropriate model can be quite substantial. Within the class of GLM models,

the choice of an inappropriate variance function can lead to a substantial loss in precision.

F. Overfitting
One of the concerns that has motivated the use of log models instead of OLS on raw scale
dependent variables has been the fear that OLS would overfit the extreme cases. That is, the
estimate of the 8 s would be pulled around by extreme cases and not reflect well the true values.
GLM models, especially the NLS, could have a similar problem, because they do not deal
necessarily deal well with the skewness in the data unless the variance function is appropriately
specified.
To address this issue, we examine both the mean-squared error (MSE) on the raw scale
for the estimation sample and how close the estimated slope is to the true value, as measured by
the absolute prediction error (APE) for B.12 If over-fitting occurs, we would expect the MSE to

be low, while the APE for that estimator to be high. For each of the estimation models, we

'2° APE = absolute (estimated S, - true f,) averaged over replications.
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compare alternative estimators in terms of which model had lower MSE’s or lower APE’s; see
Appendix Table 2.  For the within-sample measure of MSE, NLS generally has smaller MSE’s
than any of the other estimators, followed by the Poisson, gamma, and retransformed OLS
models, in that order. This pattern holds across a number of different kinds of data problems,
except for the NLS-like data generating mechanism. In contrast, the APE results suggest that the
retranformed OLS model is closer to true, followed by the gamma, Poisson, and NLS in that
order. Given the biased estimate for the homoscedastic retransformation method for OLS, when
the error is heteroscedastic, this model is the worst behaved of all if there is heteroscedasticity,
but the best of all (on APE grounds) if there is no heteroscedasticity.

In any event, the within sample estimator of fit, the mean squared error, 1s quite sensitive
to skewness and other data problems. It tends to pick estimators that have higher true variances
for estimates of B; than the within-sample estimate of mean squared error would indicate. The
NLS and Poisson models are especially prone to this kind of overfitting in the face of skewness

in the raw-scale version of y or of kurtosis in the log-scale error

G. Diagnostics for Variance Functions (Park Tests)

These results provide a compelling demonstration of the importance in terms of precision of
specifying a (conditional) variance function that captures the true conditional variance in the
data. In this section, we use the simulation approach to evaluate a simple strategy for selecting
such a specification, one that is likely to be of considerable use in practice. Using the estimates
from each model, we can construct raw scale residuals for each estimator. Then one can either
use a non-linear least squares estimator for this residual squared versus a power function of the
predicted (raw scale) value for the dependent measure, or one can regress by OLS the log of the
raw scale residuals squared on the log of the raw scale prediction.

Table 8 provides a summary of the Park test simulations. We focus on the performance
of the Park test QLS slope estimator for the different baseline estimators (linear least-squares on
the log scale, nonlinear least-squares with a log link, Poisson with a log link, and gamma with a
log link). For the first two data generating mechanisms, the performance of the Park test
estimate is quite good for all the estimators. Despite the skewness in the dependent variable y,

the estimates of A centered quite tightly around the true value A=2.  Further, for these two data
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generating mechanisms, there is no appreciable difference in precision across the estimators. In
the heavy-tailed distribution specification, the replicate means and medians of the OLS estimator
center on A=2, whereas the cross-replicate performance of the nonlinear GLM estimators (NLS,
Poisson, and Gamma) shows significant divergence between the mean and median of the
estimates of A. Specifically, although the median of the point estimates centers on A=2, the
mean estimate is attenuated due to the mixing, presumably a "Jensen's inequality type"
consequence of mixing nonlinear functions. In any event, the Park test is not as informative
about which value of A to choose for the GLM models as it was for the log normal and gamma
data generating mechanisms. Finally, for the heteroscedastic log normal case, we find that the
simple homoscedastic OLS strategy misses the fact that the data are no longer structured such
that A=2, whereas the other estimators are not so fooled. The heteroscedastic version of the log
based model is as well-behaved and as precise as the GLM alternatives.

If the conditional variance structure is proportional to some integer power of the
conditional mean, then there is likely to be a substantial payoff from a strategy: (1) using one of
the GLM estimators to obtain a baseline estimate of B, (2) conducting the Park test to obtain an
estimate of A, and (3) utilizing this estimate of A to formulate a second-stage GLM weighting
function. However, analysts should be alert to the fact that the second-stage GLM estimates may
be based on estimated conditional variance functions that may not necessarily converge in the
limit to the true conditional variance functions. As a result, they should continue to use robust
(Huber/White-type or bootstrapped) estimates of the corresponding variance-covariance matrix

for the estimate of 3.

H. An Empirical Example

To illustrate the empirical importance of the above issues in the context of real data, we
estimate a set of GLM models using the 1992 National Health Interview Survey (NHIS) data that
were the basis of the study by Mullahy, 1998. These data comprise 27,598 observations on
adults who had at least one doctor visit during the twelve months prior to the survey, this being
the outcome we consider here. The summary statistics for this outcome measure are mean=6.42,
median=3, variance=204.7, skewness=9.79, and kurtosis=158.6.

The model specification used here is identical to that used in the earlier study, inciuding

as covariates age in years (AGE), gender (MALE), years of completed schooling (EDUC), race
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(WHITE), marital status (MARRIED), and health status (XCELLENT, VERYGOOD, GOOD).
The models are estimated using A values of O (NLLS class), 1 (Poisson class), 2 (gamma class),
and 3 (inverse Gaussian class), as well as the "optimal" value derived using the nonlinear "Park
test" procedure described above (which turns out to be 1.917887 for these data).

The results are summarized in table 9. It is apparent in the table that the precision of the
point estimates in this case is best in the "optimal" case. The traditional GL.M cases that bracket
this case (A=1,2,3) are not terribly inferior, while the A=0 case is generally much less precise
than the others. No less importantly, note too that the magnitudes of the point estimates in some
cases vary dramatically across the values of A (with MALE and EDUC being perhaps most
striking in this respect).

From this example, we are left to conclude that considerations of the variance structure

may have considerable implications for analysts' inferences in applied research.

V. Conclusions

Our results indicate that the choice of estimator for examining the In(E(y)) can have
major implications for the empirical results if the estimator is not designed to deal with the
specific data generating mechanism. Garden-variety statistical problems — skewness, kurtosis,
and heteroscedasticity — can lead to an appreciable bias for some estimators (e.g., simple OLS for
In(y)) or appreciable losses in precision for others (e.g., GLM).

The standard use of ordinary least-squares with a logged dependent variable reminds us
of Longfellow’s nursery rhyme. “When she was good, she was very, very good. But when she
was bad, she was horrid!” OLS with homoscedastic retransformation seems to be resilient to
various data problems, except for one. It deals much better with heavy-tailed distributions
{(heavy-tailed on the log scale) than any of the GLM alternatives that we have considered.
Unfortunately, when the log scale error term € is heteroscedastic, the OLS (with homoscedastic
retransformation) estimates can be significantly biased. Moreover, when the pdf is not bell-
shaped or a skewed bell-shape, then the OLS-based models are notably less precise than some of
the GLM alternatives, but remain consistent.

The bias in the homoscedastic version of OLS can be corrected if one estimates the

variance function v(x) for the log scale error, and then uses that to obtain a retransformed
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prediction of In (E(y)); see Manning (1998). Although consistent, this approach is much more
cumbersome because it requires more investment in the “finer” details of econometric modeling
than many analysts have been willing to invest. The heteroscedastic retransformation can be
done easily 1f there is heteroscedasticity across mutually exclusive groups (e.g., health insurance
plans), but is difficult for heteroscedasticity across multiple factors or continuous measures.

The GEM models, such as the NLS, Poisson-like, and Gamma models, provide the
alternative of directly estimating what most economists are really after, E(y) or of In (E(y)),
without having to go through the process of estimating the variance function v(x) that is required
for retransforming Log OLS results. Unfortunately, if the true model is a heteroscedastic
equation for In(y), then the GLM methods are less precise for dealing with some problems — the
quadratic variance case. The precision of the GLM approaches is also diminished more by
higher variance and kurtosis on the log scale than are OLS-based methods. Nevertheless, when
the GLM models are designed for the data generating process, they can be substantially more
precise than OLS-based methods.

In our analysis, we concentrated our attention on data generating mechanisms based on

the log normal and on the gamma.".

Both of these have the characteristic that the raw scale
standard deviation is a constant multiple of the mean — a constant coefficient of variation. It has
been our experience that many health care expenditure and use data have this attribute.
However, not all do. Some have relationships of raw scale means and variances that are
characteristic of either the nonlinear least-squares (NLS) model or the Poisson-like models. In
these cases, these other two GLM estimators are more precise than either OLS-based models or
gamma regression models; our one NLS-like example illustrates this point.

The sensitivity of the results to common data issues appears to leave us with a quandary
in model selection. If our only concern were bias in assessing the effect of & In(E(y)) & x, then
we would recommend the GLM models. These also would be easier to use than the
heteroscedastic retransformation suggested by Manning (1998) and used in many of the papers
from the Health Insurance Experiment (Manning, et al., 1987; Newhouse et al., 1993). However,
we are often quite concerned about precision; the usual difficulty that most health economists

face is lack of precision due to the high variance in utilization and expenditures. Depending on

the data, some GLM methods will be more precise than others. Unfortunately, we cannot rely on

" With some attention to NLS-like mechanisms with log-link functions, but additive error.
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within-sample diagnostics to make the choice, because some models are more likely to lead to
overfitting if the dependent variable is appreciably skewed right. This is particularly a problem
for the NLS alternative suggested by Mullahy (1998) when facing very skewed data. Blough et
al.’s (1999) recommendation of the gamma, and Mullahy’s (1998) NLS recommendation are
particularly sensitive to kurtosis on the log scale of the kind often seen in studies of hospital
length of stay or inpatient costs.

Our recommendation is for the analyst to begin with both the raw-scale and log-scale
residuals from one of the consistent estimators. If the log-scale residuals are heavy-tailed
{kurtosis > 3), then consider the OLS-based models with In(y) as the dependent variable. If
there is no kurtosis on the log scale to speak of (k about 3), use the Park test on the raw-scale
residuals to select one of the GLM models. If the raw-scale variance does not depend on the
raw-scale prediction (A = 0, in the notation of eq. (17)), then consider the NLS. If the raw-scale
variance is proportional to the raw-scale prediction (A = 1), consider the Poisson-like model. If
the raw-scale variance is quadratic in the raw-scale prediction (A = 2), then consider either the
gamma model or the homoscedastic Log OLS model."* If the raw-scale variance is cubic in the
raw-scale prediction (A = 3), then consider the inverse Gaussian (Wald) model. Alternatively,
one could use the results of the Park tests to estimate an iteratively, reweighted nonlinear least-
squares model.

For those who are wedded to OLS based models with a logged dependent measure as a
starting point, they should check the log scale residuals from the OLS model. If they are
heteroscedastic in x, then the standard OLS analysis will be biased, unless corrected on

retransformation by incorporating the log scale variance function v(x) or by moving to the GLM

" If the log scale residuals are symmetric, consider the log normal. A test for skewness is:
n(s’) / 6, where s is the skewness of the log scale residuals, which is distributed as chi square
with one degree of freedom. A test for log normality can be formed using the skewness and
kurtosis of the log scale residuals: n[(s’ /6) + ((k —3)° /24)], which is distributed as chi
square with two degrees of freedom; D’ Agostino and Pearson (1973).

But if the pdf is monotonically declining, based on either plots of the data or the
estimated shape parameter ¢ o 1 under a gamma assumption, then the gamma model would
appear to be more appropriate. One test for this possibility is to use the sample mean and
variance to estimate c for the variable z = y/[exp(xp)], which is the analog of a residual for the
gamma. A moment based estimate of ¢ is the unconditional sample mean squared, divided by
the unconditional sample variance.
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approach outlined above. If they are leptokurtotic (kurtosis > 3), then the GLM models
considered may be quite problematic.'®

All of these checks can be done with tests readily available or programmable in major
statistical and econometric programs. We are convinced that the return on the time spent on
such analysis can be very high — in terms of major biases or losses in precision avoided.

While we have considered results here for the case where y is strictly positive (e.g. part
two of a two-part model), it will be interesting in future work to assess the performance of these
various estimation strategies for the more general case where y is nonnegative. Because we have
been working largely in a mean-variance framework, there is ostensibly nothing in the above
analysis that would preclude application to data where the realizations of y are either positive or
zero, as is common in many health economics applications. It is, of course, an empirical matter
as to whether a one-part or a two-part model 1s a more suitable characterization of the data
(Mullahy, 1998}, with the parsimony offered by a one-part model being desirable in some
circumstances if an adequate variance function can be found to yield precise estimates.
Assessing the relative merits of a conventional two-part model {Duan, Manning, et al., 1983:
Manning, Duan, and Rogers 1987), the logit/gamma alternative (Blough et al., 1999) or some
non-linear least-squares alternative (Mullahy, 1998) is a subject for further research. One of the
major implications of the current research is that failure to closely approximate the true variance

function could lead to major losses in precision for the GLM models.

" If the residuals are heteroscedastic in x, they will also be heavy-tailed. One way of

generating a heavy-tailed distribution is to use a mixture model where the error term has zero
expectation and different variance across observations. To rule out heteroscedasticity induced
kurtosis, one can substitute the OLS residual divided by the square root of the estimated variance
function. If this is leptokurtotic (kurtosis > 3), then the heteroscedastic version of OLS may be
preferable to the GLM model. The choice will depend on how easy it i1s to model the variance
function for log scale error versus how large the precision losses are as kurtosis rises.
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Table 1
Monte Carlo Simulation Design

A. Alterative Data Generating Models.

1. Altemative log normal models

In(y)= f, + fix + €

where x is uniform (0,1), € is N(0,v) with variance v = 0.5, 1.0, 1.5, or 2.0, and E(x'€) = 0. /,
equals 1.0. S, is selected so that the E(y) = 1. Note: as the variance increases, the skewness and
kurtosis of y increase.

2. Two alternative models with & being heavy-tailed (kurtosis > 3). In the first, € is a 90/10
mixture of normals with mean zero, and variances 1 and 3.3, respectively. In the second, the
second vartance 1s 4.6. The resulting kurtosis in € is 4 and 5, respectively.

3. Gamma model with scale =exp(f, + £, x), where £, =1, and f,is selected so that the

E(y) = 1. The shape parameter c is 0.5, 1.0, or 4.0. The first and second have monotonically
declining pdf’s, conditional on x, while the last is bell shaped but skewed right. The second is an
exponential variate. As the shape increases to infinity, the distribution approaches a normal.

4. An NLS-like structure where y = [exp( 8, + S, x)] + &, with e is N(0, 0.3).

5. Alternative heteroscedastic normal models. In the case above, € is the product of a N(0,1)
variable and either (1 + x) or its square root. The former has error variance that is linear in x,
while the latter 1s quadratic in x. Again, £ =1, and [ is selected so that the E(y) = 1.
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Table 1 (cont’d)
Monte Carlo Simulation Design
B. Alternative Estimators.
1. OLS regression for In(y) with a homoscedastic retransformation.
2. OLS regression for In(y) with a heteroscedastic retransformation.

3. GLM for y with a log link, with a variance proportional to the E(y)} -- a Poisson
regression.

4. GLM for y with a log link, with a standard deviation proportional to the E(y) — a gamma
regression.

5. Nonlinear least-squares by GLM for y with a log link, and an additive homoscedastic
error term.

Except for the heteroscedastic case with standard deviation = 1+x, the covariate list includes
an intercept and a single covariate x.
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Generating
Mechanism

Log Normal
Var = 0.5

Log Normal
Var = 1.0

Table 3
Effect of Skewness
on the Raw Scale

Coefficient on Slope of 1ln(E(y|x))

Estimator

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma
True

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma
True

LnOLS-Hom
LnOLS-Het
NLS
Poigson
Gamma
True

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma
True

95% Confidence Interval

Mean std. Err Lower Upper
1.0001 0.0237 0.95458 1.0457
1.0000 0.0264 0.9491 1.0537
0.9998 0.0299 0.8407 1.0617
0.9988 0.0273 0.%94¢€1 1.0572
1.0000 0.0269 0.9476 1.0552
1.0 0 ---=-- e -
0.9998 0.0348 0.9322 1.0716
0.99585 0.0418 0.9157 1.0824
0.9980 0.0505% 0.9034 1.0953
0.989789 0.0462 0.92057 1.0867
0.9980 0.0447 0.90686 1.0859
1.0 = —--==-- m--—— e
1.000618 0.0428 0.9223 1.0891
1.00237 0.0567 0.8906 1.1125
1.002461 0.0733 0.8557 1.1468
1.002091 0.0670 0.8671 1.1335%
1.002465 0.0651 0.8740 1.1243
& e
0.9951 0.0484 0.9035 1.0945
1.0013 0.0684 0.8640 1.1283
1.0051 0.0982 0.8223 1.2140
1.0026 0.0882 0.8353 1.1739
1.0013 0.0845 0.8370 1.1734
1.0 0 —------ emeea— oo
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Table 4
Effect of Heavy Tails
on Leog Scale

Coefficient on Slope of In(E(y|x))

Cenerating
Mechanism Estimator
________________________ +
Log Normal LnOLS-Hom |
var = 1.0 LnOLS-Het |
k= 3 NLS |
Peisson 1
Gamma |
True |
________________________ "
Heavy Tailed LnOLS-Hom |
k = 4 LnOLS-Het |
NLS |
Poisson |
Gamma |
True |
________________________ "
Heavy Tailed LnOLS-Hom |
k=5 LnOLS-Het |
NLS |
Poisson |
Gamma
True |

95% Confidence Interval

Mean S5td. Err. Lower Upper
0.9596 0.0348 0.9322 1.0716
0.9885 0.0418 0.9157 1.0824
0.9880 0.0505 0.9034 1.0953
0.9979 0.0462 0.9057 1.0867
0.998083 0.0447 0.9066 1.0859
1.0 - -----  —eee-- ——-—--
1.0002 0.0375 0.9274 1.0727
0.9954 0.0510 0.8973 1.1018
1.0083 0.1737 0.7387 1.3421
1.0039 0.1426 0.7628 1.2883
1.0036 0.1320 0.7679 1.2544
1.0 ------ —----- —ee
1.000258 0.0396 0.9235 1.0765
0.999221 0.0593 0.8791 1.1176
1.278733 5.0327 0.4137 1.9416
1.010899 0.3326 0.4566 1.6776
1.00994 C.2951 0.4344 1.56289
1.0 0 ------ ------ -
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Generating
Mechanism

Gamma
Shape = 1
Gamma
Shape = 4

Effect of Shape

Table 5

Coefficient on Slope of In(E(y|x))

Estimator

LnOLS -Hom
LnOLS-Het
NLS
Poisson
Gamma
True

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma
True

LnOLS-Hom
LnOLS-Het
NLS
Pcisson
Gamma
True

95% Confidence

Lower

Interval
Upper

1.000707
0.897560
0.599644
0.999670
1.000058
1

0.0748174
0.1733666
0.0526338
0.0481553
0.0473053

0.8528473
0.660885

0.8939781
0.9044225
0.9108036

1.149035
1.33691

1.111083
1.099688
1.096514

0.995915
0.9958422
0.998720
0.598785
0.998973
1

0.04434006
0.0502031
0.0386417
0.035305

0.0342242

0.9128188
0.8991024
0.9243465
0.9292879
0.9300015

1.089832
1.095391
1.073881
1.066697
1.06794

-000154
.000517
.000467
.000405
.000432

0.0186658
0.0176041
0.0202586
0.0183169
0.0174984

0.9657184
0.9663996
0.9635911
0.9665445
0.95673809

1.038561
1.034754
1.041706
1.037278
1.035323

30



Table &

Effect of Heteroscedasticity
on the Log Scale
Coefficient on Slope of 1n{(E(y|x})

31

Generating 95% Confidence Interval
Mechanism Estimator \ Mean 5td. Err Lower Upper
________________________ o o o e
Log Normal LnOLS-Hom | 0.959621 0.0348148 0.9322314 1.071647
Var = 1.0 LnOLS-Het | 0.998580 0.0418082 0.9157929 1.082485
NLS | 0.998001 0.0505482 0.9034469 1.095328
Pocisson | 0.997919 0.0462138 0.9057372 1.08671
Gamma | 0.998083 0.0447803 0.906603 1.085904
True | 1.0 —eeee---- e oo
________________________ o o e e
Hetero LnOLS-Hom | 1.000069 0.0407556 0.2190375 1.079981
var = 1+x LnOLS-Het | 1.499164 0.0546495 1.391562 1.608531
NLS ] 1.499841 0.1025363 1.304943 1.721955
Poilsson I 1.498189 0.0783845 1.341€98 1.663669
Gamma | 1.498431 0.0661695 1.369247 1.639189
True - T p———
________________________ o e e
Hetero LnOLS-Hom | 0.8599664 0.0539657 0.8966974 1.1151892
Std = 1+x LnOLS-Het | 2.494235 0.0825744 2.324784 2.65801
NLS | 2.277278 2.438436 0.5461946 4.069843
Poisson | 2.270902 (0.3723323 1.484793 2.982523
Gamma | 2.256181 0.1939853 1.855002 2.615747
True | 2.5 = cmeeeeeee aemeeeeee o
________________________ S
Note: For the log normal case where the standard deviation of € is 1+x, the

slope ig evaluated at x=0.5.



Generating
Mechanism

Log Normal

Var = 1.0
Gamma
Shape = 1

NLS
Additive
error

Hetero

var = 1+x

Efficiency Effects

Table 7

Coefficient on Slope of 1n(E(y|x))

Estimator

LnOLS -Hom
LnCLS-Het
NLS
Poisson
Gamma
True

LnOLS~Hom
ILnOLS-Het
NLS
Poisson
Gamma
True

LnOLS-Hom
LnCLS-Het
NLS
Poisson
Gamma
True

LnCLS -Hom
LnOLS-Het
NLS
Poisson
Gamma
True

0.899621
0.598580
0.998001
0.897319
0.298083
1

0.899815
0.998422
0.898720
0.598785
0.898373
1

1.043221
0.993504
1.000138
1.000133
1.000118
1

1.000069
1.499164
1.499841
1.498189
1.498431
1.50

0.0348148
0.0418082
0.0505482
0.0462138
0.0447803

0.0445406
0.0502031
0.0386417
0.035305

0.0342242

0.0080515
0.06074022
0.0061217
0.0064606
0.0072247

0.0407556
0.0546495
0.1025363
0.0783845
0.0661695

0.9322314
0.9157929
0.9034469
0.9057372
0.906603

0.9128188
0.89351024
0.9243465
0.9252879
0.9300015

1.027155

0.9750431
0.9885183
0.9874387
0.9856906

0.9190375
1.391562
1.304943
1.3416598
1.369247

Interval
Upper

1.071647
1.082485
1.095328
1.08671

1.085904

1.089832
1.095391
1.073881
1.066697
1.06794

1.058511
1.007654
1.012165
1.012556
1.013724

1.079981
1.608531
1.721955
1.663665
1.639189
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Table 8
Comparisons of Alternative Estimatocrs
Park Tests of Mean-Variance Relationship
Estimates of A

Generating 95% Conf. Interval

Mechanism Estimator Mean Std. Err. Lowexr Upper

Log Normal Ln-OLS-Hom 2.0005 0.0723 1.8562 2.1471

Var. = 1.0 Ln-OLS-Het 1.9998 0.0726 1.8533 2.1408
NLS 1.9994 0.0737 1.8499 2.1417
Poisson 1.9995 0.0735 1.8480 2.1398
Gamma 2.0000 0.0731 1.8486 2.1424
True 2.0

Gamma Ln-OLS-Hom 2.0087 0.0788 1.8545 2.1602

Shape = 1.0 Ln-OLS-Het 2.0003 0.0675 1.8684 2.1305
NLS 2.0033 0.0692 1.8632 2.130¢9
Poisson 2.0031 0.0688 1.8630 2.1322
Gamma 2.0032 0.0683 1.8871 2.1302
True 2.0

Heavy tailed Ln-0OLS-Hom 1.9964 0.0655 1.8653 2.1267

k =5 Ln-OLS-Het 1.8951 0.0782 1.8271 2.1391
NLS 2.1372 5.76089 1.2939 2.2001
Poisson 2.1463 5.7867 1.3535 2.2201
Gamma 2.1512 5.8152 1.3457 2.2252
True 2.0

Nonlinear ILn-0OLS-Hom 0.02159 0.0729 -0.1289 0.1661

Additive Ln-OLS-Het 0.00319 0.0780 -0.1536 0.1532
Error NLS 0.00301 0.0782 -0.1560 0.1548

Poisson 0.00313 0.0782 -0.1567 0.1540
Gamma 0.00317 0.0783 -0.1559% 0.1567
True 6.0

Log Normal Ln-0OLS-Hom 2.7611 0.0763 2.6154 2.919%

Var = 1+x Ln-0OLS~Het 2.3801 0.0248 2.3299 2.4281
NLS 2.3510 0.1259 2.1875 2.4304
Poisson 2.3795 0.0299 2.3225 2.4360
Gamma 2.3827 0.0283 2.3263 2.4370
True ??27?

Ncte: Estimate of slope A from log OLS version of Park test.



Table 9

GLM Estimates of NHIS Doctor Visit Data: Alternative A Values
(Heteroskedasticity-robust std. errors in parentheses)

A
Variable 0 1 2 3 1.917887
CONSTANT 2.7492 2.7556 2.7778 2.8135 2.7831
(0.1298} (0.0881) (0.0728) (0.0760) (0.0726)
AGE -0.0091 -0.0078 -0.0068 -0.0062 -0.0070
(0.0019) (0.0012) (0.0010) (0.0011) (0.0010)
MALE -0.0471 -0.1059 -0.1446 -0.1630 -0.1323

(0.0446) (0.0304) (0.0257) (0.0266) (0.0256)

EDUC 0.0372 0.0308 0.02389 0.0176 0.0239
{0.0067) (0.0047)} (0.0041) {0.0046) (0.0041)

WHITE 0.1324 0.1514 0.1625 0.1654 0.1822
{0.0524) {0.0380) (0.0322) (0.0334) (0.0317)

MARRIED -0.1478 -0.1358 -0.1132 -0.0940 -0.1173
(0.0414) (0.0285) (0.0263) (0.0282) (0.0262)

XCELLENT -1.6125 -1.5753 -1.5495 -1.5328 -1.5412
(0.0477) (0.0410) (0.0393) (0.0408) (0.0351)

VERYGOOD -1.3395 -1.3107 -1.2909 ~1.2769 -1.2844
(0.04439) (0.0391) (0.0374) (0.0384) (0.0370)

GOOD -0.8561 -0.8468 -0.8420 -0.8386 -0.8386

(0.0441) {C.0405) (0.0396) (0.0405) (0.0388)



Generating
Mechanism

Normal
1.0

Heavy
k = 4

Tailed

Heavy
k =5

Estimator

LnOLS-Hom
ILnOLS-Het
NLS
Poisscn
Gamma

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma

LnOLS-Hom
ILnOLS-Het
NLS
Polisson
Gamma

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma

LnCLS-Hom
ILnOLS-Het
NLS
Poisson
Gamma

Bppendix Table 1

Simulation Results for
Coefficient on Slope of 1n(E(y|x))

95% Confidence

Lower

Interval
Upperxr

1.000133
1.000017
0.599853
0.999886
1.000029

.023751

.0264442
.0299333
.0273986
.0268116

.9549728
-9491883
.9407199
.9461934
.9476735

.0457886
.053797
.0617689
.057224
.05529

0.995621
0.598580
0.988001
0.997919
0.9598083

.0348148
.0418082
.0505482
.0462138
.0447803

.9322314
.915792%
.9034469
.9057372
.906603

.071647
.082485
.095328
.08671

.085904

1.000618
1.00237

1.002461
1.002091
1.0024865

.0428613
.0567258%
-0733045
.0670108
.065142

.922383
.890652
.B8557558
.8671428
.8740989

.089104
.112596
.146891
.13353¢%
.124307

0.999136
1.001304
1.005102
1.002657
1.001392

.0484478
.0684748
.0982818
.0882449
.0CB45442

.9035515
.B640262
.B223573
.8353381
.8370611

.094575
.128377
.2140089
.1739598
.173467

1.000238
0.959493
1.008394
1.003922
1.003618

.0375558
.0510681
.1737535
.1426515
.132022¢9

.9274483
.8973089
.7387403
.762818
.7679142

072745
.101875
.342172
.28838

.254455

1.000258
0.898221
1.278733
1.01089%
1.008594

.0396378
.05693454
.032764

.3326238
.25951944

.9235228
.87591245
.41376%
-456693
.434469

.076574
.117663
.941622
.677678
.56295¢9
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Generating
Mechanism

n
o
]
hel
o]
I
o

&2
=
Q
e,
[
]
=

[45]
a s
)
o]
[¢)]
1]
s

NLS
Additive
error

Hetero

var = 1+x

Hetero

Std = 1+x

“Mean”
std=1+x.

Estimator

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma

LnOLS-Hom
LnOLS-Het
NLS
Pcisson
Gamma

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma

LnOLS-Hom
LnOLS-Het
NLS
Poisson
Gamma

evaluated at x=0

Appendix Table 1

(cont-’d)

Simulation Results for [},

Mean

1.000707
0.997560
0.999644
0.999670
1.000058

0.999915
0.998422
0.998720
0.998785
0.998973

1.000154
1.000517
1.0004867
1.000405
1.000432

1.043221
0.993504
1.000138
1.000133
1.000118

1.000069
1.499164
1.499841
1.498189
1.498431

0.999664
2.494235
2.277278
2.270902
2.256181

|
|
|
|
|
|
|
|
|
=
I
|
|
|
|
|
|
|
1
1
|
J
1
|
1
\
|
|
|
|

std. Err.
.149035
.33691

.111083
.099688
.096514
.089832
.095391
.073881
.066697
.06724

.038561
.034754
.041706
.037278
.035323
.058511
.007654
.0121€5
.012556
.013724
, 079981
.608531
.721955
. 663669
.639189
.115192
.65801

.069843
.982523
.615747

.0748174
.1733666
.0526338
.0481553
.0473053

.0449406
.0502031
.0386417
.035305

.0342242

.0186658
0176041
.0202586
.0183169
.0174984

.0080515
.0074022
.0061217
.0064606
.0072247

. 0407556
.0546495
.1025363
.0783845
.0661695

.0539657
.0825744
.438436

.3723323
.1939853

95% Confidence

Lower

.8528473
.660885

.8939781
.9044225
.2108036

.9128188
.8991024
.9243465
.9252879
.9300015

.9657184
.966399¢6
.9635911
.9665445
.9673809

.027155

.9790431
.9885183
.9874387
.98569086

.9190375
.391562
.304943
.341698
.369247

.8966974
.324784
.5461946
.484793
.855002

Interval
Upper

.50 for log normal mocdel with hetercscedasticity,
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Mean Squared Error

Generating
Mechanism

Appendix Table 2
(MSE) and Absolute

Estimators Compared

Prediction Error

{APE)

Log Normal
Var = 0.5

LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Het
LnOLS-Het
LnOLS-Het
LnOLS-Het
NLS

NLS

NLS

NLS
Poisson
Poisson
Poisson
Gamma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Foisson
Gamma
LnOLS-Hom
NLS
Poisson
Gamma
LnOLS-Hom
InOLS-Het
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Gamma
ILnOLS-Hom
LnQOLS-Het
NLS
Poisson

Log Normal
Var = 1.0

LnOLS-Hom
ILnCLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Het
LnOLS-Het
LnCLS-Het
LnOLS-Het
NLS

NLS

NLS

NLS
Poisson
Poisson
Poisson
Camma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Poisson
Gamma
LnOLS-Hom
NLS
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Poisson
Gamma
ILnOLS-Hom
LnOLS-Het
Gamma
LnOLS-Hom
LnOLS-Het



Appendix Table 2

{cont’d}

Mean Squared Error (MSE)}and Absolute Prediction Error (APE)

Generating
Mechanism

Estimators Compared

MSE

Log Normal
Var = 1.8

LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Het
LnOLS-Het
LnOLS-Het
LnOLS-Het
NLS

NLS

NLS

NLS
Poisson
Poisson
Poisson
Gamma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Poisson
Gamma
LnOLS-Hom
NLS
Poigson
Gamma
LnOLS-Hom
LnOLS-Het
Poisson
Gamma
LnCLS-Hom
LnCLS-Het
Gamma
LnCLS-Hom
LnCLS-Het
NLS
Pocisson

Log Normal
Var = 2.0

LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Het
LnOLS-Het
ILnOLS-Het
LnOLS-Het
NLS

NLS

NLS

NLS
Poisson
Poisson
Poisson
Gamma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Poisson
Gamma
LnOLS-Hom
NLS
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Poigson
Gamma
LnOLS-Hom
LnOLS-Het
Gamma
LnOLS-Hom
LnOLS-Het
NLS
Poigson



Mean Squared Error

Generating
Mechanism

Appendix Table 2
(MSE) and Absclute Prediction Errcr

Estimators Compared

(cont‘d)

MSE

(APE)

Heavy Tailed

k =4

LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LNnOLS-Hom
LnOLS-Het
LnOLS-Het
LnOLS-Het
LnOLS-Het
NLS

NLS

NLS

NLS
Poisson
Poigson
Poisson
Gamma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Poisson
Gamma
LnOLS-Hom
NLS
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Gamma
LnCLS-Hom
LnOLS-Het
NLS
Poisson

824

105
258
176

Heavy Tailed

k=5

LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS~-Hom
LnOLS-Het
LnOLS-Het
LnOLS~-Het
LnOLS-Het
NLS

NLS

NLS

NLS
Poisson
Poisgson
Poissgon
Gamma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Poisson
Gamma
LnOLS-Hom
NLS
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Poisson
Gamma
LnOLS -Hom
LnOLS-Het
Gamma
LnOLS-Hom
LnOLS-Het
NLS
Poisson



Generating
Mechanism

Appendix Table 2
Mean Squared Error (MSE})and Absolute Prediction Error

Estimators Compared

(cont’d)

(APE)

LnOLS-Hom
LnOLS-Hom
ILnOLS-Hom
LnOLS-Hom
LnOLS-Het
LnOLS-Het
LnOLS-Het
LnOLS-Het
NLS

NLS

NLS

NLS
Poisson
Poisson
Poisson
Gamma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Poisson
Gamma
LnQLS-Hom
NLS
Poisson
Gamma
LnCLS-Hom
LnCLS-Het
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Gamma
LnOLS-Hom
LnOLS-Het
NLS
Poisson

Gamma
Shape = ©
Gamma
Shape = 1

LnCLS -Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Het
LnOLS-Het
LnOLS-Het
LnOLS-Het
NLS

NLS

NLS

NLS
Poisson
Poisson
Poisson
Gamma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Poisgon
Gamma
LnOLS-Hom
NLS
Poisson
Gamma
LnOLS -Hom
LnOLS-~-Het
Poigson
Gamma
LnOLS-Hom
LnOLS-Het
Gamma
LnOLS -Hom
LnOLS-Het
NLS
Poisson
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Generating
Mechanism

Appendix Table 2
Mean Sgquared Error (MSE)and Absolute Prediction Error

Estimators Compared

(cont’d)

(APE)

LnOLS-Hom
LnOLS-Hom
LnQOLS-Hom
LnOLS-Hom
LnCLS-Het
LnOLS-Het
LnOLS-Het
LnOLS-Het
NLS

NLS

NLS

NLS
Poisson
Peoisson
Poisson
Gamma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Poisgon
Gamma
LnOLS-Hom
NLS
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Poisson
Gamma
LnOLS -Hom
LnCLS-Het
Gamma
LnOLS-Hom
ILnOLS-Het
NLS
Poisson

Non Linear
Additive
error

LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Het
LnOLS-Het
LnOLS-Het
LnCLS-Het
NLS

NLS

NLS

NLS
Poisson
Poisson
Poisson
Gamma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Poisson
Gamma
LnOLS-Hom
NLS
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Gamma
LnOCLS-Hom
LnOLS-Het
NLS



Mean Squared Error

Generating
Mechanism

Appendix Table 2
{(MSE) and Absclute Prediction Error

Estimators Compared

(cont’d)

MSE

{APE)

Log Normal
Var = 1+x

LnCLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS-Het
LnOLS-Het
LnOLS-Het
LnOCLS-Het
NLS

NLS

NLS

NLS
Poisson
Poisson
Poisson
Gamma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Poisson
Gamma
LnOLS-Hom
NLS
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Poisson
Gamma
LnOLS-Hom
LnOLS-Het
Gamma
LnOLS-Hom
LnOLS-Het
NLS
Poisson

Log Normal
std = 1+x

LnOLS-Hom
LnOLS-Hom
LnOLS-Hom
LnOLS -Hom
LnOLS-Het
LnQOLS -Het
LnOLS-Het
LnOLS-Het
NLS

NLS

NLS

NLS
Poisson
Poisson
Poisson
Gamma
Gamma
Gamma
Gamma

LnOLS-Het
NLS
Poigson
Gamma
LnOLS-Hom
NLS
Poigson
Gamma
LnOLS-Hom
LnOLS-Het
Poisson
Gamma
LnOLS ~-Hom
LnOLS-Het
Gamma
LnOLS-Hom
ILnOLS-Het
NLS
Poisson
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